1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255 | /*******************************************************************************
* Copyright 2017-2018 Intel Corporation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*******************************************************************************/
#include <assert.h>
#include <float.h>
#include "c_types_map.hpp"
#include "memory_tracking.hpp"
#include "mkldnn_thread.hpp"
#include "nstl.hpp"
#include "type_helpers.hpp"
#include "utils.hpp"
#include "cpu_memory.hpp"
#include "cpu_barrier.hpp"
#include "jit_uni_1x1_conv_utils.hpp"
#include "jit_avx512_common_1x1_conv_kernel.hpp"
#define GET_OFF(field) offsetof(jit_1x1_conv_call_s, field)
namespace mkldnn {
namespace impl {
namespace cpu {
using namespace mkldnn::impl::format_tag;
using namespace mkldnn::impl::prop_kind;
using namespace mkldnn::impl::utils;
using namespace Xbyak;
void jit_avx512_common_1x1_conv_kernel::bcast_loop(int load_loop_blk)
{
mov(aux1_reg_bcast_data, reg_bcast_data);
mov(aux_reg_bcast_data, reg_bcast_data);
mov(aux_reg_output_data, reg_output_data);
mov(bcast_loop_iter, EVEX_compress_addr(rsp, bcast_loop_work_offt));
if (jcp.ver == ver_4fma)
{
Label bcast_loop;
Label bcast_loop_wraparound;
Label bcast_loop_out;
Label bcast_loop_ur_full;
cmp(bcast_loop_iter, jcp.ur);
jle(bcast_loop_wraparound, T_NEAR);
L(bcast_loop); {
assert(jcp.bcast_block % jcp.ur == 0);
int num_substeps = jcp.bcast_block / jcp.ur;
assert(num_substeps > 0 && num_substeps < 10);
for (int i = 0; i < num_substeps; i++) {
reduce_loop(load_loop_blk, jcp.ur, i, false);
if (i < num_substeps - 1) {
add(aux1_reg_bcast_data, jcp.bcast_loop_bcast_substep);
add(aux_reg_output_data, jcp.bcast_loop_output_substep);
}
else {
add(aux1_reg_bcast_data, jcp.bcast_loop_bcast_step
- (num_substeps - 1) * jcp.bcast_loop_bcast_substep);
add(aux_reg_output_data, jcp.bcast_loop_output_step
- (num_substeps - 1) * jcp.bcast_loop_output_substep);
}
}
sub(bcast_loop_iter, jcp.bcast_block);
cmp(bcast_loop_iter, jcp.bcast_block);
jg(bcast_loop, T_NEAR);
}
L(bcast_loop_wraparound);
if (jcp.ur_tail) {
je(bcast_loop_ur_full, T_NEAR);
reduce_loop(load_loop_blk, jcp.ur_tail, 0, true);
jmp(bcast_loop_out, T_NEAR);
}
L(bcast_loop_ur_full);
reduce_loop(load_loop_blk, jcp.ur, 0, true);
L(bcast_loop_out);
}
else
{
Label bcast_loop;
Label bcast_loop_tail;
cmp(bcast_loop_iter, jcp.ur);
jl(bcast_loop_tail, T_NEAR);
L(bcast_loop); {
assert(jcp.bcast_block % jcp.ur == 0);
int num_substeps = jcp.bcast_block / jcp.ur;
assert(num_substeps > 0 && num_substeps < 10);
for (int i = 0; i < num_substeps; i++) {
reduce_loop(load_loop_blk, jcp.ur, i, false);
if (i < num_substeps - 1) {
add(aux1_reg_bcast_data, jcp.bcast_loop_bcast_substep);
add(aux_reg_output_data, jcp.bcast_loop_output_substep);
}
else {
add(aux1_reg_bcast_data, jcp.bcast_loop_bcast_step
- (num_substeps - 1) * jcp.bcast_loop_bcast_substep);
add(aux_reg_output_data, jcp.bcast_loop_output_step
- (num_substeps - 1) * jcp.bcast_loop_output_substep);
}
}
sub(bcast_loop_iter, jcp.bcast_block);
cmp(bcast_loop_iter, jcp.bcast_block);
jge(bcast_loop, T_NEAR);
}
L(bcast_loop_tail);
if (jcp.ur_tail) {
Label bcast_loop_tail_out;
cmp(bcast_loop_iter, 0);
jz(bcast_loop_tail_out, T_NEAR);
reduce_loop(load_loop_blk, jcp.ur_tail, 0, true);
L(bcast_loop_tail_out);
}
}
}
void jit_avx512_common_1x1_conv_kernel::reduce_loop(int load_loop_blk,
int ur, int substep, bool wraparound)
{
auto vreg_load = [=](int i_load, int i_fma) {
return Zmm(utils::rnd_up(ur * load_loop_blk, jcp.fma_step)
+ jcp.fma_step * i_load + i_fma);
};
auto vreg_accum = [=](int i_load, int i_ur) {
return Zmm(i_ur * load_loop_blk + i_load);
};
auto bias_ptr = [=](int i_load) {
return EVEX_compress_addr(reg_bias_data,
jcp.typesize_out * jcp.oc_block * i_load);
};
auto bcast_ptr = [=](int i_reduce, int i_ur, bool bcast) {
assert(i_ur < jcp.ur);
assert(i_reduce <= jcp.reduce_loop_unroll);
int offt;
if (one_of(jcp.prop_kind, forward_training, forward_inference,
backward_data)) {
assert(jcp.reduce_loop_unroll == jcp.reduce_block);
offt = (i_reduce == jcp.reduce_loop_unroll)
? (jcp.bcast_dim + i_ur) * jcp.reduce_loop_unroll
: i_ur * jcp.reduce_loop_unroll + i_reduce;
} else {
if (jcp.transpose_src) {
const int reduce_group = i_reduce / 4;
const int reduce_shift = i_reduce % 4;
offt = 4 * (reduce_group * jcp.ic_block + i_ur) + reduce_shift;
}
else
offt = i_reduce * jcp.ic_block + i_ur;
}
return EVEX_compress_addr(aux_reg_bcast_data, jcp.typesize_in * offt,
bcast);
};
auto load_ptr = [=](int i_reduce, int i_load) {
int offt;
int u0 = i_reduce % jcp.reduce_loop_unroll;
int u1 = i_reduce / jcp.reduce_loop_unroll;
offt = (i_load * jcp.reduce_dim + u0) * jcp.load_block;
return EVEX_compress_addr(aux_reg_load_data,
u1 * jcp.reduce_loop_load_step
+ jcp.typesize_in * offt);
};
