1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
/*******************************************************************************
* Copyright 2017-2018 Intel Corporation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
*     http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*******************************************************************************/

#include <assert.h>
#include <float.h>

#include "c_types_map.hpp"
#include "memory_tracking.hpp"
#include "mkldnn_thread.hpp"
#include "nstl.hpp"
#include "type_helpers.hpp"
#include "utils.hpp"

#include "cpu_memory.hpp"
#include "cpu_barrier.hpp"

#include "jit_uni_1x1_conv_utils.hpp"
#include "jit_avx512_common_1x1_conv_kernel.hpp"

#define GET_OFF(field) offsetof(jit_1x1_conv_call_s, field)

namespace mkldnn {
namespace impl {
namespace cpu {

using namespace mkldnn::impl::format_tag;
using namespace mkldnn::impl::prop_kind;
using namespace mkldnn::impl::utils;

using namespace Xbyak;

void jit_avx512_common_1x1_conv_kernel::bcast_loop(int load_loop_blk)
{
    mov(aux1_reg_bcast_data, reg_bcast_data);
    mov(aux_reg_bcast_data, reg_bcast_data);

    mov(aux_reg_output_data, reg_output_data);
    mov(bcast_loop_iter, EVEX_compress_addr(rsp, bcast_loop_work_offt));

    if (jcp.ver == ver_4fma)
    {
        Label bcast_loop;
        Label bcast_loop_wraparound;
        Label bcast_loop_out;
        Label bcast_loop_ur_full;

        cmp(bcast_loop_iter, jcp.ur);
        jle(bcast_loop_wraparound, T_NEAR);

        L(bcast_loop); {
            assert(jcp.bcast_block % jcp.ur == 0);
            int num_substeps = jcp.bcast_block / jcp.ur;
            assert(num_substeps > 0 && num_substeps < 10);
            for (int i = 0; i < num_substeps; i++) {
                reduce_loop(load_loop_blk, jcp.ur, i, false);
                if (i < num_substeps - 1) {
                    add(aux1_reg_bcast_data, jcp.bcast_loop_bcast_substep);
                    add(aux_reg_output_data, jcp.bcast_loop_output_substep);
                }
                else {
                    add(aux1_reg_bcast_data, jcp.bcast_loop_bcast_step
                        - (num_substeps - 1) * jcp.bcast_loop_bcast_substep);
                    add(aux_reg_output_data, jcp.bcast_loop_output_step
                        - (num_substeps - 1) * jcp.bcast_loop_output_substep);
                }
            }
            sub(bcast_loop_iter, jcp.bcast_block);
            cmp(bcast_loop_iter, jcp.bcast_block);
            jg(bcast_loop, T_NEAR);
        }

        L(bcast_loop_wraparound);
        if (jcp.ur_tail) {
            je(bcast_loop_ur_full, T_NEAR);
            reduce_loop(load_loop_blk, jcp.ur_tail, 0, true);
            jmp(bcast_loop_out, T_NEAR);
        }
        L(bcast_loop_ur_full);
        reduce_loop(load_loop_blk, jcp.ur, 0, true);
        L(bcast_loop_out);
    }
    else
    {
        Label bcast_loop;
        Label bcast_loop_tail;

        cmp(bcast_loop_iter, jcp.ur);
        jl(bcast_loop_tail, T_NEAR);

        L(bcast_loop); {
            assert(jcp.bcast_block % jcp.ur == 0);
            int num_substeps = jcp.bcast_block / jcp.ur;
            assert(num_substeps > 0 && num_substeps < 10);
            for (int i = 0; i < num_substeps; i++) {
                reduce_loop(load_loop_blk, jcp.ur, i, false);
                if (i < num_substeps - 1) {
                    add(aux1_reg_bcast_data, jcp.bcast_loop_bcast_substep);
                    add(aux_reg_output_data, jcp.bcast_loop_output_substep);
                }
                else {
                    add(aux1_reg_bcast_data, jcp.bcast_loop_bcast_step
                        - (num_substeps - 1) * jcp.bcast_loop_bcast_substep);
                    add(aux_reg_output_data, jcp.bcast_loop_output_step
                        - (num_substeps - 1) * jcp.bcast_loop_output_substep);
                }
            }
            sub(bcast_loop_iter, jcp.bcast_block);
            cmp(bcast_loop_iter, jcp.bcast_block);
            jge(bcast_loop, T_NEAR);
        }

        L(bcast_loop_tail);
        if (jcp.ur_tail) {
            Label bcast_loop_tail_out;
            cmp(bcast_loop_iter, 0);
            jz(bcast_loop_tail_out, T_NEAR);
            reduce_loop(load_loop_blk, jcp.ur_tail, 0, true);
            L(bcast_loop_tail_out);
        }
    }
}

void jit_avx512_common_1x1_conv_kernel::reduce_loop(int load_loop_blk,
         int ur, int substep, bool wraparound)
{
    auto vreg_load = [=](int i_load, int i_fma) {
        return Zmm(utils::rnd_up(ur * load_loop_blk, jcp.fma_step)
                    + jcp.fma_step * i_load + i_fma);
    };

    auto vreg_accum = [=](int i_load, int i_ur) {
        return Zmm(i_ur * load_loop_blk + i_load);
    };

    auto bias_ptr = [=](int i_load) {
        return EVEX_compress_addr(reg_bias_data,
                                  jcp.typesize_out * jcp.oc_block * i_load);
    };

    auto bcast_ptr = [=](int i_reduce, int i_ur, bool bcast) {
        assert(i_ur < jcp.ur);
        assert(i_reduce <= jcp.reduce_loop_unroll);
        int offt;
        if (one_of(jcp.prop_kind, forward_training, forward_inference,
                   backward_data)) {
            assert(jcp.reduce_loop_unroll == jcp.reduce_block);
            offt = (i_reduce == jcp.reduce_loop_unroll)
                    ? (jcp.bcast_dim + i_ur) * jcp.reduce_loop_unroll
                    : i_ur * jcp.reduce_loop_unroll + i_reduce;
        } else {
            if (jcp.transpose_src) {
                const int reduce_group = i_reduce / 4;
                const int reduce_shift = i_reduce % 4;
                offt = 4 * (reduce_group * jcp.ic_block + i_ur) + reduce_shift;
            }
            else
                offt = i_reduce * jcp.ic_block + i_ur;
        }
        return EVEX_compress_addr(aux_reg_bcast_data, jcp.typesize_in * offt,
                                bcast);
    };

    auto load_ptr = [=](int i_reduce, int i_load) {
        int offt;
        int u0 = i_reduce % jcp.reduce_loop_unroll;
        int u1 = i_reduce / jcp.reduce_loop_unroll;
        offt = (i_load * jcp.reduce_dim + u0) * jcp.load_block;
        return EVEX_compress_addr(aux_reg_load_data,
                                  u1 * jcp.reduce_loop_load_step
                                  + jcp.typesize_in * offt);
    };

