1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
/*
Bullet Continuous Collision Detection and Physics Library
Copyright (c) 2003-2006 Erwin Coumans  http://continuousphysics.com/Bullet/

This software is provided 'as-is', without any express or implied warranty.
In no event will the authors be held liable for any damages arising from the use of this software.
Permission is granted to anyone to use this software for any purpose, 
including commercial applications, and to alter it and redistribute it freely, 
subject to the following restrictions:

1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
*/

#include "btGjkPairDetector.h"
#include "BulletCollision/CollisionShapes/btConvexShape.h"
#include "BulletCollision/NarrowPhaseCollision/btSimplexSolverInterface.h"
#include "BulletCollision/NarrowPhaseCollision/btConvexPenetrationDepthSolver.h"

#if defined(DEBUG) || defined(_DEBUG)
//#define TEST_NON_VIRTUAL 1
#include <stdio.h>  //for debug printf
#ifdef __SPU__
#include <spu_printf.h>
#define printf spu_printf
#endif  //__SPU__
#endif

//must be above the machine epsilon
#ifdef BT_USE_DOUBLE_PRECISION
#define REL_ERROR2 btScalar(1.0e-12)
btScalar gGjkEpaPenetrationTolerance = 1.0e-12;
#else
#define REL_ERROR2 btScalar(1.0e-6)
btScalar gGjkEpaPenetrationTolerance = 0.001;
#endif


btGjkPairDetector::btGjkPairDetector(const btConvexShape *objectA, const btConvexShape *objectB, btSimplexSolverInterface *simplexSolver, btConvexPenetrationDepthSolver *penetrationDepthSolver)<--- Member variable 'btGjkPairDetector::m_curIter' is not initialized in the constructor.<--- Member variable 'btGjkPairDetector::m_degenerateSimplex' is not initialized in the constructor.
	: m_cachedSeparatingAxis(btScalar(0.), btScalar(1.), btScalar(0.)),
	  m_penetrationDepthSolver(penetrationDepthSolver),
	  m_simplexSolver(simplexSolver),
	  m_minkowskiA(objectA),
	  m_minkowskiB(objectB),
	  m_shapeTypeA(objectA->getShapeType()),
	  m_shapeTypeB(objectB->getShapeType()),
	  m_marginA(objectA->getMargin()),
	  m_marginB(objectB->getMargin()),
	  m_ignoreMargin(false),
	  m_lastUsedMethod(-1),
	  m_catchDegeneracies(1),
	  m_fixContactNormalDirection(1)
{
}
btGjkPairDetector::btGjkPairDetector(const btConvexShape *objectA, const btConvexShape *objectB, int shapeTypeA, int shapeTypeB, btScalar marginA, btScalar marginB, btSimplexSolverInterface *simplexSolver, btConvexPenetrationDepthSolver *penetrationDepthSolver)<--- Member variable 'btGjkPairDetector::m_curIter' is not initialized in the constructor.<--- Member variable 'btGjkPairDetector::m_degenerateSimplex' is not initialized in the constructor.
	: m_cachedSeparatingAxis(btScalar(0.), btScalar(1.), btScalar(0.)),
	  m_penetrationDepthSolver(penetrationDepthSolver),
	  m_simplexSolver(simplexSolver),
	  m_minkowskiA(objectA),
	  m_minkowskiB(objectB),
	  m_shapeTypeA(shapeTypeA),
	  m_shapeTypeB(shapeTypeB),
	  m_marginA(marginA),
	  m_marginB(marginB),
	  m_ignoreMargin(false),
	  m_lastUsedMethod(-1),
	  m_catchDegeneracies(1),
	  m_fixContactNormalDirection(1)
{
}

void btGjkPairDetector::getClosestPoints(const ClosestPointInput &input, Result &output, class btIDebugDraw *debugDraw, bool swapResults)
{
	(void)swapResults;

	getClosestPointsNonVirtual(input, output, debugDraw);
}

static void btComputeSupport(const btConvexShape *convexA, const btTransform &localTransA, const btConvexShape *convexB, const btTransform &localTransB, const btVector3 &dir, bool check2d, btVector3 &supAworld, btVector3 &supBworld, btVector3 &aMinb)
{
	btVector3 separatingAxisInA = (dir)*localTransA.getBasis();
	btVector3 separatingAxisInB = (-dir) * localTransB.getBasis();

	btVector3 pInANoMargin = convexA->localGetSupportVertexWithoutMarginNonVirtual(separatingAxisInA);
	btVector3 qInBNoMargin = convexB->localGetSupportVertexWithoutMarginNonVirtual(separatingAxisInB);

	btVector3 pInA = pInANoMargin;
	btVector3 qInB = qInBNoMargin;

	supAworld = localTransA(pInA);
	supBworld = localTransB(qInB);

	if (check2d)
	{
		supAworld[2] = 0.f;
		supBworld[2] = 0.f;
	}

	aMinb = supAworld - supBworld;
}

struct btSupportVector
{
	btVector3 v;   //!< Support point in minkowski sum
	btVector3 v1;  //!< Support point in obj1
	btVector3 v2;  //!< Support point in obj2
};

