-
Notifications
You must be signed in to change notification settings - Fork 15
/
Copy pathbeamformit_step_by_step_sample11_almost_same.html
1351 lines (1078 loc) · 555 KB
/
beamformit_step_by_step_sample11_almost_same.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<html><head><meta http-equiv="Content-Type" content="text/html; charset=utf-8"><meta http-equiv="X-UA-Compatible" content="IE=edge,IE=9,chrome=1"><meta name="generator" content="MATLAB R2018b"><title>Untitled</title><style type="text/css">.rtcContent { padding: 30px; } .CodeBlock { background-color: #F7F7F7; margin: 10px 0 10px 0;}
.S0 { border-left: 1px solid rgb(233, 233, 233); border-right: 1px solid rgb(233, 233, 233); border-top: 1px solid rgb(233, 233, 233); border-bottom: 0px none rgb(0, 0, 0); border-radius: 4px 4px 0px 0px; padding: 6px 45px 0px 13px; line-height: 17.2339992523193px; min-height: 18px; white-space: nowrap; color: rgb(0, 0, 0); font-family: Menlo, Monaco, Consolas, 'Courier New', monospace; font-size: 14px; }
.S1 { border-left: 1px solid rgb(233, 233, 233); border-right: 1px solid rgb(233, 233, 233); border-top: 0px none rgb(0, 0, 0); border-bottom: 0px none rgb(0, 0, 0); border-radius: 0px; padding: 0px 45px 0px 13px; line-height: 17.2339992523193px; min-height: 18px; white-space: nowrap; color: rgb(0, 0, 0); font-family: Menlo, Monaco, Consolas, 'Courier New', monospace; font-size: 14px; }
.S2 { border-left: 1px solid rgb(233, 233, 233); border-right: 1px solid rgb(233, 233, 233); border-top: 0px none rgb(0, 0, 0); border-bottom: 1px solid rgb(233, 233, 233); border-radius: 0px; padding: 0px 45px 4px 13px; line-height: 17.2339992523193px; min-height: 18px; white-space: nowrap; color: rgb(0, 0, 0); font-family: Menlo, Monaco, Consolas, 'Courier New', monospace; font-size: 14px; }
.S3 { color: rgb(64, 64, 64); padding: 10px 0px 6px 17px; background: rgb(255, 255, 255) none repeat scroll 0% 0% / auto padding-box border-box; font-family: Menlo, Monaco, Consolas, 'Courier New', monospace; font-size: 14px; overflow-x: hidden; line-height: 17.2339992523193px; }
.S4 { margin: 3px 10px 5px 4px; padding: 0px; line-height: 20px; min-height: 0px; white-space: pre-wrap; color: rgb(60, 60, 60); font-family: Helvetica, Arial, sans-serif; font-style: normal; font-size: 20px; font-weight: bold; text-align: left; }
.S5 { border-left: 1px solid rgb(233, 233, 233); border-right: 1px solid rgb(233, 233, 233); border-top: 1px solid rgb(233, 233, 233); border-bottom: 1px solid rgb(233, 233, 233); border-radius: 0px; padding: 6px 45px 4px 13px; line-height: 17.2339992523193px; min-height: 18px; white-space: nowrap; color: rgb(0, 0, 0); font-family: Menlo, Monaco, Consolas, 'Courier New', monospace; font-size: 14px; }
.embeddedOutputsErrorElement {min-height: 18px; max-height: 250px; overflow: auto;}
.embeddedOutputsErrorElement.inlineElement {}
.embeddedOutputsErrorElement.rightPaneElement {}
.embeddedOutputsWarningElement{min-height: 18px; max-height: 250px; overflow: auto;}
.embeddedOutputsWarningElement.inlineElement {}
.embeddedOutputsWarningElement.rightPaneElement {}
.diagnosticMessage-wrapper {font-family: Menlo, Monaco, Consolas, "Courier New", monospace; font-size: 12px;}
.diagnosticMessage-wrapper.diagnosticMessage-warningType {color: rgb(255,100,0);}
.diagnosticMessage-wrapper.diagnosticMessage-warningType a {color: rgb(255,100,0); text-decoration: underline;}
.diagnosticMessage-wrapper.diagnosticMessage-errorType {color: rgb(230,0,0);}
.diagnosticMessage-wrapper.diagnosticMessage-errorType a {color: rgb(230,0,0); text-decoration: underline;}
.diagnosticMessage-wrapper .diagnosticMessage-messagePart {white-space: pre-wrap;}
.diagnosticMessage-wrapper .diagnosticMessage-stackPart {white-space: pre;}
.embeddedOutputsTextElement,.embeddedOutputsVariableStringElement {white-space: pre; word-wrap: initial; min-height: 18px; max-height: 250px; overflow: auto;}
.textElement,.rtcDataTipElement .textElement {padding-top: 3px;}
.embeddedOutputsTextElement.inlineElement,.embeddedOutputsVariableStringElement.inlineElement {}
.inlineElement .textElement {}
.embeddedOutputsTextElement.rightPaneElement,.embeddedOutputsVariableStringElement.rightPaneElement {min-height: 16px;}
.rightPaneElement .textElement {padding-top: 2px; padding-left: 9px;}
.S6 { border-left: 1px solid rgb(233, 233, 233); border-right: 1px solid rgb(233, 233, 233); border-top: 1px solid rgb(233, 233, 233); border-bottom: 0px none rgb(0, 0, 0); border-radius: 0px; padding: 6px 45px 0px 13px; line-height: 17.2339992523193px; min-height: 18px; white-space: nowrap; color: rgb(0, 0, 0); font-family: Menlo, Monaco, Consolas, 'Courier New', monospace; font-size: 14px; }
.S7 { margin: 20px 10px 5px 4px; padding: 0px; line-height: 20px; min-height: 0px; white-space: pre-wrap; color: rgb(60, 60, 60); font-family: Helvetica, Arial, sans-serif; font-style: normal; font-size: 20px; font-weight: bold; text-align: left; }
.S8 { border-left: 1px solid rgb(233, 233, 233); border-right: 1px solid rgb(233, 233, 233); border-top: 0px none rgb(0, 0, 0); border-bottom: 1px solid rgb(233, 233, 233); border-radius: 0px 0px 4px 4px; padding: 0px 45px 4px 13px; line-height: 17.2339992523193px; min-height: 18px; white-space: nowrap; color: rgb(0, 0, 0); font-family: Menlo, Monaco, Consolas, 'Courier New', monospace; font-size: 14px; }
.S9 { border-left: 1px solid rgb(233, 233, 233); border-right: 1px solid rgb(233, 233, 233); border-top: 1px solid rgb(233, 233, 233); border-bottom: 1px solid rgb(233, 233, 233); border-radius: 0px 0px 4px 4px; padding: 6px 45px 4px 13px; line-height: 17.2339992523193px; min-height: 18px; white-space: nowrap; color: rgb(0, 0, 0); font-family: Menlo, Monaco, Consolas, 'Courier New', monospace; font-size: 14px; }
.S10 { margin: 10px 10px 9px 4px; padding: 0px; line-height: 21px; min-height: 0px; white-space: pre-wrap; color: rgb(0, 0, 0); font-family: Helvetica, Arial, sans-serif; font-style: normal; font-size: 14px; font-weight: normal; text-align: left; }
.S11 { margin: 2px 10px 9px 4px; padding: 0px; line-height: 21px; min-height: 0px; white-space: pre-wrap; color: rgb(0, 0, 0); font-family: Helvetica, Arial, sans-serif; font-style: normal; font-size: 14px; font-weight: normal; text-align: left; }</style></head><body><div class = rtcContent><div class="CodeBlock"><div class="inlineWrapper"><div class = 'S0'><span style="white-space: pre;"><span>clear;</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span>close </span><span style="color: rgb(160, 32, 240);">all</span><span>;</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span>clc;</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span>format </span><span style="color: rgb(160, 32, 240);">long</span><span>;</span></span></div></div><div class="inlineWrapper"><div class = 'S1'></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span>dirname = </span><span style="color: rgb(160, 32, 240);">'sample11/'</span><span>;</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span>outname = [dirname, </span><span style="color: rgb(160, 32, 240);">'enhan.wav'</span><span>];</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span>orig_outname = [dirname, </span><span style="color: rgb(160, 32, 240);">'orig_enhan.wav'</span><span>];</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span>paths = csvimport([dirname, </span><span style="color: rgb(160, 32, 240);">'wav.list'</span><span>],</span><span style="color: rgb(160, 32, 240);">'columns'</span><span>, {</span><span style="color: rgb(160, 32, 240);">'path'</span><span>});</span></span></div></div><div class="inlineWrapper"><div class = 'S1'></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span>[x1, </span><span class="warning_squiggle_rte warningHighlight">sr</span><span>] = audioread(paths{1});</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span>[x2, </span><span class="warning_squiggle_rte warningHighlight">sr</span><span>] = audioread(paths{2});</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span>[x3, </span><span class="warning_squiggle_rte warningHighlight">sr</span><span>] = audioread(paths{3});</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span>[x4, </span><span class="warning_squiggle_rte warningHighlight">sr</span><span>] = audioread(paths{4});</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span>[x5, sr] = audioread(paths{5});</span></span></div></div><div class="inlineWrapper"><div class = 'S1'></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span>x = [x1, x2, x3, x4, x5];</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span>x = x';</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span>nsample = size(x,2);</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span>nmic = 5;</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span style="color: rgb(34, 139, 34);">%npair = nmic - 1;</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span>npair = nmic;</span></span></div></div><div class="inlineWrapper"><div class = 'S1'></div></div><div class="inlineWrapper outputs"><div class = 'S2'><span style="white-space: pre;"><span>figure;plot(x(1,:));</span></span></div><div class = 'S3'><div class="inlineElement eoOutputWrapper embeddedOutputsFigure" uid="92059795" data-scroll-top="null" data-scroll-left="null" data-testid="output_0" style="width: 1218px;"><div class="figureElement"><div class="figureContainingNode" style="width: 560px; max-width: 100%; display: inline-block;"><div class="GraphicsView" data-dojo-attach-point="graphicsViewNode,backgroundColorNode" id="uniqName_197_78" widgetid="uniqName_197_78" style="width: 100%; height: auto;"><img class="ImageView figureImage" data-dojo-attach-point="imageViewNode" draggable="false" ondragstart="return false;" id="uniqName_197_80" widgetid="uniqName_197_80" src="" style="width: 100%; height: auto;"></div></div></div></div></div></div></div><h2 class = 'S4'><span>make hamming window</span></h2><div class="CodeBlock"><div class="inlineWrapper"><div class = 'S0'><span style="white-space: pre;"><span>nwin = 16000; </span><span style="color: rgb(34, 139, 34);">% 1 sec</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span style="color: rgb(34, 139, 34);">% hamm_val = 0.54 - 0.46*cos(6.283185307*i/(window-1));</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span>win = zeros(1,nwin);</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span style="color: rgb(0, 0, 255);">for </span><span>i = 1:nwin</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> win(i) = 0.54 - 0.46 * cos(6.283185307*(i-1)/(nwin-1));</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span style="color: rgb(0, 0, 255);">end</span></span></div></div><div class="inlineWrapper"><div class = 'S1'></div></div><div class="inlineWrapper outputs"><div class = 'S2'><span style="white-space: pre;"><span>figure; plot(win);</span></span></div><div class = 'S3'><div class="inlineElement eoOutputWrapper embeddedOutputsFigure" uid="774B5ABE" data-scroll-top="null" data-scroll-left="null" data-testid="output_1" style="width: 1218px;"><div class="figureElement"><div class="figureContainingNode" style="width: 560px; max-width: 100%; display: inline-block;"><div class="GraphicsView" data-dojo-attach-point="graphicsViewNode,backgroundColorNode" id="uniqName_197_81" widgetid="uniqName_197_81" style="width: 100%; height: auto;"><img class="ImageView figureImage" data-dojo-attach-point="imageViewNode" draggable="false" ondragstart="return false;" id="uniqName_197_83" widgetid="uniqName_197_83" src="" style="width: 100%; height: auto;"></div></div></div></div></div></div><div class="inlineWrapper outputs"><div class = 'S5'><span style="white-space: pre;"><span>disp(win(1:10));</span></span></div><div class = 'S3'><div class="inlineElement eoOutputWrapper embeddedOutputsTextElement" uid="591A4ECB" data-scroll-top="null" data-scroll-left="null" data-width="1188" data-height="213" data-hashorizontaloverflow="false" data-testid="output_2" style="max-height: 261px; width: 1218px;"><div class="textElement"> 1 ~ 3번 열
0.080000000000000 0.080000035473324 0.080000141893292
4 ~ 6번 열
0.080000319259887 0.080000567573081 0.080000886832836
7 ~ 9번 열
0.080001277039103 0.080001738191823 0.080002270290922
10번 열
0.080002873336321</div></div></div></div></div><h2 class = 'S4'><span>testing calculating xcorr</span></h2><div class="CodeBlock"><div class="inlineWrapper"><div class = 'S0'><span style="white-space: pre;"><span>npiece = 200;</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span>nfft = 16384*2;</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span>nbest = 2;</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span>nmask = 5;</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span>scroll = floor(nsample / (npiece+2)); </span></span></div></div><div class="inlineWrapper"><div class = 'S1'></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span>stft1 = fft([x(1,scroll+1:(scroll+nwin)) .* win, zeros(1,nfft-nwin)]); </span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span>stft2 = fft([x(2,scroll+1:(scroll+nwin)) .* win, zeros(1,nfft-nwin)]); </span></span></div></div><div class="inlineWrapper"><div class = 'S1'></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span>numerator = stft1 .* conj(stft2);</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span>ccorr = real(ifft(numerator ./ (abs(numerator))));</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span>ccorr = [ccorr(end-479:end), ccorr(1:480)];</span></span></div></div><div class="inlineWrapper"><div class = 'S1'></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span>[best_ccorr, best_idx] = maxk(ccorr, nbest, nmask);</span></span></div></div><div class="inlineWrapper outputs"><div class = 'S2'><span style="white-space: pre;"><span>disp(scroll);</span></span></div><div class = 'S3'><div class="inlineElement eoOutputWrapper embeddedOutputsTextElement" uid="BFEEC173" data-scroll-top="null" data-scroll-left="null" data-width="1188" data-height="18" data-hashorizontaloverflow="false" data-testid="output_3" style="max-height: 261px; width: 1218px;"><div class="textElement"> 290</div></div></div></div><div class="inlineWrapper outputs"><div class = 'S5'><span style="white-space: pre;"><span>plot(ccorr);</span></span></div><div class = 'S3'><div class="inlineElement eoOutputWrapper embeddedOutputsFigure" uid="E48DDEDE" data-scroll-top="null" data-scroll-left="null" data-testid="output_4" style="width: 1218px;"><div class="figureElement"><div class="figureContainingNode" style="width: 560px; max-width: 100%; display: inline-block;"><div class="GraphicsView" data-dojo-attach-point="graphicsViewNode,backgroundColorNode" id="uniqName_197_84" widgetid="uniqName_197_84" style="width: 100%; height: auto;"><img class="ImageView figureImage" data-dojo-attach-point="imageViewNode" draggable="false" ondragstart="return false;" id="uniqName_197_86" widgetid="uniqName_197_86" src="" style="width: 100%; height: auto;"></div></div></div></div></div></div><div class="inlineWrapper"><div class = 'S6'></div></div><div class="inlineWrapper outputs"><div class = 'S2'><span style="white-space: pre;"><span>disp(best_ccorr);</span></span></div><div class = 'S3'><div class="inlineElement eoOutputWrapper embeddedOutputsTextElement" uid="59831588" data-scroll-top="null" data-scroll-left="null" data-width="1188" data-height="31" data-hashorizontaloverflow="false" data-testid="output_5" style="max-height: 261px; width: 1218px;"><div class="textElement"> 0.032781450919252
0.029635834307374</div></div></div></div></div><h2 class = 'S4'><span>calculate avg_ccorr</span></h2><div class="CodeBlock"><div class="inlineWrapper"><div class = 'S0'><span style="white-space: pre;"><span>avg_ccorr = zeros(nmic, nmic);</span></span></div></div><div class="inlineWrapper"><div class = 'S1'></div></div><div class="inlineWrapper"><div class = 'S1'></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span style="color: rgb(0, 0, 255);">for </span><span>i = 1:npiece</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> st = i * scroll + 1;</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> ed = st + 16000 - 1;</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> </span><span style="color: rgb(0, 0, 255);">if </span><span>st + 16384 >= nsample</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> </span><span style="color: rgb(0, 0, 255);">break</span><span>;</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> </span><span style="color: rgb(0, 0, 255);">end</span></span></div></div><div class="inlineWrapper"><div class = 'S1'></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> </span><span style="color: rgb(0, 0, 255);">for </span><span>m1 = 1:(nmic-1)</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> avg_ccorr(m1, m1) = 0;</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> </span><span style="color: rgb(0, 0, 255);">for </span><span>m2 = (m1+1):nmic</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> stft1 = fft([x(m1,st:ed) .* win, zeros(1,nfft-nwin)]); </span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> stft2 = fft([x(m2,st:ed) .* win, zeros(1,nfft-nwin)]);</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> numerator = stft1 .* conj(stft2);</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> ccorr = real(ifft(numerator ./ (abs(numerator))));</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> ccorr = [ccorr(end-479:end), ccorr(1:480)];</span></span></div></div><div class="inlineWrapper"><div class = 'S1'></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> maxk_val = sum(maxk(ccorr, nbest, nmask));</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> </span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> avg_ccorr(m1, m2) = avg_ccorr(m1, m2) + (maxk_val);</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> avg_ccorr(m2, m1) = avg_ccorr(m1, m2); </span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> </span><span style="color: rgb(0, 0, 255);">end</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> </span><span style="color: rgb(0, 0, 255);">end</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span style="color: rgb(0, 0, 255);">end</span></span></div></div><div class="inlineWrapper"><div class = 'S1'></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span>avg_ccorr = avg_ccorr / (nbest * npiece);</span></span></div></div><div class="inlineWrapper"><div class = 'S1'></div></div><div class="inlineWrapper outputs"><div class = 'S2'><span style="white-space: pre;"><span>disp(avg_ccorr);</span></span></div><div class = 'S3'><div class="inlineElement eoOutputWrapper embeddedOutputsTextElement" uid="13CE0345" data-scroll-top="null" data-scroll-left="null" data-width="1188" data-height="213" data-hashorizontaloverflow="false" data-testid="output_6" style="max-height: 261px; width: 1218px;"><div class="textElement"> 1 ~ 3번 열