auto output_ptr = [=](int i_load, int i_ur) {
if (one_of(jcp.prop_kind, forward_training, forward_inference,
backward_data))
return EVEX_compress_addr(aux_reg_output_data,
(i_load * jcp.bcast_dim + i_ur) * jcp.load_block
* jcp.typesize_out);
else
return ptr[aux_reg_output_data +
(i_load
? reg_output_stride * i_load
: 0) // TODO: Xbyak should allow 0 scale
+ jcp.typesize_out * jcp.load_block * i_ur];
};
auto init = [=]() {
Label init_done;
Label init_zero;
if (jcp.with_sum) {
for (int i_load = 0; i_load < load_loop_blk; ++i_load) {
for (int i_ur = 0; i_ur < ur; ++i_ur) {
mic_prefetcht1(output_ptr(i_load, i_ur));
}
}
}
if (jcp.with_bias
&& one_of(jcp.prop_kind, forward_training, forward_inference)) {
test(reg_reduce_pos_flag, FLAG_REDUCE_FIRST);
jz(init_zero, T_NEAR);
for (int i_load = 0; i_load < load_loop_blk; i_load++)
for (int i_ur = 0; i_ur < ur; ++i_ur)
vmovups(vreg_accum(i_load, i_ur), bias_ptr(i_load));
jmp(init_done, T_NEAR);
}
L(init_zero);
for (int i_load = 0; i_load < load_loop_blk; ++i_load)
for (int i_ur = 0; i_ur < ur; ++i_ur) {
auto r = vreg_accum(i_load, i_ur);
vpxord(r, r, r);
}
L(init_done);
};
auto store = [=]() {
Label store_noadd;
if (!jcp.with_sum) {
test(reg_reduce_pos_flag, FLAG_REDUCE_FIRST);
jnz(store_noadd, T_NEAR);
}
for (int i_ur = 0; i_ur < ur; ++i_ur)
for (int i_load = 0; i_load < load_loop_blk; ++i_load) {
auto r = vreg_accum(i_load, i_ur);
vaddps(r, r, output_ptr(i_load, i_ur));
}
L(store_noadd);
if (jcp.with_eltwise) {
Label store_noeltwise;
test(reg_reduce_pos_flag, FLAG_REDUCE_LAST);
jz(store_noeltwise, T_NEAR);
eltwise_injector_->compute_vector_range(0, ur * load_loop_blk);
L(store_noeltwise);
}
auto store_output = [=](bool output_is_aligned) {
for (int i_ur = 0; i_ur < ur; ++i_ur)
for (int i_load = 0; i_load < load_loop_blk; ++i_load)
if (output_is_aligned && jcp.use_vmovntps)
vmovntps(output_ptr(i_load, i_ur),
vreg_accum(i_load, i_ur));
else
vmovups(output_ptr(i_load, i_ur),
vreg_accum(i_load, i_ur));
};
Label unaligned_store, end_store;
test(aux_reg_output_data, cpu_isa_traits<avx512_common>::vlen - 1);
jnz(unaligned_store, T_NEAR);
store_output(true);
jmp(end_store, T_NEAR);
L(unaligned_store); {
store_output(false);
}
L(end_store);
};
auto prefetch_callback = [=](int ur, int i_reduce, int i_ur, int i_load,
bool last_block, bool wraparound, int reduce_step)
{
bool pf_ker_l1 = true;<--- Assignment 'pf_ker_l1=true', assigned value is 1
bool pf_ker_l2 = wraparound;<--- 'pf_ker_l2' is assigned value 'wraparound' here.
int n_ops = (jcp.reduce_loop_unroll / reduce_step) * ur * load_loop_blk;
int i_op = (i_reduce / reduce_step) * ur * load_loop_blk +
i_ur * load_loop_blk + i_load;
int n_pf_ker_l1 = pf_ker_l1 ? jcp.reduce_block : 0;<--- Condition 'pf_ker_l1' is always true
int n_pf_ker_l2 = pf_ker_l2 && wraparound ? jcp.reduce_block : 0;<--- Same expression on both sides of '&&' because 'pf_ker_l2' and 'wraparound' represent the same value. [+]Finding the same expression on both sides of an operator is suspicious and might indicate a cut and paste or logic error. Please examine this code carefully to determine if it is correct.
int n_pf_out_l1 = jcp.use_vmovntps ? 0 : ur;
int pf_inp_ops = n_ops / 2; // # of operations during which to pf input
int pf_inp_trigger;
if (jcp.prop_kind == backward_weights)
pf_inp_trigger = nstl::max(1, pf_inp_ops / jcp.reduce_block);
else
pf_inp_trigger = nstl::max(1, pf_inp_ops / ur);
int n_other_pf =
load_loop_blk * (n_pf_ker_l1 + n_pf_ker_l2 + n_pf_out_l1);
int n_other_pf_ops = n_ops - pf_inp_ops;
int other_pf_trigger
= n_other_pf ? nstl::max(1, n_other_pf_ops / n_other_pf) : 0;
if (i_op < pf_inp_ops && i_op % pf_inp_trigger == 0) {
// input prefetches have the highest priority b/c the
// first iteration of the kernel block touches all the
// cache lines
int i_pf = i_op / pf_inp_trigger;
auto pf_reg = wraparound && last_block
? reg_bcast_data
: (last_block ? aux1_reg_bcast_data
: aux_reg_bcast_data);
int offt = i_pf;
if (jcp.prop_kind == backward_weights) {
offt += wraparound && last_block
? 0
: (last_block ? jcp.is : jcp.reduce_block);
offt *= jcp.bcast_block;
} else {
offt += wraparound && last_block
? 0
: (last_block ? jcp.ur : jcp.bcast_dim);
offt *= jcp.reduce_block;
}
mic_prefetcht0(ptr[pf_reg + offt * jcp.typesize_in]);
} else if (i_op >= pf_inp_ops && n_other_pf) {
// remaining prefetches are spread among the rest of the
// operations; prefetches for output take priority
// TODO: spread L2 prefetches among L1 prefetches
i_op -= pf_inp_ops;
if (i_op % other_pf_trigger == 0) {
int i_pf = i_op / (load_loop_blk * other_pf_trigger);
if (i_pf < n_pf_ker_l2) {
int offt = (i_pf + (i_load + 1) * jcp.reduce_dim)
* jcp.load_block;
mic_prefetcht1(ptr[aux_reg_load_data
+ offt * jcp.typesize_in]);
} else if (i_pf < n_pf_ker_l2 + n_pf_ker_l1) {
i_pf -= n_pf_ker_l2;
auto pf_reg = last_block ? reg_load_data
