-
Notifications
You must be signed in to change notification settings - Fork 17.8k
/
Copy pathmprof.go
1729 lines (1559 loc) · 56.2 KB
/
mprof.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Malloc profiling.
// Patterned after tcmalloc's algorithms; shorter code.
package runtime
import (
"internal/abi"
"internal/goarch"
"internal/profilerecord"
"internal/runtime/atomic"
"internal/runtime/sys"
"unsafe"
)
// NOTE(rsc): Everything here could use cas if contention became an issue.
var (
// profInsertLock protects changes to the start of all *bucket linked lists
profInsertLock mutex
// profBlockLock protects the contents of every blockRecord struct
profBlockLock mutex
// profMemActiveLock protects the active field of every memRecord struct
profMemActiveLock mutex
// profMemFutureLock is a set of locks that protect the respective elements
// of the future array of every memRecord struct
profMemFutureLock [len(memRecord{}.future)]mutex
)
// All memory allocations are local and do not escape outside of the profiler.
// The profiler is forbidden from referring to garbage-collected memory.
const (
// profile types
memProfile bucketType = 1 + iota
blockProfile
mutexProfile
// size of bucket hash table
buckHashSize = 179999
// maxSkip is to account for deferred inline expansion
// when using frame pointer unwinding. We record the stack
// with "physical" frame pointers but handle skipping "logical"
// frames at some point after collecting the stack. So
// we need extra space in order to avoid getting fewer than the
// desired maximum number of frames after expansion.
// This should be at least as large as the largest skip value
// used for profiling; otherwise stacks may be truncated inconsistently
maxSkip = 6
// maxProfStackDepth is the highest valid value for debug.profstackdepth.
// It's used for the bucket.stk func.
// TODO(fg): can we get rid of this?
maxProfStackDepth = 1024
)
type bucketType int
// A bucket holds per-call-stack profiling information.
// The representation is a bit sleazy, inherited from C.
// This struct defines the bucket header. It is followed in
// memory by the stack words and then the actual record
// data, either a memRecord or a blockRecord.
//
// Per-call-stack profiling information.
// Lookup by hashing call stack into a linked-list hash table.
//
// None of the fields in this bucket header are modified after
// creation, including its next and allnext links.
//
// No heap pointers.
type bucket struct {
_ sys.NotInHeap
next *bucket
allnext *bucket
typ bucketType // memBucket or blockBucket (includes mutexProfile)
hash uintptr
size uintptr
nstk uintptr
}
// A memRecord is the bucket data for a bucket of type memProfile,
// part of the memory profile.
type memRecord struct {
// The following complex 3-stage scheme of stats accumulation
// is required to obtain a consistent picture of mallocs and frees
// for some point in time.
// The problem is that mallocs come in real time, while frees
// come only after a GC during concurrent sweeping. So if we would
// naively count them, we would get a skew toward mallocs.
//
// Hence, we delay information to get consistent snapshots as
// of mark termination. Allocations count toward the next mark
// termination's snapshot, while sweep frees count toward the
// previous mark termination's snapshot:
//
// MT MT MT MT
// .·| .·| .·| .·|
// .·˙ | .·˙ | .·˙ | .·˙ |
// .·˙ | .·˙ | .·˙ | .·˙ |
// .·˙ |.·˙ |.·˙ |.·˙ |
//
// alloc → ▲ ← free
// ┠┅┅┅┅┅┅┅┅┅┅┅P
// C+2 → C+1 → C
//
// alloc → ▲ ← free
// ┠┅┅┅┅┅┅┅┅┅┅┅P
// C+2 → C+1 → C
//
// Since we can't publish a consistent snapshot until all of
// the sweep frees are accounted for, we wait until the next
// mark termination ("MT" above) to publish the previous mark
// termination's snapshot ("P" above). To do this, allocation
// and free events are accounted to *future* heap profile
// cycles ("C+n" above) and we only publish a cycle once all
// of the events from that cycle must be done. Specifically:
//
// Mallocs are accounted to cycle C+2.
// Explicit frees are accounted to cycle C+2.
// GC frees (done during sweeping) are accounted to cycle C+1.
//
// After mark termination, we increment the global heap
// profile cycle counter and accumulate the stats from cycle C
// into the active profile.
