1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
/*************************************************************************/
/*  rendering_device_vulkan.h                                            */
/*************************************************************************/
/*                       This file is part of:                           */
/*                           GODOT ENGINE                                */
/*                      https://godotengine.org                          */
/*************************************************************************/
/* Copyright (c) 2007-2020 Juan Linietsky, Ariel Manzur.                 */
/* Copyright (c) 2014-2020 Godot Engine contributors (cf. AUTHORS.md).   */
/*                                                                       */
/* Permission is hereby granted, free of charge, to any person obtaining */
/* a copy of this software and associated documentation files (the       */
/* "Software"), to deal in the Software without restriction, including   */
/* without limitation the rights to use, copy, modify, merge, publish,   */
/* distribute, sublicense, and/or sell copies of the Software, and to    */
/* permit persons to whom the Software is furnished to do so, subject to */
/* the following conditions:                                             */
/*                                                                       */
/* The above copyright notice and this permission notice shall be        */
/* included in all copies or substantial portions of the Software.       */
/*                                                                       */
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,       */
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF    */
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY  */
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,  */
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE     */
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.                */
/*************************************************************************/

#ifndef RENDERING_DEVICE_VULKAN_H
#define RENDERING_DEVICE_VULKAN_H

#include "core/os/thread_safe.h"
#include "core/templates/oa_hash_map.h"
#include "core/templates/rid_owner.h"
#include "servers/rendering/rendering_device.h"

#ifdef DEBUG_ENABLED
#ifndef _DEBUG
#define _DEBUG
#endif
#endif
#include "vk_mem_alloc.h"

#include <vulkan/vulkan.h>

//todo:
//compute
//push constants
//views of texture slices

class VulkanContext;

class RenderingDeviceVulkan : public RenderingDevice {
	_THREAD_SAFE_CLASS_

	// Miscellaneous tables that map
	// our enums to enums used
	// by vulkan.

	VkPhysicalDeviceLimits limits;
	static const VkFormat vulkan_formats[DATA_FORMAT_MAX];
	static const char *named_formats[DATA_FORMAT_MAX];
	static const VkCompareOp compare_operators[COMPARE_OP_MAX];
	static const VkStencilOp stencil_operations[STENCIL_OP_MAX];
	static const VkSampleCountFlagBits rasterization_sample_count[TEXTURE_SAMPLES_MAX];
	static const VkLogicOp logic_operations[RenderingDevice::LOGIC_OP_MAX];
	static const VkBlendFactor blend_factors[RenderingDevice::BLEND_FACTOR_MAX];
	static const VkBlendOp blend_operations[RenderingDevice::BLEND_OP_MAX];
	static const VkSamplerAddressMode address_modes[SAMPLER_REPEAT_MODE_MAX];
	static const VkBorderColor sampler_border_colors[SAMPLER_BORDER_COLOR_MAX];
	static const VkImageType vulkan_image_type[TEXTURE_TYPE_MAX];

	// Functions used for format
	// validation, and ensures the
	// user passes valid data.

	static int get_format_vertex_size(DataFormat p_format);
	static uint32_t get_image_format_pixel_size(DataFormat p_format);
	static void get_compressed_image_format_block_dimensions(DataFormat p_format, uint32_t &r_w, uint32_t &r_h);
	uint32_t get_compressed_image_format_block_byte_size(DataFormat p_format);
	static uint32_t get_compressed_image_format_pixel_rshift(DataFormat p_format);
	static uint32_t get_image_format_required_size(DataFormat p_format, uint32_t p_width, uint32_t p_height, uint32_t p_depth, uint32_t p_mipmaps, uint32_t *r_blockw = nullptr, uint32_t *r_blockh = nullptr, uint32_t *r_depth = nullptr);
	static uint32_t get_image_required_mipmaps(uint32_t p_width, uint32_t p_height, uint32_t p_depth);
	static bool format_has_stencil(DataFormat p_format);

	/***************************/
	/**** ID INFRASTRUCTURE ****/
	/***************************/

	enum IDType {
		ID_TYPE_FRAMEBUFFER_FORMAT,
		ID_TYPE_VERTEX_FORMAT,
		ID_TYPE_DRAW_LIST,
		ID_TYPE_SPLIT_DRAW_LIST,
		ID_TYPE_COMPUTE_LIST,
		ID_TYPE_MAX,
		ID_BASE_SHIFT = 58 //5 bits for ID types
	};

	VkDevice device;

	Map<RID, Set<RID>> dependency_map; //IDs to IDs that depend on it
	Map<RID, Set<RID>> reverse_dependency_map; //same as above, but in reverse

	void _add_dependency(RID p_id, RID p_depends_on);
	void _free_dependencies(RID p_id);

	/*****************/
	/**** TEXTURE ****/
	/*****************/

	// In Vulkan, the concept of textures does not exist,
	// instead there is the image (the memory pretty much,
	// the view (how the memory is interpreted) and the
	// sampler (how it's sampled from the shader).
	//
	// Texture here includes the first two stages, but
	// It's possible to create textures sharing the image
	// but with different views. The main use case for this
	// is textures that can be read as both SRGB/Linear,
	// or slices of a texture (a mipmap, a layer, a 3D slice)
	// for a framebuffer to render into it.

	struct Texture {
		VkImage image;
		VmaAllocation allocation;
		VmaAllocationInfo allocation_info;
		VkImageView view;