    auto output_ptr = [=](int i_load, int i_ur) {
        if (one_of(jcp.prop_kind, forward_training, forward_inference,
                   backward_data))
            return EVEX_compress_addr(aux_reg_output_data,
                    (i_load * jcp.bcast_dim + i_ur) * jcp.load_block
                    * jcp.typesize_out);
        else
            return ptr[aux_reg_output_data +
                       (i_load
                            ? reg_output_stride * i_load
                            : 0) // TODO: Xbyak should allow 0 scale
                       + jcp.typesize_out * jcp.load_block * i_ur];
    };

    auto init = [=]() {
        Label init_done;
        Label init_zero;

        if (jcp.with_sum) {
            for (int i_load = 0; i_load < load_loop_blk; ++i_load) {
                for (int i_ur = 0; i_ur < ur; ++i_ur) {
                    mic_prefetcht1(output_ptr(i_load, i_ur));
                }
            }
        }

        if (jcp.with_bias
            && one_of(jcp.prop_kind, forward_training, forward_inference)) {
            test(reg_reduce_pos_flag, FLAG_REDUCE_FIRST);
            jz(init_zero, T_NEAR);

            for (int i_load = 0; i_load < load_loop_blk; i_load++)
                for (int i_ur = 0; i_ur < ur; ++i_ur)
                    vmovups(vreg_accum(i_load, i_ur), bias_ptr(i_load));
            jmp(init_done, T_NEAR);
        }

        L(init_zero);
        for (int i_load = 0; i_load < load_loop_blk; ++i_load)
            for (int i_ur = 0; i_ur < ur; ++i_ur) {
                auto r = vreg_accum(i_load, i_ur);
                vpxord(r, r, r);
            }
        L(init_done);
    };

    auto store = [=]() {
        Label store_noadd;
        if (!jcp.with_sum) {
            test(reg_reduce_pos_flag, FLAG_REDUCE_FIRST);
            jnz(store_noadd, T_NEAR);
        }

        for (int i_ur = 0; i_ur < ur; ++i_ur)
            for (int i_load = 0; i_load < load_loop_blk; ++i_load) {
                auto r = vreg_accum(i_load, i_ur);
                vaddps(r, r, output_ptr(i_load, i_ur));
            }

        L(store_noadd);
        if (jcp.with_eltwise) {
            Label store_noeltwise;
            test(reg_reduce_pos_flag, FLAG_REDUCE_LAST);
            jz(store_noeltwise, T_NEAR);

            eltwise_injector_->compute_vector_range(0, ur * load_loop_blk);

            L(store_noeltwise);
        }

        auto store_output = [=](bool output_is_aligned) {
            for (int i_ur = 0; i_ur < ur; ++i_ur)
                for (int i_load = 0; i_load < load_loop_blk; ++i_load)
                    if (output_is_aligned && jcp.use_vmovntps)
                        vmovntps(output_ptr(i_load, i_ur),
                            vreg_accum(i_load, i_ur));
                    else
                        vmovups(output_ptr(i_load, i_ur),
                            vreg_accum(i_load, i_ur));
        };

        Label unaligned_store, end_store;
        test(aux_reg_output_data, cpu_isa_traits<avx512_common>::vlen - 1);
        jnz(unaligned_store, T_NEAR);
        store_output(true);
        jmp(end_store, T_NEAR);
        L(unaligned_store); {
            store_output(false);
        }
        L(end_store);
    };

    auto prefetch_callback = [=](int ur, int i_reduce, int i_ur, int i_load,
        bool last_block, bool wraparound, int reduce_step)
    {
        bool pf_ker_l1 = true;<--- Assignment 'pf_ker_l1=true', assigned value is 1
        bool pf_ker_l2 = wraparound;<--- 'pf_ker_l2' is assigned value 'wraparound' here.
        int n_ops = (jcp.reduce_loop_unroll / reduce_step) * ur * load_loop_blk;
        int i_op = (i_reduce / reduce_step) * ur * load_loop_blk +
            i_ur * load_loop_blk + i_load;

        int n_pf_ker_l1 = pf_ker_l1 ? jcp.reduce_block : 0;<--- Condition 'pf_ker_l1' is always true
        int n_pf_ker_l2 = pf_ker_l2 && wraparound ? jcp.reduce_block : 0;
        int n_pf_out_l1 = jcp.use_vmovntps ? 0 : ur;

        int pf_inp_ops = n_ops / 2; // # of operations during which to pf input
        int pf_inp_trigger;
        if (jcp.prop_kind == backward_weights)
            pf_inp_trigger = nstl::max(1, pf_inp_ops / jcp.reduce_block);
        else
            pf_inp_trigger = nstl::max(1, pf_inp_ops / ur);

        int n_other_pf =
            load_loop_blk * (n_pf_ker_l1 + n_pf_ker_l2 + n_pf_out_l1);
        int n_other_pf_ops = n_ops - pf_inp_ops;
        int other_pf_trigger
                = n_other_pf ? nstl::max(1, n_other_pf_ops / n_other_pf) : 0;

        if (i_op < pf_inp_ops && i_op % pf_inp_trigger == 0) {
            // input prefetches have the highest priority b/c the
            // first iteration of the kernel block touches all the
            // cache lines
            int i_pf = i_op / pf_inp_trigger;
            auto pf_reg = wraparound && last_block
                                  ? reg_bcast_data
                                  : (last_block ? aux1_reg_bcast_data
                                                : aux_reg_bcast_data);
            int offt = i_pf;
            if (jcp.prop_kind == backward_weights) {
                offt += wraparound && last_block
                                    ? 0
                                    : (last_block ? jcp.is : jcp.reduce_block);
                offt *= jcp.bcast_block;
            } else {
                offt += wraparound && last_block
                                    ? 0
                                    : (last_block ? jcp.ur : jcp.bcast_dim);
                offt *= jcp.reduce_block;
            }
            mic_prefetcht0(ptr[pf_reg + offt * jcp.typesize_in]);
        } else if (i_op >= pf_inp_ops && n_other_pf) {
            // remaining prefetches are spread among the rest of the
            // operations; prefetches for output take priority
            // TODO: spread L2 prefetches among L1 prefetches
            i_op -= pf_inp_ops;
            if (i_op % other_pf_trigger == 0) {
                int i_pf = i_op / (load_loop_blk * other_pf_trigger);
                if (i_pf < n_pf_ker_l2) {
                    int offt = (i_pf + (i_load + 1) * jcp.reduce_dim)
                        * jcp.load_block;
                    mic_prefetcht1(ptr[aux_reg_load_data
                                    + offt * jcp.typesize_in]);
                } else if (i_pf < n_pf_ker_l2 + n_pf_ker_l1) {
                    i_pf -= n_pf_ker_l2;
                    auto pf_reg = last_block ? reg_load_data
                                             : aux_reg_load_data;
                    int offt = (i_pf + i_load * jcp.reduce_dim
                        + (last_block
                            ? (wraparound ? jcp.reduce_dim : 0)
                            : jcp.reduce_block))
                        * jcp.load_block;
                    mic_prefetcht0(ptr[pf_reg + offt * jcp.typesize_in]);
                } else if (i_pf < n_pf_ker_l1 + n_pf_ker_l2 + n_pf_out_l1) {
                    i_pf -= n_pf_ker_l1 + n_pf_ker_l2;
                    int offt = i_pf * jcp.load_block;
                    mic_prefetcht0(ptr[aux_reg_output_data
                                    + offt * jcp.typesize_out]);
                }
            }
        }
    };