: aux_reg_load_data;
int offt = (i_pf + i_load * jcp.reduce_dim
+ (last_block
? (wraparound ? jcp.reduce_dim : 0)
: jcp.reduce_block))
* jcp.load_block;
mic_prefetcht0(ptr[pf_reg + offt * jcp.typesize_in]);
} else if (i_pf < n_pf_ker_l1 + n_pf_ker_l2 + n_pf_out_l1) {
i_pf -= n_pf_ker_l1 + n_pf_ker_l2;
int offt = i_pf * jcp.load_block;
mic_prefetcht0(ptr[aux_reg_output_data
+ offt * jcp.typesize_out]);
}
}
}
};
auto fma_block = [=](bool last_block) {
assert(jcp.reduce_loop_unroll % jcp.fma_step == 0);
int reduce_step = jcp.fma_step;
for (int i_reduce = 0; i_reduce < jcp.reduce_loop_unroll;
i_reduce += reduce_step) {
for (int i_load = 0; i_load < load_loop_blk; ++i_load) {
// if transposed input data used and if spatial size is
// not divided by transpose step (4) then for last reduce step
// we should load only needed load_registers data
// and clear remaining
if (jcp.transpose_src && jcp.is % jcp.fma_step && last_block
&& i_reduce == jcp.reduce_loop_unroll - reduce_step) {
Label load_all;
Label load_finish;
test(reg_reduce_pos_flag, FLAG_SP_LAST);
jz(load_all, T_NEAR);
const int n_loads = jcp.is % jcp.fma_step;
for (int i_fma = 0; i_fma < jcp.fma_step; i_fma++) {
if (i_fma < n_loads)
vmovups(vreg_load(i_load, i_fma),
load_ptr(i_reduce + i_fma, i_load));
else
vpxord(vreg_load(i_load, i_fma),
vreg_load(i_load, i_fma),
vreg_load(i_load, i_fma));
}
jmp(load_finish);
L(load_all);
for (int i_fma = 0; i_fma < jcp.fma_step; i_fma++) {
vmovups(vreg_load(i_load, i_fma),
load_ptr(i_reduce + i_fma, i_load));
}
L(load_finish);
} else {
for (int i_fma = 0; i_fma < jcp.fma_step; i_fma++) {
vmovups(vreg_load(i_load, i_fma),
load_ptr(i_reduce + i_fma, i_load));
}
}
}
for (int i_ur = 0; i_ur < ur; ++i_ur) {
if (jcp.ver == ver_avx512_core && jcp.expl_bcast
&& load_loop_blk > 1)
vbroadcastss(vreg_bcast, bcast_ptr(i_reduce, i_ur, false));
for (int i_load = 0; i_load < load_loop_blk; ++i_load) {
if (jcp.ver == ver_4fma)
v4fmaddps(vreg_accum(i_load, i_ur),
vreg_load(i_load, 0),
bcast_ptr(i_reduce, i_ur, false));
else if (jcp.ver == ver_avx512_core && jcp.expl_bcast
&& load_loop_blk > 1)
vfmadd231ps(vreg_accum(i_load, i_ur),
vreg_load(i_load, 0), vreg_bcast);
else
vfmadd231ps(vreg_accum(i_load, i_ur),
vreg_load(i_load, 0),
bcast_ptr(i_reduce, i_ur, true));
prefetch_callback(ur, i_reduce, i_ur, i_load,
last_block, wraparound, reduce_step);
}
}
}
};
Label reduce_loop;
Label reduce_loop_tail;
mov(aux_reg_load_data, reg_load_data);
mov(aux_reg_bcast_data, aux1_reg_bcast_data);
init();
mov(reduce_loop_iter, reg_reduce_loop_work);
sub(reduce_loop_iter, jcp.reduce_loop_unroll);
jle(reduce_loop_tail, T_NEAR);
L(reduce_loop); {
fma_block(false);
add(aux_reg_bcast_data, jcp.reduce_loop_bcast_step);
add(aux_reg_load_data, jcp.reduce_loop_load_step);
sub(reduce_loop_iter, jcp.reduce_loop_unroll);
jg(reduce_loop, T_NEAR);
}
L(reduce_loop_tail);
fma_block(true);
store();
}
void jit_avx512_common_1x1_conv_kernel::generate()
{
preamble();
mov(reg_bcast_data, ptr[param1 + GET_OFF(bcast_data)]);
mov(reg_load_data, ptr[param1 + GET_OFF(load_data)]);
mov(reg_output_data, ptr[param1 + GET_OFF(output_data)]);
sub(rsp, stack_space_needed);
if (jcp.with_bias)
mov(reg_bias_data, ptr[param1 + GET_OFF(bias_data)]);
mov(reg_load_loop_work, ptr[param1 + GET_OFF(load_dim)]);
mov(reg_bcast_loop_work, ptr[param1 + GET_OFF(bcast_dim)]);
mov(EVEX_compress_addr(rsp, bcast_loop_work_offt), reg_bcast_loop_work);
mov(reg_reduce_loop_work, ptr[param1 + GET_OFF(reduce_dim)]);
mov(reg_reduce_pos_flag, ptr[param1 + GET_OFF(first_last_flag)]);
if (one_of(jcp.prop_kind, forward_training, forward_inference))
mov(reg_relu_ns, reinterpret_cast<size_t>(&jcp.eltwise.alpha));
if (jcp.prop_kind == backward_weights)
mov(reg_output_stride, ptr[param1 + GET_OFF(output_stride)]);
auto load_loop_body = [=](int load_loop_blk) {
bcast_loop(load_loop_blk);
add(reg_load_data, load_loop_blk * jcp.load_loop_load_step);
switch (jcp.prop_kind) {
case forward_training:
case forward_inference:
add(reg_bias_data,
load_loop_blk * jcp.load_block * jcp.typesize_out);
add(reg_output_data,
load_loop_blk * jcp.bcast_dim * jcp.load_block *
jcp.typesize_out);
break;
case backward_data:
add(reg_output_data,
load_loop_blk * jcp.bcast_dim * jcp.load_block *
jcp.typesize_out);
break;
case backward_weights:
for (int i_load = 0; i_load < load_loop_blk; i_load++)
add(reg_output_data, reg_output_stride);
break;
default:
assert(!"invalid prop_kind");
}
sub(reg_load_loop_work, load_loop_blk * jcp.load_loop_iter_step);
};
const int simd_w = 16;
Label load_loop_blk[7];
static const int ur_cases_fma_embd_bcast[] = { 2, 4, 5, 8, 14, 32 };
static const int ur_cases_fma_expl_bcast[] = { 2, 5, 6, 9, 14, 32 };
static const int ur_cases_4fma[] = { 2, 4, 6, 12, 32 };
const int size_ur_cases_fma
= (jcp.ver == ver_avx512_core && jcp.expl_bcast) ?