		TextureType type;
		DataFormat format;
		TextureSamples samples;
		uint32_t width;
		uint32_t height;
		uint32_t depth;
		uint32_t layers;
		uint32_t mipmaps;
		uint32_t usage_flags;
		uint32_t base_mipmap;
		uint32_t base_layer;

		Vector<DataFormat> allowed_shared_formats;

		VkImageLayout layout;

		uint32_t read_aspect_mask;
		uint32_t barrier_aspect_mask;
		bool bound; //bound to framebffer
		RID owner;
	};

	RID_Owner<Texture, true> texture_owner;
	uint32_t texture_upload_region_size_px;

	Vector<uint8_t> _texture_get_data_from_image(Texture *tex, VkImage p_image, VmaAllocation p_allocation, uint32_t p_layer, bool p_2d = false);

	/*****************/
	/**** SAMPLER ****/
	/*****************/

	RID_Owner<VkSampler> sampler_owner;

	/***************************/
	/**** BUFFER MANAGEMENT ****/
	/***************************/

	// These are temporary buffers on CPU memory that hold
	// the information until the CPU fetches it and places it
	// either on GPU buffers, or images (textures). It ensures
	// updates are properly synchronized with whathever the
	// GPU is doing.
	//
	// The logic here is as follows, only 3 of these
	// blocks are created at the beginning (one per frame)
	// they can each belong to a frame (assigned to current when
	// used) and they can only be reused after the same frame is
	// recycled.
	//
	// When CPU requires to allocate more than what is available,
	// more of these buffers are created. If a limit is reached,
	// then a fence will ensure will wait for blocks allocated
	// in previous frames are processed. If that fails, then
	// another fence will ensure everything pending for the current
	// frame is processed (effectively stalling).
	//
	// See the comments in the code to understand better how it works.

	struct StagingBufferBlock {
		VkBuffer buffer;
		VmaAllocation allocation;
		uint64_t frame_used;
		uint32_t fill_amount;
	};

	Vector<StagingBufferBlock> staging_buffer_blocks;
	int staging_buffer_current;
	uint32_t staging_buffer_block_size;
	uint64_t staging_buffer_max_size;
	bool staging_buffer_used;

	Error _staging_buffer_allocate(uint32_t p_amount, uint32_t p_required_align, uint32_t &r_alloc_offset, uint32_t &r_alloc_size, bool p_can_segment = true, bool p_on_draw_command_buffer = false);
	Error _insert_staging_block();

	struct Buffer {
		uint32_t size;
		uint32_t usage;
		VkBuffer buffer;
		VmaAllocation allocation;
		VkDescriptorBufferInfo buffer_info; //used for binding
		Buffer() {
			size = 0;
			usage = 0;
			buffer = VK_NULL_HANDLE;
			allocation = nullptr;
		}
	};

	Error _buffer_allocate(Buffer *p_buffer, uint32_t p_size, uint32_t p_usage, VmaMemoryUsage p_mapping);
	Error _buffer_free(Buffer *p_buffer);
	Error _buffer_update(Buffer *p_buffer, size_t p_offset, const uint8_t *p_data, size_t p_data_size, bool p_use_draw_command_buffer = false, uint32_t p_required_align = 32);

	void _full_barrier(bool p_sync_with_draw);
	void _memory_barrier(VkPipelineStageFlags p_src_stage_mask, VkPipelineStageFlags p_dst_stage_mask, VkAccessFlags p_src_access, VkAccessFlags p_dst_sccess, bool p_sync_with_draw);
	void _buffer_memory_barrier(VkBuffer buffer, uint64_t p_from, uint64_t p_size, VkPipelineStageFlags p_src_stage_mask, VkPipelineStageFlags p_dst_stage_mask, VkAccessFlags p_src_access, VkAccessFlags p_dst_sccess, bool p_sync_with_draw);

	/*********************/
	/**** FRAMEBUFFER ****/
	/*********************/

	// In Vulkan, framebuffers work similar to how they
	// do in OpenGL, with the exception that
	// the "format" (vkRenderPass) is not dynamic
	// and must be more or less the same as the one
	// used for the render pipelines.

	struct FramebufferFormatKey {
		Size2i empty_size;
		Vector<AttachmentFormat> attachments;
		bool operator<(const FramebufferFormatKey &p_key) const {
			if (empty_size != p_key.empty_size) {
				return empty_size < p_key.empty_size;
			}

			int as = attachments.size();
			int bs = p_key.attachments.size();
			if (as != bs) {
				return as < bs;
			}

			const AttachmentFormat *af_a = attachments.ptr();
			const AttachmentFormat *af_b = p_key.attachments.ptr();
			for (int i = 0; i < as; i++) {
				const AttachmentFormat &a = af_a[i];
				const AttachmentFormat &b = af_b[i];
				if (a.format != b.format) {
					return a.format < b.format;
				}
				if (a.samples != b.samples) {
					return a.samples < b.samples;
				}
				if (a.usage_flags != b.usage_flags) {
					return a.usage_flags < b.usage_flags;
				}
			}

			return false; //equal
		}
	};

	VkRenderPass _render_pass_create(const Vector<AttachmentFormat> &p_format, InitialAction p_initial_action, FinalAction p_final_action, InitialAction p_initial_depth_action, FinalAction p_final_depthcolor_action, int *r_color_attachment_count = nullptr);