    auto fma_block = [=](bool last_block) {
        assert(jcp.reduce_loop_unroll % jcp.fma_step == 0);

        int reduce_step = jcp.fma_step;

        for (int i_reduce = 0; i_reduce < jcp.reduce_loop_unroll;
                i_reduce += reduce_step) {
            for (int i_load = 0; i_load < load_loop_blk; ++i_load) {
                // if transposed input data used and if spatial size is
                // not divided by transpose step (4) then for last reduce step
                // we should load only needed load_registers data
                // and clear remaining
                if (jcp.transpose_src && jcp.is % jcp.fma_step && last_block
                        && i_reduce == jcp.reduce_loop_unroll - reduce_step) {
                    Label load_all;
                    Label load_finish;
                    test(reg_reduce_pos_flag, FLAG_SP_LAST);
                    jz(load_all, T_NEAR);

                    const int n_loads = jcp.is % jcp.fma_step;
                    for (int i_fma = 0; i_fma < jcp.fma_step; i_fma++) {
                        if (i_fma < n_loads)
                            vmovups(vreg_load(i_load, i_fma),
                                    load_ptr(i_reduce + i_fma, i_load));
                        else
                            vpxord(vreg_load(i_load, i_fma),
                                    vreg_load(i_load, i_fma),
                                    vreg_load(i_load, i_fma));
                    }
                    jmp(load_finish);

                    L(load_all);
                    for (int i_fma = 0; i_fma < jcp.fma_step; i_fma++) {
                        vmovups(vreg_load(i_load, i_fma),
                            load_ptr(i_reduce + i_fma, i_load));
                    }
                    L(load_finish);
                } else {
                    for (int i_fma = 0; i_fma < jcp.fma_step; i_fma++) {
                        vmovups(vreg_load(i_load, i_fma),
                            load_ptr(i_reduce + i_fma, i_load));
                    }
                }
            }

            for (int i_ur = 0; i_ur < ur; ++i_ur) {
                if (jcp.ver == ver_avx512_core && jcp.expl_bcast
                        && load_loop_blk > 1)
                    vbroadcastss(vreg_bcast, bcast_ptr(i_reduce, i_ur, false));
                for (int i_load = 0; i_load < load_loop_blk; ++i_load) {
                    if (jcp.ver == ver_4fma)
                        v4fmaddps(vreg_accum(i_load, i_ur),
                                    vreg_load(i_load, 0),
                                    bcast_ptr(i_reduce, i_ur, false));
                    else if (jcp.ver == ver_avx512_core && jcp.expl_bcast
                            && load_loop_blk > 1)
                        vfmadd231ps(vreg_accum(i_load, i_ur),
                                vreg_load(i_load, 0), vreg_bcast);
                    else
                        vfmadd231ps(vreg_accum(i_load, i_ur),
                                vreg_load(i_load, 0),
                                bcast_ptr(i_reduce, i_ur, true));
                    prefetch_callback(ur, i_reduce, i_ur, i_load,
                                    last_block, wraparound, reduce_step);
                }
            }
        }
    };
    Label reduce_loop;
    Label reduce_loop_tail;

    mov(aux_reg_load_data, reg_load_data);

    mov(aux_reg_bcast_data, aux1_reg_bcast_data);
    init();

    mov(reduce_loop_iter, reg_reduce_loop_work);
    sub(reduce_loop_iter, jcp.reduce_loop_unroll);
    jle(reduce_loop_tail, T_NEAR);

    L(reduce_loop); {
        fma_block(false);
        add(aux_reg_bcast_data, jcp.reduce_loop_bcast_step);
        add(aux_reg_load_data, jcp.reduce_loop_load_step);
        sub(reduce_loop_iter, jcp.reduce_loop_unroll);
        jg(reduce_loop, T_NEAR);
    }

    L(reduce_loop_tail);
    fma_block(true);

    store();
}

void jit_avx512_common_1x1_conv_kernel::generate()
{
    preamble();

    mov(reg_bcast_data, ptr[param1 + GET_OFF(bcast_data)]);
    mov(reg_load_data, ptr[param1 + GET_OFF(load_data)]);
    mov(reg_output_data, ptr[param1 + GET_OFF(output_data)]);

    sub(rsp, stack_space_needed);

    if (jcp.with_bias)
        mov(reg_bias_data, ptr[param1 + GET_OFF(bias_data)]);

    mov(reg_load_loop_work, ptr[param1 + GET_OFF(load_dim)]);
    mov(reg_bcast_loop_work, ptr[param1 + GET_OFF(bcast_dim)]);
    mov(EVEX_compress_addr(rsp, bcast_loop_work_offt), reg_bcast_loop_work);
    mov(reg_reduce_loop_work, ptr[param1 + GET_OFF(reduce_dim)]);
    mov(reg_reduce_pos_flag, ptr[param1 + GET_OFF(first_last_flag)]);
    if (one_of(jcp.prop_kind, forward_training, forward_inference))
        mov(reg_relu_ns, reinterpret_cast<size_t>(&jcp.eltwise.alpha));
    if (jcp.prop_kind == backward_weights)
        mov(reg_output_stride, ptr[param1 + GET_OFF(output_stride)]);

    auto load_loop_body = [=](int load_loop_blk) {
        bcast_loop(load_loop_blk);
        add(reg_load_data, load_loop_blk * jcp.load_loop_load_step);
        switch (jcp.prop_kind) {
        case forward_training:
        case forward_inference:
            add(reg_bias_data,
                load_loop_blk * jcp.load_block * jcp.typesize_out);
            add(reg_output_data,
                load_loop_blk * jcp.bcast_dim * jcp.load_block *
                    jcp.typesize_out);
            break;
        case backward_data:
            add(reg_output_data,
                load_loop_blk * jcp.bcast_dim * jcp.load_block *
                    jcp.typesize_out);
            break;
        case backward_weights:
            for (int i_load = 0; i_load < load_loop_blk; i_load++)
                add(reg_output_data, reg_output_stride);
            break;
        default:
            assert(!"invalid prop_kind");
        }
        sub(reg_load_loop_work, load_loop_blk * jcp.load_loop_iter_step);
    };

    const int simd_w = 16;