struct btSimplex
{
	btSupportVector ps[4];
	int last;  //!< index of last added point
};

static btVector3 ccd_vec3_origin(0, 0, 0);

inline void btSimplexInit(btSimplex *s)
{
	s->last = -1;
}

inline int btSimplexSize(const btSimplex *s)
{
	return s->last + 1;
}

inline const btSupportVector *btSimplexPoint(const btSimplex *s, int idx)
{
	// here is no check on boundaries
	return &s->ps[idx];
}
inline void btSupportCopy(btSupportVector *d, const btSupportVector *s)
{
	*d = *s;
}

inline void btVec3Copy(btVector3 *v, const btVector3 *w)
{
	*v = *w;
}

inline void ccdVec3Add(btVector3 *v, const btVector3 *w)
{
	v->m_floats[0] += w->m_floats[0];
	v->m_floats[1] += w->m_floats[1];
	v->m_floats[2] += w->m_floats[2];
}

inline void ccdVec3Sub(btVector3 *v, const btVector3 *w)
{
	*v -= *w;
}
inline void btVec3Sub2(btVector3 *d, const btVector3 *v, const btVector3 *w)
{
	*d = (*v) - (*w);
}
inline btScalar btVec3Dot(const btVector3 *a, const btVector3 *b)
{
	btScalar dot;
	dot = a->dot(*b);

	return dot;
}

inline btScalar ccdVec3Dist2(const btVector3 *a, const btVector3 *b)
{
	btVector3 ab;
	btVec3Sub2(&ab, a, b);
	return btVec3Dot(&ab, &ab);
}

inline void btVec3Scale(btVector3 *d, btScalar k)
{
	d->m_floats[0] *= k;
	d->m_floats[1] *= k;
	d->m_floats[2] *= k;
}

inline void btVec3Cross(btVector3 *d, const btVector3 *a, const btVector3 *b)
{
	d->m_floats[0] = (a->m_floats[1] * b->m_floats[2]) - (a->m_floats[2] * b->m_floats[1]);
	d->m_floats[1] = (a->m_floats[2] * b->m_floats[0]) - (a->m_floats[0] * b->m_floats[2]);
	d->m_floats[2] = (a->m_floats[0] * b->m_floats[1]) - (a->m_floats[1] * b->m_floats[0]);
}

inline void btTripleCross(const btVector3 *a, const btVector3 *b,
						  const btVector3 *c, btVector3 *d)
{
	btVector3 e;
	btVec3Cross(&e, a, b);
	btVec3Cross(d, &e, c);
}

inline int ccdEq(btScalar _a, btScalar _b)
{
	btScalar ab;
	btScalar a, b;

	ab = btFabs(_a - _b);
	if (btFabs(ab) < SIMD_EPSILON)
		return 1;

	a = btFabs(_a);
	b = btFabs(_b);
	if (b > a)
	{
		return ab < SIMD_EPSILON * b;
	}
	else
	{
		return ab < SIMD_EPSILON * a;
	}
}

btScalar ccdVec3X(const btVector3 *v)
{
	return v->x();
}

btScalar ccdVec3Y(const btVector3 *v)
{
	return v->y();
}

btScalar ccdVec3Z(const btVector3 *v)
{
	return v->z();
}
inline int btVec3Eq(const btVector3 *a, const btVector3 *b)
{
	return ccdEq(ccdVec3X(a), ccdVec3X(b)) && ccdEq(ccdVec3Y(a), ccdVec3Y(b)) && ccdEq(ccdVec3Z(a), ccdVec3Z(b));
}

inline void btSimplexAdd(btSimplex *s, const btSupportVector *v)
{
	// here is no check on boundaries in sake of speed
	++s->last;
	btSupportCopy(s->ps + s->last, v);
}

inline void btSimplexSet(btSimplex *s, size_t pos, const btSupportVector *a)
{
	btSupportCopy(s->ps + pos, a);
}

inline void btSimplexSetSize(btSimplex *s, int size)
{
	s->last = size - 1;
}

inline const btSupportVector *ccdSimplexLast(const btSimplex *s)
{
	return btSimplexPoint(s, s->last);
}

inline int ccdSign(btScalar val)
{
	if (btFuzzyZero(val))
	{
		return 0;
	}
	else if (val < btScalar(0))
	{
		return -1;
	}
	return 1;
}

inline btScalar btVec3PointSegmentDist2(const btVector3 *P,
										const btVector3 *x0,
										const btVector3 *b,
										btVector3 *witness)
{
	// The computation comes from solving equation of segment:
	//      S(t) = x0 + t.d
	//          where - x0 is initial point of segment
	//                - d is direction of segment from x0 (|d| > 0)
	//                - t belongs to <0, 1> interval
	//
	// Than, distance from a segment to some point P can be expressed:
	//      D(t) = |x0 + t.d - P|^2
	//          which is distance from any point on segment. Minimization
	//          of this function brings distance from P to segment.
	// Minimization of D(t) leads to simple quadratic equation that's
	// solving is straightforward.
	//
	// Bonus of this method is witness point for free.

