-
Notifications
You must be signed in to change notification settings - Fork 591
/
run_alphafold_test.py
492 lines (430 loc) · 16.6 KB
/
run_alphafold_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
# Copyright 2024 DeepMind Technologies Limited
#
# AlphaFold 3 source code is licensed under CC BY-NC-SA 4.0. To view a copy of
# this license, visit https://creativecommons.org/licenses/by-nc-sa/4.0/
#
# To request access to the AlphaFold 3 model parameters, follow the process set
# out at https://github.com/google-deepmind/alphafold3. You may only use these
# if received directly from Google. Use is subject to terms of use available at
# https://github.com/google-deepmind/alphafold3/blob/main/WEIGHTS_TERMS_OF_USE.md
"""Tests end-to-end running of AlphaFold 3."""
import contextlib
import csv
import datetime
import difflib
import functools
import hashlib
import json
import os
import pathlib
import pickle
from typing import Any
from absl import logging
from absl.testing import absltest
from absl.testing import parameterized
from alphafold3 import structure
from alphafold3.common import folding_input
from alphafold3.common import resources
from alphafold3.common.testing import data as testing_data
from alphafold3.constants import chemical_components
from alphafold3.data import featurisation
from alphafold3.data import pipeline
from alphafold3.model.atom_layout import atom_layout
from alphafold3.model.diffusion import model as diffusion_model
from alphafold3.model.scoring import alignment
from alphafold3.structure import test_utils
import jax
import numpy as np
import run_alphafold
import shutil
_JACKHMMER_BINARY_PATH = shutil.which('jackhmmer')
_NHMMER_BINARY_PATH = shutil.which('nhmmer')
_HMMALIGN_BINARY_PATH = shutil.which('hmmalign')
_HMMSEARCH_BINARY_PATH = shutil.which('hmmsearch')
_HMMBUILD_BINARY_PATH = shutil.which('hmmbuild')
@contextlib.contextmanager
def _output(name: str):
with open(result_path := f'{absltest.TEST_TMPDIR.value}/{name}', "wb") as f:
yield result_path, f
jax.config.update('jax_enable_compilation_cache', False)
def _generate_diff(actual: str, expected: str) -> str:
return '\n'.join(
difflib.unified_diff(
expected.split('\n'),
actual.split('\n'),
fromfile='expected',
tofile='actual',
lineterm='',
)
)
@functools.singledispatch
def _hash_data(x: Any, /) -> str:
if x is None:
return '<<None>>'
return _hash_data(json.dumps(x).encode('utf-8'))
@_hash_data.register
def _(x: bytes, /) -> str:
return hashlib.sha256(x).hexdigest()
@_hash_data.register
def _(x: jax.Array) -> str:
return _hash_data(jax.device_get(x))
@_hash_data.register
def _(x: np.ndarray) -> str:
if x.dtype == object:
return ';'.join(map(_hash_data, x.ravel().tolist()))
return _hash_data(x.tobytes())
@_hash_data.register
def _(_: structure.Structure) -> str:
return '<<structure>>'
@_hash_data.register
def _(_: atom_layout.AtomLayout) -> str:
return '<<atom-layout>>'
class InferenceTest(test_utils.StructureTestCase):
"""Test AlphaFold 3 inference."""