	// This is a cache and it's never freed, it ensures
	// IDs for a given format are always unique.
	Map<FramebufferFormatKey, FramebufferFormatID> framebuffer_format_cache;
	struct FramebufferFormat {
		const Map<FramebufferFormatKey, FramebufferFormatID>::Element *E;
		VkRenderPass render_pass; //here for constructing shaders, never used, see section (7.2. Render Pass Compatibility from Vulkan spec)
		int color_attachments; //used for pipeline validation
		TextureSamples samples;
	};

	Map<FramebufferFormatID, FramebufferFormat> framebuffer_formats;

	struct Framebuffer {
		FramebufferFormatID format_id;
		struct VersionKey {
			InitialAction initial_color_action;
			FinalAction final_color_action;
			InitialAction initial_depth_action;
			FinalAction final_depth_action;
			bool operator<(const VersionKey &p_key) const {
				if (initial_color_action == p_key.initial_color_action) {
					if (final_color_action == p_key.final_color_action) {
						if (initial_depth_action == p_key.initial_depth_action) {
							return final_depth_action < p_key.final_depth_action;
						} else {
							return initial_depth_action < p_key.initial_depth_action;
						}
					} else {
						return final_color_action < p_key.final_color_action;
					}
				} else {
					return initial_color_action < p_key.initial_color_action;
				}
			}
		};

		uint32_t storage_mask;
		Vector<RID> texture_ids;

		struct Version {
			VkFramebuffer framebuffer;
			VkRenderPass render_pass; //this one is owned
		};

		Map<VersionKey, Version> framebuffers;
		Size2 size;
	};

	RID_Owner<Framebuffer, true> framebuffer_owner;

	/***********************/
	/**** VERTEX BUFFER ****/
	/***********************/

	// Vertex buffers in Vulkan are similar to how
	// they work in OpenGL, except that instead of
	// an attribute index, there is a buffer binding
	// index (for binding the buffers in real-time)
	// and a location index (what is used in the shader).
	//
	// This mapping is done here internally, and it's not
	// exposed.

	RID_Owner<Buffer, true> vertex_buffer_owner;

	struct VertexDescriptionKey {
		Vector<VertexAttribute> vertex_formats;
		bool operator==(const VertexDescriptionKey &p_key) const {
			int vdc = vertex_formats.size();
			int vdck = p_key.vertex_formats.size();

			if (vdc != vdck) {
				return false;
			} else {
				const VertexAttribute *a_ptr = vertex_formats.ptr();
				const VertexAttribute *b_ptr = p_key.vertex_formats.ptr();
				for (int i = 0; i < vdc; i++) {
					const VertexAttribute &a = a_ptr[i];
					const VertexAttribute &b = b_ptr[i];

					if (a.location != b.location) {
						return false;
					}
					if (a.offset != b.offset) {
						return false;
					}
					if (a.format != b.format) {
						return false;
					}
					if (a.stride != b.stride) {
						return false;
					}
					if (a.frequency != b.frequency) {
						return false;
					}
				}
				return true; //they are equal
			}
		}

		uint32_t hash() const {
			int vdc = vertex_formats.size();
			uint32_t h = hash_djb2_one_32(vdc);
			const VertexAttribute *ptr = vertex_formats.ptr();
			for (int i = 0; i < vdc; i++) {
				const VertexAttribute &vd = ptr[i];
				h = hash_djb2_one_32(vd.location, h);
				h = hash_djb2_one_32(vd.offset, h);
				h = hash_djb2_one_32(vd.format, h);
				h = hash_djb2_one_32(vd.stride, h);
				h = hash_djb2_one_32(vd.frequency, h);
			}
			return h;
		}
	};

	struct VertexDescriptionHash {
		static _FORCE_INLINE_ uint32_t hash(const VertexDescriptionKey &p_key) {
			return p_key.hash();
		}
	};

	// This is a cache and it's never freed, it ensures that
	// ID used for a specific format always remain the same.
	HashMap<VertexDescriptionKey, VertexFormatID, VertexDescriptionHash> vertex_format_cache;

	struct VertexDescriptionCache {
		Vector<VertexAttribute> vertex_formats;
		VkVertexInputBindingDescription *bindings;
		VkVertexInputAttributeDescription *attributes;
		VkPipelineVertexInputStateCreateInfo create_info;
	};

	Map<VertexFormatID, VertexDescriptionCache> vertex_formats;

	struct VertexArray {
		RID buffer;
		VertexFormatID description;
		int vertex_count;
		uint32_t max_instances_allowed;

		Vector<VkBuffer> buffers; //not owned, just referenced
		Vector<VkDeviceSize> offsets;
	};

	RID_Owner<VertexArray, true> vertex_array_owner;

	struct IndexBuffer : public Buffer {
		uint32_t max_index; //used for validation
		uint32_t index_count;
		VkIndexType index_type;
		bool supports_restart_indices;
	};

	RID_Owner<IndexBuffer, true> index_buffer_owner;

	struct IndexArray {
		uint32_t max_index; //remember the maximum index here too, for validation
		VkBuffer buffer; //not owned, inherited from index buffer
		uint32_t offset;
		uint32_t indices;
		VkIndexType index_type;
		bool supports_restart_indices;
	};

