-
Notifications
You must be signed in to change notification settings - Fork 30
/
integral_solver.py
110 lines (85 loc) · 4.48 KB
/
integral_solver.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
# Copyright SandboxAQ 2021-2024.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import abc
class IntegralSolver(abc.ABC):
"""Instantiate electronic integral solver"""
def __init__(self):
pass
@abc.abstractmethod
def set_physical_data(self, mol):
"""Set molecular data that is independant of basis set in mol
Modify mol variable:
mol.xyz to (list): Nested array-like structure with elements and coordinates
(ex:[ ["H", (0., 0., 0.)], ...]) in angstrom
Add to mol:
mol.n_electrons (int): Self-explanatory.
mol.n_atoms (int): Self-explanatory.
Args:
mol (Molecule or SecondQuantizedMolecule): Class to add the other variables given populated.
mol.xyz (in appropriate format for solver): Definition of molecular geometry.
mol.q (float): Total charge.
mol.spin (int): Absolute difference between alpha and beta electron number.
"""
pass
@abc.abstractmethod
def compute_mean_field(self, sqmol):
"""Run a unrestricted/restricted (openshell-)Hartree-Fock calculation and modify/add the following
variables to sqmol
Modify sqmol variables.
sqmol.mf_energy (float): Mean-field energy (RHF or ROHF energy depending on the spin).
sqmol.mo_energies (list of float): Molecular orbital energies.
sqmol.mo_occ (list of float): Molecular orbital occupancies (between 0. and 2.).
sqmol.n_mos (int): Number of molecular orbitals with a given basis set.
sqmol.n_sos (int): Number of spin-orbitals with a given basis set.
Add to sqmol:
self.mo_coeff (ndarray or List[ndarray]): array of molecular orbital coefficients (MO coeffs) if RHF ROHF
list of arrays [alpha MO coeffs, beta MO coeffs] if UHF
Args:
sqmol (SecondQuantizedMolecule): Populated variables of Molecule plus
sqmol.basis (string): Basis set.
sqmol.ecp (dict): The effective core potential (ecp) for any atoms in the molecule.
e.g. {"C": "crenbl"} use CRENBL ecp for Carbon atoms.
sqmol.symmetry (bool or str): Whether to use symmetry in RHF or ROHF calculation.
Can also specify point group using string. e.g. "Dooh", "D2h", "C2v", ...
sqmol.uhf (bool): If True, Use UHF instead of RHF or ROHF reference. Default False
"""
pass
@abc.abstractmethod
def get_integrals(self, sqmol, mo_coeff=None):
r"""Computes core constant, one_body, and two-body integrals for all orbitals
one-body integrals should be in the form
h[p,q]= \int \phi_p(x)* (T + V_{ext}) \phi_q(x) dx
two-body integrals should be in the form
h[p,q,r,s] = \int \phi_p(x) * \phi_q(y) * V_{elec-elec} \phi_r(y) \phi_s(x) dxdy
Using molecular orbitals \phi_j(x) = \sum_{ij} A_i(x) mo_coeff_{i,j} where A_i(x) are the atomic orbitals.
For UHF (if sqmol.uhf is True)
one_body coefficients are [alpha one_body, beta one_body]
two_body coefficients are [alpha-alpha two_body, alpha-beta two_body, beta-beta two_body]
where one_body and two_body are appropriately sized arrays for each spin sector.
Args:
sqmol (SecondQuantizedMolecule) : SecondQuantizedMolecule populated with all variables defined above
mo_coeff : Molecular orbital coefficients to use for calculating the integrals, instead of self.mo_coeff
Returns:
(float, array or List[array], array or List[array]): (core_constant, one_body coefficients, two_body coefficients)
"""
pass
class IntegralSolverEmpty(IntegralSolver):
def __init__(self):
pass
def set_physical_data(self, mol):
pass
def compute_mean_field(self, sqmol):
pass
def get_integrals(self, sqmol, mo_coeff=None):
pass