0 0.022342359302499 0.038002415483785
0.022342359302499 0 0.078103387449447
0.038002415483785 0.078103387449447 0
0.159321275205544 0.021976501561010 0.038497480480202
0.116734197033740 0.022246232748426 0.034219510992536
4 ~ 5번 열
0.159321275205544 0.116734197033740
0.021976501561010 0.022246232748426
0.038497480480202 0.034219510992536
0 0.153034492978611
0.153034492978611 0</div></div></div></div><div class="inlineWrapper outputs"><div class = 'S5'><span style="white-space: pre;"><span>fprintf(</span><span style="color: rgb(160, 32, 240);">'%.8f\n'</span><span>, sum(avg_ccorr/nmic));</span></span></div><div class = 'S3'><div class="inlineElement eoOutputWrapper embeddedOutputsTextElement" uid="6A5975E1" data-scroll-top="null" data-scroll-left="null" data-width="1188" data-height="73" data-hashorizontaloverflow="false" data-testid="output_7" style="max-height: 261px; width: 1218px;"><div class="textElement">0.06728005
0.02893370
0.03776456
0.07456595
0.06524689</div></div></div></div><div class="inlineWrapper outputs"><div class = 'S5'><span style="white-space: pre;"><span>disp(sum(avg_ccorr,1));</span></span></div><div class = 'S3'><div class="inlineElement eoOutputWrapper embeddedOutputsTextElement" uid="AF5046EF" data-scroll-top="null" data-scroll-left="null" data-width="1188" data-height="101" data-hashorizontaloverflow="false" data-testid="output_8" style="max-height: 261px; width: 1218px;"><div class="textElement"> 1 ~ 3번 열
0.336400247025568 0.144668481061382 0.188822794405971
4 ~ 5번 열
0.372829750225366 0.326234433753313</div></div></div></div><div class="inlineWrapper outputs"><div class = 'S5'><span style="white-space: pre;"><span>disp(sum(avg_ccorr,1)/nmic);</span></span></div><div class = 'S3'><div class="inlineElement eoOutputWrapper embeddedOutputsTextElement" uid="813A8840" data-scroll-top="null" data-scroll-left="null" data-width="1188" data-height="101" data-hashorizontaloverflow="false" data-testid="output_9" style="max-height: 261px; width: 1218px;"><div class="textElement"> 1 ~ 3번 열
0.067280049405114 0.028933696212276 0.037764558881194
4 ~ 5번 열
0.074565950045073 0.065246886750663</div></div></div></div><div class="inlineWrapper"><div class = 'S6'></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span>[dummy, ref_mic] = max(sum(avg_ccorr));</span></span></div></div><div class="inlineWrapper"><div class = 'S1'></div></div><div class="inlineWrapper outputs"><div class = 'S2'><span style="white-space: pre;"><span>disp(ref_mic); </span></span></div><div class = 'S3'><div class="inlineElement eoOutputWrapper embeddedOutputsTextElement" uid="0B8EEB17" data-scroll-top="null" data-scroll-left="null" data-width="1188" data-height="18" data-hashorizontaloverflow="false" data-testid="output_10" style="max-height: 261px; width: 1218px;"><div class="textElement"> 4</div></div></div></div></div><h2 class = 'S4'><span>calculating scaling factor</span></h2><div class="CodeBlock"><div class="inlineWrapper"><div class = 'S0'><span style="white-space: pre;"><span>nsegment = 10;</span></span></div></div><div class="inlineWrapper"><div class = 'S1'></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span>max_val = zeros(nmic, 1);</span></span></div></div><div class="inlineWrapper"><div class = 'S1'></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span style="color: rgb(0, 0, 255);">if </span><span>size(x,2) <= 160000 </span><span style="color: rgb(34, 139, 34);">% 10 seconds</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> </span><span style="color: rgb(0, 0, 255);">for </span><span>m = 1:nmic</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> max_val(m) = max(abs(x(m,:)));</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> </span><span style="color: rgb(0, 0, 255);">end</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span style="color: rgb(0, 0, 255);">else</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> </span><span style="color: rgb(0, 0, 255);">if </span><span>size(x,2) < 1600000 </span><span style="color: rgb(34, 139, 34);">% 100 seconds</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> nsegment = floor(size(x,2) / 160000);</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> </span><span style="color: rgb(0, 0, 255);">end</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> </span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> scroll = floor(size(x,2) / nsegment);</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> max_val_candidate = zeros(nmic, nsegment);</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> </span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> </span><span style="color: rgb(0, 0, 255);">for </span><span>s = 0:(nsegment-1)</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> st = s * scroll + 1;</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> ed = st + 160000 - 1;</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> </span><span style="color: rgb(0, 0, 255);">for </span><span>m = 1:nmic</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> max_val_candidate(m,s+1) = max(abs(x(m,st:ed)));</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> </span><span style="color: rgb(0, 0, 255);">end</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> </span><span style="color: rgb(0, 0, 255);">end</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> </span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> </span><span style="color: rgb(0, 0, 255);">for </span><span>m = 1:nmic</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> </span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> sorted = sort(max_val_candidate(m,:), </span><span style="color: rgb(160, 32, 240);">'ascend'</span><span>);</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> </span><span style="color: rgb(0, 0, 255);">if </span><span>length(sorted(:)) > 2</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> max_val(m) = sorted(end/2 + 1);</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> </span><span style="color: rgb(0, 0, 255);">else</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> max_val(m) = sorted;</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> </span><span style="color: rgb(0, 0, 255);">end</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> </span><span style="color: rgb(0, 0, 255);">end</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span style="color: rgb(0, 0, 255);">end</span></span></div></div><div class="inlineWrapper"><div class = 'S1'></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span>overall_weight = (0.3 * nmic) / sum(max_val);</span></span></div></div><div class="inlineWrapper"><div class = 'S1'></div></div><div class="inlineWrapper outputs"><div class = 'S2'><span style="white-space: pre;"><span>disp(max_val');</span></span></div><div class = 'S3'><div class="inlineElement eoOutputWrapper embeddedOutputsTextElement" uid="C4048E4E" data-scroll-top="null" data-scroll-left="null" data-width="1188" data-height="101" data-hashorizontaloverflow="false" data-testid="output_11" style="max-height: 261px; width: 1218px;"><div class="textElement"> 1 ~ 3번 열
0.228759765625000 1.000000000000000 0.025970458984375
4 ~ 5번 열
0.115905761718750 0.138183593750000</div></div></div></div><div class="inlineWrapper outputs"><div class = 'S5'><span style="white-space: pre;"><span>disp(overall_weight);</span></span></div><div class = 'S3'><div class="inlineElement eoOutputWrapper embeddedOutputsTextElement" uid="383DA1F7" data-scroll-top="null" data-scroll-left="null" data-width="1188" data-height="18" data-hashorizontaloverflow="false" data-testid="output_12" style="max-height: 261px; width: 1218px;"><div class="textElement"> 0.994154648975547</div></div></div></div></div><h2 class = 'S4'><span>compute total number of delays</span></h2><div class="CodeBlock"><div class="inlineWrapper"><div class = 'S0'><span style="white-space: pre;"><span style="color: rgb(34, 139, 34);">% int totalNumDelays</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span style="color: rgb(34, 139, 34);">% % = (int)((m_frames - (*m_config).windowFrames - m_biggestSkew - m_UEMGap)/((*m_config).</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span style="color: rgb(34, 139, 34);">% rate*m_sampleRateInMs));</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span style="color: rgb(34, 139, 34);">% sr_in_ms = 16000 / 1000; % 16</span></span></div></div><div class="inlineWrapper"><div class = 'S1'></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span style="color: rgb(34, 139, 34);">% too complicated. I should do hard coding</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span>nframe = floor(( nsample - 8000 ) / (4000));</span></span></div></div><div class="inlineWrapper"><div class = 'S1'></div></div><div class="inlineWrapper outputs"><div class = 'S2'><span style="white-space: pre;"><span>disp(nframe);</span></span></div><div class = 'S3'><div class="inlineElement eoOutputWrapper embeddedOutputsTextElement" uid="EF210263" data-scroll-top="null" data-scroll-left="null" data-width="1188" data-height="18" data-hashorizontaloverflow="false" data-testid="output_13" style="max-height: 261px; width: 1218px;"><div class="textElement"> 12</div></div></div></div></div><h2 class = 'S4'><span>recreating hamming window</span></h2><div class="CodeBlock"><div class="inlineWrapper"><div class = 'S0'><span style="white-space: pre;"><span>nwin = 8000; </span><span style="color: rgb(34, 139, 34);">% 0.5 sec</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span>nfft = 16384;</span></span></div></div><div class="inlineWrapper"><div class = 'S1'></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span>win = zeros(1,nwin);</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span style="color: rgb(0, 0, 255);">for </span><span>i = 1:nwin</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> win(i) = 0.54 - 0.46 * cos(6.283185307*(i-1)/(nwin-1));</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span style="color: rgb(0, 0, 255);">end</span></span></div></div><div class="inlineWrapper"><div class = 'S1'></div></div><div class="inlineWrapper outputs"><div class = 'S2'><span style="white-space: pre;"><span>figure; plot(win);</span></span></div><div class = 'S3'><div class="inlineElement eoOutputWrapper embeddedOutputsFigure" uid="DA22FF84" data-scroll-top="null" data-scroll-left="null" data-testid="output_14" style="width: 1218px;"><div class="figureElement"><div class="figureContainingNode" style="width: 560px; max-width: 100%; display: inline-block;"><div class="GraphicsView" data-dojo-attach-point="graphicsViewNode,backgroundColorNode" id="uniqName_197_87" widgetid="uniqName_197_87" style="width: 100%; height: auto;"><img class="ImageView figureImage" data-dojo-attach-point="imageViewNode" draggable="false" ondragstart="return false;" id="uniqName_197_89" widgetid="uniqName_197_89" src="" style="width: 100%; height: auto;"></div></div></div></div></div></div><div class="inlineWrapper"><div class = 'S6'><span style="white-space: pre;"><span style="color: rgb(34, 139, 34);">% Marginst for delays in frames: 480 in ms: 30</span></span></div></div><div class="inlineWrapper outputs"><div class = 'S2'><span style="white-space: pre;"><span>disp(16000 * 30 / 1000);</span></span></div><div class = 'S3'><div class="inlineElement eoOutputWrapper embeddedOutputsTextElement" uid="2F10E359" data-scroll-top="null" data-scroll-left="null" data-width="1188" data-height="18" data-hashorizontaloverflow="false" data-testid="output_15" style="max-height: 261px; width: 1218px;"><div class="textElement"> 480</div></div></div></div></div><h2 class = 'S7'><span>compute TDOA</span></h2><div class="CodeBlock"><div class="inlineWrapper"><div class = 'S0'><span style="white-space: pre;"><span>nbest = 4;</span></span></div></div><div class="inlineWrapper"><div class = 'S1'></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span>micpair = zeros(nmic, npair);</span></span></div></div><div class="inlineWrapper"><div class = 'S1'></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span>gcc_nbest = zeros(npair, nframe, nbest);</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span>tdoa_nbest = zeros(npair, nframe, nbest);</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span>lrfilp_gcc = zeros(npair, nframe, nfft);</span></span></div></div><div class="inlineWrapper"><div class = 'S1'></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span style="color: rgb(0, 0, 255);">for </span><span>m = 1:nmic</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> p = 1; </span><span style="color: rgb(34, 139, 34);">% pair idx</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> </span><span style="color: rgb(0, 0, 255);">for </span><span>i = 1:nmic</span></span></div></div><div class="inlineWrapper"><div class = 'S1'></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> micpair(m,p) = i;</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> p = p + 1;</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> </span><span style="color: rgb(0, 0, 255);">end</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span style="color: rgb(0, 0, 255);">end</span></span></div></div><div class="inlineWrapper"><div class = 'S1'></div></div><div class="inlineWrapper"><div class = 'S1'></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span style="color: rgb(0, 0, 255);">for </span><span>t = 1:(nframe)</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> st = (t-1) * 4000 + 1;</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> ed = st + nwin - 1;</span></span></div></div><div class="inlineWrapper"><div class = 'S1'></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> </span><span style="color: rgb(0, 0, 255);">for </span><span>p = 1:npair</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> </span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> m = micpair(ref_mic,p);</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> </span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> stft_ref = fft([x(ref_mic,st:ed) .* win, zeros(1,nfft-nwin)]); </span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> stft_m = fft([x(m,st:ed) .* win, zeros(1,nfft-nwin)]);</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> numerator = stft_m .* conj(stft_ref);</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> gcc = real(ifft(numerator ./ (eps+abs(numerator))));</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> gcc = [gcc(end-479:end), gcc(1:480)];</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> [gcck, tdoak] = maxk(gcc, nbest, nmask);</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> gcc_nbest(p,t,:) = gcck;</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> tdoa_nbest(p,t,:) = tdoak;</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> tdoa_nbest(p,t,:) = tdoa_nbest(p,t,:) - (481); </span><span style="color: rgb(34, 139, 34);">% index shifting</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> </span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> </span><span style="color: rgb(0, 0, 255);">end</span></span></div></div><div class="inlineWrapper"><div class = 'S1'></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span style="color: rgb(0, 0, 255);">end</span></span></div></div><div class="inlineWrapper"><div class = 'S1'></div></div><div class="inlineWrapper outputs"><div class = 'S2'><span style="white-space: pre;"><span>disp(squeeze(gcc_nbest(:,:,1)));</span></span></div><div class = 'S3'><div class="inlineElement eoOutputWrapper embeddedOutputsTextElement" uid="76919FB4" data-scroll-top="null" data-scroll-left="null" data-width="1188" data-height="437" data-hashorizontaloverflow="false" data-testid="output_16" style="max-height: 448px; width: 1218px;"><div class="textElement"> 1 ~ 3번 열
0.134777527147523 0.310714006511790 0.314917088716397
0.038170132109127 0.038882672962859 0.040929068935400
0.036834531567438 0.070516117486481 0.065935288669931
0.999999999981588 0.999999999988105 0.999999999914246
0.172777734235956 0.241398231239069 0.262939287365895
4 ~ 6번 열
0.219783203852808 0.305739643099305 0.205989675419255
0.040529452208426 0.040242533837290 0.038297009643333
0.058450959230501 0.047566424970544 0.043482510827778
0.999999999989013 0.999999999980583 0.999999999942182
0.214451989280496 0.220126884800238 0.204886564654973
7 ~ 9번 열
0.139442190097295 0.247661604455948 0.235643518139056
0.045184767676717 0.040162493825616 0.046668417418980
0.068271058129833 0.080619738420894 0.084556027188915
0.999999999973040 0.999999999993713 0.999999999028075
0.207187769957736 0.253262170513861 0.268108220115873
10 ~ 12번 열
0.169198224556999 0.128140412249901 0.229560206099731
0.039060692331839 0.051601605700296 0.054813524162973
0.059109809721432 0.052225529852137 0.094269824326320
0.999999999964877 0.999999999972500 0.999999999951030
0.214279085500231 0.161035187225036 0.339287338501401</div></div></div></div><div class="inlineWrapper outputs"><div class = 'S5'><span style="white-space: pre;"><span>disp(squeeze(gcc_nbest(:,:,2)));</span></span></div><div class = 'S3'><div class="inlineElement eoOutputWrapper embeddedOutputsTextElement" uid="20FC7EFF" data-scroll-top="null" data-scroll-left="null" data-width="1188" data-height="437" data-hashorizontaloverflow="false" data-testid="output_17" style="max-height: 448px; width: 1218px;"><div class="textElement"> 1 ~ 3번 열
0.114963745017336 0.195475855758566 0.178648556747342
0.035116742147854 0.037100053263609 0.035637360007886
0.035679446602257 0.055503548679856 0.061724224597425
0.000000000017548 0.000000000011468 0.000000000083928
0.133339519236832 0.200525040686099 0.241082840169924
4 ~ 6번 열
0.158157287770155 0.260599768920549 0.205012091175727
0.038385342961917 0.039096335915366 0.034038067625336
0.050090393606936 0.047073220807878 0.037751163946570
0.000000000010134 0.000000000018172 0.000000000053912
0.166791715526935 0.208421232232020 0.202540786009772
7 ~ 9번 열
0.138911452036715 0.223651054016421 0.231282995204979
0.044228359122572 0.036658221849904 0.045221332635653
0.053995335553000 0.042618306301619 0.076562882452097
0.000000000026109 0.000000000005186 0.000000000965135
0.145884405215472 0.195681079491320 0.188905560986978
10 ~ 12번 열
0.158667153198419 0.101685282275355 0.201039993725824
0.037017467677507 0.050047621913277 0.054795654141421
0.052497822553792 0.049640324058591 0.078862713646111
0.000000000032021 0.000000000026908 0.000000000048080