sizeof(ur_cases_fma_expl_bcast) :<--- Same value in both branches of ternary operator. [+]Finding the same value in both branches of ternary operator is suspicious as the same code is executed regardless of the condition.
sizeof(ur_cases_fma_embd_bcast);
const int size_ur_cases_4fma = sizeof(ur_cases_4fma);
const int *ur_cases_fma = (jcp.ver == ver_avx512_core && jcp.expl_bcast) ?
ur_cases_fma_expl_bcast :
ur_cases_fma_embd_bcast;
const int *ur_cases = jcp.ver == ver_4fma ? ur_cases_4fma : ur_cases_fma;
const int num_ur_cases =
(jcp.ver == ver_4fma ? size_ur_cases_4fma : size_ur_cases_fma)
/ sizeof(*ur_cases);
for (int ur_idx = num_ur_cases - 1; ur_idx > 0; ur_idx--) {
int label_idx = num_ur_cases - ur_idx - 1;
if (jcp.ur <= ur_cases[ur_idx]) {
cmp(reg_load_loop_work, simd_w * (label_idx + 1));
jle(load_loop_blk[label_idx], T_NEAR);
}
}
for (int ur_idx = 0; ur_idx < num_ur_cases; ur_idx++) {
if (jcp.ur <= ur_cases[ur_idx]) {
int label_idx = num_ur_cases - ur_idx - 1;
L(load_loop_blk[label_idx]);
{
if (label_idx == 0) {
cmp(reg_load_loop_work, 0);
je(load_loop_blk[num_ur_cases], T_NEAR);
}
load_loop_body(label_idx + 1);
if (label_idx - 1 > 0) {
cmp(reg_load_loop_work, 2 * label_idx * simd_w);
je(load_loop_blk[label_idx - 1], T_NEAR);
}
cmp(reg_load_loop_work, (label_idx + 1) * simd_w);
jge(load_loop_blk[label_idx]);
}
for (int idx = label_idx - 1; idx > 0; --idx) {
cmp(reg_load_loop_work, simd_w * (idx + 1));
je(load_loop_blk[idx], T_NEAR);
}
if (ur_idx < num_ur_cases - 2) {
cmp(reg_load_loop_work, simd_w);
jle(load_loop_blk[0], T_NEAR);
}
}
}
L(load_loop_blk[num_ur_cases]);
add(rsp, stack_space_needed);
postamble();
if (jcp.with_eltwise)
eltwise_injector_->prepare_table();
}
bool jit_avx512_common_1x1_conv_kernel::post_ops_ok(
jit_1x1_conv_conf_t &jcp, const primitive_attr_t &attr) {
const auto &p = attr.post_ops_;
auto is_eltwise = [&](int idx) { return p.entry_[idx].is_eltwise(); };
auto is_sum = [&](int idx) { return p.entry_[idx].is_sum(); };
switch (p.len_) {
case 0: return true; // no post_ops
case 1: return is_eltwise(0) || is_sum(0); // sum OR eltwise
case 2: return is_sum(0) && is_eltwise(1); // sum -> eltwise
default: return false;
}
return false;
}
status_t jit_avx512_common_1x1_conv_kernel::init_conf(jit_1x1_conv_conf_t &jcp,
const convolution_desc_t &cd, const memory_desc_wrapper &src_d,
const memory_desc_wrapper &weights_d, const memory_desc_wrapper &dst_d,
const primitive_attr_t &attr, int nthreads, bool reduce_src) {
if (!mayiuse(avx512_common)) return status::unimplemented;
const bool with_groups = weights_d.ndims() == src_d.ndims() + 1;
const int simd_w = cpu_isa_traits<avx512_common>::vlen / sizeof(float);
const int ndims = src_d.ndims();
jcp.prop_kind = cd.prop_kind;
jcp.ngroups = with_groups ? weights_d.dims()[0] : 1;
jcp.mb = src_d.dims()[0];
jcp.oc_without_padding = dst_d.dims()[1] / jcp.ngroups;
jcp.oc = dst_d.dims()[1] / jcp.ngroups;
jcp.ic = src_d.dims()[1] / jcp.ngroups;
bool ok_to_pad_channels = true
&& jcp.ngroups == 1
&& src_d.data_type() == data_type::f32;
if (ok_to_pad_channels) {
jcp.oc = rnd_up(jcp.oc, simd_w);
jcp.ic = rnd_up(jcp.ic, simd_w);
}
jcp.ih = (ndims == 3) ? 1 : src_d.dims()[2];
jcp.iw = src_d.dims()[ndims - 1];
jcp.oh = (ndims == 3) ? 1 : dst_d.dims()[2];
jcp.ow = dst_d.dims()[ndims - 1];
jcp.kh = (ndims == 3) ? 1 : weights_d.dims()[with_groups + 2];
jcp.kw = weights_d.dims()[with_groups + ndims - 1];
jcp.t_pad = (ndims == 3) ? 0 : cd.padding[0][0];
jcp.l_pad = cd.padding[0][ndims - 3];
jcp.stride_h = (ndims == 3) ? 1 : cd.strides[0];
jcp.stride_w = cd.strides[ndims - 3];
jcp.with_bias = pick_by_prop_kind(jcp.prop_kind, cd.bias_desc.format_kind,
format_kind::undef, cd.diff_bias_desc.format_kind)
!= format_kind::undef;
jcp.os = jcp.oh * jcp.ow;
jcp.is = jcp.ih * jcp.iw;
jcp.tr_is = rnd_up(jcp.is, 4);
if (!post_ops_ok(jcp, attr))
return status::unimplemented;
const auto &p = attr.post_ops_;
jcp.with_sum = p.find(primitive_kind::sum) != -1;
const int eltwise_ind = p.find(primitive_kind::eltwise);
jcp.with_eltwise = eltwise_ind != -1;
if (jcp.with_eltwise) {
jcp.eltwise = p.entry_[eltwise_ind].eltwise;
if (dst_d.data_type() == data_type::s32) return status::unimplemented;
}
auto dat_tag = pick(ndims - 3, nCw16c, nChw16c);
jcp.src_tag = src_d.matches_one_of_tag(dat_tag);
jcp.dst_tag = dst_d.matches_one_of_tag(dat_tag);
bool args_ok = true
&& jcp.ngroups == 1
&& jcp.src_tag == dat_tag
&& jcp.dst_tag == dat_tag;
if (!args_ok) return status::unimplemented;
args_ok = true
&& jcp.oc % simd_w == 0 && jcp.ic % simd_w == 0
&& jcp.t_pad == 0 && jcp.l_pad == 0
&& jcp.stride_w == 1 && jcp.stride_h == 1 // TODO: support some strides
&& jcp.kh == 1 && jcp.kw == 1;
if (!args_ok) return status::unimplemented;
jcp.ic_block = jcp.oc_block = simd_w;
jcp.transpose_src = false;
if (everyone_is(data_type::f32, src_d.data_type(),
weights_d.data_type(), dst_d.data_type()))
{
const int is_bwd_d = jcp.prop_kind == backward_data;
format_tag_t wei_tag = with_groups
? pick(2 * ndims - 6 + is_bwd_d, gOIw16i16o, gIOw16o16i,
gOIhw16i16o, gIOhw16o16i)
: pick(2 * ndims - 6 + is_bwd_d, OIw16i16o, IOw16o16i,