    Label load_loop_blk[7];

    static const int ur_cases_fma_embd_bcast[] = { 2, 4, 5, 8, 14, 32 };
    static const int ur_cases_fma_expl_bcast[] = { 2, 5, 6, 9, 14, 32 };
    static const int ur_cases_4fma[] = { 2, 4, 6, 12, 32 };

    const int size_ur_cases_fma
            = (jcp.ver == ver_avx512_core && jcp.expl_bcast) ?
            sizeof(ur_cases_fma_expl_bcast) :
            sizeof(ur_cases_fma_embd_bcast);
    const int size_ur_cases_4fma = sizeof(ur_cases_4fma);

    const int *ur_cases_fma = (jcp.ver == ver_avx512_core && jcp.expl_bcast) ?
            ur_cases_fma_expl_bcast :
            ur_cases_fma_embd_bcast;
    const int *ur_cases = jcp.ver == ver_4fma ? ur_cases_4fma : ur_cases_fma;
    const int num_ur_cases =
        (jcp.ver == ver_4fma ?  size_ur_cases_4fma : size_ur_cases_fma)
        / sizeof(*ur_cases);

    for (int ur_idx = num_ur_cases - 1; ur_idx > 0; ur_idx--) {
        int label_idx = num_ur_cases - ur_idx - 1;
        if (jcp.ur <= ur_cases[ur_idx]) {
            cmp(reg_load_loop_work, simd_w * (label_idx + 1));
            jle(load_loop_blk[label_idx], T_NEAR);
        }
    }

    for (int ur_idx = 0; ur_idx < num_ur_cases; ur_idx++) {
        if (jcp.ur <= ur_cases[ur_idx]) {
            int label_idx = num_ur_cases - ur_idx - 1;
            L(load_loop_blk[label_idx]);
            {
                if (label_idx == 0) {
                    cmp(reg_load_loop_work, 0);
                    je(load_loop_blk[num_ur_cases], T_NEAR);
                }
                load_loop_body(label_idx + 1);
                if (label_idx - 1 > 0) {
                    cmp(reg_load_loop_work, 2 * label_idx * simd_w);
                    je(load_loop_blk[label_idx - 1], T_NEAR);
                }
                cmp(reg_load_loop_work, (label_idx + 1) * simd_w);
                jge(load_loop_blk[label_idx]);
            }
            for (int idx = label_idx - 1; idx > 0; --idx) {
                cmp(reg_load_loop_work, simd_w * (idx + 1));
                je(load_loop_blk[idx], T_NEAR);
            }
            if (ur_idx < num_ur_cases - 2) {
                cmp(reg_load_loop_work, simd_w);
                jle(load_loop_blk[0], T_NEAR);
            }
        }
    }
    L(load_loop_blk[num_ur_cases]);

    add(rsp, stack_space_needed);

    postamble();

    if (jcp.with_eltwise)
        eltwise_injector_->prepare_table();
}

bool jit_avx512_common_1x1_conv_kernel::post_ops_ok(
        jit_1x1_conv_conf_t &jcp, const primitive_attr_t &attr) {
    const auto &p = attr.post_ops_;

    auto is_eltwise = [&](int idx) { return p.entry_[idx].is_eltwise(); };
    auto is_sum = [&](int idx) { return p.entry_[idx].is_sum(); };

    switch (p.len_) {
    case 0: return true; // no post_ops
    case 1: return is_eltwise(0) || is_sum(0); // sum OR eltwise
    case 2: return is_sum(0) && is_eltwise(1); // sum -> eltwise
    default: return false;
    }

    return false;
}

status_t jit_avx512_common_1x1_conv_kernel::init_conf(jit_1x1_conv_conf_t &jcp,
        const convolution_desc_t &cd, const memory_desc_wrapper &src_d,
        const memory_desc_wrapper &weights_d, const memory_desc_wrapper &dst_d,
        const primitive_attr_t &attr, int nthreads, bool reduce_src) {
    if (!mayiuse(avx512_common)) return status::unimplemented;

    const bool with_groups = weights_d.ndims() == src_d.ndims() + 1;
    const int simd_w = cpu_isa_traits<avx512_common>::vlen / sizeof(float);
    const int ndims = src_d.ndims();

    jcp.prop_kind = cd.prop_kind;

    jcp.ngroups = with_groups ? weights_d.dims()[0] : 1;
    jcp.mb = src_d.dims()[0];

    jcp.oc_without_padding = dst_d.dims()[1] / jcp.ngroups;
    jcp.oc = dst_d.dims()[1] / jcp.ngroups;
    jcp.ic = src_d.dims()[1] / jcp.ngroups;

    bool ok_to_pad_channels = true
        && jcp.ngroups == 1
        && src_d.data_type() == data_type::f32;
    if (ok_to_pad_channels) {
        jcp.oc = rnd_up(jcp.oc, simd_w);
        jcp.ic = rnd_up(jcp.ic, simd_w);
    }

    jcp.ih = (ndims == 3) ? 1 : src_d.dims()[2];
    jcp.iw = src_d.dims()[ndims - 1];
    jcp.oh = (ndims == 3) ? 1 : dst_d.dims()[2];
    jcp.ow = dst_d.dims()[ndims - 1];

    jcp.kh = (ndims == 3) ? 1 : weights_d.dims()[with_groups + 2];
    jcp.kw = weights_d.dims()[with_groups + ndims - 1];

    jcp.t_pad = (ndims == 3) ? 0 : cd.padding[0][0];
    jcp.l_pad = cd.padding[0][ndims - 3];

    jcp.stride_h = (ndims == 3) ? 1 : cd.strides[0];
    jcp.stride_w = cd.strides[ndims - 3];

    jcp.with_bias = pick_by_prop_kind(jcp.prop_kind, cd.bias_desc.format_kind,
            format_kind::undef, cd.diff_bias_desc.format_kind)
        != format_kind::undef;

    jcp.os = jcp.oh * jcp.ow;
    jcp.is = jcp.ih * jcp.iw;
    jcp.tr_is = rnd_up(jcp.is, 4);

    if (!post_ops_ok(jcp, attr))
        return status::unimplemented;

    const auto &p = attr.post_ops_;
    jcp.with_sum = p.find(primitive_kind::sum) != -1;
    const int eltwise_ind = p.find(primitive_kind::eltwise);
    jcp.with_eltwise = eltwise_ind != -1;
    if (jcp.with_eltwise) {
        jcp.eltwise = p.entry_[eltwise_ind].eltwise;
        if (dst_d.data_type() == data_type::s32) return status::unimplemented;
    }

    auto dat_tag = pick(ndims - 3, nCw16c, nChw16c);
    jcp.src_tag = src_d.matches_one_of_tag(dat_tag);
    jcp.dst_tag = dst_d.matches_one_of_tag(dat_tag);

    bool args_ok = true
        && jcp.ngroups == 1
        && jcp.src_tag == dat_tag
        && jcp.dst_tag == dat_tag;
    if (!args_ok) return status::unimplemented;

    args_ok = true
        && jcp.oc % simd_w == 0 && jcp.ic % simd_w == 0
        && jcp.t_pad == 0 && jcp.l_pad == 0
        && jcp.stride_w == 1 && jcp.stride_h == 1 // TODO: support some strides
        && jcp.kh == 1 && jcp.kw == 1;
    if (!args_ok) return status::unimplemented;