0.161872095087534 0.154554751870244 0.173282927356838</div></div></div></div><div class="inlineWrapper"><div class = 'S6'></div></div><div class="inlineWrapper outputs"><div class = 'S2'><span style="white-space: pre;"><span>disp(squeeze(tdoa_nbest(:,:,1)));</span></span></div><div class = 'S3'><div class="inlineElement eoOutputWrapper embeddedOutputsTextElement" uid="92B0F7B6" data-scroll-top="null" data-scroll-left="null" data-width="1188" data-height="73" data-hashorizontaloverflow="false" data-testid="output_18" style="max-height: 261px; width: 1218px;"><div class="textElement"> -6 0 0 0 0 -5 -5 0 -5 -5 -8 0
267 4 -464 -204 416 101 -75 -367 -354 175 393 -383
-283 -1 -3 -316 39 -1 -5 -1 7 -1 -101 3
0 0 0 0 0 0 0 0 0 0 0 0
2 -4 -4 2 -4 2 2 2 2 2 -4 4</div></div></div></div><div class="inlineWrapper outputs"><div class = 'S5'><span style="white-space: pre;"><span>disp(squeeze(tdoa_nbest(:,:,2)));</span></span></div><div class = 'S3'><div class="inlineElement eoOutputWrapper embeddedOutputsTextElement" uid="87AABD14" data-scroll-top="null" data-scroll-left="null" data-width="1188" data-height="73" data-hashorizontaloverflow="false" data-testid="output_19" style="max-height: 261px; width: 1218px;"><div class="textElement"> 0 -5 -8 -5 -5 0 0 -5 0 0 0 -5
475 -33 365 -114 389 -265 15 242 290 266 191 232
68 -6 5 -5 -1 318 -27 -122 -1 7 -222 -5
5 -5 -5 5 -5 -5 5 -5 -5 5 5 5
-4 1 4 -4 2 -4 -4 -3 -3 -4 4 -1</div></div></div></div></div><h2 class = 'S4'><span>find noise threshold</span></h2><div class="CodeBlock"><div class="inlineWrapper"><div class = 'S0'><span style="white-space: pre;"><span>th_idx = floor((0.1 * nframe)) + 1;</span></span></div></div><div class="inlineWrapper"><div class = 'S1'></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span>sorted = sort(sum(gcc_nbest(:,:,1),1) - sum(gcc_nbest(ref_mic,:,1),1), </span><span style="color: rgb(160, 32, 240);">'ascend'</span><span>);</span></span></div></div><div class="inlineWrapper"><div class = 'S1'></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span>threshold = sorted(th_idx)/(nmic-1);</span></span></div></div><div class="inlineWrapper"><div class = 'S1'></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span style="color: rgb(34, 139, 34);">% Computing the optimum delays</span></span></div></div><div class="inlineWrapper outputs"><div class = 'S2'><span style="white-space: pre;"><span>disp(threshold);</span></span></div><div class = 'S3'><div class="inlineElement eoOutputWrapper embeddedOutputsTextElement" uid="32E193AF" data-scroll-top="null" data-scroll-left="null" data-width="1188" data-height="18" data-hashorizontaloverflow="false" data-testid="output_20" style="max-height: 261px; width: 1218px;"><div class="textElement"> 0.098250683756843</div></div></div></div></div><h2 class = 'S4'><span>noise filtering</span></h2><div class="CodeBlock"><div class="inlineWrapper"><div class = 'S0'><span style="white-space: pre;"><span>noise_filter = zeros(npair, nframe);</span></span></div></div><div class="inlineWrapper"><div class = 'S1'></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span style="color: rgb(0, 0, 255);">for </span><span>p = 1:npair</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> </span><span style="color: rgb(0, 0, 255);">for </span><span>t = 1:nframe</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> </span><span style="color: rgb(0, 0, 255);">if </span><span>gcc_nbest(p,t,1) < threshold</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> noise_filter(p,t) = 1;</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> </span><span style="color: rgb(0, 0, 255);">if </span><span>t == 1 </span><span style="color: rgb(34, 139, 34);">% it's silence</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> gcc_nbest(p,t,:) = 0; </span><span style="color: rgb(34, 139, 34);">% masking with discouraging values</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> gcc_nbest(p,t,1) = 1; </span><span style="color: rgb(34, 139, 34);">% only one path</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> tdoa_nbest(p,t,:) = 480; </span><span style="color: rgb(34, 139, 34);">% masking with discouraging values</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> tdoa_nbest(p,t,1) = 0;</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> </span><span style="color: rgb(0, 0, 255);">else</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> tdoa_nbest(p,t,:) = tdoa_nbest(p,t-1,:);</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> </span><span style="color: rgb(0, 0, 255);">end</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> </span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> </span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> </span><span style="color: rgb(0, 0, 255);">end</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> </span><span style="color: rgb(0, 0, 255);">if </span><span>p == ref_mic</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> gcc_nbest(p,t,:) = 0; </span><span style="color: rgb(34, 139, 34);">% masking with discouraging values</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> gcc_nbest(p,t,1) = 1; </span><span style="color: rgb(34, 139, 34);">% only one path</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> tdoa_nbest(p,t,:) = 0; </span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> </span><span style="color: rgb(0, 0, 255);">end</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> </span><span style="color: rgb(0, 0, 255);">end</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span style="color: rgb(0, 0, 255);">end</span></span></div></div><div class="inlineWrapper"><div class = 'S1'></div></div><div class="inlineWrapper outputs"><div class = 'S2'><span style="white-space: pre;"><span>disp(gcc_nbest(:,:,1));</span></span></div><div class = 'S3'><div class="inlineElement eoOutputWrapper embeddedOutputsTextElement" uid="7E0514E3" data-scroll-top="null" data-scroll-left="null" data-width="1188" data-height="437" data-hashorizontaloverflow="false" data-testid="output_21" style="max-height: 448px; width: 1218px;"><div class="textElement"> 1 ~ 3번 열
0.134777527147523 0.310714006511790 0.314917088716397
1.000000000000000 0.038882672962859 0.040929068935400
1.000000000000000 0.070516117486481 0.065935288669931
1.000000000000000 1.000000000000000 1.000000000000000
0.172777734235956 0.241398231239069 0.262939287365895
4 ~ 6번 열
0.219783203852808 0.305739643099305 0.205989675419255
0.040529452208426 0.040242533837290 0.038297009643333
0.058450959230501 0.047566424970544 0.043482510827778
1.000000000000000 1.000000000000000 1.000000000000000
0.214451989280496 0.220126884800238 0.204886564654973
7 ~ 9번 열
0.139442190097295 0.247661604455948 0.235643518139056
0.045184767676717 0.040162493825616 0.046668417418980
0.068271058129833 0.080619738420894 0.084556027188915
1.000000000000000 1.000000000000000 1.000000000000000
0.207187769957736 0.253262170513861 0.268108220115873
10 ~ 12번 열
0.169198224556999 0.128140412249901 0.229560206099731
0.039060692331839 0.051601605700296 0.054813524162973
0.059109809721432 0.052225529852137 0.094269824326320
1.000000000000000 1.000000000000000 1.000000000000000
0.214279085500231 0.161035187225036 0.339287338501401</div></div></div></div><div class="inlineWrapper outputs"><div class = 'S5'><span style="white-space: pre;"><span>disp(tdoa_nbest(:,:,1));</span></span></div><div class = 'S3'><div class="inlineElement eoOutputWrapper embeddedOutputsTextElement" uid="CF01CB71" data-scroll-top="null" data-scroll-left="null" data-width="1188" data-height="73" data-hashorizontaloverflow="false" data-testid="output_22" style="max-height: 261px; width: 1218px;"><div class="textElement"> -6 0 0 0 0 -5 -5 0 -5 -5 -8 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
2 -4 -4 2 -4 2 2 2 2 2 -4 4</div></div></div></div><div class="inlineWrapper"><div class = 'S6'></div></div><div class="inlineWrapper outputs"><div class = 'S2'><span style="white-space: pre;"><span>disp(gcc_nbest(:,:,2));</span></span></div><div class = 'S3'><div class="inlineElement eoOutputWrapper embeddedOutputsTextElement" uid="D5E7D4B7" data-scroll-top="null" data-scroll-left="null" data-width="1188" data-height="437" data-hashorizontaloverflow="false" data-testid="output_23" style="max-height: 448px; width: 1218px;"><div class="textElement"> 1 ~ 3번 열
0.114963745017336 0.195475855758566 0.178648556747342
0 0.037100053263609 0.035637360007886
0 0.055503548679856 0.061724224597425
0 0 0
0.133339519236832 0.200525040686099 0.241082840169924
4 ~ 6번 열
0.158157287770155 0.260599768920549 0.205012091175727
0.038385342961917 0.039096335915366 0.034038067625336
0.050090393606936 0.047073220807878 0.037751163946570
0 0 0
0.166791715526935 0.208421232232020 0.202540786009772
7 ~ 9번 열
0.138911452036715 0.223651054016421 0.231282995204979
0.044228359122572 0.036658221849904 0.045221332635653
0.053995335553000 0.042618306301619 0.076562882452097
0 0 0
0.145884405215472 0.195681079491320 0.188905560986978
10 ~ 12번 열
0.158667153198419 0.101685282275355 0.201039993725824
0.037017467677507 0.050047621913277 0.054795654141421
0.052497822553792 0.049640324058591 0.078862713646111
0 0 0
0.161872095087534 0.154554751870244 0.173282927356838</div></div></div></div><div class="inlineWrapper outputs"><div class = 'S5'><span style="white-space: pre;"><span>disp(tdoa_nbest(:,:,2));</span></span></div><div class = 'S3'><div class="inlineElement eoOutputWrapper embeddedOutputsTextElement" uid="E1D6EE5A" data-scroll-top="null" data-scroll-left="null" data-width="1188" data-height="73" data-hashorizontaloverflow="false" data-testid="output_24" style="max-height: 261px; width: 1218px;"><div class="textElement"> 0 -5 -8 -5 -5 0 0 -5 0 0 0 -5
480 480 480 480 480 480 480 480 480 480 480 480
480 480 480 480 480 480 480 480 480 480 480 480
0 0 0 0 0 0 0 0 0 0 0 0
-4 1 4 -4 2 -4 -4 -3 -3 -4 4 -1</div></div></div></div></div><h2 class = 'S4'><span>single channel viterbi - emission, trans prob</span></h2><div class="CodeBlock"><div class="inlineWrapper"><div class = 'S0'><span style="white-space: pre;"><span>emission1 = zeros(npair, nframe, nbest);</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span>diff1 = zeros(npair, nframe, nbest, nbest); </span><span style="color: rgb(34, 139, 34);">% do not using 1st idx</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span>transition1 = zeros(npair, nframe, nbest, nbest); </span><span style="color: rgb(34, 139, 34);">% do not using 1st idx</span></span></div></div><div class="inlineWrapper"><div class = 'S1'></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span style="color: rgb(0, 0, 255);">for </span><span>p = 1:npair</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> </span><span style="color: rgb(0, 0, 255);">for </span><span>t = 1:nframe</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> </span><span style="color: rgb(0, 0, 255);">for </span><span>n = 1:nbest </span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> </span><span style="color: rgb(0, 0, 255);">if </span><span>gcc_nbest(p,t,n) <= 0</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> emission1(p,t,n) = -1000;</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> </span><span style="color: rgb(0, 0, 255);">else</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> emission1(p,t,n) = log10(gcc_nbest(p,t,n) / sum(gcc_nbest(p,t,:)));</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> </span><span style="color: rgb(0, 0, 255);">end</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> </span><span style="color: rgb(0, 0, 255);">end</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> </span><span style="color: rgb(0, 0, 255);">end</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span style="color: rgb(0, 0, 255);">end</span></span></div></div><div class="inlineWrapper"><div class = 'S1'></div></div><div class="inlineWrapper"><div class = 'S1'></div></div><div class="inlineWrapper"><div class = 'S1'></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span style="color: rgb(0, 0, 255);">for </span><span>p = 1:npair</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> </span><span style="color: rgb(0, 0, 255);">for </span><span>t = 2:nframe</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> </span><span style="color: rgb(0, 0, 255);">for </span><span>n = 1:nbest</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> </span><span style="color: rgb(0, 0, 255);">for </span><span>nprev = 1:nbest</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> diff1(p,t,n,nprev) = abs(tdoa_nbest(p,t,n) - tdoa_nbest(p,t-1,nprev));</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> </span><span style="color: rgb(0, 0, 255);">end</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> </span><span style="color: rgb(0, 0, 255);">end</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> </span><span style="color: rgb(0, 0, 255);">end</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span style="color: rgb(0, 0, 255);">end</span></span></div></div><div class="inlineWrapper"><div class = 'S1'></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span style="color: rgb(0, 0, 255);">for </span><span>p = 1:npair</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> </span><span style="color: rgb(0, 0, 255);">for </span><span>t = 2:nframe</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> </span><span style="color: rgb(0, 0, 255);">for </span><span>n = 1:nbest</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> </span><span style="color: rgb(0, 0, 255);">for </span><span>nprev = 1:nbest</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> </span><span style="color: rgb(34, 139, 34);">% there is a computational bug.</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span style="color: rgb(34, 139, 34);">% disp((2+maxdiff1(p,t,n)));</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span style="color: rgb(34, 139, 34);">% disp(diff1(p,t,n,nprev));</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span style="color: rgb(34, 139, 34);">% disp(maxdiff1(p,t,n));</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span style="color: rgb(34, 139, 34);">% disp(log10(481/482));</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span style="color: rgb(34, 139, 34);">% disp(1 + maxdiff1(p,t,n) - diff1(p,t,n,nprev));</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span style="color: rgb(34, 139, 34);">% disp((2+maxdiff1(p,t,n)));</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> maxdiff1 = max(diff1(p,t,:));</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> nume = (1 + maxdiff1 - diff1(p,t,n,nprev));</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> deno = (2 + maxdiff1);</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> transition1(p,t,n,nprev) = log(nume / deno) / log(10); </span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> </span><span style="color: rgb(0, 0, 255);">end</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> </span><span style="color: rgb(0, 0, 255);">end</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> </span><span style="color: rgb(0, 0, 255);">end</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span style="color: rgb(0, 0, 255);">end</span></span></div></div><div class="inlineWrapper"><div class = 'S8'></div></div></div><h2 class = 'S4'><span>single channel viterbi - searching</span></h2><div class="CodeBlock"><div class="inlineWrapper"><div class = 'S0'></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span>nbest2 = 2;</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span>score1 = zeros(npair, nframe, nbest, nbest); </span><span style="color: rgb(34, 139, 34);">% tmp variable</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span>score1_table = zeros(npair, nframe, nbest);</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span>back1_table = zeros(npair, nframe, nbest);</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span>bestpath1 = zeros(npair, nframe, nbest2); </span><span style="color: rgb(34, 139, 34);">% state idx stored.</span></span></div></div><div class="inlineWrapper"><div class = 'S1'></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span style="color: rgb(34, 139, 34);">% original beamformit</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span>dC = ones(npair, nframe, nbest) * -1000;</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span>tC = ones(npair, nframe, nbest);</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span>viterbi_score = zeros(npair, 1);</span></span></div></div><div class="inlineWrapper"><div class = 'S1'></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span>R = ones(npair, nframe); </span><span style="color: rgb(34, 139, 34);">% best prev state</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span>F = ones(npair, nframe);</span></span></div></div><div class="inlineWrapper"><div class = 'S1'></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span>forwardTrans = zeros(npair, nframe, nbest);</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span>selfLoopTrans = zeros(npair, nframe, nbest);</span></span></div></div><div class="inlineWrapper"><div class = 'S1'></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span>bestpath1(:,:,1) = 1;</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span>bestpath1(:,:,2) = 2;</span></span></div></div><div class="inlineWrapper"><div class = 'S1'></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span style="color: rgb(0, 0, 255);">for </span><span>p = 1:npair</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> </span><span style="color: rgb(0, 0, 255);">for </span><span>n = 1:nbest</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> score1(p,1,n,:) = emission1(p,1,n); </span><span style="color: rgb(34, 139, 34);">% broadcasting</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> score1_table(p,1,n) = emission1(p,1,n);</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> </span><span style="color: rgb(0, 0, 255);">end</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span style="color: rgb(0, 0, 255);">end</span></span></div></div><div class="inlineWrapper"><div class = 'S1'></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span style="color: rgb(0, 0, 255);">for </span><span>p = 1:npair</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> </span><span style="color: rgb(0, 0, 255);">for </span><span>n = 1:nbest</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> dC(p,1,n) = emission1(p,1,n);</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> </span><span style="color: rgb(0, 0, 255);">end</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span style="color: rgb(0, 0, 255);">end</span></span></div></div><div class="inlineWrapper"><div class = 'S1'></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span style="color: rgb(0, 0, 255);">for </span><span>p = 1:npair</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> </span><span style="color: rgb(0, 0, 255);">for </span><span>t = 2:nframe</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> </span><span