// active is the currently published profile. A profiling
// cycle can be accumulated into active once its complete.
active memRecordCycle
// future records the profile events we're counting for cycles
// that have not yet been published. This is ring buffer
// indexed by the global heap profile cycle C and stores
// cycles C, C+1, and C+2. Unlike active, these counts are
// only for a single cycle; they are not cumulative across
// cycles.
//
// We store cycle C here because there's a window between when
// C becomes the active cycle and when we've flushed it to
// active.
future [3]memRecordCycle
}
// memRecordCycle
type memRecordCycle struct {
allocs, frees uintptr
alloc_bytes, free_bytes uintptr
}
// add accumulates b into a. It does not zero b.
func (a *memRecordCycle) add(b *memRecordCycle) {
a.allocs += b.allocs
a.frees += b.frees
a.alloc_bytes += b.alloc_bytes
a.free_bytes += b.free_bytes
}
// A blockRecord is the bucket data for a bucket of type blockProfile,
// which is used in blocking and mutex profiles.
type blockRecord struct {
count float64
cycles int64
}
var (
mbuckets atomic.UnsafePointer // *bucket, memory profile buckets
bbuckets atomic.UnsafePointer // *bucket, blocking profile buckets
xbuckets atomic.UnsafePointer // *bucket, mutex profile buckets
buckhash atomic.UnsafePointer // *buckhashArray
mProfCycle mProfCycleHolder
)
type buckhashArray [buckHashSize]atomic.UnsafePointer // *bucket
const mProfCycleWrap = uint32(len(memRecord{}.future)) * (2 << 24)
// mProfCycleHolder holds the global heap profile cycle number (wrapped at
// mProfCycleWrap, stored starting at bit 1), and a flag (stored at bit 0) to
// indicate whether future[cycle] in all buckets has been queued to flush into
// the active profile.
type mProfCycleHolder struct {
value atomic.Uint32
}
// read returns the current cycle count.
func (c *mProfCycleHolder) read() (cycle uint32) {
v := c.value.Load()
cycle = v >> 1
return cycle
}
// setFlushed sets the flushed flag. It returns the current cycle count and the
// previous value of the flushed flag.
func (c *mProfCycleHolder) setFlushed() (cycle uint32, alreadyFlushed bool) {
for {
prev := c.value.Load()
cycle = prev >> 1
alreadyFlushed = (prev & 0x1) != 0
next := prev | 0x1
if c.value.CompareAndSwap(prev, next) {
return cycle, alreadyFlushed
}
}
}
// increment increases the cycle count by one, wrapping the value at
// mProfCycleWrap. It clears the flushed flag.
func (c *mProfCycleHolder) increment() {
// We explicitly wrap mProfCycle rather than depending on
// uint wraparound because the memRecord.future ring does not
// itself wrap at a power of two.
for {
prev := c.value.Load()
cycle := prev >> 1
cycle = (cycle + 1) % mProfCycleWrap
next := cycle << 1
if c.value.CompareAndSwap(prev, next) {
break
}
}
}
// newBucket allocates a bucket with the given type and number of stack entries.
func newBucket(typ bucketType, nstk int) *bucket {
size := unsafe.Sizeof(bucket{}) + uintptr(nstk)*unsafe.Sizeof(uintptr(0))
switch typ {
default:
throw("invalid profile bucket type")
case memProfile:
size += unsafe.Sizeof(memRecord{})
case blockProfile, mutexProfile:
size += unsafe.Sizeof(blockRecord{})
}
b := (*bucket)(persistentalloc(size, 0, &memstats.buckhash_sys))
b.typ = typ
b.nstk = uintptr(nstk)
return b
}
// stk returns the slice in b holding the stack. The caller can assume that the
// backing array is immutable.
func (b *bucket) stk() []uintptr {
stk := (*[maxProfStackDepth]uintptr)(add(unsafe.Pointer(b), unsafe.Sizeof(*b)))
if b.nstk > maxProfStackDepth {
// prove that slicing works; otherwise a failure requires a P
throw("bad profile stack count")
}
return stk[:b.nstk:b.nstk]
}
// mp returns the memRecord associated with the memProfile bucket b.