	RID_Owner<IndexArray, true> index_array_owner;

	/****************/
	/**** SHADER ****/
	/****************/

	// Vulkan specifies a really complex behavior for the application
	// in order to tell when descriptor sets need to be re-bound (or not).
	// "When binding a descriptor set (see Descriptor Set Binding) to set
	//  number N, if the previously bound descriptor sets for sets zero
	//  through N-1 were all bound using compatible pipeline layouts,
	//  then performing this binding does not disturb any of the lower numbered sets.
	//  If, additionally, the previous bound descriptor set for set N was
	//  bound using a pipeline layout compatible for set N, then the bindings
	//  in sets numbered greater than N are also not disturbed."
	// As a result, we need to figure out quickly when something is no longer "compatible".
	// in order to avoid costly rebinds.

	enum {
		MAX_UNIFORM_SETS = 16
	};

	struct UniformInfo {
		UniformType type;
		int binding;
		uint32_t stages;
		int length; //size of arrays (in total elements), or ubos (in bytes * total elements)

		bool operator!=(const UniformInfo &p_info) const {
			return (binding != p_info.binding || type != p_info.type || stages != p_info.stages || length != p_info.length);
		}

		bool operator<(const UniformInfo &p_info) const {
			if (binding != p_info.binding) {
				return binding < p_info.binding;
			}
			if (type != p_info.type) {
				return type < p_info.type;
			}
			if (stages != p_info.stages) {
				return stages < p_info.stages;
			}
			return length < p_info.length;
		}
	};

	struct UniformSetFormat {
		Vector<UniformInfo> uniform_info;
		bool operator<(const UniformSetFormat &p_format) const {
			uint32_t size = uniform_info.size();
			uint32_t psize = p_format.uniform_info.size();

			if (size != psize) {
				return size < psize;
			}

			const UniformInfo *infoptr = uniform_info.ptr();
			const UniformInfo *pinfoptr = p_format.uniform_info.ptr();

			for (uint32_t i = 0; i < size; i++) {
				if (infoptr[i] != pinfoptr[i]) {
					return infoptr[i] < pinfoptr[i];
				}
			}

			return false;
		}
	};

	// Always grows, never shrinks, ensuring unique IDs, but we assume
	// the amount of formats will never be a problem, as the amount of shaders
	// in a game is limited.
	Map<UniformSetFormat, uint32_t> uniform_set_format_cache;

	// Shaders in Vulkan are just pretty much
	// precompiled blocks of SPIR-V bytecode. They
	// are most likely not really compiled to host
	// assembly until a pipeline is created.
	//
	// When supplying the shaders, this implementation
	// will use the reflection abilities of glslang to
	// understand and cache everything required to
	// create and use the descriptor sets (Vulkan's
	// biggest pain).
	//
	// Additionally, hashes are created for every set
	// to do quick validation and ensuring the user
	// does not submit something invalid.

	struct Shader {
		struct Set {
			Vector<UniformInfo> uniform_info;
			VkDescriptorSetLayout descriptor_set_layout;
		};

		uint32_t vertex_input_mask; //inputs used, this is mostly for validation
		int fragment_outputs;

		struct PushConstant {
			uint32_t push_constant_size;
			uint32_t push_constants_vk_stage;
		};

		PushConstant push_constant;

		bool is_compute = false;
		int max_output;
		Vector<Set> sets;
		Vector<uint32_t> set_formats;
		Vector<VkPipelineShaderStageCreateInfo> pipeline_stages;
		VkPipelineLayout pipeline_layout;
	};

	String _shader_uniform_debug(RID p_shader, int p_set = -1);

	RID_Owner<Shader, true> shader_owner;

	/******************/
	/**** UNIFORMS ****/
	/******************/

	// Descriptor sets require allocation from a pool.
	// The documentation on how to use pools properly
	// is scarce, and the documentation is strange.
	//
	// Basically, you can mix and match pools as you
	// like, but you'll run into fragmentation issues.
	// Because of this, the recommended approach is to
	// create a a pool for every descriptor set type,
	// as this prevents fragmentation.
	//
	// This is implemented here as a having a list of
	// pools (each can contain up to 64 sets) for each
	// set layout. The amount of sets for each type
	// is used as the key.

	enum {
		MAX_DESCRIPTOR_POOL_ELEMENT = 65535
	};

	struct DescriptorPoolKey {
		union {
			struct {
				uint16_t uniform_type[UNIFORM_TYPE_MAX]; // Using 16 bits because, for sending arrays, each element is a pool set.
			};
			struct {
				uint64_t key1;
				uint64_t key2;
				uint64_t key3;
			};
		};
		bool operator<(const DescriptorPoolKey &p_key) const {
			if (key1 != p_key.key1) {
				return key1 < p_key.key1;
			}
			if (key2 != p_key.key2) {
				return key2 < p_key.key2;
			}

			return key3 < p_key.key3;
		}
		DescriptorPoolKey() {
			key1 = 0;
			key2 = 0;
			key3 = 0;
		}
	};

	struct DescriptorPool {
		VkDescriptorPool pool;
		uint32_t usage;
	};

	Map<DescriptorPoolKey, Set<DescriptorPool *>> descriptor_pools;
	uint32_t max_descriptors_per_pool;