	btScalar dist, t;
	btVector3 d, a;

	// direction of segment
	btVec3Sub2(&d, b, x0);

	// precompute vector from P to x0
	btVec3Sub2(&a, x0, P);

	t = -btScalar(1.) * btVec3Dot(&a, &d);
	t /= btVec3Dot(&d, &d);

	if (t < btScalar(0) || btFuzzyZero(t))
	{
		dist = ccdVec3Dist2(x0, P);
		if (witness)
			btVec3Copy(witness, x0);
	}
	else if (t > btScalar(1) || ccdEq(t, btScalar(1)))
	{
		dist = ccdVec3Dist2(b, P);
		if (witness)
			btVec3Copy(witness, b);
	}
	else
	{
		if (witness)
		{
			btVec3Copy(witness, &d);
			btVec3Scale(witness, t);
			ccdVec3Add(witness, x0);
			dist = ccdVec3Dist2(witness, P);
		}
		else
		{
			// recycling variables
			btVec3Scale(&d, t);
			ccdVec3Add(&d, &a);
			dist = btVec3Dot(&d, &d);
		}
	}

	return dist;
}

btScalar btVec3PointTriDist2(const btVector3 *P,
							 const btVector3 *x0, const btVector3 *B,
							 const btVector3 *C,
							 btVector3 *witness)
{
	// Computation comes from analytic expression for triangle (x0, B, C)
	//      T(s, t) = x0 + s.d1 + t.d2, where d1 = B - x0 and d2 = C - x0 and
	// Then equation for distance is:
	//      D(s, t) = | T(s, t) - P |^2
	// This leads to minimization of quadratic function of two variables.
	// The solution from is taken only if s is between 0 and 1, t is
	// between 0 and 1 and t + s < 1, otherwise distance from segment is
	// computed.

	btVector3 d1, d2, a;
	double u, v, w, p, q, r;
	double s, t, dist, dist2;
	btVector3 witness2;

	btVec3Sub2(&d1, B, x0);
	btVec3Sub2(&d2, C, x0);
	btVec3Sub2(&a, x0, P);

	u = btVec3Dot(&a, &a);
	v = btVec3Dot(&d1, &d1);
	w = btVec3Dot(&d2, &d2);
	p = btVec3Dot(&a, &d1);
	q = btVec3Dot(&a, &d2);
	r = btVec3Dot(&d1, &d2);

	s = (q * r - w * p) / (w * v - r * r);
	t = (-s * r - q) / w;

	if ((btFuzzyZero(s) || s > btScalar(0)) && (ccdEq(s, btScalar(1)) || s < btScalar(1)) && (btFuzzyZero(t) || t > btScalar(0)) && (ccdEq(t, btScalar(1)) || t < btScalar(1)) && (ccdEq(t + s, btScalar(1)) || t + s < btScalar(1)))
	{
		if (witness)
		{
			btVec3Scale(&d1, s);
			btVec3Scale(&d2, t);
			btVec3Copy(witness, x0);
			ccdVec3Add(witness, &d1);
			ccdVec3Add(witness, &d2);

			dist = ccdVec3Dist2(witness, P);
		}
		else
		{
			dist = s * s * v;
			dist += t * t * w;
			dist += btScalar(2.) * s * t * r;
			dist += btScalar(2.) * s * p;
			dist += btScalar(2.) * t * q;
			dist += u;
		}
	}
	else
	{
		dist = btVec3PointSegmentDist2(P, x0, B, witness);

		dist2 = btVec3PointSegmentDist2(P, x0, C, &witness2);
		if (dist2 < dist)
		{
			dist = dist2;
			if (witness)
				btVec3Copy(witness, &witness2);
		}

		dist2 = btVec3PointSegmentDist2(P, B, C, &witness2);
		if (dist2 < dist)
		{
			dist = dist2;
			if (witness)
				btVec3Copy(witness, &witness2);
		}
	}

	return dist;
}

static int btDoSimplex2(btSimplex *simplex, btVector3 *dir)
{
	const btSupportVector *A, *B;
	btVector3 AB, AO, tmp;
	btScalar dot;

	// get last added as A
	A = ccdSimplexLast(simplex);
	// get the other point
	B = btSimplexPoint(simplex, 0);
	// compute AB oriented segment
	btVec3Sub2(&AB, &B->v, &A->v);
	// compute AO vector
	btVec3Copy(&AO, &A->v);
	btVec3Scale(&AO, -btScalar(1));

	// dot product AB . AO
	dot = btVec3Dot(&AB, &AO);

	// check if origin doesn't lie on AB segment
	btVec3Cross(&tmp, &AB, &AO);
	if (btFuzzyZero(btVec3Dot(&tmp, &tmp)) && dot > btScalar(0))
	{
		return 1;
	}