func (b *bucket) mp() *memRecord {
if b.typ != memProfile {
throw("bad use of bucket.mp")
}
data := add(unsafe.Pointer(b), unsafe.Sizeof(*b)+b.nstk*unsafe.Sizeof(uintptr(0)))
return (*memRecord)(data)
}
// bp returns the blockRecord associated with the blockProfile bucket b.
func (b *bucket) bp() *blockRecord {
if b.typ != blockProfile && b.typ != mutexProfile {
throw("bad use of bucket.bp")
}
data := add(unsafe.Pointer(b), unsafe.Sizeof(*b)+b.nstk*unsafe.Sizeof(uintptr(0)))
return (*blockRecord)(data)
}
// Return the bucket for stk[0:nstk], allocating new bucket if needed.
func stkbucket(typ bucketType, size uintptr, stk []uintptr, alloc bool) *bucket {
bh := (*buckhashArray)(buckhash.Load())
if bh == nil {
lock(&profInsertLock)
// check again under the lock
bh = (*buckhashArray)(buckhash.Load())
if bh == nil {
bh = (*buckhashArray)(sysAlloc(unsafe.Sizeof(buckhashArray{}), &memstats.buckhash_sys))
if bh == nil {
throw("runtime: cannot allocate memory")
}
buckhash.StoreNoWB(unsafe.Pointer(bh))
}
unlock(&profInsertLock)
}
// Hash stack.
var h uintptr
for _, pc := range stk {
h += pc
h += h << 10
h ^= h >> 6
}
// hash in size
h += size
h += h << 10
h ^= h >> 6
// finalize
h += h << 3
h ^= h >> 11
i := int(h % buckHashSize)
// first check optimistically, without the lock
for b := (*bucket)(bh[i].Load()); b != nil; b = b.next {
if b.typ == typ && b.hash == h && b.size == size && eqslice(b.stk(), stk) {
return b
}
}
if !alloc {
return nil
}
lock(&profInsertLock)
// check again under the insertion lock
for b := (*bucket)(bh[i].Load()); b != nil; b = b.next {
if b.typ == typ && b.hash == h && b.size == size && eqslice(b.stk(), stk) {
unlock(&profInsertLock)
return b
}
}
// Create new bucket.
b := newBucket(typ, len(stk))
copy(b.stk(), stk)
b.hash = h
b.size = size
var allnext *atomic.UnsafePointer
if typ == memProfile {
allnext = &mbuckets
} else if typ == mutexProfile {
allnext = &xbuckets
} else {
allnext = &bbuckets
}
b.next = (*bucket)(bh[i].Load())
b.allnext = (*bucket)(allnext.Load())
bh[i].StoreNoWB(unsafe.Pointer(b))
allnext.StoreNoWB(unsafe.Pointer(b))
unlock(&profInsertLock)
return b
}
func eqslice(x, y []uintptr) bool {
if len(x) != len(y) {
return false
}
for i, xi := range x {
if xi != y[i] {
return false
}
}
return true
}
// mProf_NextCycle publishes the next heap profile cycle and creates a
// fresh heap profile cycle. This operation is fast and can be done
// during STW. The caller must call mProf_Flush before calling
// mProf_NextCycle again.
//
// This is called by mark termination during STW so allocations and
// frees after the world is started again count towards a new heap
// profiling cycle.
func mProf_NextCycle() {
mProfCycle.increment()
}
// mProf_Flush flushes the events from the current heap profiling
// cycle into the active profile. After this it is safe to start a new
// heap profiling cycle with mProf_NextCycle.
//
// This is called by GC after mark termination starts the world. In
// contrast with mProf_NextCycle, this is somewhat expensive, but safe
// to do concurrently.
func mProf_Flush() {
cycle, alreadyFlushed := mProfCycle.setFlushed()
if alreadyFlushed {
return
}
index := cycle % uint32(len(memRecord{}.future))
lock(&profMemActiveLock)
lock(&profMemFutureLock[index])
mProf_FlushLocked(index)
unlock(&profMemFutureLock[index])
unlock(&profMemActiveLock)
}
// mProf_FlushLocked flushes the events from the heap profiling cycle at index
// into the active profile. The caller must hold the lock for the active profile
// (profMemActiveLock) and for the profiling cycle at index
// (profMemFutureLock[index]).