OIhw16i16o, IOhw16o16i);
jcp.wei_tag = weights_d.matches_one_of_tag(wei_tag);
if (jcp.wei_tag != wei_tag)
return status::unimplemented;
if (jcp.prop_kind != backward_weights && mayiuse(avx512_mic_4ops) &&
((jcp.prop_kind == backward_data) ? jcp.oc_block : jcp.ic_block) % 4
== 0) {
jcp.ver = ver_4fma;
jcp.fma_step = 4;
} else if (jcp.prop_kind == backward_weights && mayiuse(avx512_mic_4ops)
&& !reduce_src
/* Heuristic condition for relation of src size to oc. Otherwise
the src transposition overhead exceed the benefit from 4fma
*/
&& ((jcp.is * jcp.ic) / jcp.oc <= 2048)
&& mkldnn_thr_syncable()
)
{
jcp.transpose_src = true;
jcp.ver = ver_4fma;
jcp.fma_step = 4;
} else {
jcp.ver = (mayiuse(avx512_core)) ? ver_avx512_core : ver_fma;
jcp.fma_step = 1;
}
jcp.typesize_in = sizeof(prec_traits<data_type::f32>::type);
jcp.typesize_out = sizeof(prec_traits<data_type::f32>::type);
} else {
return status::unimplemented;
}
/* once all the formats are set, check the padding consistency */
args_ok = true
&& jcp.ic <= src_d.padded_dims()[1]
&& jcp.oc <= dst_d.padded_dims()[1]
&& jcp.ic <= weights_d.padded_dims()[with_groups + 1]
&& jcp.oc <= weights_d.padded_dims()[with_groups + 0];
if (!args_ok) return status::unimplemented;
const int SMALL_SPATIAL = 10;
const int BIG_SPATIAL = 28;
const int BIG_REDUCE_DIM = 1024;
const int BIG_LOAD_DIM = 256;
int load_blocking{ 0 };
int load_blocking_max{ 0 };
int bcast_blocking{ 0 };
int bcast_blocking_max{ 0 };
int reduce_blocking{ 0 };
int reduce_blocking_max{ 0 };
jcp.load_grp_count = 1;
const int L1_capacity = get_cache_size(1, true) / sizeof(float);
const int L2_size = get_cache_size(2, true) / sizeof(float);
const int L2_capacity = (L2_size * 3) / 4;
if (one_of(jcp.prop_kind, forward_training, forward_inference,
backward_data)) {
if (one_of(jcp.prop_kind, forward_training, forward_inference)) {
jcp.reduce_dim = jcp.ic;
jcp.reduce_block = jcp.ic_block;
jcp.load_dim = jcp.oc;
jcp.load_block = jcp.oc_block;
jcp.bcast_dim = jcp.is;
} else {
jcp.reduce_dim = jcp.oc;
jcp.reduce_block = jcp.oc_block;
jcp.load_dim = jcp.ic;
jcp.load_block = jcp.ic_block;
jcp.bcast_dim = jcp.os;
}
jcp.reduce_loop_unroll = jcp.reduce_block;
jcp.reduce_loop_bcast_step
= jcp.reduce_loop_unroll * jcp.bcast_dim * jcp.typesize_in;
jcp.reduce_loop_load_step
= jcp.reduce_loop_unroll * jcp.load_block * jcp.typesize_in;
jcp.load_loop_load_step
= jcp.reduce_dim * jcp.load_block * jcp.typesize_in;
// adjusting registry blocking
int max_regs, min_regs, size_treshold, ur_step;
const int spatial
= (one_of(jcp.prop_kind, forward_training, forward_inference)) ?
jcp.oh :
jcp.ih;
if (jcp.ver == ver_avx512_core && (8 * jcp.mb) / nthreads >= 1) {
max_regs = 9;
min_regs = 6;
size_treshold = 14;
ur_step = 1;
jcp.expl_bcast = true;
if (jcp.load_dim > 128 && jcp.load_dim < BIG_LOAD_DIM
&& spatial > SMALL_SPATIAL && spatial < BIG_SPATIAL) {
max_regs = 6;
min_regs = 5;
}
} else {
max_regs = jcp.ver == ver_4fma ? 28 : 30;
min_regs = 9;
size_treshold = jcp.ver == ver_4fma ? 28 : 14;
ur_step = jcp.ver == ver_4fma ? 4 : 1;
jcp.expl_bcast = false;
jcp.use_vmovntps = true;
}
jcp.ur = 1;
for (int ur_w = max_regs; ur_w >= min_regs; ur_w -= ur_step) {
if ((spatial >= size_treshold && spatial % ur_w == 0)
|| (spatial < size_treshold && jcp.os % ur_w == 0)) {
jcp.ur = ur_w;
break;
}
}
if (jcp.ur == 1) {
jcp.ur = nstl::min(max_regs, jcp.os);
int os_tail = jcp.os % max_regs;
for (int i = max_regs; i >= min_regs; i -= ur_step) {
int i_tail = jcp.os % i;
if (i_tail > os_tail || i_tail == 0) {
jcp.ur = i;
os_tail = i_tail;
if (i_tail == 0)
break;
}
}
}
jcp.reduce_loop_unroll = jcp.reduce_block;
jcp.reduce_loop_bcast_step
= jcp.reduce_loop_unroll * jcp.bcast_dim * jcp.typesize_in;
jcp.bcast_block = jcp.ur;
jcp.bcast_loop_output_step = jcp.ur * jcp.load_block * jcp.typesize_out;
jcp.bcast_loop_output_substep = -1; // unused
jcp.bcast_loop_bcast_step = jcp.ur * jcp.reduce_block * jcp.typesize_in;
jcp.bcast_loop_bcast_substep = -1; // unused
jcp.load_loop_iter_step = jcp.load_block;
if (jcp.prop_kind == backward_data)
jcp.loop_order = loop_lbr;
else
jcp.loop_order = reduce_src ? loop_blr : loop_lbr;
int nb_bcast = div_up(jcp.bcast_dim, jcp.bcast_block);
int nb_reduce = div_up(jcp.reduce_dim, jcp.reduce_block);
int nb_load = div_up(jcp.load_dim, jcp.load_block);
if (jcp.ver == ver_avx512_core && jcp.expl_bcast) {
if (jcp.load_dim <= BIG_LOAD_DIM && spatial > SMALL_SPATIAL
&& spatial < BIG_SPATIAL)
reduce_blocking = nstl::min(jcp.reduce_dim, 80);
else if (spatial > SMALL_SPATIAL)
reduce_blocking = nstl::min(jcp.reduce_dim, 512);
else
reduce_blocking = nstl::min(jcp.reduce_dim, 256);
if ((jcp.mb > 28 && spatial >= 28)
|| (jcp.mb > 112 && spatial >= 17))
jcp.use_vmovntps = true;
else
jcp.use_vmovntps = false;
} else {
reduce_blocking = nb_reduce;
if (spatial <= SMALL_SPATIAL && jcp.reduce_dim >= BIG_REDUCE_DIM)
reduce_blocking = 16;
else if (spatial > SMALL_SPATIAL
&& jcp.reduce_dim >= BIG_REDUCE_DIM)
reduce_blocking = 8;
reduce_blocking = best_divider(nb_reduce, 1, reduce_blocking, true);
reduce_blocking *= jcp.reduce_block;
}
// Check input data cache aliasing.