	// check if origin is in area where AB segment is
	if (btFuzzyZero(dot) || dot < btScalar(0))
	{
		// origin is in outside are of A
		btSimplexSet(simplex, 0, A);
		btSimplexSetSize(simplex, 1);
		btVec3Copy(dir, &AO);
	}
	else
	{
		// origin is in area where AB segment is

		// keep simplex untouched and set direction to
		// AB x AO x AB
		btTripleCross(&AB, &AO, &AB, dir);
	}

	return 0;
}

static int btDoSimplex3(btSimplex *simplex, btVector3 *dir)
{
	const btSupportVector *A, *B, *C;
	btVector3 AO, AB, AC, ABC, tmp;<--- Shadowed declaration
	btScalar dot, dist;

	// get last added as A
	A = ccdSimplexLast(simplex);
	// get the other points
	B = btSimplexPoint(simplex, 1);
	C = btSimplexPoint(simplex, 0);

	// check touching contact
	dist = btVec3PointTriDist2(&ccd_vec3_origin, &A->v, &B->v, &C->v, 0);
	if (btFuzzyZero(dist))
	{
		return 1;
	}

	// check if triangle is really triangle (has area > 0)
	// if not simplex can't be expanded and thus no itersection is found
	if (btVec3Eq(&A->v, &B->v) || btVec3Eq(&A->v, &C->v))
	{
		return -1;
	}

	// compute AO vector
	btVec3Copy(&AO, &A->v);
	btVec3Scale(&AO, -btScalar(1));

	// compute AB and AC segments and ABC vector (perpendircular to triangle)
	btVec3Sub2(&AB, &B->v, &A->v);
	btVec3Sub2(&AC, &C->v, &A->v);
	btVec3Cross(&ABC, &AB, &AC);

	btVec3Cross(&tmp, &ABC, &AC);
	dot = btVec3Dot(&tmp, &AO);
	if (btFuzzyZero(dot) || dot > btScalar(0))
	{
		dot = btVec3Dot(&AC, &AO);
		if (btFuzzyZero(dot) || dot > btScalar(0))
		{
			// C is already in place
			btSimplexSet(simplex, 1, A);
			btSimplexSetSize(simplex, 2);
			btTripleCross(&AC, &AO, &AC, dir);
		}
		else
		{
			dot = btVec3Dot(&AB, &AO);
			if (btFuzzyZero(dot) || dot > btScalar(0))
			{
				btSimplexSet(simplex, 0, B);
				btSimplexSet(simplex, 1, A);
				btSimplexSetSize(simplex, 2);
				btTripleCross(&AB, &AO, &AB, dir);
			}
			else
			{
				btSimplexSet(simplex, 0, A);
				btSimplexSetSize(simplex, 1);
				btVec3Copy(dir, &AO);
			}
		}
	}
	else
	{
		btVec3Cross(&tmp, &AB, &ABC);
		dot = btVec3Dot(&tmp, &AO);
		if (btFuzzyZero(dot) || dot > btScalar(0))
		{
			dot = btVec3Dot(&AB, &AO);
			if (btFuzzyZero(dot) || dot > btScalar(0))
			{
				btSimplexSet(simplex, 0, B);
				btSimplexSet(simplex, 1, A);
				btSimplexSetSize(simplex, 2);
				btTripleCross(&AB, &AO, &AB, dir);
			}
			else
			{
				btSimplexSet(simplex, 0, A);
				btSimplexSetSize(simplex, 1);
				btVec3Copy(dir, &AO);
			}
		}
		else
		{
			dot = btVec3Dot(&ABC, &AO);
			if (btFuzzyZero(dot) || dot > btScalar(0))
			{
				btVec3Copy(dir, &ABC);
			}
			else
			{
				btSupportVector tmp;<--- Shadow variable
				btSupportCopy(&tmp, C);
				btSimplexSet(simplex, 0, B);
				btSimplexSet(simplex, 1, &tmp);

				btVec3Copy(dir, &ABC);
				btVec3Scale(dir, -btScalar(1));
			}
		}
	}

	return 0;
}

static int btDoSimplex4(btSimplex *simplex, btVector3 *dir)
{
	const btSupportVector *A, *B, *C, *D;
	btVector3 AO, AB, AC, AD, ABC, ACD, ADB;
	int B_on_ACD, C_on_ADB, D_on_ABC;
	int AB_O, AC_O, AD_O;
	btScalar dist;

	// get last added as A
	A = ccdSimplexLast(simplex);
	// get the other points
	B = btSimplexPoint(simplex, 2);
	C = btSimplexPoint(simplex, 1);
	D = btSimplexPoint(simplex, 0);

	// check if tetrahedron is really tetrahedron (has volume > 0)
	// if it is not simplex can't be expanded and thus no intersection is
	// found
	dist = btVec3PointTriDist2(&A->v, &B->v, &C->v, &D->v, 0);
	if (btFuzzyZero(dist))
	{
		return -1;
	}