func mProf_FlushLocked(index uint32) {
assertLockHeld(&profMemActiveLock)
assertLockHeld(&profMemFutureLock[index])
head := (*bucket)(mbuckets.Load())
for b := head; b != nil; b = b.allnext {
mp := b.mp()
// Flush cycle C into the published profile and clear
// it for reuse.
mpc := &mp.future[index]
mp.active.add(mpc)
*mpc = memRecordCycle{}
}
}
// mProf_PostSweep records that all sweep frees for this GC cycle have
// completed. This has the effect of publishing the heap profile
// snapshot as of the last mark termination without advancing the heap
// profile cycle.
func mProf_PostSweep() {
// Flush cycle C+1 to the active profile so everything as of
// the last mark termination becomes visible. *Don't* advance
// the cycle, since we're still accumulating allocs in cycle
// C+2, which have to become C+1 in the next mark termination
// and so on.
cycle := mProfCycle.read() + 1
index := cycle % uint32(len(memRecord{}.future))
lock(&profMemActiveLock)
lock(&profMemFutureLock[index])
mProf_FlushLocked(index)
unlock(&profMemFutureLock[index])
unlock(&profMemActiveLock)
}
// Called by malloc to record a profiled block.
func mProf_Malloc(mp *m, p unsafe.Pointer, size uintptr) {
if mp.profStack == nil {
// mp.profStack is nil if we happen to sample an allocation during the
// initialization of mp. This case is rare, so we just ignore such
// allocations. Change MemProfileRate to 1 if you need to reproduce such
// cases for testing purposes.
return
}
// Only use the part of mp.profStack we need and ignore the extra space
// reserved for delayed inline expansion with frame pointer unwinding.
nstk := callers(5, mp.profStack[:debug.profstackdepth])
index := (mProfCycle.read() + 2) % uint32(len(memRecord{}.future))
b := stkbucket(memProfile, size, mp.profStack[:nstk], true)
mr := b.mp()
mpc := &mr.future[index]
lock(&profMemFutureLock[index])
mpc.allocs++
mpc.alloc_bytes += size
unlock(&profMemFutureLock[index])
// Setprofilebucket locks a bunch of other mutexes, so we call it outside of
// the profiler locks. This reduces potential contention and chances of
// deadlocks. Since the object must be alive during the call to
// mProf_Malloc, it's fine to do this non-atomically.
systemstack(func() {
setprofilebucket(p, b)
})
}
// Called when freeing a profiled block.
func mProf_Free(b *bucket, size uintptr) {
index := (mProfCycle.read() + 1) % uint32(len(memRecord{}.future))
mp := b.mp()
mpc := &mp.future[index]
lock(&profMemFutureLock[index])
mpc.frees++
mpc.free_bytes += size
unlock(&profMemFutureLock[index])
}
var blockprofilerate uint64 // in CPU ticks
// SetBlockProfileRate controls the fraction of goroutine blocking events
// that are reported in the blocking profile. The profiler aims to sample
// an average of one blocking event per rate nanoseconds spent blocked.
//
// To include every blocking event in the profile, pass rate = 1.
// To turn off profiling entirely, pass rate <= 0.
func SetBlockProfileRate(rate int) {
var r int64
if rate <= 0 {
r = 0 // disable profiling
} else if rate == 1 {
r = 1 // profile everything
} else {
// convert ns to cycles, use float64 to prevent overflow during multiplication
r = int64(float64(rate) * float64(ticksPerSecond()) / (1000 * 1000 * 1000))
if r == 0 {
r = 1
}
}
atomic.Store64(&blockprofilerate, uint64(r))
}
func blockevent(cycles int64, skip int) {
if cycles <= 0 {
cycles = 1
}
rate := int64(atomic.Load64(&blockprofilerate))
if blocksampled(cycles, rate) {
saveblockevent(cycles, rate, skip+1, blockProfile)
}
}
// blocksampled returns true for all events where cycles >= rate. Shorter
// events have a cycles/rate random chance of returning true.
func blocksampled(cycles, rate int64) bool {
if rate <= 0 || (rate > cycles && cheaprand64()%rate > cycles) {
return false
}
return true
}
// saveblockevent records a profile event of the type specified by which.