// For other ISA constants may be updated.
// 64 * 1024 is chosen due to 1MB L2 16-way cache.
// 7 is empirical value. It is about half of 16.
// So we leave about half of the set for other data - weights, dst
int way_size = (64 * 1024) / jcp.typesize_in;
int max_hits = 7;
if (jcp.bcast_dim * reduce_blocking > way_size * max_hits) {
int nrb = reduce_blocking / simd_w;
int sp = jcp.bcast_dim;
int wl = way_size / simd_w;
for (int start_off = 0; start_off < jcp.ur; start_off++) {
for (int off = start_off, hits = 0; off < sp * nrb; off += wl) {
if (off % sp >= jcp.ur || ++hits < max_hits)
continue;
int max_r_blocking = simd_w * nstl::max(1, (off + wl) / sp);
reduce_blocking
= nstl::min(reduce_blocking, max_r_blocking);
break;
}
}
}
if (reduce_blocking < jcp.reduce_dim) {
jcp.use_vmovntps = false;
if (jcp.prop_kind == backward_data)
jcp.loop_order = reduce_src ? loop_lbr : loop_rlb;
else
jcp.loop_order = reduce_src ? loop_rbl : loop_rlb;
}
load_blocking = jcp.load_dim;
int load_size = jcp.load_dim * jcp.reduce_dim;
int bcast_size = jcp.mb * jcp.ngroups * jcp.bcast_dim * jcp.reduce_dim;
if (jcp.ver == ver_avx512_core && nthreads <= 28 && jcp.mb < nthreads
&& nb_load * nb_bcast > nthreads) {
// Some heuristic here
float calc_koef = 0.01, best_cost = FLT_MAX;
int n_lgc = nthreads;
float ratio = (float)load_size / (float)bcast_size;
int best_lgc = ratio > 1 ? n_lgc : 1;
auto calc_job_cost = [&](int lb, int tg, float mem_k) {
int bb_size = jcp.mb * div_up(nb_bcast, tg);
float calc_size = (float)(bb_size * jcp.ur)
* (lb * jcp.load_block) * jcp.reduce_dim;
float mem_size = (float)(bb_size * jcp.ur + lb * jcp.load_block)
* jcp.reduce_dim;
return calc_koef * calc_size + mem_k * mem_size;
};
for (int lgc, ilgc = 0; ilgc < n_lgc; ilgc++) {
lgc = ratio > 1 ? n_lgc - ilgc : ilgc + 1;
int min_lb = nb_load / lgc;
int max_lb = div_up(nb_load, lgc);
int min_tg = nthreads / lgc;
int max_tg = div_up(nthreads, lgc);
// Some heuristic here
float mem_koef = (max_tg == 1) ? 1.f : 1.3f;
float job_cost = 0.;
if (nthreads % lgc < nb_load % lgc) {
job_cost = calc_job_cost(max_lb, min_tg, mem_koef);
} else {
auto job_cost1 = calc_job_cost(max_lb, max_tg, mem_koef);
auto job_cost2 = calc_job_cost(min_lb, min_tg, mem_koef);
job_cost = nstl::max(job_cost1, job_cost2);
}
if (job_cost < best_cost) {
best_lgc = lgc;
best_cost = job_cost;
}
}
jcp.load_grp_count = best_lgc;
load_blocking = div_up(nb_load, jcp.load_grp_count) * jcp.load_block;
} else {
jcp.load_grp_count = div_up(nthreads, jcp.mb * jcp.ngroups * nb_bcast);
jcp.load_grp_count = best_divider(
nthreads, jcp.load_grp_count, 2 * jcp.load_grp_count, false);
}
if (jcp.ver == ver_avx512_core && jcp.expl_bcast && jcp.bcast_dim <= 64
&& load_size >= L2_size) {
jcp.load_grp_count = nstl::max(jcp.load_grp_count, 4);
} else if (jcp.bcast_dim <= 49 && jcp.mb <= nthreads
&& jcp.load_dim > 512 && jcp.load_dim / jcp.reduce_dim >= 4) {
jcp.load_grp_count = nstl::max(jcp.load_grp_count, 2);
load_blocking = jcp.load_block;
}
if (jcp.ver == ver_4fma && jcp.bcast_dim * jcp.mb < jcp.load_dim
&& jcp.oh * jcp.ow > 64
&& IMPLICATION(reduce_src, jcp.load_dim < 1024)) {
/* Looking for best loading dimension blocking
* to get the best thread and data read/write efficiency
* by finding the optimal 'load_chunk' value
* Example:
* for 72 threads and convolution with mb=1, ih=iw=7, oc = 512
* the 'best' load_chunk value should be 1
* TODO: remove heuristic constants in above condition
* TODO: check this blocking for other ISA
*/
float best_eff = -1.f;
int best_lgc = 1;
for (int load_chunk = 1; load_chunk <= nb_load; load_chunk++) {
int lgc = div_up(nb_load, load_chunk);
if (lgc > nthreads)
continue;
int thr_per_grp = div_up(nthreads, lgc);
int bcast_per_thr = div_up(jcp.mb * nb_bcast, thr_per_grp)
* jcp.bcast_block;
int load_per_thr = load_chunk * simd_w;
float data_norm = (bcast_per_thr + load_per_thr) / 2.f;
float data_eff = (bcast_per_thr * load_per_thr)
/ (data_norm * data_norm);
float thr_eff_over_grp = (float)nstl::max(1, nthreads / lgc)
/ div_up(nthreads, lgc);
float thr_eff_in_grp = ((float)jcp.mb * nb_bcast)
/ rnd_up(jcp.mb * nb_bcast, thr_per_grp);
float thr_eff = thr_eff_over_grp * thr_eff_in_grp;
float load_eff = (float)nb_load / rnd_up(nb_load, lgc);
float overall_eff = data_eff + thr_eff + load_eff;
if (overall_eff > best_eff) {
best_eff = overall_eff;
best_lgc = lgc;
}
}
jcp.load_grp_count = best_lgc;
load_blocking
= div_up(nb_load, jcp.load_grp_count) * jcp.load_block;