	DescriptorPool *_descriptor_pool_allocate(const DescriptorPoolKey &p_key);
	void _descriptor_pool_free(const DescriptorPoolKey &p_key, DescriptorPool *p_pool);

	RID_Owner<Buffer, true> uniform_buffer_owner;
	RID_Owner<Buffer, true> storage_buffer_owner;

	//texture buffer needs a view
	struct TextureBuffer {
		Buffer buffer;
		VkBufferView view;
	};

	RID_Owner<TextureBuffer, true> texture_buffer_owner;

	// This structure contains the descriptor set. They _need_ to be allocated
	// for a shader (and will be erased when this shader is erased), but should
	// work for other shaders as long as the hash matches. This covers using
	// them in shader variants.
	//
	// Keep also in mind that you can share buffers between descriptor sets, so
	// the above restriction is not too serious.

	struct UniformSet {
		uint32_t format;
		RID shader_id;
		uint32_t shader_set;
		DescriptorPool *pool;
		DescriptorPoolKey pool_key;
		VkDescriptorSet descriptor_set;
		//VkPipelineLayout pipeline_layout; //not owned, inherited from shader
		Vector<RID> attachable_textures; //used for validation
		Vector<Texture *> mutable_sampled_textures; //used for layout change
		Vector<Texture *> mutable_storage_textures; //used for layout change
	};

	RID_Owner<UniformSet, true> uniform_set_owner;

	/*******************/
	/**** PIPELINES ****/
	/*******************/

	// Render pipeline contains ALL the
	// information required for drawing.
	// This includes all the rasterizer state
	// as well as shader used, framebuffer format,
	// etc.
	// While the pipeline is just a single object
	// (VkPipeline) a lot of values are also saved
	// here to do validation (vulkan does none by
	// default) and warn the user if something
	// was not supplied as intended.

	struct RenderPipeline {
		//Cached values for validation
#ifdef DEBUG_ENABLED
		struct Validation {
			FramebufferFormatID framebuffer_format;
			uint32_t dynamic_state;
			VertexFormatID vertex_format;
			bool uses_restart_indices;
			uint32_t primitive_minimum;
			uint32_t primitive_divisor;
		} validation;
#endif
		//Actual pipeline
		RID shader;
		Vector<uint32_t> set_formats;
		VkPipelineLayout pipeline_layout; // not owned, needed for push constants
		VkPipeline pipeline;
		uint32_t push_constant_size;
		uint32_t push_constant_stages;
	};

	RID_Owner<RenderPipeline, true> render_pipeline_owner;

	struct ComputePipeline {
		RID shader;
		Vector<uint32_t> set_formats;
		VkPipelineLayout pipeline_layout; // not owned, needed for push constants
		VkPipeline pipeline;
		uint32_t push_constant_size;
		uint32_t push_constant_stages;
	};

	RID_Owner<ComputePipeline, true> compute_pipeline_owner;

	/*******************/
	/**** DRAW LIST ****/
	/*******************/

	// Draw list contains both the command buffer
	// used for drawing as well as a LOT of
	// information used for validation. This
	// validation is cheap so most of it can
	// also run in release builds.

	// When using split command lists, this is
	// implemented internally using secondary command
	// buffers. As they can be created in threads,
	// each needs it's own command pool.

	struct SplitDrawListAllocator {
		VkCommandPool command_pool;
		Vector<VkCommandBuffer> command_buffers; //one for each frame
	};

	Vector<SplitDrawListAllocator> split_draw_list_allocators;

	struct DrawList {
		VkCommandBuffer command_buffer; // If persistent, this is owned, otherwise it's shared with the ringbuffer.
		Rect2i viewport;

		struct SetState {
			uint32_t pipeline_expected_format = 0;
			uint32_t uniform_set_format = 0;
			VkDescriptorSet descriptor_set = VK_NULL_HANDLE;
			RID uniform_set;
			bool bound = false;
		};

		struct State {
			SetState sets[MAX_UNIFORM_SETS];
			uint32_t set_count = 0;
			RID pipeline;
			RID pipeline_shader;
			VkPipelineLayout pipeline_layout = VK_NULL_HANDLE;
			RID vertex_array;
			RID index_array;
			uint32_t pipeline_push_constant_stages = 0;
		} state;

#ifdef DEBUG_ENABLED
		struct Validation {
			bool active = true; // Means command buffer was not closed, so you can keep adding things.
			FramebufferFormatID framebuffer_format = INVALID_ID;
			// Actual render pass values.
			uint32_t dynamic_state = 0;
			VertexFormatID vertex_format = INVALID_ID;
			uint32_t vertex_array_size = 0;
			uint32_t vertex_max_instances_allowed = 0xFFFFFFFF;
			bool index_buffer_uses_restart_indices = false;
			uint32_t index_array_size = 0;
			uint32_t index_array_max_index = 0;
			uint32_t index_array_offset;
			Vector<uint32_t> set_formats;
			Vector<bool> set_bound;
			Vector<RID> set_rids;
			// Last pipeline set values.
			bool pipeline_active = false;
			uint32_t pipeline_dynamic_state = 0;
			VertexFormatID pipeline_vertex_format = INVALID_ID;
			RID pipeline_shader;
			uint32_t invalid_set_from = 0;
			bool pipeline_uses_restart_indices = false;
			uint32_t pipeline_primitive_divisor;
			uint32_t pipeline_primitive_minimum;
			Vector<uint32_t> pipeline_set_formats;
			uint32_t pipeline_push_constant_size = 0;
			bool pipeline_push_constant_supplied = false;
		} validation;
#else
		struct Validation {
			uint32_t vertex_array_size = 0;
			uint32_t index_array_size = 0;
			uint32_t index_array_offset;
		} validation;
#endif
	};