	// check if origin lies on some of tetrahedron's face - if so objects
	// intersect
	dist = btVec3PointTriDist2(&ccd_vec3_origin, &A->v, &B->v, &C->v, 0);
	if (btFuzzyZero(dist))
		return 1;
	dist = btVec3PointTriDist2(&ccd_vec3_origin, &A->v, &C->v, &D->v, 0);
	if (btFuzzyZero(dist))
		return 1;
	dist = btVec3PointTriDist2(&ccd_vec3_origin, &A->v, &B->v, &D->v, 0);
	if (btFuzzyZero(dist))
		return 1;
	dist = btVec3PointTriDist2(&ccd_vec3_origin, &B->v, &C->v, &D->v, 0);
	if (btFuzzyZero(dist))
		return 1;

	// compute AO, AB, AC, AD segments and ABC, ACD, ADB normal vectors
	btVec3Copy(&AO, &A->v);
	btVec3Scale(&AO, -btScalar(1));
	btVec3Sub2(&AB, &B->v, &A->v);
	btVec3Sub2(&AC, &C->v, &A->v);
	btVec3Sub2(&AD, &D->v, &A->v);
	btVec3Cross(&ABC, &AB, &AC);
	btVec3Cross(&ACD, &AC, &AD);
	btVec3Cross(&ADB, &AD, &AB);

	// side (positive or negative) of B, C, D relative to planes ACD, ADB
	// and ABC respectively
	B_on_ACD = ccdSign(btVec3Dot(&ACD, &AB));
	C_on_ADB = ccdSign(btVec3Dot(&ADB, &AC));
	D_on_ABC = ccdSign(btVec3Dot(&ABC, &AD));

	// whether origin is on same side of ACD, ADB, ABC as B, C, D
	// respectively
	AB_O = ccdSign(btVec3Dot(&ACD, &AO)) == B_on_ACD;
	AC_O = ccdSign(btVec3Dot(&ADB, &AO)) == C_on_ADB;
	AD_O = ccdSign(btVec3Dot(&ABC, &AO)) == D_on_ABC;

	if (AB_O && AC_O && AD_O)
	{
		// origin is in tetrahedron
		return 1;
		// rearrange simplex to triangle and call btDoSimplex3()
	}
	else if (!AB_O)
	{
		// B is farthest from the origin among all of the tetrahedron's
		// points, so remove it from the list and go on with the triangle
		// case

		// D and C are in place
		btSimplexSet(simplex, 2, A);
		btSimplexSetSize(simplex, 3);
	}
	else if (!AC_O)
	{
		// C is farthest
		btSimplexSet(simplex, 1, D);
		btSimplexSet(simplex, 0, B);
		btSimplexSet(simplex, 2, A);
		btSimplexSetSize(simplex, 3);
	}
	else
	{  // (!AD_O)
		btSimplexSet(simplex, 0, C);
		btSimplexSet(simplex, 1, B);
		btSimplexSet(simplex, 2, A);
		btSimplexSetSize(simplex, 3);
	}

	return btDoSimplex3(simplex, dir);
}

static int btDoSimplex(btSimplex *simplex, btVector3 *dir)
{
	if (btSimplexSize(simplex) == 2)
	{
		// simplex contains segment only one segment
		return btDoSimplex2(simplex, dir);
	}
	else if (btSimplexSize(simplex) == 3)
	{
		// simplex contains triangle
		return btDoSimplex3(simplex, dir);
	}
	else
	{  // btSimplexSize(simplex) == 4
		// tetrahedron - this is the only shape which can encapsule origin
		// so btDoSimplex4() also contains test on it
		return btDoSimplex4(simplex, dir);
	}
}

#ifdef __SPU__
void btGjkPairDetector::getClosestPointsNonVirtual(const ClosestPointInput &input, Result &output, class btIDebugDraw *debugDraw)
#else
void btGjkPairDetector::getClosestPointsNonVirtual(const ClosestPointInput &input, Result &output, class btIDebugDraw *debugDraw)
#endif
{
	m_cachedSeparatingDistance = 0.f;

	btScalar distance = btScalar(0.);
	btVector3 normalInB(btScalar(0.), btScalar(0.), btScalar(0.));

	btVector3 pointOnA, pointOnB;
	btTransform localTransA = input.m_transformA;
	btTransform localTransB = input.m_transformB;
	btVector3 positionOffset = (localTransA.getOrigin() + localTransB.getOrigin()) * btScalar(0.5);
	localTransA.getOrigin() -= positionOffset;
	localTransB.getOrigin() -= positionOffset;

	bool check2d = m_minkowskiA->isConvex2d() && m_minkowskiB->isConvex2d();

	btScalar marginA = m_marginA;
	btScalar marginB = m_marginB;


	//for CCD we don't use margins
	if (m_ignoreMargin)
	{
		marginA = btScalar(0.);
		marginB = btScalar(0.);
	}

	m_curIter = 0;
	int gGjkMaxIter = 1000;  //this is to catch invalid input, perhaps check for #NaN?
	m_cachedSeparatingAxis.setValue(0, 1, 0);

	bool isValid = false;
	bool checkSimplex = false;
	bool checkPenetration = true;
	m_degenerateSimplex = 0;

	m_lastUsedMethod = -1;
	int status = -2;
	btVector3 orgNormalInB(0, 0, 0);
	btScalar margin = marginA + marginB;