// cycles is the quantity associated with this event and rate is the sampling rate,
// used to adjust the cycles value in the manner determined by the profile type.
// skip is the number of frames to omit from the traceback associated with the event.
// The traceback will be recorded from the stack of the goroutine associated with the current m.
// skip should be positive if this event is recorded from the current stack
// (e.g. when this is not called from a system stack)
func saveblockevent(cycles, rate int64, skip int, which bucketType) {
if debug.profstackdepth == 0 {
// profstackdepth is set to 0 by the user, so mp.profStack is nil and we
// can't record a stack trace.
return
}
if skip > maxSkip {
print("requested skip=", skip)
throw("invalid skip value")
}
gp := getg()
mp := acquirem() // we must not be preempted while accessing profstack
var nstk int
if tracefpunwindoff() || gp.m.hasCgoOnStack() {
if gp.m.curg == nil || gp.m.curg == gp {
nstk = callers(skip, mp.profStack)
} else {
nstk = gcallers(gp.m.curg, skip, mp.profStack)
}
} else {
if gp.m.curg == nil || gp.m.curg == gp {
if skip > 0 {
// We skip one fewer frame than the provided value for frame
// pointer unwinding because the skip value includes the current
// frame, whereas the saved frame pointer will give us the
// caller's return address first (so, not including
// saveblockevent)
skip -= 1
}
nstk = fpTracebackPartialExpand(skip, unsafe.Pointer(getfp()), mp.profStack)
} else {
mp.profStack[0] = gp.m.curg.sched.pc
nstk = 1 + fpTracebackPartialExpand(skip, unsafe.Pointer(gp.m.curg.sched.bp), mp.profStack[1:])
}
}
saveBlockEventStack(cycles, rate, mp.profStack[:nstk], which)
releasem(mp)
}
// fpTracebackPartialExpand records a call stack obtained starting from fp.
// This function will skip the given number of frames, properly accounting for
// inlining, and save remaining frames as "physical" return addresses. The
// consumer should later use CallersFrames or similar to expand inline frames.
func fpTracebackPartialExpand(skip int, fp unsafe.Pointer, pcBuf []uintptr) int {
var n int
lastFuncID := abi.FuncIDNormal
skipOrAdd := func(retPC uintptr) bool {
if skip > 0 {
skip--
} else if n < len(pcBuf) {
pcBuf[n] = retPC
n++
}
return n < len(pcBuf)
}
for n < len(pcBuf) && fp != nil {
// return addr sits one word above the frame pointer
pc := *(*uintptr)(unsafe.Pointer(uintptr(fp) + goarch.PtrSize))
if skip > 0 {
callPC := pc - 1
fi := findfunc(callPC)
u, uf := newInlineUnwinder(fi, callPC)
for ; uf.valid(); uf = u.next(uf) {
sf := u.srcFunc(uf)
if sf.funcID == abi.FuncIDWrapper && elideWrapperCalling(lastFuncID) {
// ignore wrappers
} else if more := skipOrAdd(uf.pc + 1); !more {
return n
}
lastFuncID = sf.funcID
}
} else {
// We've skipped the desired number of frames, so no need
// to perform further inline expansion now.
pcBuf[n] = pc
n++
}
// follow the frame pointer to the next one
fp = unsafe.Pointer(*(*uintptr)(fp))
}
return n
}
// lockTimer assists with profiling contention on runtime-internal locks.
//
// There are several steps between the time that an M experiences contention and
// when that contention may be added to the profile. This comes from our
// constraints: We need to keep the critical section of each lock small,
// especially when those locks are contended. The reporting code cannot acquire
// new locks until the M has released all other locks, which means no memory
// allocations and encourages use of (temporary) M-local storage.
//
// The M will have space for storing one call stack that caused contention, and
// for the magnitude of that contention. It will also have space to store the
// magnitude of additional contention the M caused, since it only has space to
// remember one call stack and might encounter several contention events before
// it releases all of its locks and is thus able to transfer the local buffer
// into the profile.
//
// The M will collect the call stack when it unlocks the contended lock. That
// minimizes the impact on the critical section of the contended lock, and
// matches the mutex profile's behavior for contention in sync.Mutex: measured
// at the Unlock method.
//
// The profile for contention on sync.Mutex blames the caller of Unlock for the
// amount of contention experienced by the callers of Lock which had to wait.