def setUp(self):
super().setUp()
small_bfd_database_path = testing_data.Data(
resources.ROOT
/ 'test_data/miniature_databases/bfd-first_non_consensus_sequences__subsampled_1000.fasta'
).path()
mgnify_database_path = testing_data.Data(
resources.ROOT
/ 'test_data/miniature_databases/mgy_clusters__subsampled_1000.fa'
).path()
uniprot_cluster_annot_database_path = testing_data.Data(
resources.ROOT
/ 'test_data/miniature_databases/uniprot_all__subsampled_1000.fasta'
).path()
uniref90_database_path = testing_data.Data(
resources.ROOT
/ 'test_data/miniature_databases/uniref90__subsampled_1000.fasta'
).path()
ntrna_database_path = testing_data.Data(
resources.ROOT
/ 'test_data/miniature_databases/nt_rna_2023_02_23_clust_seq_id_90_cov_80_rep_seq__subsampled_1000.fasta'
).path()
rfam_database_path = testing_data.Data(
resources.ROOT
/ 'test_data/miniature_databases/rfam_14_4_clustered_rep_seq__subsampled_1000.fasta'
).path()
rna_central_database_path = testing_data.Data(
resources.ROOT
/ 'test_data/miniature_databases/rnacentral_active_seq_id_90_cov_80_linclust__subsampled_1000.fasta'
).path()
pdb_database_path = testing_data.Data(
resources.ROOT / 'data/testdata/templates_v2/ww_pdb'
).path()
seqres_database_path = testing_data.Data(
resources.ROOT
/ 'test_data/miniature_databases/pdb_seqres_2022_09_28__subsampled_1000.fasta'
).path()
self._data_pipeline_config = pipeline.DataPipelineConfig(
jackhmmer_binary_path=_JACKHMMER_BINARY_PATH,
nhmmer_binary_path=_NHMMER_BINARY_PATH,
hmmalign_binary_path=_HMMALIGN_BINARY_PATH,
hmmsearch_binary_path=_HMMSEARCH_BINARY_PATH,
hmmbuild_binary_path=_HMMBUILD_BINARY_PATH,
small_bfd_database_path=small_bfd_database_path,
mgnify_database_path=mgnify_database_path,
uniprot_cluster_annot_database_path=uniprot_cluster_annot_database_path,
uniref90_database_path=uniref90_database_path,
ntrna_database_path=ntrna_database_path,
rfam_database_path=rfam_database_path,
rna_central_database_path=rna_central_database_path,
pdb_database_path=pdb_database_path,
seqres_database_path=seqres_database_path,
max_template_date=datetime.date(2021, 9, 30),
)
test_input = {
'name': '5tgy',
'modelSeeds': [1234],
'sequences': [
{
'protein': {
'id': 'A',
'sequence': 'SEFEKLRQTGDELVQAFQRLREIFDKGDDDSLEQVLEEIEELIQKHRQLFDNRQEAADTEAAKQGDQWVQLFQRFREAIDKGDKDSLEQLLEELEQALQKIRELAEKKN',
'modifications': [],
'unpairedMsa': None,
'pairedMsa': None,
}
},
{'ligand': {'id': 'B', 'ccdCodes': ['7BU']}},
],
'dialect': folding_input.JSON_DIALECT,
'version': folding_input.JSON_VERSION,
}
self._test_input_json = json.dumps(test_input)
self._runner = run_alphafold.ModelRunner(
model_class=run_alphafold.diffusion_model.Diffuser,
config=run_alphafold.make_model_config(),
device=jax.local_devices()[0],
model_dir=pathlib.Path(run_alphafold.MODEL_DIR.value),
)
def compare_golden(self, result_path: str) -> None:
filename = os.path.split(result_path)[1]
golden_path = testing_data.Data(
resources.ROOT / f'test_data/{filename}'
).path()
with open(golden_path, 'r') as golden_file:
golden_text = golden_file.read()
with open(result_path, 'r') as result_file:
result_text = result_file.read()
diff = _generate_diff(result_text, golden_text)
self.assertEqual(diff, "", f"Result differs from golden:\n{diff}")
def test_config(self):
model_config = run_alphafold.make_model_config()
model_config_as_str = json.dumps(
model_config.as_dict(), sort_keys=True, indent=2
)
with _output('model_config.json') as (result_path, output):
output.write(model_config_as_str.encode('utf-8'))
self.compare_golden(result_path)
def test_featurisation(self):
"""Run featurisation and assert that the output is as expected."""
fold_input = folding_input.Input.from_json(self._test_input_json)
data_pipeline = pipeline.DataPipeline(self._data_pipeline_config)
full_fold_input = data_pipeline.process(fold_input)
featurised_example = featurisation.featurise_input(
full_fold_input,
ccd=chemical_components.cached_ccd(),
buckets=None,
)
with _output('featurised_example.pkl') as (_, output):
output.write(pickle.dumps(featurised_example))
featurised_example = jax.tree_util.tree_map(_hash_data, featurised_example)
with _output('featurised_example.json') as (result_path, output):
output.write(
json.dumps(featurised_example, sort_keys=True, indent=2).encode(
'utf-8'
)
)
self.compare_golden(result_path)
def test_model_inference(self):
"""Run model inference and assert that the output is as expected."""