	//we add a separate implementation to check if the convex shapes intersect
	//See also "Real-time Collision Detection with Implicit Objects" by Leif Olvang
	//Todo: integrate the simplex penetration check directly inside the Bullet btVoronoiSimplexSolver
	//and remove this temporary code from libCCD
	//this fixes issue https://github.com/bulletphysics/bullet3/issues/1703
	//note, for large differences in shapes, use double precision build!
	{
		btScalar squaredDistance = BT_LARGE_FLOAT;
		btScalar delta = btScalar(0.);<--- Shadowed declaration<--- Variable 'delta' is assigned a value that is never used.

		btSimplex simplex1;
		btSimplex *simplex = &simplex1;
		btSimplexInit(simplex);

		btVector3 dir(1, 0, 0);

		{
			btVector3 lastSupV;
			btVector3 supAworld;
			btVector3 supBworld;
			btComputeSupport(m_minkowskiA, localTransA, m_minkowskiB, localTransB, dir, check2d, supAworld, supBworld, lastSupV);

			btSupportVector last;
			last.v = lastSupV;
			last.v1 = supAworld;
			last.v2 = supBworld;

			btSimplexAdd(simplex, &last);

			dir = -lastSupV;

			// start iterations
			for (int iterations = 0; iterations < gGjkMaxIter; iterations++)
			{
				// obtain support point
				btComputeSupport(m_minkowskiA, localTransA, m_minkowskiB, localTransB, dir, check2d, supAworld, supBworld, lastSupV);

				// check if farthest point in Minkowski difference in direction dir
				// isn't somewhere before origin (the test on negative dot product)
				// - because if it is, objects are not intersecting at all.
				btScalar delta = lastSupV.dot(dir);<--- Shadow variable
				if (delta < 0)
				{
					//no intersection, besides margin
					status = -1;
					break;
				}

				// add last support vector to simplex
				last.v = lastSupV;
				last.v1 = supAworld;
				last.v2 = supBworld;

				btSimplexAdd(simplex, &last);

				// if btDoSimplex returns 1 if objects intersect, -1 if objects don't
				// intersect and 0 if algorithm should continue

				btVector3 newDir;
				int do_simplex_res = btDoSimplex(simplex, &dir);

				if (do_simplex_res == 1)
				{
					status = 0;  // intersection found
					break;
				}
				else if (do_simplex_res == -1)
				{
					// intersection not found
					status = -1;
					break;
				}

				if (btFuzzyZero(btVec3Dot(&dir, &dir)))
				{
					// intersection not found
					status = -1;
				}

				if (dir.length2() < SIMD_EPSILON)
				{
					//no intersection, besides margin
					status = -1;
					break;
				}

				if (dir.fuzzyZero())
				{
					// intersection not found
					status = -1;
					break;
				}
			}
		}

		m_simplexSolver->reset();
		if (status == 0)
		{
			//status = 0;
			//printf("Intersect!\n");
		}

		if (status == -1)
		{
			//printf("not intersect\n");
		}
		//printf("dir=%f,%f,%f\n",dir[0],dir[1],dir[2]);
		if (1)
		{
			for (;;)
			//while (true)
			{
				btVector3 separatingAxisInA = (-m_cachedSeparatingAxis) * localTransA.getBasis();
				btVector3 separatingAxisInB = m_cachedSeparatingAxis * localTransB.getBasis();

				btVector3 pInA = m_minkowskiA->localGetSupportVertexWithoutMarginNonVirtual(separatingAxisInA);
				btVector3 qInB = m_minkowskiB->localGetSupportVertexWithoutMarginNonVirtual(separatingAxisInB);

				btVector3 pWorld = localTransA(pInA);
				btVector3 qWorld = localTransB(qInB);

				if (check2d)
				{
					pWorld[2] = 0.f;
					qWorld[2] = 0.f;
				}

				btVector3 w = pWorld - qWorld;
				delta = m_cachedSeparatingAxis.dot(w);

				// potential exit, they don't overlap
				if ((delta > btScalar(0.0)) && (delta * delta > squaredDistance * input.m_maximumDistanceSquared))
				{
					m_degenerateSimplex = 10;
					checkSimplex = true;
					//checkPenetration = false;
					break;
				}

				//exit 0: the new point is already in the simplex, or we didn't come any closer
				if (m_simplexSolver->inSimplex(w))
				{
					m_degenerateSimplex = 1;
					checkSimplex = true;
					break;
				}
				// are we getting any closer ?
				btScalar f0 = squaredDistance - delta;
				btScalar f1 = squaredDistance * REL_ERROR2;

				if (f0 <= f1)
				{
					if (f0 <= btScalar(0.))
					{
						m_degenerateSimplex = 2;
					}
					else
					{
						m_degenerateSimplex = 11;
					}
					checkSimplex = true;
					break;
				}