style="color: rgb(0, 0, 255);">for </span><span>n = 1:nbest</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> best_n_prev = R(p,t-1);</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> back1_table(p,t,1) = best_n_prev;</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> </span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> forwardTrans(p,t,n) = dC(p,t-1,best_n_prev) + 25 * transition1(p,t,n,best_n_prev);</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> selfLoopTrans(p,t,n) = dC(p,t-1,n) + 25 * transition1(p,t,n,n);</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> </span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> </span><span style="color: rgb(0, 0, 255);">if </span><span>selfLoopTrans(p,t,n) >= forwardTrans(p,t,n)</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> dC(p,t,n) = selfLoopTrans(p,t,n) + emission1(p,t,n);</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> tC(p,t,n) = tC(p,t-1,n);</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> </span><span style="color: rgb(0, 0, 255);">else</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> dC(p,t,n) = forwardTrans(p,t,n) + emission1(p,t,n);</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> tC(p,t,n) = t;</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> </span><span style="color: rgb(0, 0, 255);">end</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> </span><span style="color: rgb(0, 0, 255);">end</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> </span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> [dummy, R(p,t)] = max(dC(p,t,:));</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> F(p,t) = tC(p,t,R(p,t));</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> </span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> </span><span style="color: rgb(0, 0, 255);">end</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> </span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> st = F(p,end);</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> bestpath1(p,st:end,1) = R(p,end);</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> </span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> </span><span style="color: rgb(0, 0, 255);">while </span><span>st > 2</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> ed = st - 1;</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> st = F(p,ed);</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> bestpath1(p,st:ed,1) = R(p,ed);</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> </span><span style="color: rgb(0, 0, 255);">end</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> </span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> viterbi_score(p) = dC(p,end,R(p,end));</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> </span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span style="color: rgb(0, 0, 255);">end</span></span></div></div><div class="inlineWrapper"><div class = 'S1'></div></div><div class="inlineWrapper"><div class = 'S1'></div></div><div class="inlineWrapper outputs"><div class = 'S2'><span style="white-space: pre;"><span>disp(bestpath1(:,:,1));</span></span></div><div class = 'S3'><div class="inlineElement eoOutputWrapper embeddedOutputsTextElement" uid="54C9757E" data-scroll-top="null" data-scroll-left="null" data-width="1188" data-height="73" data-hashorizontaloverflow="false" data-testid="output_25" style="max-height: 261px; width: 1218px;"><div class="textElement"> 1 1 1 1 1 2 2 1 2 2 2 1
1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 2 1 2 2 2 2 2 1 1</div></div></div></div><div class="inlineWrapper outputs"><div class = 'S5'><span style="white-space: pre;"><span>disp(viterbi_score');</span></span></div><div class = 'S3'><div class="inlineElement eoOutputWrapper embeddedOutputsTextElement" uid="D6429652" data-scroll-top="null" data-scroll-left="null" data-width="1188" data-height="101" data-hashorizontaloverflow="false" data-testid="output_26" style="max-height: 261px; width: 1218px;"><div class="textElement"> 1 ~ 3번 열
-8.177195798314624 -6.512432585836903 -5.781413084413090
4 ~ 5번 열
-82.783248807594831 -10.422622989494176</div></div></div></div></div><h2 class = 'S4'><span>single channel viterbi - 2-best path</span></h2><div class="CodeBlock"><div class="inlineWrapper"><div class = 'S0'></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span>gcc_nbest_copy = gcc_nbest;</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span>emission1_copy = emission1;</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span>bestpath1(:,:,2) = bestpath1(:,:,1);</span></span></div></div><div class="inlineWrapper"><div class = 'S1'></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span style="color: rgb(0, 0, 255);">for </span><span>p = 1:npair</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> </span><span style="color: rgb(0, 0, 255);">for </span><span>t = 1:nframe</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> best1 = bestpath1(p,t,1);</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> gcc_nbest_copy(p,t,best1) = 0;</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> </span><span style="color: rgb(0, 0, 255);">end</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span style="color: rgb(0, 0, 255);">end</span></span></div></div><div class="inlineWrapper"><div class = 'S1'></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span style="color: rgb(0, 0, 255);">for </span><span>p = 1:npair</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> </span><span style="color: rgb(0, 0, 255);">for </span><span>t = 1:nframe</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> </span><span style="color: rgb(0, 0, 255);">for </span><span>n = 1:nbest </span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> </span><span style="color: rgb(0, 0, 255);">if </span><span>gcc_nbest_copy(p,t,n) > 0 </span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> emission1_copy(p,t,n) = log10(gcc_nbest_copy(p,t,n) / sum(gcc_nbest_copy(p,t,:)));</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> </span><span style="color: rgb(0, 0, 255);">else</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> emission1_copy(p,t,n) = -1000;</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> </span><span style="color: rgb(0, 0, 255);">end</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> </span><span style="color: rgb(0, 0, 255);">end</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> </span><span style="color: rgb(0, 0, 255);">end</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span style="color: rgb(0, 0, 255);">end</span></span></div></div><div class="inlineWrapper"><div class = 'S1'></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span>dC = zeros(npair, nframe, nbest);</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span>tC = ones(npair, nframe, nbest);</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span>viterbi_score = zeros(npair, 1);</span></span></div></div><div class="inlineWrapper"><div class = 'S1'></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span>R = ones(npair, nframe); </span><span style="color: rgb(34, 139, 34);">% best prev state</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span>F = ones(npair, nframe);</span></span></div></div><div class="inlineWrapper"><div class = 'S1'></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span>forwardTrans = zeros(npair, nframe, nbest);</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span>selfLoopTrans = zeros(npair, nframe, nbest);</span></span></div></div><div class="inlineWrapper"><div class = 'S1'></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span style="color: rgb(0, 0, 255);">for </span><span>p = 1:npair</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> </span><span style="color: rgb(0, 0, 255);">for </span><span>n = 1:nbest</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> dC(p,1,n) = emission1_copy(p,1,n);</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> </span><span style="color: rgb(0, 0, 255);">end</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span style="color: rgb(0, 0, 255);">end</span></span></div></div><div class="inlineWrapper"><div class = 'S1'></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span style="color: rgb(0, 0, 255);">for </span><span>p = 1:npair</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> </span><span style="color: rgb(0, 0, 255);">for </span><span>t = 2:nframe</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> </span><span style="color: rgb(0, 0, 255);">for </span><span>n = 1:nbest</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> best_n_prev = R(p,t-1);</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> back1_table(p,t,2) = best_n_prev;</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> </span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> forwardTrans(p,t,n) = dC(p,t-1,best_n_prev) + 25 * transition1(p,t,n,best_n_prev);</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> selfLoopTrans(p,t,n) = dC(p,t-1,n) + 25 * transition1(p,t,n,n);</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> </span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> </span><span style="color: rgb(0, 0, 255);">if </span><span>selfLoopTrans(p,t,n) >= forwardTrans(p,t,n)</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> dC(p,t,n) = selfLoopTrans(p,t,n) + emission1_copy(p,t,n);</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> tC(p,t,n) = tC(p,t-1,n);</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> </span><span style="color: rgb(0, 0, 255);">else</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> dC(p,t,n) = forwardTrans(p,t,n) + emission1_copy(p,t,n);</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> tC(p,t,n) = t;</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> </span><span style="color: rgb(0, 0, 255);">end</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> </span><span style="color: rgb(0, 0, 255);">end</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> </span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> [dummy, R(p,t)] = max(dC(p,t,:));</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> F(p,t) = tC(p,t,R(p,t));</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> </span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> </span><span style="color: rgb(0, 0, 255);">end</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> </span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> st = F(p,end);</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> bestpath1(p,st:end,2) = R(p,end);</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> </span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> </span><span style="color: rgb(0, 0, 255);">while </span><span>st > 2</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> ed = st - 1;</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> st = F(p,ed);</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> bestpath1(p,st:ed,2) = R(p,ed);</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> </span><span style="color: rgb(0, 0, 255);">end</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> </span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> viterbi_score(p) = dC(p,end,R(p,end));</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> </span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span style="color: rgb(0, 0, 255);">end</span></span></div></div><div class="inlineWrapper"><div class = 'S1'></div></div><div class="inlineWrapper outputs"><div class = 'S2'><span style="white-space: pre;"><span>disp(squeeze(bestpath1(1,:,:))');</span></span></div><div class = 'S3'><div class="inlineElement eoOutputWrapper embeddedOutputsTextElement" uid="CD4D126D" data-scroll-top="null" data-scroll-left="null" data-width="1188" data-height="31" data-hashorizontaloverflow="false" data-testid="output_27" style="max-height: 261px; width: 1218px;"><div class="textElement"> 1 1 1 1 1 2 2 1 2 2 2 1
3 3 3 3 3 3 3 3 3 3 3 3</div></div></div></div><div class="inlineWrapper outputs"><div class = 'S5'><span style="white-space: pre;"><span>disp(viterbi_score');</span></span></div><div class = 'S3'><div class="inlineElement eoOutputWrapper embeddedOutputsTextElement" uid="80F37B30" data-scroll-top="null" data-scroll-left="null" data-width="1188" data-height="129" data-hashorizontaloverflow="false" data-testid="output_28" style="max-height: 261px; width: 1218px;"><div class="textElement"> 1.0e+04 *
1 ~ 3번 열
-0.000894918806015 -0.100527863938774 -0.100479105756626
4 ~ 5번 열
-1.208278324880760 -0.000905465152992</div></div></div></div></div><h2 class = 'S4'><span>plot path</span></h2><div class="CodeBlock"><div class="inlineWrapper"><div class = 'S0'><span style="white-space: pre;"><span style="color: rgb(34, 139, 34);">% https://kr.mathworks.com/help/matlab/ref/scatter.html</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span>figure;</span></span></div></div><div class="inlineWrapper"><div class = 'S1'></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span>emission_plot = zeros(npair, 3, nbest * nframe);</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span style="color: rgb(0, 0, 255);">for </span><span>p = 1:npair</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> </span><span style="color: rgb(0, 0, 255);">for </span><span>ibest = 1:nbest</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> </span><span style="color: rgb(0, 0, 255);">for </span><span>iframe = 1:nframe</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> emission_plot(p,1,(ibest-1) * nframe + iframe) = iframe;</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> emission_plot(p,2,(ibest-1) * nframe + iframe) = ibest;</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> emission_plot(p,3,(ibest-1) * nframe + iframe) = 1 + 400 * 10^(emission1(p, iframe, ibest));</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> </span><span style="color: rgb(0, 0, 255);">end</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> </span><span style="color: rgb(0, 0, 255);">end</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span style="color: rgb(0, 0, 255);">end</span></span></div></div><div class="inlineWrapper"><div class = 'S1'></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span>hold </span><span style="color: rgb(160, 32, 240);">on</span><span>;</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span style="color: rgb(0, 0, 255);">for </span><span>p=1:npair</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> subplot(npair,1,p);</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> scatter(</span><span style="color: rgb(0, 0, 255);">...</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> squeeze(emission_plot(p, 1,:)), </span><span style="color: rgb(0, 0, 255);">...</span><span style="color: rgb(34, 139, 34);"> % x range (x data for scatter)</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> squeeze(emission_plot(p, 2,:)), </span><span style="color: rgb(0, 0, 255);">...</span><span style="color: rgb(34, 139, 34);"> % y range (y data for scatter)</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> squeeze(emission_plot(p, 3,:)), </span><span style="color: rgb(0, 0, 255);">...</span><span style="color: rgb(34, 139, 34);"> % radius</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> </span><span style="color: rgb(160, 32, 240);">'filled'</span><span>); </span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> axis </span><span style="color: rgb(160, 32, 240);">ij</span><span>;</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> ylim([0 nbest+1]); </span><span style="color: rgb(34, 139, 34);">% for readability</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span style="color: rgb(0, 0, 255);">end</span></span></div></div><div class="inlineWrapper"><div class = 'S1'></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span>hold </span><span style="color: rgb(160, 32, 240);">on</span><span>;</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span>max_linewidth = 1+max(max(max(max(transition1))));</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span style="color: rgb(0, 0, 255);">for </span><span>p=1:npair</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> subplot(npair, 1, p);</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> </span><span style="color: rgb(0, 0, 255);">for </span><span>t = 2:nframe</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> </span><span style="color: rgb(0, 0, 255);">for </span><span>n = 1:nbest</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> </span><span style="color: rgb(0, 0, 255);">for </span><span>nprev = 1:nbest</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> line([t-1 t], </span><span style="color: rgb(0, 0, 255);">...</span><span style="color: rgb(34, 139, 34);"> % x data</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> [nprev n], </span><span style="color: rgb(0, 0, 255);">...</span><span style="color: rgb(34, 139, 34);"> % y data</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> </span><span style="color: rgb(160, 32, 240);">'LineWidth'</span><span>, 10^(transition1(p,t,n,nprev))*3,</span><span style="color: rgb(0, 0, 255);">...</span><span style="color: rgb(34, 139, 34);"> % tuning</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> </span><span style="color: rgb(160, 32, 240);">'Color'</span><span>,</span><span style="color: rgb(160, 32, 240);">'cyan'</span><span>);</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> </span><span style="color: rgb(0, 0, 255);">end</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> </span><span style="color: rgb(0, 0, 255);">end</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> </span><span style="color: rgb(0, 0, 255);">end</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span style="color: rgb(0, 0, 255);">end</span></span></div></div><div class="inlineWrapper"><div class = 'S1'></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span>hold </span><span style="color: rgb(160, 32, 240);">on</span><span>;</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span style="color: rgb(0, 0, 255);">for </span><span>p = 1:npair</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> subplot(npair,1,p);</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> </span><span style="color: rgb(0, 0, 255);">for </span><span>t = 2:nframe</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> line([t-1 t], [bestpath1(p,t-1,1) bestpath1(p,t,1)], </span><span style="color: rgb(0, 0, 255);">...</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> </span><span style="color: rgb(160, 32, 240);">'LineWidth'</span><span>, 2, </span><span style="color: rgb(0, 0, 255);">...