    jcp.ic_block = jcp.oc_block = simd_w;
    jcp.transpose_src = false;

    if (everyone_is(data_type::f32, src_d.data_type(),
                            weights_d.data_type(), dst_d.data_type()))
    {
        const int is_bwd_d = jcp.prop_kind == backward_data;
        format_tag_t wei_tag = with_groups
            ? pick(2 * ndims - 6 + is_bwd_d, gOIw16i16o, gIOw16o16i,
                gOIhw16i16o, gIOhw16o16i)
            : pick(2 * ndims - 6 + is_bwd_d, OIw16i16o, IOw16o16i,
                OIhw16i16o, IOhw16o16i);

        jcp.wei_tag = weights_d.matches_one_of_tag(wei_tag);
        if (jcp.wei_tag != wei_tag)
            return status::unimplemented;

        if (jcp.prop_kind != backward_weights && mayiuse(avx512_mic_4ops) &&
            ((jcp.prop_kind == backward_data) ? jcp.oc_block : jcp.ic_block) % 4
            == 0) {
            jcp.ver = ver_4fma;
            jcp.fma_step = 4;
        } else if (jcp.prop_kind == backward_weights && mayiuse(avx512_mic_4ops)
                && !reduce_src
                /* Heuristic condition for relation of src size to oc. Otherwise
                   the src transposition overhead exceed the benefit from 4fma
                */
                && ((jcp.is * jcp.ic) / jcp.oc <= 2048)
                && mkldnn_thr_syncable()
                )
        {
            jcp.transpose_src = true;
            jcp.ver = ver_4fma;
            jcp.fma_step = 4;
        } else {
            jcp.ver = (mayiuse(avx512_core)) ? ver_avx512_core : ver_fma;
            jcp.fma_step = 1;
        }
        jcp.typesize_in = sizeof(prec_traits<data_type::f32>::type);
        jcp.typesize_out = sizeof(prec_traits<data_type::f32>::type);
    } else {
        return status::unimplemented;
    }

    /* once all the formats are set, check the padding consistency */
    args_ok = true
        && jcp.ic <= src_d.padded_dims()[1]
        && jcp.oc <= dst_d.padded_dims()[1]
        && jcp.ic <= weights_d.padded_dims()[with_groups + 1]
        && jcp.oc <= weights_d.padded_dims()[with_groups + 0];
    if (!args_ok) return status::unimplemented;

    const int SMALL_SPATIAL = 10;
    const int BIG_SPATIAL = 28;
    const int BIG_REDUCE_DIM = 1024;
    const int BIG_LOAD_DIM = 256;

    int load_blocking{ 0 };
    int load_blocking_max{ 0 };
    int bcast_blocking{ 0 };
    int bcast_blocking_max{ 0 };
    int reduce_blocking{ 0 };
    int reduce_blocking_max{ 0 };

    jcp.load_grp_count = 1;

    const int L1_capacity = get_cache_size(1, true) / sizeof(float);
    const int L2_size = get_cache_size(2, true) / sizeof(float);
    const int L2_capacity = (L2_size * 3) / 4;

    if (one_of(jcp.prop_kind, forward_training, forward_inference,
                backward_data)) {
        if (one_of(jcp.prop_kind, forward_training, forward_inference)) {
            jcp.reduce_dim = jcp.ic;
            jcp.reduce_block = jcp.ic_block;

            jcp.load_dim = jcp.oc;
            jcp.load_block = jcp.oc_block;

            jcp.bcast_dim = jcp.is;
        } else {
            jcp.reduce_dim = jcp.oc;
            jcp.reduce_block = jcp.oc_block;

            jcp.load_dim = jcp.ic;
            jcp.load_block = jcp.ic_block;

            jcp.bcast_dim = jcp.os;
        }
        jcp.reduce_loop_unroll = jcp.reduce_block;
        jcp.reduce_loop_bcast_step
                = jcp.reduce_loop_unroll * jcp.bcast_dim * jcp.typesize_in;

        jcp.reduce_loop_load_step
            = jcp.reduce_loop_unroll * jcp.load_block * jcp.typesize_in;
        jcp.load_loop_load_step
            = jcp.reduce_dim * jcp.load_block * jcp.typesize_in;

        // adjusting registry blocking
        int max_regs, min_regs, size_treshold, ur_step;
        const int spatial
                = (one_of(jcp.prop_kind, forward_training, forward_inference)) ?
                jcp.oh :
                jcp.ih;
        if (jcp.ver == ver_avx512_core && (8 * jcp.mb) / nthreads >= 1) {
            max_regs = 9;
            min_regs = 6;
            size_treshold = 14;
            ur_step = 1;
            jcp.expl_bcast = true;

            if (jcp.load_dim > 128 && jcp.load_dim < BIG_LOAD_DIM
                    && spatial > SMALL_SPATIAL && spatial < BIG_SPATIAL) {
                max_regs = 6;
                min_regs = 5;
            }
        } else {
            max_regs = jcp.ver == ver_4fma ? 28 : 30;
            min_regs = 9;
            size_treshold = jcp.ver == ver_4fma ? 28 : 14;
            ur_step = jcp.ver == ver_4fma ? 4 : 1;
            jcp.expl_bcast = false;
            jcp.use_vmovntps = true;
        }
        jcp.ur = 1;
        for (int ur_w = max_regs; ur_w >= min_regs; ur_w -= ur_step) {
            if ((spatial >= size_treshold && spatial % ur_w == 0)
                    || (spatial < size_treshold && jcp.os % ur_w == 0)) {
                jcp.ur = ur_w;
                break;
            }
        }
        if (jcp.ur == 1) {
            jcp.ur = nstl::min(max_regs, jcp.os);
            int os_tail = jcp.os % max_regs;
            for (int i = max_regs; i >= min_regs; i -= ur_step) {
                int i_tail = jcp.os % i;
                if (i_tail > os_tail || i_tail == 0) {
                    jcp.ur = i;
                    os_tail = i_tail;
                    if (i_tail == 0)
                        break;
                }
            }
        }

        jcp.reduce_loop_unroll = jcp.reduce_block;
        jcp.reduce_loop_bcast_step
                = jcp.reduce_loop_unroll * jcp.bcast_dim * jcp.typesize_in;

        jcp.bcast_block = jcp.ur;

        jcp.bcast_loop_output_step = jcp.ur * jcp.load_block * jcp.typesize_out;
        jcp.bcast_loop_output_substep = -1; // unused
        jcp.bcast_loop_bcast_step = jcp.ur * jcp.reduce_block * jcp.typesize_in;
        jcp.bcast_loop_bcast_substep = -1; // unused

        jcp.load_loop_iter_step = jcp.load_block;

        if (jcp.prop_kind == backward_data)
            jcp.loop_order = loop_lbr;
        else
            jcp.loop_order = reduce_src ? loop_blr : loop_lbr;