				//add current vertex to simplex
				m_simplexSolver->addVertex(w, pWorld, qWorld);
				btVector3 newCachedSeparatingAxis;

				//calculate the closest point to the origin (update vector v)
				if (!m_simplexSolver->closest(newCachedSeparatingAxis))
				{
					m_degenerateSimplex = 3;
					checkSimplex = true;
					break;
				}

				if (newCachedSeparatingAxis.length2() < REL_ERROR2)
				{
					m_cachedSeparatingAxis = newCachedSeparatingAxis;
					m_degenerateSimplex = 6;
					checkSimplex = true;
					break;
				}

				btScalar previousSquaredDistance = squaredDistance;
				squaredDistance = newCachedSeparatingAxis.length2();
#if 0
				///warning: this termination condition leads to some problems in 2d test case see Bullet/Demos/Box2dDemo
				if (squaredDistance > previousSquaredDistance)
				{
					m_degenerateSimplex = 7;
					squaredDistance = previousSquaredDistance;
					checkSimplex = false;
					break;
				}
#endif  //

				//redundant m_simplexSolver->compute_points(pointOnA, pointOnB);

				//are we getting any closer ?
				if (previousSquaredDistance - squaredDistance <= SIMD_EPSILON * previousSquaredDistance)
				{
					//				m_simplexSolver->backup_closest(m_cachedSeparatingAxis);
					checkSimplex = true;
					m_degenerateSimplex = 12;

					break;
				}

				m_cachedSeparatingAxis = newCachedSeparatingAxis;

				//degeneracy, this is typically due to invalid/uninitialized worldtransforms for a btCollisionObject
				if (m_curIter++ > gGjkMaxIter)
				{
#if defined(DEBUG) || defined(_DEBUG)

					printf("btGjkPairDetector maxIter exceeded:%i\n", m_curIter);
					printf("sepAxis=(%f,%f,%f), squaredDistance = %f, shapeTypeA=%i,shapeTypeB=%i\n",
						   m_cachedSeparatingAxis.getX(),
						   m_cachedSeparatingAxis.getY(),
						   m_cachedSeparatingAxis.getZ(),
						   squaredDistance,
						   m_minkowskiA->getShapeType(),
						   m_minkowskiB->getShapeType());

#endif
					break;
				}

				bool check = (!m_simplexSolver->fullSimplex());
				//bool check = (!m_simplexSolver->fullSimplex() && squaredDistance > SIMD_EPSILON * m_simplexSolver->maxVertex());

				if (!check)
				{
					//do we need this backup_closest here ?
					//				m_simplexSolver->backup_closest(m_cachedSeparatingAxis);
					m_degenerateSimplex = 13;
					break;
				}
			}

			if (checkSimplex)
			{
				m_simplexSolver->compute_points(pointOnA, pointOnB);
				normalInB = m_cachedSeparatingAxis;

				btScalar lenSqr = m_cachedSeparatingAxis.length2();

				//valid normal
				if (lenSqr < REL_ERROR2)
				{
					m_degenerateSimplex = 5;
				}
				if (lenSqr > SIMD_EPSILON * SIMD_EPSILON)
				{
					btScalar rlen = btScalar(1.) / btSqrt(lenSqr);
					normalInB *= rlen;  //normalize

					btScalar s = btSqrt(squaredDistance);

					btAssert(s > btScalar(0.0));
					pointOnA -= m_cachedSeparatingAxis * (marginA / s);
					pointOnB += m_cachedSeparatingAxis * (marginB / s);
					distance = ((btScalar(1.) / rlen) - margin);
					isValid = true;
					orgNormalInB = normalInB;

					m_lastUsedMethod = 1;
				}
				else
				{
					m_lastUsedMethod = 2;
				}
			}
		}

		bool catchDegeneratePenetrationCase =
			(m_catchDegeneracies && m_penetrationDepthSolver && m_degenerateSimplex && ((distance + margin) < gGjkEpaPenetrationTolerance));

		//if (checkPenetration && !isValid)
		if ((checkPenetration && (!isValid || catchDegeneratePenetrationCase)) || (status == 0))
		{
			//penetration case

			//if there is no way to handle penetrations, bail out
			if (m_penetrationDepthSolver)
			{
				// Penetration depth case.
				btVector3 tmpPointOnA, tmpPointOnB;

				m_cachedSeparatingAxis.setZero();

				bool isValid2 = m_penetrationDepthSolver->calcPenDepth(
					*m_simplexSolver,
					m_minkowskiA, m_minkowskiB,
					localTransA, localTransB,
					m_cachedSeparatingAxis, tmpPointOnA, tmpPointOnB,
					debugDraw);

				if (m_cachedSeparatingAxis.length2())
				{
					if (isValid2)
					{
						btVector3 tmpNormalInB = tmpPointOnB - tmpPointOnA;
						btScalar lenSqr = tmpNormalInB.length2();
						if (lenSqr <= (SIMD_EPSILON * SIMD_EPSILON))
						{
							tmpNormalInB = m_cachedSeparatingAxis;
							lenSqr = m_cachedSeparatingAxis.length2();
						}