// When there are several critical sections, this allows identifying which of
// them is responsible.
//
// Matching that behavior for runtime-internal locks will require identifying
// which Ms are blocked on the mutex. The semaphore-based implementation is
// ready to allow that, but the futex-based implementation will require a bit
// more work. Until then, we report contention on runtime-internal locks with a
// call stack taken from the unlock call (like the rest of the user-space
// "mutex" profile), but assign it a duration value based on how long the
// previous lock call took (like the user-space "block" profile).
//
// Thus, reporting the call stacks of runtime-internal lock contention is
// guarded by GODEBUG for now. Set GODEBUG=runtimecontentionstacks=1 to enable.
//
// TODO(rhysh): plumb through the delay duration, remove GODEBUG, update comment
//
// The M will track this by storing a pointer to the lock; lock/unlock pairs for
// runtime-internal locks are always on the same M.
//
// Together, that demands several steps for recording contention. First, when
// finally acquiring a contended lock, the M decides whether it should plan to
// profile that event by storing a pointer to the lock in its "to be profiled
// upon unlock" field. If that field is already set, it uses the relative
// magnitudes to weight a random choice between itself and the other lock, with
// the loser's time being added to the "additional contention" field. Otherwise
// if the M's call stack buffer is occupied, it does the comparison against that
// sample's magnitude.
//
// Second, having unlocked a mutex the M checks to see if it should capture the
// call stack into its local buffer. Finally, when the M unlocks its last mutex,
// it transfers the local buffer into the profile. As part of that step, it also
// transfers any "additional contention" time to the profile. Any lock
// contention that it experiences while adding samples to the profile will be
// recorded later as "additional contention" and not include a call stack, to
// avoid an echo.
type lockTimer struct {
lock *mutex
timeRate int64
timeStart int64
tickStart int64
}
func (lt *lockTimer) begin() {
rate := int64(atomic.Load64(&mutexprofilerate))
lt.timeRate = gTrackingPeriod
if rate != 0 && rate < lt.timeRate {
lt.timeRate = rate
}
if int64(cheaprand())%lt.timeRate == 0 {
lt.timeStart = nanotime()
}
if rate > 0 && int64(cheaprand())%rate == 0 {
lt.tickStart = cputicks()
}
}
func (lt *lockTimer) end() {
gp := getg()
if lt.timeStart != 0 {
nowTime := nanotime()
gp.m.mLockProfile.waitTime.Add((nowTime - lt.timeStart) * lt.timeRate)
}
if lt.tickStart != 0 {
nowTick := cputicks()
gp.m.mLockProfile.recordLock(nowTick-lt.tickStart, lt.lock)
}
}
type mLockProfile struct {
waitTime atomic.Int64 // total nanoseconds spent waiting in runtime.lockWithRank
stack []uintptr // stack that experienced contention in runtime.lockWithRank
pending uintptr // *mutex that experienced contention (to be traceback-ed)
cycles int64 // cycles attributable to "pending" (if set), otherwise to "stack"
cyclesLost int64 // contention for which we weren't able to record a call stack
haveStack bool // stack and cycles are to be added to the mutex profile
disabled bool // attribute all time to "lost"
}
func (prof *mLockProfile) recordLock(cycles int64, l *mutex) {
if cycles < 0 {
cycles = 0
}
if prof.disabled {
// We're experiencing contention while attempting to report contention.
// Make a note of its magnitude, but don't allow it to be the sole cause
// of another contention report.
prof.cyclesLost += cycles
return
}
if uintptr(unsafe.Pointer(l)) == prof.pending {
// Optimization: we'd already planned to profile this same lock (though
// possibly from a different unlock site).
prof.cycles += cycles
return
}
if prev := prof.cycles; prev > 0 {
// We can only store one call stack for runtime-internal lock contention
// on this M, and we've already got one. Decide which should stay, and
// add the other to the report for runtime._LostContendedRuntimeLock.
if cycles == 0 {
return
}
prevScore := uint64(cheaprand64()) % uint64(prev)
thisScore := uint64(cheaprand64()) % uint64(cycles)
if prevScore > thisScore {
prof.cyclesLost += cycles
return
} else {
prof.cyclesLost += prev
}
}
// Saving the *mutex as a uintptr is safe because:
// - lockrank_on.go does this too, which gives it regular exercise
// - the lock would only move if it's stack allocated, which means it
// cannot experience multi-M contention
prof.pending = uintptr(unsafe.Pointer(l))
prof.cycles = cycles
}
// From unlock2, we might not be holding a p in this code.