        int nb_bcast = div_up(jcp.bcast_dim, jcp.bcast_block);
        int nb_reduce = div_up(jcp.reduce_dim, jcp.reduce_block);
        int nb_load = div_up(jcp.load_dim, jcp.load_block);

        if (jcp.ver == ver_avx512_core && jcp.expl_bcast) {
            if (jcp.load_dim <= BIG_LOAD_DIM && spatial > SMALL_SPATIAL
                    && spatial < BIG_SPATIAL)
                reduce_blocking = nstl::min(jcp.reduce_dim, 80);
            else if (spatial > SMALL_SPATIAL)
                reduce_blocking = nstl::min(jcp.reduce_dim, 512);
            else
                reduce_blocking = nstl::min(jcp.reduce_dim, 256);

            if ((jcp.mb > 28 && spatial >= 28)
                    || (jcp.mb > 112 && spatial >= 17))
                jcp.use_vmovntps = true;
            else
                jcp.use_vmovntps = false;
        } else {

            reduce_blocking = nb_reduce;
            if (spatial <= SMALL_SPATIAL && jcp.reduce_dim >= BIG_REDUCE_DIM)
                reduce_blocking = 16;
            else if (spatial > SMALL_SPATIAL
                    && jcp.reduce_dim >= BIG_REDUCE_DIM)
                reduce_blocking = 8;
            reduce_blocking = best_divider(nb_reduce, 1, reduce_blocking, true);
            reduce_blocking *= jcp.reduce_block;
        }

        // Check input data cache aliasing.
        // For other ISA constants may be updated.
        // 64 * 1024 is chosen due to 1MB L2 16-way cache.
        // 7 is empirical value. It is about half of 16.
        // So we leave about half of the set for other data - weights, dst
        int way_size = (64 * 1024) / jcp.typesize_in;
        int max_hits = 7;
        if (jcp.bcast_dim * reduce_blocking > way_size * max_hits) {
            int nrb = reduce_blocking / simd_w;
            int sp = jcp.bcast_dim;
            int wl = way_size / simd_w;
            for (int start_off = 0; start_off < jcp.ur; start_off++) {
                for (int off = start_off, hits = 0; off < sp * nrb; off += wl) {
                    if (off % sp >= jcp.ur || ++hits < max_hits)
                        continue;
                    int max_r_blocking = simd_w * nstl::max(1, (off + wl) / sp);
                    reduce_blocking
                            = nstl::min(reduce_blocking, max_r_blocking);
                    break;
                }
            }
        }

        if (reduce_blocking < jcp.reduce_dim) {
            jcp.use_vmovntps = false;
            if (jcp.prop_kind == backward_data)
                jcp.loop_order = reduce_src ? loop_lbr : loop_rlb;
            else
                jcp.loop_order = reduce_src ? loop_rbl : loop_rlb;
        }
        load_blocking = jcp.load_dim;

        int load_size = jcp.load_dim * jcp.reduce_dim;
        int bcast_size = jcp.mb * jcp.ngroups * jcp.bcast_dim * jcp.reduce_dim;

        if (jcp.ver == ver_avx512_core && nthreads <= 28 && jcp.mb < nthreads
                && nb_load * nb_bcast > nthreads) {
            // Some heuristic here
            float calc_koef = 0.01, best_cost = FLT_MAX;
            int n_lgc = nthreads;
            float ratio = (float)load_size / (float)bcast_size;
            int best_lgc = ratio > 1 ? n_lgc : 1;
            auto calc_job_cost = [&](int lb, int tg, float mem_k) {
                int bb_size = jcp.mb * div_up(nb_bcast, tg);
                float calc_size = (float)(bb_size * jcp.ur)
                        * (lb * jcp.load_block) * jcp.reduce_dim;
                float mem_size = (float)(bb_size * jcp.ur + lb * jcp.load_block)
                        * jcp.reduce_dim;
                return calc_koef * calc_size + mem_k * mem_size;
            };
            for (int lgc, ilgc = 0; ilgc < n_lgc; ilgc++) {
                lgc = ratio > 1 ? n_lgc - ilgc : ilgc + 1;
                int min_lb = nb_load / lgc;
                int max_lb = div_up(nb_load, lgc);
                int min_tg = nthreads / lgc;
                int max_tg = div_up(nthreads, lgc);
                // Some heuristic here
                float mem_koef = (max_tg == 1) ? 1.f : 1.3f;
                float job_cost = 0.;
                if (nthreads % lgc < nb_load % lgc) {
                    job_cost = calc_job_cost(max_lb, min_tg, mem_koef);
                } else {
                    auto job_cost1 = calc_job_cost(max_lb, max_tg, mem_koef);
                    auto job_cost2 = calc_job_cost(min_lb, min_tg, mem_koef);
                    job_cost = nstl::max(job_cost1, job_cost2);
                }

                if (job_cost < best_cost) {
                    best_lgc = lgc;
                    best_cost = job_cost;
                }
            }
            jcp.load_grp_count = best_lgc;
            load_blocking = div_up(nb_load, jcp.load_grp_count) * jcp.load_block;
        } else {
            jcp.load_grp_count = div_up(nthreads, jcp.mb * jcp.ngroups * nb_bcast);
            jcp.load_grp_count = best_divider(
                nthreads, jcp.load_grp_count, 2 * jcp.load_grp_count, false);
        }

        if (jcp.ver == ver_avx512_core && jcp.expl_bcast && jcp.bcast_dim <= 64
                && load_size >= L2_size) {
            jcp.load_grp_count = nstl::max(jcp.load_grp_count, 4);
        } else if (jcp.bcast_dim <= 49 && jcp.mb <= nthreads
                && jcp.load_dim > 512 && jcp.load_dim / jcp.reduce_dim >= 4) {
            jcp.load_grp_count = nstl::max(jcp.load_grp_count, 2);
            load_blocking = jcp.load_block;
        }

        if (jcp.ver == ver_4fma && jcp.bcast_dim * jcp.mb < jcp.load_dim
                && jcp.oh * jcp.ow > 64
                && IMPLICATION(reduce_src, jcp.load_dim < 1024)) {
            /* Looking for best loading dimension blocking
            * to get the best thread and data read/write efficiency
            * by finding the optimal 'load_chunk' value
            * Example:
            * for 72 threads and convolution with mb=1, ih=iw=7, oc = 512
            * the 'best' load_chunk value should be 1
            * TODO: remove heuristic constants in above condition
            * TODO: check this blocking for other ISA
            */
            float best_eff = -1.f;
            int best_lgc = 1;