	DrawList *draw_list; // One for regular draw lists, multiple for split.
	uint32_t draw_list_count;
	bool draw_list_split;
	Vector<RID> draw_list_bound_textures;
	Vector<RID> draw_list_storage_textures;
	bool draw_list_unbind_color_textures;
	bool draw_list_unbind_depth_textures;

	void _draw_list_insert_clear_region(DrawList *draw_list, Framebuffer *framebuffer, Point2i viewport_offset, Point2i viewport_size, bool p_clear_color, const Vector<Color> &p_clear_colors, bool p_clear_depth, float p_depth, uint32_t p_stencil);
	Error _draw_list_setup_framebuffer(Framebuffer *p_framebuffer, InitialAction p_initial_color_action, FinalAction p_final_color_action, InitialAction p_initial_depth_action, FinalAction p_final_depth_action, VkFramebuffer *r_framebuffer, VkRenderPass *r_render_pass);
	Error _draw_list_render_pass_begin(Framebuffer *framebuffer, InitialAction p_initial_color_action, FinalAction p_final_color_action, InitialAction p_initial_depth_action, FinalAction p_final_depth_action, const Vector<Color> &p_clear_colors, float p_clear_depth, uint32_t p_clear_stencil, Point2i viewport_offset, Point2i viewport_size, VkFramebuffer vkframebuffer, VkRenderPass render_pass, VkCommandBuffer command_buffer, VkSubpassContents subpass_contents, const Vector<RID> &p_storage_textures);
	_FORCE_INLINE_ DrawList *_get_draw_list_ptr(DrawListID p_id);
	Buffer *_get_buffer_from_owner(RID p_buffer, VkPipelineStageFlags &dst_stage_mask, VkAccessFlags &dst_access);

	/**********************/
	/**** COMPUTE LIST ****/
	/**********************/

	struct ComputeList {
		VkCommandBuffer command_buffer; // If persistent, this is owned, otherwise it's shared with the ringbuffer.

		struct SetState {
			uint32_t pipeline_expected_format = 0;
			uint32_t uniform_set_format = 0;
			VkDescriptorSet descriptor_set = VK_NULL_HANDLE;
			RID uniform_set;
			bool bound = false;
		};

		struct State {
			Set<Texture *> textures_to_sampled_layout;
			SetState sets[MAX_UNIFORM_SETS];
			uint32_t set_count = 0;
			RID pipeline;
			RID pipeline_shader;
			VkPipelineLayout pipeline_layout = VK_NULL_HANDLE;
			uint32_t pipeline_push_constant_stages = 0;
		} state;

#ifdef DEBUG_ENABLED
		struct Validation {
			bool active = true; // Means command buffer was not closed, so you can keep adding things.
			Vector<uint32_t> set_formats;
			Vector<bool> set_bound;
			Vector<RID> set_rids;
			// Last pipeline set values.
			bool pipeline_active = false;
			RID pipeline_shader;
			uint32_t invalid_set_from = 0;
			Vector<uint32_t> pipeline_set_formats;
			uint32_t pipeline_push_constant_size = 0;
			bool pipeline_push_constant_supplied = false;
		} validation;
#endif
	};

	ComputeList *compute_list;

	/**************************/
	/**** FRAME MANAGEMENT ****/
	/**************************/

	// This is the frame structure. There are normally
	// 3 of these (used for triple buffering), or 2
	// (double buffering). They are cycled constantly.
	//
	// It contains two command buffers, one that is
	// used internally for setting up (creating stuff)
	// and another used mostly for drawing.
	//
	// They also contains a list of things that need
	// to be disposed of when deleted, which can't
	// happen immediately due to the asynchronous
	// nature of the GPU. They will get deleted
	// when the frame is cycled.

	struct Frame {
		//list in usage order, from last to free to first to free
		List<Buffer> buffers_to_dispose_of;
		List<Texture> textures_to_dispose_of;
		List<Framebuffer> framebuffers_to_dispose_of;
		List<VkSampler> samplers_to_dispose_of;
		List<Shader> shaders_to_dispose_of;
		List<VkBufferView> buffer_views_to_dispose_of;
		List<UniformSet> uniform_sets_to_dispose_of;
		List<RenderPipeline> render_pipelines_to_dispose_of;
		List<ComputePipeline> compute_pipelines_to_dispose_of;

		VkCommandPool command_pool;
		VkCommandBuffer setup_command_buffer; //used at the beginning of every frame for set-up
		VkCommandBuffer draw_command_buffer; //used at the beginning of every frame for set-up

		struct Timestamp {
			String description;
			uint64_t value;
		};

		VkQueryPool timestamp_pool;

		String *timestamp_names;
		uint64_t *timestamp_cpu_values;
		uint32_t timestamp_count;
		String *timestamp_result_names;
		uint64_t *timestamp_cpu_result_values;
		uint64_t *timestamp_result_values;
		uint32_t timestamp_result_count;
		uint64_t index;
	};

	uint32_t max_timestamp_query_elements;