//
//go:nowritebarrierrec
func (prof *mLockProfile) recordUnlock(l *mutex) {
if uintptr(unsafe.Pointer(l)) == prof.pending {
prof.captureStack()
}
if gp := getg(); gp.m.locks == 1 && gp.m.mLockProfile.haveStack {
prof.store()
}
}
func (prof *mLockProfile) captureStack() {
if debug.profstackdepth == 0 {
// profstackdepth is set to 0 by the user, so mp.profStack is nil and we
// can't record a stack trace.
return
}
skip := 3 // runtime.(*mLockProfile).recordUnlock runtime.unlock2 runtime.unlockWithRank
if staticLockRanking {
// When static lock ranking is enabled, we'll always be on the system
// stack at this point. There will be a runtime.unlockWithRank.func1
// frame, and if the call to runtime.unlock took place on a user stack
// then there'll also be a runtime.systemstack frame. To keep stack
// traces somewhat consistent whether or not static lock ranking is
// enabled, we'd like to skip those. But it's hard to tell how long
// we've been on the system stack so accept an extra frame in that case,
// with a leaf of "runtime.unlockWithRank runtime.unlock" instead of
// "runtime.unlock".
skip += 1 // runtime.unlockWithRank.func1
}
prof.pending = 0
prof.haveStack = true
prof.stack[0] = logicalStackSentinel
if debug.runtimeContentionStacks.Load() == 0 {
prof.stack[1] = abi.FuncPCABIInternal(_LostContendedRuntimeLock) + sys.PCQuantum
prof.stack[2] = 0
return
}
var nstk int
gp := getg()
sp := sys.GetCallerSP()
pc := sys.GetCallerPC()
systemstack(func() {
var u unwinder
u.initAt(pc, sp, 0, gp, unwindSilentErrors|unwindJumpStack)
nstk = 1 + tracebackPCs(&u, skip, prof.stack[1:])
})
if nstk < len(prof.stack) {
prof.stack[nstk] = 0
}
}
func (prof *mLockProfile) store() {
// Report any contention we experience within this function as "lost"; it's
// important that the act of reporting a contention event not lead to a
// reportable contention event. This also means we can use prof.stack
// without copying, since it won't change during this function.
mp := acquirem()
prof.disabled = true
nstk := int(debug.profstackdepth)
for i := 0; i < nstk; i++ {
if pc := prof.stack[i]; pc == 0 {
nstk = i
break
}
}
cycles, lost := prof.cycles, prof.cyclesLost
prof.cycles, prof.cyclesLost = 0, 0
prof.haveStack = false
rate := int64(atomic.Load64(&mutexprofilerate))
saveBlockEventStack(cycles, rate, prof.stack[:nstk], mutexProfile)
if lost > 0 {
lostStk := [...]uintptr{
logicalStackSentinel,
abi.FuncPCABIInternal(_LostContendedRuntimeLock) + sys.PCQuantum,
}
saveBlockEventStack(lost, rate, lostStk[:], mutexProfile)
}
prof.disabled = false
releasem(mp)
}
func saveBlockEventStack(cycles, rate int64, stk []uintptr, which bucketType) {
b := stkbucket(which, 0, stk, true)
bp := b.bp()
lock(&profBlockLock)
// We want to up-scale the count and cycles according to the
// probability that the event was sampled. For block profile events,
// the sample probability is 1 if cycles >= rate, and cycles / rate
// otherwise. For mutex profile events, the sample probability is 1 / rate.
// We scale the events by 1 / (probability the event was sampled).
if which == blockProfile && cycles < rate {
// Remove sampling bias, see discussion on http://golang.org/cl/299991.
bp.count += float64(rate) / float64(cycles)
bp.cycles += rate
} else if which == mutexProfile {
bp.count += float64(rate)
bp.cycles += rate * cycles
} else {
bp.count++
bp.cycles += cycles
}
unlock(&profBlockLock)
}
var mutexprofilerate uint64 // fraction sampled
// SetMutexProfileFraction controls the fraction of mutex contention events
// that are reported in the mutex profile. On average 1/rate events are
// reported. The previous rate is returned.