            for (int load_chunk = 1; load_chunk <= nb_load; load_chunk++) {
                int lgc = div_up(nb_load, load_chunk);
                if (lgc > nthreads)
                    continue;
                int thr_per_grp = div_up(nthreads, lgc);
                int bcast_per_thr = div_up(jcp.mb * nb_bcast, thr_per_grp)
                        * jcp.bcast_block;
                int load_per_thr = load_chunk * simd_w;
                float data_norm = (bcast_per_thr + load_per_thr) / 2.f;
                float data_eff = (bcast_per_thr * load_per_thr)
                        / (data_norm * data_norm);
                float thr_eff_over_grp = (float)nstl::max(1, nthreads / lgc)
                        / div_up(nthreads, lgc);
                float thr_eff_in_grp = ((float)jcp.mb * nb_bcast)
                        / rnd_up(jcp.mb * nb_bcast, thr_per_grp);
                float thr_eff = thr_eff_over_grp * thr_eff_in_grp;
                float load_eff = (float)nb_load / rnd_up(nb_load, lgc);
                float overall_eff = data_eff + thr_eff + load_eff;
                if (overall_eff > best_eff) {
                    best_eff = overall_eff;
                    best_lgc = lgc;
                }
            }
            jcp.load_grp_count = best_lgc;
            load_blocking
                    = div_up(nb_load, jcp.load_grp_count) * jcp.load_block;
        }
        bcast_blocking = div_up(jcp.mb * jcp.ngroups * nb_bcast,
                                 div_up(nthreads, jcp.load_grp_count))
                * jcp.bcast_block;
        bcast_blocking = nstl::min(jcp.bcast_dim, bcast_blocking);
        bcast_blocking = rnd_up(bcast_blocking, jcp.bcast_block);

        int space_for_bcast
                = (L2_capacity - /* kernel_size - */
                    2 * jcp.load_block * reduce_blocking
                        - jcp.ur * reduce_blocking - 3 * 1024);
        if (jcp.reduce_dim * jcp.bcast_dim > L2_capacity)
            space_for_bcast /= 2;

        int bcast_in_cache
                = nstl::max(jcp.bcast_block, space_for_bcast / reduce_blocking);
        bcast_blocking = nstl::min(
                bcast_blocking, rnd_dn(bcast_in_cache, jcp.bcast_block));

        load_blocking_max = load_blocking;
        bcast_blocking_max = bcast_blocking * 3 / 2;
        reduce_blocking_max = reduce_blocking;

    } else if (jcp.prop_kind == backward_weights) {

        jcp.use_vmovntps = false;
        if (jcp.is > SMALL_SPATIAL * SMALL_SPATIAL && jcp.ver == ver_4fma)
            jcp.use_vmovntps = true;

        if (jcp.transpose_src)
            jcp.reduce_dim = jcp.tr_is;
        else
            jcp.reduce_dim = jcp.is;

        if (jcp.ver == ver_4fma) {
            // reduce_block should be divided by fma_step
            jcp.reduce_block = best_divider(jcp.reduce_dim, 4, 16, true, 4);
        } else {
            jcp.reduce_block = best_divider(jcp.reduce_dim, 7, 16, true);
            if (jcp.reduce_dim % jcp.reduce_block != 0)
                jcp.reduce_block = best_divider(jcp.iw, 4, jcp.iw, false);
            if (jcp.reduce_block > 256) {
                jcp.reduce_block = 1;
            }

        }

        jcp.load_dim = jcp.oc;
        jcp.load_block = jcp.oc_block;

        jcp.bcast_dim = jcp.ic;
        jcp.bcast_block = jcp.ic_block;

        if (jcp.ver == ver_avx512_core && jcp.reduce_block <= 19) {
            // if reduce_block is big then generated JIT code may be big
            // for small values of ur because reduce_loop_unroll = reduce_block
            jcp.ur = jcp.bcast_block / 2;
            jcp.expl_bcast = true;
        } else {
            jcp.ur = jcp.bcast_block;
            jcp.expl_bcast = false;
        }

        jcp.reduce_loop_unroll = jcp.reduce_block;
        jcp.reduce_loop_bcast_step
            = jcp.reduce_loop_unroll * jcp.ic_block * jcp.typesize_in;
        jcp.reduce_loop_load_step
            = jcp.reduce_loop_unroll * jcp.oc_block * jcp.typesize_in;

        jcp.bcast_loop_output_step =
                                jcp.oc_block * jcp.ic_block * jcp.typesize_out;
        jcp.bcast_loop_output_substep =
            jcp.oc_block * jcp.ur * jcp.typesize_out;
        jcp.bcast_loop_bcast_step =
                jcp.ic_block * jcp.reduce_dim * jcp.typesize_in;
        jcp.bcast_loop_bcast_substep = jcp.ur * jcp.typesize_in;

        jcp.load_loop_load_step = jcp.oc_block * jcp.os * jcp.typesize_in;
        jcp.load_loop_iter_step = jcp.oc_block;

        /* --- */
        balance(jcp, nthreads);

        load_blocking = div_up(jcp.load_dim, jcp.load_block);
        load_blocking = best_divider(load_blocking, 16, load_blocking, false);
        load_blocking *= jcp.load_block;

        load_blocking_max = load_blocking;
        assert(jcp.load_dim % load_blocking == 0);

        int max_bcast_blocking = div_up(jcp.bcast_dim, jcp.bcast_block);
        int min_bcast_blocking = 5;

        bcast_blocking = div_up(jcp.bcast_dim, jcp.bcast_block);
        bcast_blocking = best_divider(
                bcast_blocking, min_bcast_blocking, max_bcast_blocking, false);
        bcast_blocking *= jcp.bcast_block;
        bcast_blocking_max = bcast_blocking;
        assert(jcp.bcast_dim % bcast_blocking == 0);

        // for reduction balance
        if (jcp.ver == ver_avx512_core) {
            int max_reduce_blocking
                    = nstl::min(L1_capacity / jcp.ur, jcp.reduce_dim);
            int min_reduce_blocking = nstl::min(
                    L1_capacity / jcp.ur, nstl::max(jcp.iw, jcp.ih));
            reduce_blocking = best_divider(jcp.reduce_dim, min_reduce_blocking,
                    max_reduce_blocking, true);
            reduce_blocking
                    = nstl::max(rnd_dn(reduce_blocking, jcp.reduce_block),
                            jcp.reduce_block);
        } else {
            int max_reduce_blocking = L2_capacity
                    / ((bcast_blocking + load_blocking) * jcp.reduce_block);
            max_reduce_blocking = nstl::min(max_reduce_blocking,
                    (L1_capacity / (jcp.bcast_block)) / jcp.reduce_block);

            int num_jobs = div_up(jcp.load_dim, load_blocking)
                    * div_up(jcp.bcast_dim, bcast_blocking);
            int threads_per_job = nstl::max(1, nthreads / num_jobs);
            reduce_blocking = div_up(jcp.mb * jcp.reduce_dim, jcp.reduce_block);
            reduce_blocking = div_up(reduce_blocking, threads_per_job);

            reduce_blocking = best_divider(reduce_blocking,
                    max_reduce_blocking - 2, max_reduce_blocking, true);
            reduce_blocking *= jcp.reduce_block;
        }

        reduce_blocking_max = rnd_dn(reduce_blocking * 3 / 2, jcp.reduce_block);
    } else
        return status::unimplemented;