						if (lenSqr > (SIMD_EPSILON * SIMD_EPSILON))
						{
							tmpNormalInB /= btSqrt(lenSqr);
							btScalar distance2 = -(tmpPointOnA - tmpPointOnB).length();
							m_lastUsedMethod = 3;
							//only replace valid penetrations when the result is deeper (check)
							if (!isValid || (distance2 < distance))
							{
								distance = distance2;
								pointOnA = tmpPointOnA;
								pointOnB = tmpPointOnB;
								normalInB = tmpNormalInB;
								isValid = true;
							}
							else
							{
								m_lastUsedMethod = 8;
							}
						}
						else
						{
							m_lastUsedMethod = 9;
						}
					}
					else

					{
						///this is another degenerate case, where the initial GJK calculation reports a degenerate case
						///EPA reports no penetration, and the second GJK (using the supporting vector without margin)
						///reports a valid positive distance. Use the results of the second GJK instead of failing.
						///thanks to Jacob.Langford for the reproduction case
						///http://code.google.com/p/bullet/issues/detail?id=250

						if (m_cachedSeparatingAxis.length2() > btScalar(0.))
						{
							btScalar distance2 = (tmpPointOnA - tmpPointOnB).length() - margin;
							//only replace valid distances when the distance is less
							if (!isValid || (distance2 < distance))
							{
								distance = distance2;
								pointOnA = tmpPointOnA;
								pointOnB = tmpPointOnB;
								pointOnA -= m_cachedSeparatingAxis * marginA;
								pointOnB += m_cachedSeparatingAxis * marginB;
								normalInB = m_cachedSeparatingAxis;
								normalInB.normalize();

								isValid = true;
								m_lastUsedMethod = 6;
							}
							else
							{
								m_lastUsedMethod = 5;
							}
						}
					}
				}
				else
				{
					//printf("EPA didn't return a valid value\n");
				}
			}
		}
	}

	if (isValid && ((distance < 0) || (distance * distance < input.m_maximumDistanceSquared)))
	{
		m_cachedSeparatingAxis = normalInB;
		m_cachedSeparatingDistance = distance;
		if (1)
		{
			///todo: need to track down this EPA penetration solver degeneracy
			///the penetration solver reports penetration but the contact normal
			///connecting the contact points is pointing in the opposite direction
			///until then, detect the issue and revert the normal

			btScalar d2 = 0.f;
			{
				btVector3 separatingAxisInA = (-orgNormalInB) * localTransA.getBasis();
				btVector3 separatingAxisInB = orgNormalInB * localTransB.getBasis();

				btVector3 pInA = m_minkowskiA->localGetSupportVertexWithoutMarginNonVirtual(separatingAxisInA);
				btVector3 qInB = m_minkowskiB->localGetSupportVertexWithoutMarginNonVirtual(separatingAxisInB);

				btVector3 pWorld = localTransA(pInA);
				btVector3 qWorld = localTransB(qInB);
				btVector3 w = pWorld - qWorld;
				d2 = orgNormalInB.dot(w) - margin;
			}

			btScalar d1 = 0;
			{
				btVector3 separatingAxisInA = (normalInB)*localTransA.getBasis();
				btVector3 separatingAxisInB = -normalInB * localTransB.getBasis();

				btVector3 pInA = m_minkowskiA->localGetSupportVertexWithoutMarginNonVirtual(separatingAxisInA);
				btVector3 qInB = m_minkowskiB->localGetSupportVertexWithoutMarginNonVirtual(separatingAxisInB);

				btVector3 pWorld = localTransA(pInA);
				btVector3 qWorld = localTransB(qInB);
				btVector3 w = pWorld - qWorld;
				d1 = (-normalInB).dot(w) - margin;
			}
			btScalar d0 = 0.f;
			{
				btVector3 separatingAxisInA = (-normalInB) * input.m_transformA.getBasis();
				btVector3 separatingAxisInB = normalInB * input.m_transformB.getBasis();

				btVector3 pInA = m_minkowskiA->localGetSupportVertexWithoutMarginNonVirtual(separatingAxisInA);
				btVector3 qInB = m_minkowskiB->localGetSupportVertexWithoutMarginNonVirtual(separatingAxisInB);

				btVector3 pWorld = localTransA(pInA);
				btVector3 qWorld = localTransB(qInB);
				btVector3 w = pWorld - qWorld;
				d0 = normalInB.dot(w) - margin;
			}

			if (d1 > d0)
			{
				m_lastUsedMethod = 10;
				normalInB *= -1;
			}

			if (orgNormalInB.length2())
			{
				if (d2 > d0 && d2 > d1 && d2 > distance)
				{
					normalInB = orgNormalInB;
					distance = d2;
				}
			}
		}

		output.addContactPoint(
			normalInB,
			pointOnB + positionOffset,
			distance);
	}
	else
	{
		//printf("invalid gjk query\n");
	}
}