}
bcast_blocking = div_up(jcp.mb * jcp.ngroups * nb_bcast,
div_up(nthreads, jcp.load_grp_count))
* jcp.bcast_block;
bcast_blocking = nstl::min(jcp.bcast_dim, bcast_blocking);
bcast_blocking = rnd_up(bcast_blocking, jcp.bcast_block);
int space_for_bcast
= (L2_capacity - /* kernel_size - */
2 * jcp.load_block * reduce_blocking
- jcp.ur * reduce_blocking - 3 * 1024);
if (jcp.reduce_dim * jcp.bcast_dim > L2_capacity)
space_for_bcast /= 2;
int bcast_in_cache
= nstl::max(jcp.bcast_block, space_for_bcast / reduce_blocking);
bcast_blocking = nstl::min(
bcast_blocking, rnd_dn(bcast_in_cache, jcp.bcast_block));
load_blocking_max = load_blocking;
bcast_blocking_max = bcast_blocking * 3 / 2;
reduce_blocking_max = reduce_blocking;
} else if (jcp.prop_kind == backward_weights) {
jcp.use_vmovntps = false;
if (jcp.is > SMALL_SPATIAL * SMALL_SPATIAL && jcp.ver == ver_4fma)
jcp.use_vmovntps = true;
if (jcp.transpose_src)
jcp.reduce_dim = jcp.tr_is;
else
jcp.reduce_dim = jcp.is;
if (jcp.ver == ver_4fma) {
// reduce_block should be divided by fma_step
jcp.reduce_block = best_divider(jcp.reduce_dim, 4, 16, true, 4);
} else {
jcp.reduce_block = best_divider(jcp.reduce_dim, 7, 16, true);
if (jcp.reduce_dim % jcp.reduce_block != 0)
jcp.reduce_block = best_divider(jcp.iw, 4, jcp.iw, false);
if (jcp.reduce_block > 256) {
jcp.reduce_block = 1;
}
}
jcp.load_dim = jcp.oc;
jcp.load_block = jcp.oc_block;
jcp.bcast_dim = jcp.ic;
jcp.bcast_block = jcp.ic_block;
if (jcp.ver == ver_avx512_core && jcp.reduce_block <= 19) {
// if reduce_block is big then generated JIT code may be big
// for small values of ur because reduce_loop_unroll = reduce_block
jcp.ur = jcp.bcast_block / 2;
jcp.expl_bcast = true;
} else {
jcp.ur = jcp.bcast_block;
jcp.expl_bcast = false;
}
jcp.reduce_loop_unroll = jcp.reduce_block;
jcp.reduce_loop_bcast_step
= jcp.reduce_loop_unroll * jcp.ic_block * jcp.typesize_in;
jcp.reduce_loop_load_step
= jcp.reduce_loop_unroll * jcp.oc_block * jcp.typesize_in;
jcp.bcast_loop_output_step =
jcp.oc_block * jcp.ic_block * jcp.typesize_out;
jcp.bcast_loop_output_substep =
jcp.oc_block * jcp.ur * jcp.typesize_out;
jcp.bcast_loop_bcast_step =
jcp.ic_block * jcp.reduce_dim * jcp.typesize_in;
jcp.bcast_loop_bcast_substep = jcp.ur * jcp.typesize_in;
jcp.load_loop_load_step = jcp.oc_block * jcp.os * jcp.typesize_in;
jcp.load_loop_iter_step = jcp.oc_block;
/* --- */
balance(jcp, nthreads);
load_blocking = div_up(jcp.load_dim, jcp.load_block);
load_blocking = best_divider(load_blocking, 16, load_blocking, false);
load_blocking *= jcp.load_block;
load_blocking_max = load_blocking;
assert(jcp.load_dim % load_blocking == 0);
int max_bcast_blocking = div_up(jcp.bcast_dim, jcp.bcast_block);
int min_bcast_blocking = 5;
bcast_blocking = div_up(jcp.bcast_dim, jcp.bcast_block);
bcast_blocking = best_divider(
bcast_blocking, min_bcast_blocking, max_bcast_blocking, false);
bcast_blocking *= jcp.bcast_block;
bcast_blocking_max = bcast_blocking;
assert(jcp.bcast_dim % bcast_blocking == 0);
// for reduction balance
if (jcp.ver == ver_avx512_core) {
int max_reduce_blocking
= nstl::min(L1_capacity / jcp.ur, jcp.reduce_dim);
int min_reduce_blocking = nstl::min(
L1_capacity / jcp.ur, nstl::max(jcp.iw, jcp.ih));
reduce_blocking = best_divider(jcp.reduce_dim, min_reduce_blocking,
max_reduce_blocking, true);
reduce_blocking
= nstl::max(rnd_dn(reduce_blocking, jcp.reduce_block),
jcp.reduce_block);
} else {
int max_reduce_blocking = L2_capacity
/ ((bcast_blocking + load_blocking) * jcp.reduce_block);
max_reduce_blocking = nstl::min(max_reduce_blocking,
(L1_capacity / (jcp.bcast_block)) / jcp.reduce_block);
int num_jobs = div_up(jcp.load_dim, load_blocking)
* div_up(jcp.bcast_dim, bcast_blocking);
int threads_per_job = nstl::max(1, nthreads / num_jobs);
reduce_blocking = div_up(jcp.mb * jcp.reduce_dim, jcp.reduce_block);
reduce_blocking = div_up(reduce_blocking, threads_per_job);
reduce_blocking = best_divider(reduce_blocking,
max_reduce_blocking - 2, max_reduce_blocking, true);
reduce_blocking *= jcp.reduce_block;
}
reduce_blocking_max = rnd_dn(reduce_blocking * 3 / 2, jcp.reduce_block);
} else
return status::unimplemented;
assert(load_blocking);
assert(load_blocking_max);
assert(bcast_blocking);
assert(bcast_blocking_max);
assert(reduce_blocking);
assert(reduce_blocking_max);
assert(load_blocking % jcp.load_block == 0);
assert(reduce_blocking % jcp.reduce_block == 0);
assert(load_blocking_max % jcp.load_block == 0);