</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> </span><span style="color: rgb(160, 32, 240);">'Color'</span><span>, </span><span style="color: rgb(160, 32, 240);">'red'</span><span>);</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> line([t-1 t], [bestpath1(p,t-1,2) bestpath1(p,t,2)], </span><span style="color: rgb(0, 0, 255);">...</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> </span><span style="color: rgb(160, 32, 240);">'LineWidth'</span><span>, 2, </span><span style="color: rgb(0, 0, 255);">...</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> </span><span style="color: rgb(160, 32, 240);">'Color'</span><span>, </span><span style="color: rgb(160, 32, 240);">'black'</span><span>);</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> </span><span style="color: rgb(0, 0, 255);">end</span></span></div></div><div class="inlineWrapper outputs"><div class = 'S2'><span style="white-space: pre;"><span style="color: rgb(0, 0, 255);">end</span></span></div><div class = 'S3'><div class="inlineElement eoOutputWrapper embeddedOutputsFigure" uid="21CD4AF9" data-scroll-top="null" data-scroll-left="null" data-testid="output_29" style="width: 1218px;"><div class="figureElement"><div class="figureContainingNode" style="width: 560px; max-width: 100%; display: inline-block;"><div class="GraphicsView" data-dojo-attach-point="graphicsViewNode,backgroundColorNode" id="uniqName_197_90" widgetid="uniqName_197_90" style="width: 100%; height: auto;"><img class="ImageView figureImage" data-dojo-attach-point="imageViewNode" draggable="false" ondragstart="return false;" id="uniqName_197_92" widgetid="uniqName_197_92" src="" style="width: 100%; height: auto;"></div></div></div></div></div></div><div class="inlineWrapper"><div class = 'S9'></div></div></div><h2 class = 'S4'><span>multi channel viterbi - state define</span></h2><div class="CodeBlock"><div class="inlineWrapper"><div class = 'S0'><span style="white-space: pre;"><span>nbest2 = 2;</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span>nstate = nbest2 ^ npair;</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span>g = zeros(nstate, npair);</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span>tmp_row = zeros(3,1);</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span>l = 1;</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span style="color: rgb(0, 0, 255);">for </span><span>ibest = 1:nbest2</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> [g, l] = fill_all_comb(1, npair, ibest, nbest2, tmp_row, g, l);</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span style="color: rgb(0, 0, 255);">end</span></span></div></div><div class="inlineWrapper outputs"><div class = 'S2'><span style="white-space: pre;"><span>disp(g);</span></span></div><div class = 'S3'><div class="inlineElement eoOutputWrapper embeddedOutputsTextElement" uid="5A91292B" data-scroll-top="null" data-scroll-left="null" data-width="1188" data-height="451" data-hashorizontaloverflow="false" data-testid="output_30" style="max-height: 462px; width: 1218px;"><div class="textElement"> 1 1 1 1 1
1 1 1 1 2
1 1 1 2 1
1 1 1 2 2
1 1 2 1 1
1 1 2 1 2
1 1 2 2 1
1 1 2 2 2
1 2 1 1 1
1 2 1 1 2
1 2 1 2 1
1 2 1 2 2
1 2 2 1 1
1 2 2 1 2
1 2 2 2 1
1 2 2 2 2
2 1 1 1 1
2 1 1 1 2
2 1 1 2 1
2 1 1 2 2
2 1 2 1 1
2 1 2 1 2
2 1 2 2 1
2 1 2 2 2
2 2 1 1 1
2 2 1 1 2
2 2 1 2 1
2 2 1 2 2
2 2 2 1 1
2 2 2 1 2
2 2 2 2 1
2 2 2 2 2</div></div></div></div></div><h2 class = 'S7'><span>multi channel viterbi - emission, trans prob</span></h2><div class="CodeBlock"><div class="inlineWrapper"><div class = 'S0'><span style="white-space: pre;"><span>emission2 = zeros(nframe, nstate);</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span>diff2 = zeros(nmic, nframe, nbest, nbest); </span><span style="color: rgb(34, 139, 34);">% do not using 1st idx</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span>transition2 = zeros(nframe, nstate, nstate); </span><span style="color: rgb(34, 139, 34);">% do not using 1st idx</span></span></div></div><div class="inlineWrapper"><div class = 'S1'></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span style="color: rgb(0, 0, 255);">for </span><span>t = 1:nframe</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> </span><span style="color: rgb(0, 0, 255);">for </span><span>l = 1:nstate</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> </span><span style="color: rgb(0, 0, 255);">for </span><span>m = 1:npair</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> ibest = bestpath1(m, t, g(l,m));</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> </span><span style="color: rgb(0, 0, 255);">if </span><span>gcc_nbest(m,t,ibest) > 0</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> emission2(t, l)</span><span style="color: rgb(0, 0, 255);">...</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> = emission2(t, l)</span><span style="color: rgb(0, 0, 255);">...</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> + log10(gcc_nbest(m,t,ibest));</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> </span><span style="color: rgb(0, 0, 255);">end</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> </span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> </span><span style="color: rgb(0, 0, 255);">end</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> </span><span style="color: rgb(0, 0, 255);">end</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span style="color: rgb(0, 0, 255);">end</span></span></div></div><div class="inlineWrapper"><div class = 'S1'></div></div><div class="inlineWrapper"><div class = 'S1'></div></div><div class="inlineWrapper"><div class = 'S1'></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span style="color: rgb(0, 0, 255);">for </span><span>t = 2:nframe</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> </span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> maxdiff2 = 0;</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> </span><span style="color: rgb(0, 0, 255);">for </span><span>ibest = 1:nbest</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> </span><span style="color: rgb(0, 0, 255);">for </span><span>jbest = 1:nbest</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> </span><span style="color: rgb(0, 0, 255);">for </span><span>m = 1:npair-1 </span><span style="color: rgb(34, 139, 34);">% why -1?</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> diff2(m,t,ibest, jbest) = abs(tdoa_nbest(m,t,ibest) - tdoa_nbest(m,t-1,jbest));</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> </span><span style="color: rgb(0, 0, 255);">if </span><span>maxdiff2 < diff2(m,t,ibest, jbest)</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> maxdiff2 = diff2(m,t,ibest, jbest);</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> </span><span style="color: rgb(0, 0, 255);">end</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> </span><span style="color: rgb(0, 0, 255);">end</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> </span><span style="color: rgb(0, 0, 255);">end</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> </span><span style="color: rgb(0, 0, 255);">end</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> </span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> diff2(:,t,:,:) = log10( (1 + maxdiff2 - diff2(:,t,:,:)) / (2 + maxdiff2) );</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> </span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> </span><span style="color: rgb(0, 0, 255);">for </span><span>l = 1:nstate</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> </span><span style="color: rgb(0, 0, 255);">for </span><span>lprev = 1:nstate</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> </span><span style="color: rgb(0, 0, 255);">for </span><span>m = 1:npair-1 </span><span style="color: rgb(34, 139, 34);">% why -1? </span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> ibest = bestpath1(m, t, g(l,m));</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> jbest = bestpath1(m, t-1, g(lprev,m));</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> </span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> transition2(t,l,lprev)</span><span style="color: rgb(0, 0, 255);">...</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> = transition2(t,l,lprev)</span><span style="color: rgb(0, 0, 255);">...</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> + diff2(m,t,ibest,jbest);</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> </span><span style="color: rgb(0, 0, 255);">end</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> </span><span style="color: rgb(0, 0, 255);">end</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> </span><span style="color: rgb(0, 0, 255);">end</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> </span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span style="color: rgb(0, 0, 255);">end</span></span></div></div><div class="inlineWrapper outputs"><div class = 'S2'><span style="white-space: pre;"><span>disp(emission2(2,end));</span></span></div><div class = 'S3'><div class="inlineElement eoOutputWrapper embeddedOutputsTextElement" uid="FE579FA8" data-scroll-top="null" data-scroll-left="null" data-width="1188" data-height="18" data-hashorizontaloverflow="false" data-testid="output_31" style="max-height: 261px; width: 1218px;"><div class="textElement"> -4.530028148174052</div></div></div></div><div class="inlineWrapper outputs"><div class = 'S5'><span style="white-space: pre;"><span>disp(transition2(2,:,1));</span></span></div><div class = 'S3'><div class="inlineElement eoOutputWrapper embeddedOutputsTextElement scrollableOutput" uid="D4D05D9E" data-scroll-top="null" data-scroll-left="null" data-width="1188" data-height="605" data-hashorizontaloverflow="false" data-testid="output_32" style="max-height: 261px; width: 1218px;"><div class="textElement"> 1 ~ 3번 열
-0.009059314209036 -0.009059314209036 -0.009059314209036
4 ~ 6번 열
-0.009059314209036 -2.691204390582868 -2.691204390582868
7 ~ 9번 열
-2.691204390582868 -2.691204390582868 -2.691204390582868
10 ~ 12번 열
-2.691204390582868 -2.691204390582868 -2.691204390582868
13 ~ 15번 열
-5.373349466956699 -5.373349466956699 -5.373349466956699
16 ~ 18번 열
-5.373349466956699 -0.016436043267791 -0.016436043267791
19 ~ 21번 열
-0.016436043267791 -0.016436043267791 -2.698581119641622
22 ~ 24번 열
-2.698581119641622 -2.698581119641622 -2.698581119641622
25 ~ 27번 열
-2.698581119641622 -2.698581119641622 -2.698581119641622
28 ~ 30번 열
-2.698581119641622 -5.380726196015455 -5.380726196015455
31 ~ 32번 열
-5.380726196015455 -5.380726196015455</div></div></div></div></div><h2 class = 'S7'><span>multi channel viterbi - searching</span></h2><div class="CodeBlock"><div class="inlineWrapper"><div class = 'S0'><span style="white-space: pre;"><span>back2_table = zeros(nframe, nstate);</span></span></div></div><div class="inlineWrapper"><div class = 'S1'></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span>bestpath2 = ones(nframe, 1); </span><span style="color: rgb(34, 139, 34);">% state idx stored.</span></span></div></div><div class="inlineWrapper"><div class = 'S1'></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span>dC = ones(nframe, nstate) * -1000;</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span>tC = ones(nframe, nstate);</span></span></div></div><div class="inlineWrapper"><div class = 'S1'></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span>R = ones(nframe, 1); </span><span style="color: rgb(34, 139, 34);">% best prev state</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span>F = ones(nframe, 1);</span></span></div></div><div class="inlineWrapper"><div class = 'S1'></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span>forwardTrans = zeros(nframe, nstate);</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span>selfLoopTrans = zeros(nframe, nstate);</span></span></div></div><div class="inlineWrapper"><div class = 'S1'></div></div><div class="inlineWrapper"><div class = 'S1'></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span style="color: rgb(0, 0, 255);">for </span><span>l = 1:nstate</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> dC(1,l) = emission2(1,l);</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span style="color: rgb(0, 0, 255);">end</span></span></div></div><div class="inlineWrapper"><div class = 'S1'></div></div><div class="inlineWrapper"><div class = 'S1'></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span style="color: rgb(0, 0, 255);">for </span><span>t = 2:nframe</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> </span><span style="color: rgb(0, 0, 255);">for </span><span>l = 1:nstate</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> best_l_prev = R(t-1);</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> back2_table(t,l) = best_l_prev;</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> </span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> forwardTrans(t,l) = dC(t-1,best_l_prev) + 25 * transition2(t,l,best_l_prev);</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> selfLoopTrans(t,l) = dC(t-1,l) + 25 * transition2(t,l,l);</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> </span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> </span><span style="color: rgb(0, 0, 255);">if </span><span>selfLoopTrans(t,l) >= forwardTrans(t,l)</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> dC(t,l) = selfLoopTrans(t,l) + emission2(t,l);</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> tC(t,l) = tC(t-1,l);</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> </span><span style="color: rgb(0, 0, 255);">else</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> dC(t,l) = forwardTrans(t,l) + emission2(t,l);</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> tC(t,l) = t;</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> </span><span style="color: rgb(0, 0, 255);">end</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> </span><span style="color: rgb(0, 0, 255);">end</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> </span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> [dummy, R(t)] = max(dC(t,:));</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> F(t) = tC(t,R(t));</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> </span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span style="color: rgb(0, 0, 255);">end</span></span></div></div><div class="inlineWrapper"><div class = 'S1'></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span>st = F(end);</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span>bestpath2(st:end) = R(end);</span></span></div></div><div class="inlineWrapper"><div class = 'S1'></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span style="color: rgb(0, 0, 255);">while </span><span>st > 2</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> ed = st - 1;</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> st = F(ed);</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> bestpath2(st:ed) = R(ed);</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span style="color: rgb(0, 0, 255);">end</span></span></div></div><div class="inlineWrapper"><div class = 'S1'></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span>viterbi_score = dC(end,R(end));</span></span></div></div><div class="inlineWrapper"><div class = 'S1'></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span>besttdoa = zeros(npair, nframe);</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span>bestgcc2 = zeros(npair, nframe);</span></span></div></div><div class="inlineWrapper"><div class = 'S1'></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span style="color: rgb(0, 0, 255);">for </span><span>t = 1:nframe</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> </span><span style="color: rgb(0, 0, 255);">for </span><span>p = 1:npair</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> l = bestpath2(t);</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> ibest = bestpath1(p, t, g(l,p));</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> besttdoa(p,t) = tdoa_nbest(p,t,ibest);</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> bestgcc2(p,t) = gcc_nbest(p,t,ibest);</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> </span><span style="color: rgb(0, 0, 255);">end</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span style="color: rgb(0, 0, 255);">end</span></span></div></div><div class="inlineWrapper outputs"><div class = 'S2'><span style="white-space: pre;"><span>disp(back2_table(:,:)'); </span><span style="color: rgb(34, 139, 34);">% compare first mic pair trellis plot</span></span></div><div class = 'S3'><div class="inlineElement eoOutputWrapper embeddedOutputsTextElement" uid="31C31E03" data-scroll-top="null" data-scroll-left="null" data-width="1188" data-height="451" data-hashorizontaloverflow="false" data-testid="output_33" style="max-height: 462px; width: 1218px;"><div class="textElement"> 0 1 1 1 2 1 2 2 2 2 2 1
0 1 1 1 2 1 2 2 2 2 2 1
0 1 1 1 2 1 2 2 2 2 2 1
0 1 1 1 2 1 2 2 2 2 2 1
0 1 1 1 2 1 2 2 2 2 2 1
0 1 1 1 2 1 2 2 2 2 2 1
0 1 1 1 2 1 2 2 2 2 2 1
0 1 1 1 2 1 2 2 2 2 2 1
0 1 1 1 2 1 2 2 2 2 2 1
0 1 1 1 2 1 2 2 2 2 2 1
0 1 1 1 2 1 2 2 2 2 2 1
0 1 1 1 2 1 2 2 2 2 2 1
0 1 1 1 2 1 2 2 2 2 2 1
0 1 1 1 2 1 2 2 2 2 2 1
0 1 1 1 2 1 2 2 2 2 2 1
0 1 1 1 2 1 2 2 2 2 2 1
0 1 1 1 2 1 2 2 2 2 2 1
0 1 1 1 2 1 2 2 2 2 2 1
0 1 1 1 2 1 2 2 2 2 2 1
0 1 1 1 2 1 2 2 2 2 2 1
0 1 1 1 2 1 2 2 2 2 2 1
0 1 1 1 2 1 2 2 2 2 2 1
0 1 1 1 2 1 2 2 2 2 2 1
0 1 1 1 2 1 2 2 2 2 2 1
0 1 1 1 2 1 2 2 2 2 2 1
0 1 1 1 2 1 2 2 2 2 2 1
0 1 1 1 2 1 2 2 2 2 2 1
0 1 1 1 2 1 2 2 2 2 2 1
0 1 1 1 2 1 2 2 2 2 2 1
0 1 1 1 2 1 2 2 2 2 2 1
0 1 1 1 2 1 2 2 2 2 2 1
0 1 1 1 2 1 2 2 2 2 2 1</div></div></div></div><div class="inlineWrapper"><div class = 'S6'></div></div><div class="inlineWrapper"><div class = 'S1'></div></div><div class="inlineWrapper outputs"><div class = 'S2'><span style="white-space: pre;"><span>disp(besttdoa);</span></span></div><div class = 'S3'><div class="inlineElement eoOutputWrapper embeddedOutputsTextElement" uid="10A7DD8B" data-scroll-top="null" data-scroll-left="null" data-width="1188" data-height="73" data-hashorizontaloverflow="false" data-testid="output_34" style="max-height: 261px; width: 1218px;"><div class="textElement"> -6 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