	Frame *frames; //frames available, for main device they are cycled (usually 3), for local devices only 1
	int frame; //current frame
	int frame_count; //total amount of frames
	uint64_t frames_drawn;
	RID local_device;
	bool local_device_processing = false;

	void _free_pending_resources(int p_frame);

	VmaAllocator allocator;

	VulkanContext *context;

	void _free_internal(RID p_id);
	void _flush(bool p_current_frame);

	bool screen_prepared;

	template <class T>
	void _free_rids(T &p_owner, const char *p_type);

	void _finalize_command_bufers();
	void _begin_frame();

public:
	virtual RID texture_create(const TextureFormat &p_format, const TextureView &p_view, const Vector<Vector<uint8_t>> &p_data = Vector<Vector<uint8_t>>());
	virtual RID texture_create_shared(const TextureView &p_view, RID p_with_texture);

	virtual RID texture_create_shared_from_slice(const TextureView &p_view, RID p_with_texture, uint32_t p_layer, uint32_t p_mipmap, TextureSliceType p_slice_type = TEXTURE_SLICE_2D);
	virtual Error texture_update(RID p_texture, uint32_t p_layer, const Vector<uint8_t> &p_data, bool p_sync_with_draw = false);
	virtual Vector<uint8_t> texture_get_data(RID p_texture, uint32_t p_layer);

	virtual bool texture_is_format_supported_for_usage(DataFormat p_format, uint32_t p_usage) const;
	virtual bool texture_is_shared(RID p_texture);
	virtual bool texture_is_valid(RID p_texture);

	virtual Error texture_copy(RID p_from_texture, RID p_to_texture, const Vector3 &p_from, const Vector3 &p_to, const Vector3 &p_size, uint32_t p_src_mipmap, uint32_t p_dst_mipmap, uint32_t p_src_layer, uint32_t p_dst_layer, bool p_sync_with_draw = false);
	virtual Error texture_clear(RID p_texture, const Color &p_color, uint32_t p_base_mipmap, uint32_t p_mipmaps, uint32_t p_base_layer, uint32_t p_layers, bool p_sync_with_draw = false);
	virtual Error texture_resolve_multisample(RID p_from_texture, RID p_to_texture, bool p_sync_with_draw = false);

	/*********************/
	/**** FRAMEBUFFER ****/
	/*********************/

	virtual FramebufferFormatID framebuffer_format_create(const Vector<AttachmentFormat> &p_format);
	virtual FramebufferFormatID framebuffer_format_create_empty(const Size2i &p_size);
	virtual TextureSamples framebuffer_format_get_texture_samples(FramebufferFormatID p_format);

	virtual RID framebuffer_create(const Vector<RID> &p_texture_attachments, FramebufferFormatID p_format_check = INVALID_ID);
	virtual RID framebuffer_create_empty(const Size2i &p_size, FramebufferFormatID p_format_check = INVALID_ID);

	virtual FramebufferFormatID framebuffer_get_format(RID p_framebuffer);

	/*****************/
	/**** SAMPLER ****/
	/*****************/

	virtual RID sampler_create(const SamplerState &p_state);

	/**********************/
	/**** VERTEX ARRAY ****/
	/**********************/

	virtual RID vertex_buffer_create(uint32_t p_size_bytes, const Vector<uint8_t> &p_data = Vector<uint8_t>());

	// Internally reference counted, this ID is warranted to be unique for the same description, but needs to be freed as many times as it was allocated
	virtual VertexFormatID vertex_format_create(const Vector<VertexAttribute> &p_vertex_formats);
	virtual RID vertex_array_create(uint32_t p_vertex_count, VertexFormatID p_vertex_format, const Vector<RID> &p_src_buffers);

	virtual RID index_buffer_create(uint32_t p_size_indices, IndexBufferFormat p_format, const Vector<uint8_t> &p_data = Vector<uint8_t>(), bool p_use_restart_indices = false);

	virtual RID index_array_create(RID p_index_buffer, uint32_t p_index_offset, uint32_t p_index_count);

	/****************/
	/**** SHADER ****/
	/****************/

	virtual RID shader_create(const Vector<ShaderStageData> &p_stages);
	virtual uint32_t shader_get_vertex_input_attribute_mask(RID p_shader);

	/*****************/
	/**** UNIFORM ****/
	/*****************/

	virtual RID uniform_buffer_create(uint32_t p_size_bytes, const Vector<uint8_t> &p_data = Vector<uint8_t>());
	virtual RID storage_buffer_create(uint32_t p_size_bytes, const Vector<uint8_t> &p_data = Vector<uint8_t>(), uint32_t p_usage = 0);
	virtual RID texture_buffer_create(uint32_t p_size_elements, DataFormat p_format, const Vector<uint8_t> &p_data = Vector<uint8_t>());

	virtual RID uniform_set_create(const Vector<Uniform> &p_uniforms, RID p_shader, uint32_t p_shader_set);
	virtual bool uniform_set_is_valid(RID p_uniform_set);

	virtual Error buffer_update(RID p_buffer, uint32_t p_offset, uint32_t p_size, const void *p_data, bool p_sync_with_draw = false); //works for any buffer
	virtual Vector<uint8_t> buffer_get_data(RID p_buffer);