featurised_examples = pickle.loads(
(resources.ROOT / 'test_data' / 'featurised_example.pkl').read_bytes()
)
self.assertLen(featurised_examples, 1)
featurised_example = featurised_examples[0]
inference_result = self._runner.run_inference(
featurised_example, jax.random.PRNGKey(0)
)
inference_result = jax.tree_util.tree_map(_hash_data, inference_result)
self.assertIsNotNone(inference_result)
def test_write_input_json(self):
fold_input = folding_input.Input.from_json(self._test_input_json)
output_dir = self.create_tempdir()
run_alphafold.write_fold_input_json(fold_input, output_dir)
with open(
os.path.join(output_dir, f'{fold_input.sanitised_name()}_data.json'),
'rt',
) as f:
actual_fold_input = folding_input.Input.from_json(f.read())
self.assertEqual(actual_fold_input, fold_input)
def test_process_fold_input_runs_only_data_pipeline(self):
fold_input = folding_input.Input.from_json(self._test_input_json)
output_dir = self.create_tempdir()
run_alphafold.process_fold_input(
fold_input=fold_input,
data_pipeline_config=self._data_pipeline_config,
model_runner=None,
output_dir=output_dir,
)
with open(
os.path.join(output_dir, f'{fold_input.sanitised_name()}_data.json'),
'rt',
) as f:
actual_fold_input = folding_input.Input.from_json(f.read())
featurisation.validate_fold_input(actual_fold_input)
def test_process_fold_input_runs_only_inference(self):
with self.assertRaisesRegex(ValueError, 'missing unpaired MSA.'):
run_alphafold.process_fold_input(
fold_input=folding_input.Input.from_json(self._test_input_json),
# No data pipeline config, so featursation will run first, and fail
# since the input is missing MSAs.
data_pipeline_config=None,
model_runner=self._runner,
output_dir=self.create_tempdir(),
)
def test_no_chains_in_input(self):
fold_input = folding_input.Input(
name='empty',
chains=[],
rng_seeds=[0],
)
with self.assertRaisesRegex(ValueError, 'Fold input has no chains.'):
run_alphafold.process_fold_input(
fold_input=fold_input,
data_pipeline_config=self._data_pipeline_config,
model_runner=run_alphafold.ModelRunner(
model_class=diffusion_model.Diffuser,
config=run_alphafold.make_model_config(),
device=jax.local_devices(backend='gpu')[0],
model_dir=pathlib.Path(run_alphafold.MODEL_DIR.value),
),
output_dir='unused output dir',
)
@parameterized.named_parameters(
{
'testcase_name': 'default_bucket',
'bucket': None,
'exp_ranking_scores': [0.69, 0.69, 0.72, 0.75, 0.70],
},
{
'testcase_name': 'bucket_1024',
'bucket': 1024,
'exp_ranking_scores': [0.69, 0.71, 0.71, 0.69, 0.70],
},
)
def test_inference(self, bucket, exp_ranking_scores):
"""Run AlphaFold 3 inference."""
### Prepare inputs.
fold_input = folding_input.Input.from_json(self._test_input_json)
output_dir = self.create_tempdir()
actual = run_alphafold.process_fold_input(
fold_input,
self._data_pipeline_config,
run_alphafold.ModelRunner(
model_class=diffusion_model.Diffuser,
config=run_alphafold.make_model_config(),
device=jax.local_devices(backend='gpu')[0],
model_dir=pathlib.Path(run_alphafold.MODEL_DIR.value),
),
output_dir=output_dir,
buckets=None if bucket is None else [bucket],
)
logging.info('finished get_inference_result')
expected_model_cif_filename = f'{fold_input.sanitised_name()}_model.cif'
expected_summary_confidences_filename = (
f'{fold_input.sanitised_name()}_summary_confidences.json'
)
expected_confidences_filename = (
f'{fold_input.sanitised_name()}_confidences.json'
)
expected_data_json_filename = f'{fold_input.sanitised_name()}_data.json'