2 -4 -4 2 -4 2 2 2 2 2 -4 4</div></div></div></div></div><h2 class = 'S4'><span>multi channel viterbi - plot</span></h2><div class="CodeBlock"><div class="inlineWrapper"><div class = 'S0'><span style="white-space: pre;"><span style="color: rgb(34, 139, 34);">% https://kr.mathworks.com/help/matlab/ref/scatter.html</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span>figure;</span></span></div></div><div class="inlineWrapper"><div class = 'S1'></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span>title(sprintf(</span><span style="color: rgb(160, 32, 240);">'step 2 emission2, transition2'</span><span>));</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span style="color: rgb(0, 0, 255);">for </span><span>t = 2:nframe</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> </span><span style="color: rgb(0, 0, 255);">for </span><span>l = 1:nstate</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> </span><span style="color: rgb(0, 0, 255);">for </span><span>lprev = 1:nstate</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> line([t-1 t], </span><span style="color: rgb(0, 0, 255);">...</span><span style="color: rgb(34, 139, 34);"> % x data</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> [lprev l], </span><span style="color: rgb(0, 0, 255);">...</span><span style="color: rgb(34, 139, 34);"> % y data</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> </span><span style="color: rgb(160, 32, 240);">'LineWidth'</span><span>, 3*(exp(transition2(t,l,lprev))),</span><span style="color: rgb(0, 0, 255);">...</span><span style="color: rgb(34, 139, 34);"> % tuning</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> </span><span style="color: rgb(160, 32, 240);">'Color'</span><span>,</span><span style="color: rgb(160, 32, 240);">'cyan'</span><span>);</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> axis </span><span style="color: rgb(160, 32, 240);">ij</span><span>;</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> </span><span style="color: rgb(0, 0, 255);">end</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> </span><span style="color: rgb(0, 0, 255);">end</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span style="color: rgb(0, 0, 255);">end</span></span></div></div><div class="inlineWrapper"><div class = 'S1'></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span>emission2_plot = zeros(3, nstate * nframe);</span></span></div></div><div class="inlineWrapper"><div class = 'S1'></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span style="color: rgb(0, 0, 255);">for </span><span>l = 1:nstate</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> </span><span style="color: rgb(0, 0, 255);">for </span><span>iframe = 1:nframe</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> </span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> </span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> emission2_plot(1,(l-1) * nframe + iframe) = iframe;</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> emission2_plot(2,(l-1) * nframe + iframe) = l;</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> emission2_plot(3,(l-1) * nframe + iframe) = 1 + 400 * 10^(emission2(iframe, l));</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> </span><span style="color: rgb(0, 0, 255);">end</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span style="color: rgb(0, 0, 255);">end</span></span></div></div><div class="inlineWrapper"><div class = 'S1'></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span>hold </span><span style="color: rgb(160, 32, 240);">on</span><span>;</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span>scatter(</span><span style="color: rgb(0, 0, 255);">...</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> squeeze(emission2_plot(1,:)), </span><span style="color: rgb(0, 0, 255);">...</span><span style="color: rgb(34, 139, 34);"> % x range (x data for scatter)</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> squeeze(emission2_plot(2,:)), </span><span style="color: rgb(0, 0, 255);">...</span><span style="color: rgb(34, 139, 34);"> % y range (y data for scatter)</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> squeeze(emission2_plot(3,:)), </span><span style="color: rgb(0, 0, 255);">...</span><span style="color: rgb(34, 139, 34);"> % radius</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> </span><span style="color: rgb(160, 32, 240);">'filled'</span><span>);</span></span></div></div><div class="inlineWrapper"><div class = 'S1'></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span>hold </span><span style="color: rgb(160, 32, 240);">on</span><span>;</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span style="color: rgb(0, 0, 255);">for </span><span>t = 2:nframe</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> line([t-1 t], [bestpath2(t-1) bestpath2(t)], </span><span style="color: rgb(0, 0, 255);">...</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> </span><span style="color: rgb(160, 32, 240);">'LineWidth'</span><span>, 2, </span><span style="color: rgb(0, 0, 255);">...</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> </span><span style="color: rgb(160, 32, 240);">'Color'</span><span>, </span><span style="color: rgb(160, 32, 240);">'red'</span><span>);</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span style="color: rgb(0, 0, 255);">end</span></span></div></div><div class="inlineWrapper"><div class = 'S1'></div></div><div class="inlineWrapper"><div class = 'S1'></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span>axis </span><span style="color: rgb(160, 32, 240);">ij</span><span>;</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span>ylim([0 nstate+1]); </span><span style="color: rgb(34, 139, 34);">% for readability</span></span></div></div><div class="inlineWrapper outputs"><div class = 'S2'><span style="white-space: pre;"><span>xlim([0 nframe+1]);</span></span></div><div class = 'S3'><div class="inlineElement eoOutputWrapper embeddedOutputsFigure" uid="AA3102C3" data-scroll-top="null" data-scroll-left="null" data-testid="output_35" style="width: 1218px;"><div class="figureElement"><div class="figureContainingNode" style="width: 560px; max-width: 100%; display: inline-block;"><div class="GraphicsView" data-dojo-attach-point="graphicsViewNode,backgroundColorNode" id="uniqName_197_93" widgetid="uniqName_197_93" style="width: 100%; height: auto;"><img class="ImageView figureImage" data-dojo-attach-point="imageViewNode" draggable="false" ondragstart="return false;" id="uniqName_197_95" widgetid="uniqName_197_95" src="" style="width: 100%; height: auto;"></div></div></div></div></div></div></div><h2 class = 'S4'><span>compute local xcorr</span></h2><div class="CodeBlock"><div class="inlineWrapper"><div class = 'S0'><span style="white-space: pre;"><span>tmp_localxcorr = zeros(nmic, nmic, nframe);</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span class="warning_squiggle_rte">localxcorr</span><span> = zeros(nmic, nframe);</span></span></div></div><div class="inlineWrapper"><div class = 'S1'></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span>mic2refpair = zeros(nmic,1);</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span>mic2refpair(ref_mic) = 0;</span></span></div></div><div class="inlineWrapper"><div class = 'S1'></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span style="color: rgb(0, 0, 255);">for </span><span>p = 1:npair</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> m = micpair(ref_mic,p);</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> mic2refpair(m) = p;</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span style="color: rgb(0, 0, 255);">end</span></span></div></div><div class="inlineWrapper"><div class = 'S1'></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span style="color: rgb(0, 0, 255);">for </span><span>t = 1:nframe</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> ref_st = (t-1) * 4000 + 1;</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> ref_ed = min(ref_st + 8000 - 1, nsample);</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> </span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> </span><span style="color: rgb(0, 0, 255);">for </span><span>m1 = 1:(nmic-1)</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> </span><span style="color: rgb(0, 0, 255);">for </span><span>m2 = (m1+1):nmic</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> </span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> </span><span style="color: rgb(0, 0, 255);">if </span><span>m1 == ref_mic</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> st1 = ref_st;</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> ed1 = ref_ed;</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> </span><span style="color: rgb(0, 0, 255);">else</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> p = mic2refpair(m1);</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> st1 = max(1,ref_st + besttdoa(p,t));</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> ed1 = min(nsample, ref_ed + besttdoa(p,t));</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> </span><span style="color: rgb(0, 0, 255);">end</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> </span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> </span><span style="color: rgb(0, 0, 255);">if </span><span>m2 == ref_mic</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> st2 = ref_st;</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> ed2 = ref_ed;</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> </span><span style="color: rgb(0, 0, 255);">else</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> p = mic2refpair(m2);</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> st2 = max(1,ref_st + besttdoa(p,t));</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> ed2 = min(nsample, ref_ed + besttdoa(p,t));</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> </span><span style="color: rgb(0, 0, 255);">end</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> </span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> buf1 = x(m1,st1:ed1);</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> buf2 = x(m2,st2:ed2);</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> </span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> ener1 = sum(buf1(:).^2);</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> ener2 = sum(buf2(:).^2);</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> </span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> min_ed = min(ed1-st1, ed2-st2) + 1;</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> tmp_localxcorr(m1,m2,t)</span><span style="color: rgb(0, 0, 255);">...</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> = sum(</span><span style="color: rgb(0, 0, 255);">...</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> buf1(1:min_ed) .* buf2(1:min_ed)</span><span style="color: rgb(0, 0, 255);">...</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> / (ener1 * ener2));</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> </span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> </span><span style="color: rgb(0, 0, 255);">if </span><span>tmp_localxcorr(m1,m2,t) < 0</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> tmp_localxcorr(m1,m2,t) = 0;</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> </span><span style="color: rgb(0, 0, 255);">end</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> </span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> tmp_localxcorr(m2,m1,t) = tmp_localxcorr(m1,m2,t);</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> </span><span style="color: rgb(0, 0, 255);">end</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> </span><span style="color: rgb(0, 0, 255);">end</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span style="color: rgb(0, 0, 255);">end</span></span></div></div><div class="inlineWrapper"><div class = 'S1'></div></div><div class="inlineWrapper outputs"><div class = 'S2'><span style="white-space: pre;"><span>disp(tmp_localxcorr(1,2:3,1));</span></span></div><div class = 'S3'><div class="inlineElement eoOutputWrapper embeddedOutputsTextElement" uid="64FF1C57" data-scroll-top="null" data-scroll-left="null" data-width="1188" data-height="18" data-hashorizontaloverflow="false" data-testid="output_36" style="max-height: 261px; width: 1218px;"><div class="textElement"> 0.000698030059640 0.057655645698108</div></div></div></div><div class="inlineWrapper"><div class = 'S6'></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span>localxcorr = squeeze(sum(tmp_localxcorr,1));</span></span></div></div><div class="inlineWrapper outputs"><div class = 'S2'><span style="white-space: pre;"><span>disp(localxcorr);</span></span></div><div class = 'S3'><div class="inlineElement eoOutputWrapper embeddedOutputsTextElement" uid="E1231A85" data-scroll-top="null" data-scroll-left="null" data-width="1188" data-height="437" data-hashorizontaloverflow="false" data-testid="output_37" style="max-height: 448px; width: 1218px;"><div class="textElement"> 1 ~ 3번 열
0.397481828090729 0.272221311968858 0.549831429382502
0.002428795872431 0.005991739961208 0.011247254873043
0.186393330242774 0 0.002722408652724
0.715193264562037 0.414665250919336 0.893735914333955
0.607615570764660 0.327711969658177 0.756122440655160
4 ~ 6번 열
0.645235383824703 0.470792710453255 0.690668782684766
0.004307078074065 0.002945669327416 0.004302080955592
0.141449692662963 0 0.006917319779727
1.235582243838077 0.708176751949193 1.011422635724574
1.140483857709310 0.572504011494178 0.925135324078567
7 ~ 9번 열
0.813100606742873 0.526430115188119 0.253807332047596
0.007271616997500 0.001950581914052 0.006902963426551
0.232380957256995 0.108274854763060 0.056979231306526
1.305816345787604 0.954577045883116 0.439465023250163
1.189136571512724 0.867979358789862 0.392843880577642
10 ~ 12번 열
0.218957123065576 0.281222542617182 0.549763359277866
0.005953145835015 0.000256417818234 0
0.158498588869339 0.199149532315087 0.128770584123641
0.388978914338482 0.494764907955565 1.233365173918296
0.360862824108992 0.347266154733443 1.017855431114984</div></div></div></div></div><h2 class = 'S4'><span>compute sum weight</span></h2><div class="CodeBlock"><div class="inlineWrapper"><div class = 'S0'><span style="white-space: pre;"><span>out_weight = ones(nmic, nframe) * ( 1 / nmic);</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span>alpha = 0.05;</span></span></div></div><div class="inlineWrapper"><div class = 'S1'></div></div><div class="inlineWrapper"><div class = 'S1'></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span style="color: rgb(0, 0, 255);">for </span><span>t = 1:nframe</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> </span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> </span><span style="color: rgb(0, 0, 255);">if </span><span>sum(localxcorr(:,t)) == 0</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> localxcorr(:,t) = 1 / nmic;</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> </span><span style="color: rgb(0, 0, 255);">end</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> </span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> localxcorr(:,t) = localxcorr(:,t) / sum(localxcorr(:,t));</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> localxcorr_sum_nonref = 0;</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> localxcorr_sum = 0;</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> </span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> </span><span style="color: rgb(0, 0, 255);">for </span><span>m = 1:nmic</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> </span><span style="color: rgb(0, 0, 255);">if </span><span>m == ref_mic</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> out_weight(m,t) = </span><span style="color: rgb(0, 0, 255);">...</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> (1-alpha) * out_weight(m,max(1,t-1)) </span><span style="color: rgb(0, 0, 255);">...</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> + alpha * localxcorr(m,t); </span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> </span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> </span><span style="color: rgb(0, 0, 255);">else</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> p = mic2refpair(m);</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> </span><span style="color: rgb(0, 0, 255);">if </span><span>noise_filter(p,t) == 0</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> out_weight(m,t) = </span><span style="color: rgb(0, 0, 255);">...</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> (1-alpha) * out_weight(m,max(1,t-1)) </span><span style="color: rgb(0, 0, 255);">...</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> + alpha * localxcorr(m,t); </span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> </span><span style="color: rgb(0, 0, 255);">end</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> </span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> localxcorr_sum_nonref = localxcorr_sum_nonref + localxcorr(m,t);</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> </span><span style="color: rgb(0, 0, 255);">end </span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> </span><span style="color: rgb(0, 0, 255);">end</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> </span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> </span><span style="color: rgb(0, 0, 255);">if </span><span>sum(localxcorr(:,t)) == 0</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> out_weight(:,t) = 1;</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> </span><span style="color: rgb(0, 0, 255);">end</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> </span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> </span><span style="color: rgb(0, 0, 255);">for </span><span>m = 1:nmic</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> </span><span style="color: rgb(0, 0, 255);">if </span><span>m ~= ref_mic</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> </span><span style="color: rgb(0, 0, 255);">if </span><span>(localxcorr(m,t) / localxcorr_sum_nonref) < (1 / (10 * (nmic-1)))</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> out_weight(m,t) = 0;</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> </span><span style="color: rgb(0, 0, 255);">end</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> </span><span style="color: rgb(0, 0, 255);">end</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> </span><span style="color: rgb(0, 0, 255);">end</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> out_weight(:,t) = out_weight(:,t) / sum(out_weight(:,t));</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> </span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span style="color: rgb(0, 0, 255);">end</span></span></div></div><div class="inlineWrapper"><div class = 'S1'></div></div><div class="inlineWrapper outputs"><div class = 'S2'><span style="white-space: pre;"><span>disp(mic2refpair');</span></span></div><div class = 'S3'><div class="inlineElement eoOutputWrapper embeddedOutputsTextElement" uid="3A77B575" data-scroll-top="null" data-scroll-left="null" data-width="1188" data-height="18" data-hashorizontaloverflow="false" data-testid="output_38" style="max-height: 261px; width: 1218px;"><div class="textElement"> 1 2 3 4 5</div></div></div></div><div class="inlineWrapper outputs"><div class = 'S5'><span style="white-space: pre;"><span>disp(out_weight);</span></span></div><div class = 'S3'><div class="inlineElement eoOutputWrapper embeddedOutputsTextElement" uid="30003BBE" data-scroll-top="null" data-scroll-left="null" data-width="1188" data-height="437" data-hashorizontaloverflow="false" data-testid="output_39" style="max-height: 448px; width: 1218px;"><div class="textElement"> 1 ~ 3번 열