//
// To turn off profiling entirely, pass rate 0.
// To just read the current rate, pass rate < 0.
// (For n>1 the details of sampling may change.)
func SetMutexProfileFraction(rate int) int {
if rate < 0 {
return int(mutexprofilerate)
}
old := mutexprofilerate
atomic.Store64(&mutexprofilerate, uint64(rate))
return int(old)
}
//go:linkname mutexevent sync.event
func mutexevent(cycles int64, skip int) {
if cycles < 0 {
cycles = 0
}
rate := int64(atomic.Load64(&mutexprofilerate))
if rate > 0 && cheaprand64()%rate == 0 {
saveblockevent(cycles, rate, skip+1, mutexProfile)
}
}
// Go interface to profile data.
// A StackRecord describes a single execution stack.
type StackRecord struct {
Stack0 [32]uintptr // stack trace for this record; ends at first 0 entry
}
// Stack returns the stack trace associated with the record,
// a prefix of r.Stack0.
func (r *StackRecord) Stack() []uintptr {
for i, v := range r.Stack0 {
if v == 0 {
return r.Stack0[0:i]
}
}
return r.Stack0[0:]
}
// MemProfileRate controls the fraction of memory allocations
// that are recorded and reported in the memory profile.
// The profiler aims to sample an average of
// one allocation per MemProfileRate bytes allocated.
//
// To include every allocated block in the profile, set MemProfileRate to 1.
// To turn off profiling entirely, set MemProfileRate to 0.
//
// The tools that process the memory profiles assume that the
// profile rate is constant across the lifetime of the program
// and equal to the current value. Programs that change the
// memory profiling rate should do so just once, as early as
// possible in the execution of the program (for example,
// at the beginning of main).
var MemProfileRate int = 512 * 1024
// disableMemoryProfiling is set by the linker if memory profiling
// is not used and the link type guarantees nobody else could use it
// elsewhere.
// We check if the runtime.memProfileInternal symbol is present.
var disableMemoryProfiling bool
// A MemProfileRecord describes the live objects allocated
// by a particular call sequence (stack trace).
type MemProfileRecord struct {
AllocBytes, FreeBytes int64 // number of bytes allocated, freed
AllocObjects, FreeObjects int64 // number of objects allocated, freed
Stack0 [32]uintptr // stack trace for this record; ends at first 0 entry
}
// InUseBytes returns the number of bytes in use (AllocBytes - FreeBytes).
func (r *MemProfileRecord) InUseBytes() int64 { return r.AllocBytes - r.FreeBytes }
// InUseObjects returns the number of objects in use (AllocObjects - FreeObjects).
func (r *MemProfileRecord) InUseObjects() int64 {
return r.AllocObjects - r.FreeObjects
}
// Stack returns the stack trace associated with the record,
// a prefix of r.Stack0.
func (r *MemProfileRecord) Stack() []uintptr {
for i, v := range r.Stack0 {
if v == 0 {
return r.Stack0[0:i]
}
}
return r.Stack0[0:]
}
// MemProfile returns a profile of memory allocated and freed per allocation
// site.
//
// MemProfile returns n, the number of records in the current memory profile.
// If len(p) >= n, MemProfile copies the profile into p and returns n, true.
// If len(p) < n, MemProfile does not change p and returns n, false.
//
// If inuseZero is true, the profile includes allocation records
// where r.AllocBytes > 0 but r.AllocBytes == r.FreeBytes.
// These are sites where memory was allocated, but it has all
// been released back to the runtime.
//
// The returned profile may be up to two garbage collection cycles old.
// This is to avoid skewing the profile toward allocations; because
// allocations happen in real time but frees are delayed until the garbage
// collector performs sweeping, the profile only accounts for allocations
// that have had a chance to be freed by the garbage collector.
//
// Most clients should use the runtime/pprof package or
// the testing package's -test.memprofile flag instead
// of calling MemProfile directly.
func MemProfile(p []MemProfileRecord, inuseZero bool) (n int, ok bool) {