assert(reduce_blocking_max % jcp.reduce_block == 0);
if (jcp.ver == ver_4fma) {
assert(jcp.reduce_loop_unroll % jcp.fma_step == 0);
assert(jcp.reduce_dim % jcp.reduce_loop_unroll == 0);
}
assert(jcp.bcast_block % jcp.ur == 0);
assert(jcp.reduce_dim % jcp.reduce_block == 0);
jcp.ur_tail = jcp.bcast_dim % jcp.ur;
jcp.nb_bcast_blocking = bcast_blocking / jcp.bcast_block;
jcp.nb_bcast_blocking_max = bcast_blocking_max / jcp.bcast_block;
jcp.nb_load_blocking = load_blocking / jcp.load_block;
jcp.nb_load_blocking_max = load_blocking_max / jcp.load_block;
jcp.nb_reduce_blocking = reduce_blocking / jcp.reduce_block;
jcp.nb_reduce_blocking_max = reduce_blocking_max / jcp.reduce_block;
jcp.nb_bcast = div_up(jcp.bcast_dim, jcp.bcast_block);
jcp.nb_load = div_up(jcp.load_dim, jcp.load_block);
jcp.nb_reduce = div_up(jcp.reduce_dim, jcp.reduce_block);
return status::success;
}
void jit_avx512_common_1x1_conv_kernel::init_scratchpad(
memory_tracking::registrar_t &scratchpad,
const jit_1x1_conv_conf_t &jcp) {
using namespace mkldnn::impl::memory_tracking::names;
if (jcp.prop_kind != backward_data && jcp.with_bias
&& jcp.oc != jcp.oc_without_padding)
scratchpad.book(key_conv_padded_bias, jcp.typesize_out * jcp.oc);
if (jcp.prop_kind == backward_weights) {
const size_t wei_size = (size_t)jcp.ngroups * jcp.oc * jcp.ic;
scratchpad.book(key_conv_wei_reduction,
jcp.typesize_out * wei_size * (jcp.nthr_mb - 1));
}
if (jcp.transpose_src) {
const size_t tr_src_size =
(size_t)jcp.nthr_mb * jcp.ngroups * jcp.ic * jcp.tr_is;
scratchpad.book(key_conv_tr_src, jcp.typesize_out * tr_src_size);
scratchpad.book(key_conv_tr_src_bctx,
sizeof(simple_barrier::ctx_t) * jcp.nthr);
}
}
void jit_avx512_common_1x1_conv_kernel::balance(jit_1x1_conv_conf_t &jcp,
int nthreads)
{
// initialize jcp reduction threading properties
jcp.nthr = jcp.nthr_mb = jcp.nthr_g = jcp.nthr_oc_b = jcp.nthr_ic_b = 1;
if (nthreads < jcp.ngroups) {
/* simplification... fortunately it doesn't hurt much */
return;
}
const int nb_bcast = div_up(jcp.bcast_dim, jcp.bcast_block);
const int nb_load = div_up(jcp.load_dim, jcp.load_block);
const int nb_reduce = div_up(jcp.reduce_dim, jcp.reduce_block);
jcp.nthr_g = jcp.ngroups;
const int nthr = nthreads / jcp.nthr_g;
auto calc_mem_cost = [=](int nthr_mb, int nthr_oc_b, int nthr_ic_b) {
/* calculate per thread memory cost (read/write). high level
* optimizer tries to minimize memory consumption. few notes: (n1)
* unclear why, but that essentially helps first convolution...
* (n2) assuming the reduction over minibatch is always there:
* - instead of 8 it should be 5 here (write ~= 2 read):
* kernel: temporal workspace 1 write
* reduction: 1 read from workspace and 1 write to the diff_wei
* - but experiments showed 8 works better than 5 or 6... */
int bcast_koeff = 1;
int load_koeff = 1;
int output_koeff = 12;
if (jcp.transpose_src) {
bcast_koeff = 5;
load_koeff = 1;
output_koeff = 8;
}
return 0
+ (size_t)bcast_koeff * div_up(jcp.mb * nb_reduce, nthr_mb)
* div_up(jcp.ngroups, jcp.nthr_g)
* div_up(nb_bcast, nthr_ic_b) * jcp.ic_block * jcp.reduce_block
/ jcp.stride_h / jcp.stride_w /* (n1) */
+ (size_t)load_koeff * div_up(jcp.mb * nb_reduce, nthr_mb)
* div_up(jcp.ngroups, jcp.nthr_g)
* div_up(nb_load, nthr_oc_b) * jcp.oc_block * jcp.reduce_block
+ (size_t)output_koeff /* (n2) */
* div_up(jcp.ngroups, jcp.nthr_g) * div_up(nb_load, nthr_oc_b)
* div_up(nb_bcast, nthr_ic_b) * jcp.ic_block
* jcp.oc_block;
};
int nthr_mb = 1, nthr_oc_b = 1, nthr_ic_b = 1;
auto best_mem_cost = calc_mem_cost(nthr_mb, nthr_oc_b, nthr_ic_b);
/* step 1: find the best thread distribution with lowest memory cost */
const int nthr_mb_max = nstl::min(nthr, jcp.mb * nb_reduce);
for (nthr_mb = 1; nthr_mb <= nthr_mb_max; ++nthr_mb) {
const int nthr_par = nthr / nthr_mb;
const int nthr_oc_b_max = nstl::min(nthr_par, nb_load);
for (nthr_oc_b = 1; nthr_oc_b <= nthr_oc_b_max; ++nthr_oc_b) {
nthr_ic_b = nstl::min(nthr_par / nthr_oc_b, nb_bcast);
auto mem_cost = calc_mem_cost(nthr_mb, nthr_oc_b, nthr_ic_b);
if (mem_cost <= best_mem_cost) {
best_mem_cost = mem_cost;
jcp.nthr_mb = nthr_mb;
jcp.nthr_oc_b = nthr_oc_b;
jcp.nthr_ic_b = nthr_ic_b;
}
}
if (!mkldnn_thr_syncable()) { assert(nthr_mb == 1); break; }
}
if (jcp.nthr_mb > nthreads / 2 && jcp.nthr_mb < nthreads)
jcp.nthr_mb = nstl::min(jcp.mb, nthreads);
jcp.nthr = jcp.nthr_mb * jcp.nthr_g * jcp.nthr_oc_b * jcp.nthr_ic_b;
assert(jcp.nthr <= nthreads);
}
}
}
}
|