    assert(load_blocking);
    assert(load_blocking_max);
    assert(bcast_blocking);
    assert(bcast_blocking_max);
    assert(reduce_blocking);
    assert(reduce_blocking_max);
    assert(load_blocking % jcp.load_block == 0);
    assert(reduce_blocking % jcp.reduce_block == 0);
    assert(load_blocking_max % jcp.load_block == 0);
    assert(reduce_blocking_max % jcp.reduce_block == 0);
    if (jcp.ver == ver_4fma) {
        assert(jcp.reduce_loop_unroll % jcp.fma_step == 0);
        assert(jcp.reduce_dim % jcp.reduce_loop_unroll == 0);
    }

    assert(jcp.bcast_block % jcp.ur == 0);
    assert(jcp.reduce_dim % jcp.reduce_block == 0);

    jcp.ur_tail = jcp.bcast_dim % jcp.ur;

    jcp.nb_bcast_blocking = bcast_blocking / jcp.bcast_block;
    jcp.nb_bcast_blocking_max = bcast_blocking_max / jcp.bcast_block;
    jcp.nb_load_blocking = load_blocking / jcp.load_block;
    jcp.nb_load_blocking_max = load_blocking_max / jcp.load_block;
    jcp.nb_reduce_blocking = reduce_blocking / jcp.reduce_block;
    jcp.nb_reduce_blocking_max = reduce_blocking_max / jcp.reduce_block;

    jcp.nb_bcast = div_up(jcp.bcast_dim, jcp.bcast_block);
    jcp.nb_load = div_up(jcp.load_dim, jcp.load_block);
    jcp.nb_reduce = div_up(jcp.reduce_dim, jcp.reduce_block);

    return status::success;
}

void jit_avx512_common_1x1_conv_kernel::init_scratchpad(
        memory_tracking::registrar_t &scratchpad,
        const jit_1x1_conv_conf_t &jcp) {
    using namespace mkldnn::impl::memory_tracking::names;

    if (jcp.prop_kind != backward_data && jcp.with_bias
            && jcp.oc != jcp.oc_without_padding)
        scratchpad.book(key_conv_padded_bias, jcp.typesize_out * jcp.oc);

    if (jcp.prop_kind == backward_weights) {
        const size_t wei_size = (size_t)jcp.ngroups * jcp.oc * jcp.ic;
        scratchpad.book(key_conv_wei_reduction,
                jcp.typesize_out * wei_size * (jcp.nthr_mb - 1));
    }

    if (jcp.transpose_src) {
        const size_t tr_src_size =
            (size_t)jcp.nthr_mb * jcp.ngroups * jcp.ic * jcp.tr_is;
        scratchpad.book(key_conv_tr_src, jcp.typesize_out * tr_src_size);
        scratchpad.book(key_conv_tr_src_bctx,
                sizeof(simple_barrier::ctx_t) * jcp.nthr);
    }
}

void jit_avx512_common_1x1_conv_kernel::balance(jit_1x1_conv_conf_t &jcp,
        int nthreads)
{
    // initialize jcp reduction threading properties
    jcp.nthr = jcp.nthr_mb = jcp.nthr_g = jcp.nthr_oc_b = jcp.nthr_ic_b = 1;
    if (nthreads < jcp.ngroups) {
        /* simplification... fortunately it doesn't hurt much */
        return;
    }
    const int nb_bcast = div_up(jcp.bcast_dim, jcp.bcast_block);
    const int nb_load = div_up(jcp.load_dim, jcp.load_block);
    const int nb_reduce = div_up(jcp.reduce_dim, jcp.reduce_block);

    jcp.nthr_g = jcp.ngroups;
    const int nthr = nthreads / jcp.nthr_g;

    auto calc_mem_cost = [=](int nthr_mb, int nthr_oc_b, int nthr_ic_b) {
        /* calculate per thread memory cost (read/write). high level
        * optimizer tries to minimize memory consumption. few notes: (n1)
        * unclear why, but that essentially helps first convolution...
        *  (n2) assuming the reduction over minibatch is always there:
        *    - instead of 8 it should be 5 here (write ~= 2 read):
        *      kernel: temporal workspace 1 write
        *      reduction: 1 read from workspace and 1 write to the diff_wei
        *    - but experiments showed 8 works better than 5 or 6... */
        int bcast_koeff = 1;
        int load_koeff = 1;
        int output_koeff = 12;
        if (jcp.transpose_src) {
            bcast_koeff = 5;
            load_koeff = 1;
            output_koeff = 8;
        }
        return 0
            + (size_t)bcast_koeff * div_up(jcp.mb * nb_reduce, nthr_mb)
            * div_up(jcp.ngroups, jcp.nthr_g)
            * div_up(nb_bcast, nthr_ic_b) * jcp.ic_block * jcp.reduce_block
            / jcp.stride_h / jcp.stride_w /* (n1) */
            + (size_t)load_koeff * div_up(jcp.mb * nb_reduce, nthr_mb)
            * div_up(jcp.ngroups, jcp.nthr_g)
            * div_up(nb_load, nthr_oc_b) * jcp.oc_block * jcp.reduce_block
            + (size_t)output_koeff /* (n2) */
            * div_up(jcp.ngroups, jcp.nthr_g) * div_up(nb_load, nthr_oc_b)
            * div_up(nb_bcast, nthr_ic_b) * jcp.ic_block
            * jcp.oc_block;
    };

    int nthr_mb = 1, nthr_oc_b = 1, nthr_ic_b = 1;
    auto best_mem_cost = calc_mem_cost(nthr_mb, nthr_oc_b, nthr_ic_b);

    /* step 1: find the best thread distribution with lowest memory cost */
    const int nthr_mb_max = nstl::min(nthr, jcp.mb * nb_reduce);
    for (nthr_mb = 1; nthr_mb <= nthr_mb_max; ++nthr_mb) {
        const int nthr_par = nthr / nthr_mb;
        const int nthr_oc_b_max = nstl::min(nthr_par, nb_load);
        for (nthr_oc_b = 1; nthr_oc_b <= nthr_oc_b_max; ++nthr_oc_b) {
            nthr_ic_b = nstl::min(nthr_par / nthr_oc_b, nb_bcast);
            auto mem_cost = calc_mem_cost(nthr_mb, nthr_oc_b, nthr_ic_b);
            if (mem_cost <= best_mem_cost) {
                best_mem_cost = mem_cost;
                jcp.nthr_mb = nthr_mb;
                jcp.nthr_oc_b = nthr_oc_b;
                jcp.nthr_ic_b = nthr_ic_b;
            }
        }

        if (!mkldnn_thr_syncable()) { assert(nthr_mb == 1); break; }
    }
    if (jcp.nthr_mb > nthreads / 2 && jcp.nthr_mb < nthreads)
        jcp.nthr_mb = nstl::min(jcp.mb, nthreads);

    jcp.nthr = jcp.nthr_mb * jcp.nthr_g * jcp.nthr_oc_b * jcp.nthr_ic_b;
    assert(jcp.nthr <= nthreads);
}

}
}
}