0.245885478956445 0.322110404440794 0.318524450164241
0 0 0
0.245382299188534 0 0
0.256094509453133 0.343865208632611 0.346968271223715
0.252637712401888 0.334024386926595 0.334507278612044
4 ~ 6번 열
0.261154873772821 0.310853617665045 0.308465072554650
0 0 0
0.166986883237902 0 0
0.291497846326962 0.353159632502212 0.354744087460624
0.280360396662314 0.335986749832743 0.336790839984726
7 ~ 9번 열
0.254467355389486 0.242976318106568 0.238440845782640
0 0 0
0.167137097825062 0.192496730621572 0.197170482242763
0.297011443074925 0.290255291181525 0.290678314921631
0.281384103710528 0.274271660090335 0.273710357052966
10 ~ 12번 열
0.234903319204833 0.232976367070724 0.228773877342686
0 0 0
0.198919412346919 0.199304727373134 0.198321628913216
0.291721769681798 0.294810648173794 0.298592118670037
0.274455498766450 0.272908257382348 0.274312375074061</div></div></div></div></div><div class = 'S10'><span></span></div><div class = 'S11'><span></span></div><h2 class = 'S4'><span>Channel sum</span></h2><div class="CodeBlock"><div class="inlineWrapper"><div class = 'S0'><span style="white-space: pre;"><span>out_x = zeros(1,nsample);</span></span></div></div><div class="inlineWrapper"><div class = 'S1'></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span style="color: rgb(34, 139, 34);">% figure;</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span style="color: rgb(0, 0, 255);">for </span><span>t = 1:nframe</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> ref_st = (t-1) * 4000 + 1;</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> ref_ed = min(ref_st + 8000 - 1, nsample);</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> </span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> </span><span style="color: rgb(0, 0, 255);">for </span><span>m = 1:nmic </span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> </span><span style="color: rgb(0, 0, 255);">if </span><span>m == ref_mic</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> st = ref_st;</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> ed = ref_ed;</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> </span><span style="color: rgb(0, 0, 255);">else</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> p = mic2refpair(m);</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> st = max(1,ref_st + besttdoa(p,t));</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> ed = min(nsample, ref_ed + besttdoa(p,t));</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> </span><span style="color: rgb(0, 0, 255);">end</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> </span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> triwin = triang(8000)';</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span style="color: rgb(34, 139, 34);">% if t == 1</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span style="color: rgb(34, 139, 34);">% triwin(1:4000) = 1;</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span style="color: rgb(34, 139, 34);">% end</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> </span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> diff = 0;</span></span></div></div><div class="inlineWrapper"><div class = 'S1'></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> </span><span style="color: rgb(0, 0, 255);">if </span><span>(ref_ed - ref_st) ~= (ed - st) </span><span style="color: rgb(34, 139, 34);">% if buf is small (always)</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> diff = ref_ed - ed;</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> </span><span style="color: rgb(0, 0, 255);">end</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> out_x(ref_st+diff:ref_ed)</span><span style="color: rgb(0, 0, 255);">...</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> = out_x(ref_st+diff:ref_ed)</span><span style="color: rgb(0, 0, 255);">...</span><span style="color: rgb(34, 139, 34);"> </span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> + (squeeze(x(m,st:ed))</span><span style="color: rgb(0, 0, 255);">...</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> * out_weight(m,t)</span><span style="color: rgb(0, 0, 255);">...</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> .* triwin(1:min(8000,ed-st+1))</span><span style="color: rgb(0, 0, 255);">...</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> * overall_weight);</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> </span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> </span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> </span><span style="color: rgb(34, 139, 34);">%.* triwin(min(8000,min_ed-ref_st+1))...</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> </span><span style="color: rgb(34, 139, 34);">%* out_weight(m,t));</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span style="color: rgb(34, 139, 34);">% plot(out_x);</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> </span><span style="color: rgb(0, 0, 255);">end</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span style="color: rgb(0, 0, 255);">end</span></span></div></div><div class="inlineWrapper"><div class = 'S1'></div></div><div class="inlineWrapper"><div class = 'S1'></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span style="color: rgb(0, 0, 255);">while </span><span>ref_ed < nsample </span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> ref_st = ref_st + 4000;</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> ref_ed = min(ref_st + 8000 - 1, nsample);</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> </span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> </span><span style="color: rgb(0, 0, 255);">for </span><span>m = 1:nmic</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> </span><span style="color: rgb(0, 0, 255);">if </span><span>m == ref_mic</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> st = ref_st;</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> ed = ref_ed;</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> </span><span style="color: rgb(0, 0, 255);">else</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> p = mic2refpair(m);</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> st = max(1,ref_st + besttdoa(p,t));</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> ed = min(nsample, ref_ed + besttdoa(p,t));</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> </span><span style="color: rgb(0, 0, 255);">end</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> </span><span style="color: rgb(0, 0, 255);">if </span><span>st > ed</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> </span><span style="color: rgb(0, 0, 255);">continue</span><span>;</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> </span><span style="color: rgb(0, 0, 255);">end</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> buf = squeeze(x(m,st:ed));</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> diff = (ref_ed - ref_st) - (ed-st);</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> </span><span style="color: rgb(0, 0, 255);">if </span><span>diff > 0</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> </span><span class="warning_squiggle_rte">buf</span><span> = [buf, zeros(1,diff)];</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> </span><span style="color: rgb(0, 0, 255);">else</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> buf = buf(1:end-diff);</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> </span><span style="color: rgb(0, 0, 255);">end</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> </span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> triwin = triang(8000)';</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> </span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> out_x(ref_st:ref_ed)</span><span style="color: rgb(0, 0, 255);">...</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> = out_x(ref_st:ref_ed)</span><span style="color: rgb(0, 0, 255);">...</span><span style="color: rgb(34, 139, 34);"> </span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> + (buf</span><span style="color: rgb(0, 0, 255);">...</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> * out_weight(m,t)</span><span style="color: rgb(0, 0, 255);">...</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> .* triwin(1:min(8000,size(buf,2)))</span><span style="color: rgb(0, 0, 255);">...</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> * overall_weight);</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> </span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> </span><span style="color: rgb(0, 0, 255);">end</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span style="color: rgb(0, 0, 255);">end</span></span></div></div><div class="inlineWrapper"><div class = 'S1'></div></div><div class="inlineWrapper"><div class = 'S1'></div></div><div class="inlineWrapper"><div class = 'S1'></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span>audiowrite(outname,out_x,16000);</span></span></div></div><div class="inlineWrapper"><div class = 'S1'></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span>out_x = audioread(outname);</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span>orig_out_x = audioread(orig_outname);</span></span></div></div><div class="inlineWrapper"><div class = 'S1'></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span>subplot(4,1,1); plot(orig_out_x); title(</span><span style="color: rgb(160, 32, 240);">'original out x'</span><span>);</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span>subplot(4,1,2); plot(orig_out_x); title(</span><span style="color: rgb(160, 32, 240);">'my out x'</span><span>);</span></span></div></div><div class="inlineWrapper outputs"><div class = 'S2'><span style="white-space: pre;"><span>subplot(4,1,3); plot(out_x-orig_out_x); title(</span><span style="color: rgb(160, 32, 240);">'original - my'</span><span>);</span></span></div><div class = 'S3'><div class="inlineElement eoOutputWrapper embeddedOutputsFigure" uid="9A6DA2CA" data-scroll-top="null" data-scroll-left="null" data-testid="output_40" style="width: 1218px;"><div class="figureElement"><div class="figureContainingNode" style="width: 560px; max-width: 100%; display: inline-block;"><div class="GraphicsView" data-dojo-attach-point="graphicsViewNode,backgroundColorNode" id="uniqName_197_96" widgetid="uniqName_197_96" style="width: 100%; height: auto;"><img class="ImageView figureImage" data-dojo-attach-point="imageViewNode" draggable="false" ondragstart="return false;" id="uniqName_197_98" widgetid="uniqName_197_98" src="" style="width: 100%; height: auto;"></div></div></div></div></div></div><div class="inlineWrapper"><div class = 'S6'></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span>nshift = nwin / 2; </span><span style="color: rgb(34, 139, 34);">% 4000</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span>ed = (nframe-1)*nshift;</span></span></div></div><div class="inlineWrapper outputs"><div class = 'S2'><span style="white-space: pre;"><span>disp(mean((out_x-orig_out_x).^2));</span></span></div><div class = 'S3'><div class="inlineElement eoOutputWrapper embeddedOutputsTextElement" uid="669583B5" data-scroll-top="null" data-scroll-left="null" data-width="1188" data-height="18" data-hashorizontaloverflow="false" data-testid="output_41" style="max-height: 261px; width: 1218px;"><div class="textElement"> 2.165924584430555e-06</div></div></div></div></div><div class="CodeBlock"><div class="inlineWrapper"><div class = 'S0'><span style="white-space: pre;"><span style="color: rgb(0, 0, 255);">function </span><span>[table, l] = fill_all_comb(ipair, npair, ibest, nbest, tmp_row, table, l)</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> tmp_row(ipair) = ibest;</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> </span><span style="color: rgb(34, 139, 34);">%fprintf('ipair: %d ibest: %d l: %d\n', ipair, ibest, l);</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> </span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> </span><span style="color: rgb(0, 0, 255);">if </span><span>ipair == npair </span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> </span><span style="color: rgb(0, 0, 255);">for </span><span>j = 1:npair</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> table(l, j) = tmp_row(j);</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> </span><span style="color: rgb(0, 0, 255);">end</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> l = l + 1;</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> </span><span style="color: rgb(0, 0, 255);">else</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> </span><span style="color: rgb(0, 0, 255);">for </span><span>ibest = 1:nbest</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> [table, l] = fill_all_comb(ipair + 1, npair, ibest, nbest, tmp_row, table, l);</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> </span><span style="color: rgb(0, 0, 255);">end</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> </span><span style="color: rgb(0, 0, 255);">end</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span style="color: rgb(0, 0, 255);">end</span></span></div></div><div class="inlineWrapper"><div class = 'S1'></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span style="color: rgb(0, 0, 255);">function </span><span>[max_val, idx] = maxk(list, k, nmask)</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> candi_list = zeros(length(list(:)),1);</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> </span><span style="color: rgb(0, 0, 255);">for </span><span>i = 2:(length(list(:))-1)</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> </span><span style="color: rgb(0, 0, 255);">if </span><span>list(i-1) < list(i) && list(i+1) < list(i)</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> candi_list(i) = list(i);</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span style="color: rgb(34, 139, 34);">% list(i-1) = -9999;</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span style="color: rgb(34, 139, 34);">% list(i+1) = -9999;</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> </span><span style="color: rgb(0, 0, 255);">end</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> </span><span style="color: rgb(0, 0, 255);">end</span></span></div></div><div class="inlineWrapper"><div class = 'S1'></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> max_val = zeros(k, 1);</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> idx = zeros(k,1);</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> </span><span style="color: rgb(0, 0, 255);">for </span><span>i = 1:k</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> [max_val(i), idx(i)] = max(candi_list);</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> st = max(idx(i)-nmask+1, 1);</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> ed = min(length(candi_list(:)), idx(i)+nmask-1);</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> candi_list(st:ed) = 0;</span></span></div></div><div class="inlineWrapper"><div class = 'S1'><span style="white-space: pre;"><span> </span><span style="color: rgb(0, 0, 255);">end</span></span></div></div><div class="inlineWrapper"><div class = 'S8'><span style="white-space: pre;"><span style="color: rgb(0, 0, 255);">end</span></span></div></div></div></div><br>
<!--
##### SOURCE BEGIN #####
clear;
close all;
clc;
format long;
dirname = 'sample11/';
outname = [dirname, 'enhan.wav'];
orig_outname = [dirname, 'orig_enhan.wav'];
paths = csvimport([dirname, 'wav.list'],'columns', {'path'});
[x1, sr] = audioread(paths{1});
[x2, sr] = audioread(paths{2});
[x3, sr] = audioread(paths{3});
[x4, sr] = audioread(paths{4});
[x5, sr] = audioread(paths{5});
x = [x1, x2, x3, x4, x5];
x = x';
nsample = size(x,2);
nmic = 5;
%npair = nmic - 1;
npair = nmic;
figure;plot(x(1,:));
%% make hamming window
%%
nwin = 16000; % 1 sec
% hamm_val = 0.54 - 0.46*cos(6.283185307*i/(window-1));
win = zeros(1,nwin);
for i = 1:nwin
win(i) = 0.54 - 0.46 * cos(6.283185307*(i-1)/(nwin-1));
end
figure; plot(win);
disp(win(1:10));
%% testing calculating xcorr
%%
npiece = 200;
nfft = 16384*2;
nbest = 2;
nmask = 5;
scroll = floor(nsample / (npiece+2));
stft1 = fft([x(1,scroll+1:(scroll+nwin)) .* win, zeros(1,nfft-nwin)]);
stft2 = fft([x(2,scroll+1:(scroll+nwin)) .* win, zeros(1,nfft-nwin)]);
numerator = stft1 .* conj(stft2);
ccorr = real(ifft(numerator ./ (abs(numerator))));
ccorr = [ccorr(end-479:end), ccorr(1:480)];
[best_ccorr, best_idx] = maxk(ccorr, nbest, nmask);
disp(scroll);
plot(ccorr);
disp(best_ccorr);
%% calculate avg_ccorr
%%
avg_ccorr = zeros(nmic, nmic);
for i = 1:npiece
st = i * scroll + 1;
ed = st + 16000 - 1;
if st + 16384 >= nsample
break;
end
for m1 = 1:(nmic-1)
avg_ccorr(m1, m1) = 0;
for m2 = (m1+1):nmic
stft1 = fft([x(m1,st:ed) .* win, zeros(1,nfft-nwin)]);
stft2 = fft([x(m2,st:ed) .* win, zeros(1,nfft-nwin)]);
numerator = stft1 .* conj(stft2);
ccorr = real(ifft(numerator ./ (abs(numerator))));
ccorr = [ccorr(end-479:end), ccorr(1:480)];
maxk_val = sum(maxk(ccorr, nbest, nmask));
avg_ccorr(m1, m2) = avg_ccorr(m1, m2) + (maxk_val);
avg_ccorr(m2, m1) = avg_ccorr(m1, m2);
end
end
end
avg_ccorr = avg_ccorr / (nbest * npiece);
disp(avg_ccorr);
fprintf('%.8f\n', sum(avg_ccorr/nmic));
disp(sum(avg_ccorr,1));
disp(sum(avg_ccorr,1)/nmic);
[dummy, ref_mic] = max(sum(avg_ccorr));
disp(ref_mic);
%% calculating scaling factor
%%
nsegment = 10;
max_val = zeros(nmic, 1);
if size(x,2) <= 160000 % 10 seconds
for m = 1:nmic
max_val(m) = max(abs(x(m,:)));
end
else
if size(x,2) < 1600000 % 100 seconds
nsegment = floor(size(x,2) / 160000);
end
scroll = floor(size(x,2) / nsegment);
max_val_candidate = zeros(nmic, nsegment);
for s = 0:(nsegment-1)
st = s * scroll + 1;
ed = st + 160000 - 1;
for m = 1:nmic
max_val_candidate(m,s+1) = max(abs(x(m,st:ed)));
end
end
for m = 1:nmic
sorted = sort(max_val_candidate(m,:), 'ascend');
if length(sorted(:)) > 2
max_val(m) = sorted(end/2 + 1);
else
max_val(m) = sorted;
end
end
end
overall_weight = (0.3 * nmic) / sum(max_val);
disp(max_val');
disp(overall_weight);
%% compute total number of delays
%%
% int totalNumDelays
% % = (int)((m_frames - (*m_config).windowFrames - m_biggestSkew - m_UEMGap)/((*m_config).