self.assertSameElements(
os.listdir(output_dir),
[
# Subdirectories, one for each sample.
'seed-1234_sample-0',
'seed-1234_sample-1',
'seed-1234_sample-2',
'seed-1234_sample-3',
'seed-1234_sample-4',
# Top ranking result.
expected_confidences_filename,
expected_model_cif_filename,
expected_summary_confidences_filename,
# Ranking scores for all samples.
'ranking_scores.csv',
# The input JSON defining the job.
expected_data_json_filename,
# The output terms of use.
'TERMS_OF_USE.md',
],
)
with open(os.path.join(output_dir, expected_data_json_filename), 'rt') as f:
actual_input_json = json.load(f)
self.assertEqual(
actual_input_json['sequences'][0]['protein']['sequence'],
fold_input.protein_chains[0].sequence,
)
self.assertSequenceEqual(
actual_input_json['sequences'][1]['ligand']['ccdCodes'],
fold_input.ligands[0].ccd_ids,
)
self.assertNotEmpty(
actual_input_json['sequences'][0]['protein']['unpairedMsa']
)
self.assertNotEmpty(
actual_input_json['sequences'][0]['protein']['pairedMsa']
)
self.assertIsNotNone(
actual_input_json['sequences'][0]['protein']['templates']
)
with open(os.path.join(output_dir, 'ranking_scores.csv'), 'rt') as f:
actual_ranking_scores = list(csv.DictReader(f))
self.assertLen(actual_ranking_scores, 5)
self.assertEqual(
[int(s['seed']) for s in actual_ranking_scores], [1234] * 5
)
self.assertEqual(
[int(s['sample']) for s in actual_ranking_scores], [0, 1, 2, 3, 4]
)
np.testing.assert_array_almost_equal(
[float(s['ranking_score']) for s in actual_ranking_scores],
exp_ranking_scores,
decimal=2,
)
with open(os.path.join(output_dir, 'TERMS_OF_USE.md'), 'rt') as f:
actual_terms_of_use = f.read()
self.assertStartsWith(
actual_terms_of_use, '# ALPHAFOLD 3 OUTPUT TERMS OF USE'
)
bucket_label = 'default' if bucket is None else bucket
output_filename = f'run_alphafold_test_output_bucket_{bucket_label}.pkl'
# Convert to dict to enable simple serialization.
actual_dict = [
dict(
seed=actual_inf.seed,
inference_results=actual_inf.inference_results,
full_fold_input=actual_inf.full_fold_input,
)
for actual_inf in actual
]
with _output(output_filename) as (_, output):
output.write(pickle.dumps(actual_dict))
logging.info('Comparing inference results with expected values.')
### Assert that output is as expected.
expected_dict = pickle.loads(
(
resources.ROOT
/ 'test_data'
/ 'alphafold_run_outputs'
/ output_filename
).read_bytes()
)
expected = [
run_alphafold.ResultsForSeed(**expected_inf)
for expected_inf in expected_dict
]
for actual_inf, expected_inf in zip(actual, expected, strict=True):
for actual_inf, expected_inf in zip(
actual_inf.inference_results,
expected_inf.inference_results,
strict=True,
):
# Check RMSD is within tolerance.
# 5tgy is very stable, NMR samples were all within 3.0 RMSD.
actual_rmsd = alignment.rmsd_from_coords(
actual_inf.predicted_structure.coords,
expected_inf.predicted_structure.coords,
)
self.assertLess(actual_rmsd, 3.0)
np.testing.assert_array_equal(
actual_inf.predicted_structure.atom_occupancy,
[1.0] * actual_inf.predicted_structure.num_atoms,
)
@parameterized.product(num_db_dirs=tuple(range(1, 3)))
def test_replace_db_dir(self, num_db_dirs: int) -> None:
"""Test that the db_dir is replaced correctly."""
db_dirs = [pathlib.Path(self.create_tempdir()) for _ in range(num_db_dirs)]
db_dirs_posix = [db_dir.as_posix() for db_dir in db_dirs]
for i, db_dir in enumerate(db_dirs):
for j in range(i + 1):
(db_dir / f'filename{j}.txt').write_text(f'hello world {i}')
for i in range(num_db_dirs):
self.assertEqual(
pathlib.Path(
run_alphafold.replace_db_dir(
f'${{DB_DIR}}/filename{i}.txt', db_dirs_posix
)
).read_text(),
f'hello world {i}',
)
with self.assertRaises(FileNotFoundError):
run_alphafold.replace_db_dir(
f'${{DB_DIR}}/filename{num_db_dirs}.txt', db_dirs_posix
)
if __name__ == '__main__':
absltest.main()