	/*************************/
	/**** RENDER PIPELINE ****/
	/*************************/

	virtual RID render_pipeline_create(RID p_shader, FramebufferFormatID p_framebuffer_format, VertexFormatID p_vertex_format, RenderPrimitive p_render_primitive, const PipelineRasterizationState &p_rasterization_state, const PipelineMultisampleState &p_multisample_state, const PipelineDepthStencilState &p_depth_stencil_state, const PipelineColorBlendState &p_blend_state, int p_dynamic_state_flags = 0);
	virtual bool render_pipeline_is_valid(RID p_pipeline);

	/**************************/
	/**** COMPUTE PIPELINE ****/
	/**************************/

	virtual RID compute_pipeline_create(RID p_shader);
	virtual bool compute_pipeline_is_valid(RID p_pipeline);

	/****************/
	/**** SCREEN ****/
	/****************/

	virtual int screen_get_width(DisplayServer::WindowID p_screen = 0) const;
	virtual int screen_get_height(DisplayServer::WindowID p_screen = 0) const;
	virtual FramebufferFormatID screen_get_framebuffer_format() const;

	/********************/
	/**** DRAW LISTS ****/
	/********************/

	virtual DrawListID draw_list_begin_for_screen(DisplayServer::WindowID p_screen = 0, const Color &p_clear_color = Color());

	virtual DrawListID draw_list_begin(RID p_framebuffer, InitialAction p_initial_color_action, FinalAction p_final_color_action, InitialAction p_initial_depth_action, FinalAction p_final_depth_action, const Vector<Color> &p_clear_color_values = Vector<Color>(), float p_clear_depth = 1.0, uint32_t p_clear_stencil = 0, const Rect2 &p_region = Rect2(), const Vector<RID> &p_storage_textures = Vector<RID>());
	virtual Error draw_list_begin_split(RID p_framebuffer, uint32_t p_splits, DrawListID *r_split_ids, InitialAction p_initial_color_action, FinalAction p_final_color_action, InitialAction p_initial_depth_action, FinalAction p_final_depth_action, const Vector<Color> &p_clear_color_values = Vector<Color>(), float p_clear_depth = 1.0, uint32_t p_clear_stencil = 0, const Rect2 &p_region = Rect2(), const Vector<RID> &p_storage_textures = Vector<RID>());

	virtual void draw_list_bind_render_pipeline(DrawListID p_list, RID p_render_pipeline);
	virtual void draw_list_bind_uniform_set(DrawListID p_list, RID p_uniform_set, uint32_t p_index);
	virtual void draw_list_bind_vertex_array(DrawListID p_list, RID p_vertex_array);
	virtual void draw_list_bind_index_array(DrawListID p_list, RID p_index_array);
	virtual void draw_list_set_line_width(DrawListID p_list, float p_width);
	virtual void draw_list_set_push_constant(DrawListID p_list, const void *p_data, uint32_t p_data_size);

	virtual void draw_list_draw(DrawListID p_list, bool p_use_indices, uint32_t p_instances = 1, uint32_t p_procedural_vertices = 0);

	virtual void draw_list_enable_scissor(DrawListID p_list, const Rect2 &p_rect);
	virtual void draw_list_disable_scissor(DrawListID p_list);

	virtual void draw_list_end();

	/***********************/
	/**** COMPUTE LISTS ****/
	/***********************/

	virtual ComputeListID compute_list_begin();
	virtual void compute_list_bind_compute_pipeline(ComputeListID p_list, RID p_compute_pipeline);
	virtual void compute_list_bind_uniform_set(ComputeListID p_list, RID p_uniform_set, uint32_t p_index);
	virtual void compute_list_set_push_constant(ComputeListID p_list, const void *p_data, uint32_t p_data_size);
	virtual void compute_list_add_barrier(ComputeListID p_list);

	virtual void compute_list_dispatch(ComputeListID p_list, uint32_t p_x_groups, uint32_t p_y_groups, uint32_t p_z_groups);
	virtual void compute_list_dispatch_indirect(ComputeListID p_list, RID p_buffer, uint32_t p_offset);
	virtual void compute_list_end();

	virtual void full_barrier();

	/**************/
	/**** FREE ****/
	/**************/

	virtual void free(RID p_id);

	/****************/
	/**** Timing ****/
	/****************/

	virtual void capture_timestamp(const String &p_name, bool p_sync_to_draw);
	virtual uint32_t get_captured_timestamps_count() const;
	virtual uint64_t get_captured_timestamps_frame() const;
	virtual uint64_t get_captured_timestamp_gpu_time(uint32_t p_index) const;
	virtual uint64_t get_captured_timestamp_cpu_time(uint32_t p_index) const;
	virtual String get_captured_timestamp_name(uint32_t p_index) const;

	/****************/
	/**** Limits ****/
	/****************/

	virtual int limit_get(Limit p_limit);

	virtual void prepare_screen_for_drawing();
	void initialize(VulkanContext *p_context, bool p_local_device = false);
	void finalize();

	virtual void swap_buffers(); //for main device

	virtual void submit(); //for local device
	virtual void sync(); //for local device

	virtual uint32_t get_frame_delay() const;

	virtual RenderingDevice *create_local_device();

	virtual uint64_t get_memory_usage() const;

	RenderingDeviceVulkan();
	~RenderingDeviceVulkan();
};

#endif // RENDERING_DEVICE_VULKAN_H