% rate*m_sampleRateInMs));
% sr_in_ms = 16000 / 1000; % 16
% too complicated. I should do hard coding
nframe = floor(( nsample - 8000 ) / (4000));
disp(nframe);
%% recreating hamming window
%%
nwin = 8000; % 0.5 sec
nfft = 16384;
win = zeros(1,nwin);
for i = 1:nwin
win(i) = 0.54 - 0.46 * cos(6.283185307*(i-1)/(nwin-1));
end
figure; plot(win);
% Marginst for delays in frames: 480 in ms: 30
disp(16000 * 30 / 1000);
%% compute TDOA
nbest = 4;
micpair = zeros(nmic, npair);
gcc_nbest = zeros(npair, nframe, nbest);
tdoa_nbest = zeros(npair, nframe, nbest);
lrfilp_gcc = zeros(npair, nframe, nfft);
for m = 1:nmic
p = 1; % pair idx
for i = 1:nmic
micpair(m,p) = i;
p = p + 1;
end
end
for t = 1:(nframe)
st = (t-1) * 4000 + 1;
ed = st + nwin - 1;
for p = 1:npair
m = micpair(ref_mic,p);
stft_ref = fft([x(ref_mic,st:ed) .* win, zeros(1,nfft-nwin)]);
stft_m = fft([x(m,st:ed) .* win, zeros(1,nfft-nwin)]);
numerator = stft_m .* conj(stft_ref);
gcc = real(ifft(numerator ./ (eps+abs(numerator))));
gcc = [gcc(end-479:end), gcc(1:480)];
[gcck, tdoak] = maxk(gcc, nbest, nmask);
gcc_nbest(p,t,:) = gcck;
tdoa_nbest(p,t,:) = tdoak;
tdoa_nbest(p,t,:) = tdoa_nbest(p,t,:) - (481); % index shifting
end
end
disp(squeeze(gcc_nbest(:,:,1)));
disp(squeeze(gcc_nbest(:,:,2)));
disp(squeeze(tdoa_nbest(:,:,1)));
disp(squeeze(tdoa_nbest(:,:,2)));
%% find noise threshold
%%
th_idx = floor((0.1 * nframe)) + 1;
sorted = sort(sum(gcc_nbest(:,:,1),1) - sum(gcc_nbest(ref_mic,:,1),1), 'ascend');
threshold = sorted(th_idx)/(nmic-1);
% Computing the optimum delays
disp(threshold);
%% noise filtering
%%
noise_filter = zeros(npair, nframe);
for p = 1:npair
for t = 1:nframe
if gcc_nbest(p,t,1) < threshold
noise_filter(p,t) = 1;
if t == 1 % it's silence
gcc_nbest(p,t,:) = 0; % masking with discouraging values
gcc_nbest(p,t,1) = 1; % only one path
tdoa_nbest(p,t,:) = 480; % masking with discouraging values
tdoa_nbest(p,t,1) = 0;
else
tdoa_nbest(p,t,:) = tdoa_nbest(p,t-1,:);
end
end
if p == ref_mic
gcc_nbest(p,t,:) = 0; % masking with discouraging values
gcc_nbest(p,t,1) = 1; % only one path
tdoa_nbest(p,t,:) = 0;
end
end
end
disp(gcc_nbest(:,:,1));
disp(tdoa_nbest(:,:,1));
disp(gcc_nbest(:,:,2));
disp(tdoa_nbest(:,:,2));
%% single channel viterbi - emission, trans prob
%%
emission1 = zeros(npair, nframe, nbest);
diff1 = zeros(npair, nframe, nbest, nbest); % do not using 1st idx
transition1 = zeros(npair, nframe, nbest, nbest); % do not using 1st idx
for p = 1:npair
for t = 1:nframe
for n = 1:nbest
if gcc_nbest(p,t,n) <= 0
emission1(p,t,n) = -1000;
else
emission1(p,t,n) = log10(gcc_nbest(p,t,n) / sum(gcc_nbest(p,t,:)));
end
end
end
end
for p = 1:npair
for t = 2:nframe
for n = 1:nbest
for nprev = 1:nbest
diff1(p,t,n,nprev) = abs(tdoa_nbest(p,t,n) - tdoa_nbest(p,t-1,nprev));
end
end
end
end
for p = 1:npair
for t = 2:nframe
for n = 1:nbest
for nprev = 1:nbest
% there is a computational bug.
% disp((2+maxdiff1(p,t,n)));
% disp(diff1(p,t,n,nprev));
% disp(maxdiff1(p,t,n));
% disp(log10(481/482));
% disp(1 + maxdiff1(p,t,n) - diff1(p,t,n,nprev));
% disp((2+maxdiff1(p,t,n)));
maxdiff1 = max(diff1(p,t,:));
nume = (1 + maxdiff1 - diff1(p,t,n,nprev));
deno = (2 + maxdiff1);
transition1(p,t,n,nprev) = log(nume / deno) / log(10);
end
end
end
end
%% single channel viterbi - searching
%%
nbest2 = 2;
score1 = zeros(npair, nframe, nbest, nbest); % tmp variable
score1_table = zeros(npair, nframe, nbest);
back1_table = zeros(npair, nframe, nbest);
bestpath1 = zeros(npair, nframe, nbest2); % state idx stored.
% original beamformit
dC = ones(npair, nframe, nbest) * -1000;
tC = ones(npair, nframe, nbest);
viterbi_score = zeros(npair, 1);
R = ones(npair, nframe); % best prev state
F = ones(npair, nframe);
forwardTrans = zeros(npair, nframe, nbest);
selfLoopTrans = zeros(npair, nframe, nbest);
bestpath1(:,:,1) = 1;
bestpath1(:,:,2) = 2;
for p = 1:npair
for n = 1:nbest
score1(p,1,n,:) = emission1(p,1,n); % broadcasting
score1_table(p,1,n) = emission1(p,1,n);
end
end
for p = 1:npair
for n = 1:nbest
dC(p,1,n) = emission1(p,1,n);
end
end
for p = 1:npair
for t = 2:nframe
for n = 1:nbest
best_n_prev = R(p,t-1);
back1_table(p,t,1) = best_n_prev;
forwardTrans(p,t,n) = dC(p,t-1,best_n_prev) + 25 * transition1(p,t,n,best_n_prev);
selfLoopTrans(p,t,n) = dC(p,t-1,n) + 25 * transition1(p,t,n,n);
if selfLoopTrans(p,t,n) >= forwardTrans(p,t,n)
dC(p,t,n) = selfLoopTrans(p,t,n) + emission1(p,t,n);
tC(p,t,n) = tC(p,t-1,n);
else
dC(p,t,n) = forwardTrans(p,t,n) + emission1(p,t,n);
tC(p,t,n) = t;
end
end
[dummy, R(p,t)] = max(dC(p,t,:));
F(p,t) = tC(p,t,R(p,t));
end
st = F(p,end);
bestpath1(p,st:end,1) = R(p,end);
while st > 2
ed = st - 1;
st = F(p,ed);
bestpath1(p,st:ed,1) = R(p,ed);
end
viterbi_score(p) = dC(p,end,R(p,end));
end
disp(bestpath1(:,:,1));
disp(viterbi_score');
%% single channel viterbi - 2-best path
%%
gcc_nbest_copy = gcc_nbest;
emission1_copy = emission1;
bestpath1(:,:,2) = bestpath1(:,:,1);
for p = 1:npair
for t = 1:nframe
best1 = bestpath1(p,t,1);
gcc_nbest_copy(p,t,best1) = 0;
end
end
for p = 1:npair
for t = 1:nframe
for n = 1:nbest
if gcc_nbest_copy(p,t,n) > 0
emission1_copy(p,t,n) = log10(gcc_nbest_copy(p,t,n) / sum(gcc_nbest_copy(p,t,:)));
else
emission1_copy(p,t,n) = -1000;
end
end
end
end
dC = zeros(npair, nframe, nbest);
tC = ones(npair, nframe, nbest);
viterbi_score = zeros(npair, 1);
R = ones(npair, nframe); % best prev state
F = ones(npair, nframe);
forwardTrans = zeros(npair, nframe, nbest);
selfLoopTrans = zeros(npair, nframe, nbest);
for p = 1:npair
for n = 1:nbest
dC(p,1,n) = emission1_copy(p,1,n);
end
end
for p = 1:npair
for t = 2:nframe
for n = 1:nbest
best_n_prev = R(p,t-1);
back1_table(p,t,2) = best_n_prev;
forwardTrans(p,t,n) = dC(p,t-1,best_n_prev) + 25 * transition1(p,t,n,best_n_prev);
selfLoopTrans(p,t,n) = dC(p,t-1,n) + 25 * transition1(p,t,n,n);
if selfLoopTrans(p,t,n) >= forwardTrans(p,t,n)
dC(p,t,n) = selfLoopTrans(p,t,n) + emission1_copy(p,t,n);
tC(p,t,n) = tC(p,t-1,n);
else
dC(p,t,n) = forwardTrans(p,t,n) + emission1_copy(p,t,n);
tC(p,t,n) = t;
end
end
[dummy, R(p,t)] = max(dC(p,t,:));
F(p,t) = tC(p,t,R(p,t));
end
st = F(p,end);
bestpath1(p,st:end,2) = R(p,end);
while st > 2
ed = st - 1;
st = F(p,ed);
bestpath1(p,st:ed,2) = R(p,ed);
end
viterbi_score(p) = dC(p,end,R(p,end));
end
disp(squeeze(bestpath1(1,:,:))');
disp(viterbi_score');
%% plot path
%%
% https://kr.mathworks.com/help/matlab/ref/scatter.html
figure;
emission_plot = zeros(npair, 3, nbest * nframe);
for p = 1:npair
for ibest = 1:nbest
for iframe = 1:nframe
emission_plot(p,1,(ibest-1) * nframe + iframe) = iframe;
emission_plot(p,2,(ibest-1) * nframe + iframe) = ibest;
emission_plot(p,3,(ibest-1) * nframe + iframe) = 1 + 400 * 10^(emission1(p, iframe, ibest));
end
end
end
hold on;
for p=1:npair
subplot(npair,1,p);
scatter(...
squeeze(emission_plot(p, 1,:)), ... % x range (x data for scatter)
squeeze(emission_plot(p, 2,:)), ... % y range (y data for scatter)
squeeze(emission_plot(p, 3,:)), ... % radius
'filled');
axis ij;
ylim([0 nbest+1]); % for readability
end
hold on;
max_linewidth = 1+max(max(max(max(transition1))));
for p=1:npair
subplot(npair, 1, p);
for t = 2:nframe
for n = 1:nbest
for nprev = 1:nbest
line([t-1 t], ... % x data
[nprev n], ... % y data
'LineWidth', 10^(transition1(p,t,n,nprev))*3,... % tuning
'Color','cyan');
end
end
end
end
hold on;
for p = 1:npair
subplot(npair,1,p);
for t = 2:nframe
line([t-1 t], [bestpath1(p,t-1,1) bestpath1(p,t,1)], ...
'LineWidth', 2, ...
'Color', 'red');
line([t-1 t], [bestpath1(p,t-1,2) bestpath1(p,t,2)], ...
'LineWidth', 2, ...
'Color', 'black');
end
end
%% multi channel viterbi - state define
%%
nbest2 = 2;
nstate = nbest2 ^ npair;
g = zeros(nstate, npair);
tmp_row = zeros(3,1);
l = 1;
for ibest = 1:nbest2
[g, l] = fill_all_comb(1, npair, ibest, nbest2, tmp_row, g, l);
end
disp(g);
%% multi channel viterbi - emission, trans prob
emission2 = zeros(nframe, nstate);
diff2 = zeros(nmic, nframe, nbest, nbest); % do not using 1st idx
transition2 = zeros(nframe, nstate, nstate); % do not using 1st idx
for t = 1:nframe
for l = 1:nstate
for m = 1:npair
ibest = bestpath1(m, t, g(l,m));
if gcc_nbest(m,t,ibest) > 0
emission2(t, l)...
= emission2(t, l)...
+ log10(gcc_nbest(m,t,ibest));
end
end
end
end
for t = 2:nframe
maxdiff2 = 0;
for ibest = 1:nbest
for jbest = 1:nbest
for m = 1:npair-1 % why -1?
diff2(m,t,ibest, jbest) = abs(tdoa_nbest(m,t,ibest) - tdoa_nbest(m,t-1,jbest));
if maxdiff2 < diff2(m,t,ibest, jbest)
maxdiff2 = diff2(m,t,ibest, jbest);
end
end
end
end
diff2(:,t,:,:) = log10( (1 + maxdiff2 - diff2(:,t,:,:)) / (2 + maxdiff2) );
for l = 1:nstate
for lprev = 1:nstate
for m = 1:npair-1 % why -1?
ibest = bestpath1(m, t, g(l,m));
jbest = bestpath1(m, t-1, g(lprev,m));
transition2(t,l,lprev)...
= transition2(t,l,lprev)...
+ diff2(m,t,ibest,jbest);
end
end
end
end
disp(emission2(2,end));
disp(transition2(2,:,1));
%% multi channel viterbi - searching
back2_table = zeros(nframe, nstate);
bestpath2 = ones(nframe, 1); % state idx stored.
dC = ones(nframe, nstate) * -1000;
tC = ones(nframe, nstate);
R = ones(nframe, 1); % best prev state
F = ones(nframe, 1);
forwardTrans = zeros(nframe, nstate);
selfLoopTrans = zeros(nframe, nstate);