1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
/* Copyright (c) 2011 Khaled Mamou (kmamou at gmail dot com)
 All rights reserved.
 
 
 Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:
 
 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.
 
 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution.
 
 3. The names of the contributors may not be used to endorse or promote products derived from this software without specific prior written permission.
 
 THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 */

#ifndef _CRT_SECURE_NO_WARNINGS
#define _CRT_SECURE_NO_WARNINGS
#endif

#include <algorithm>
#include <fstream>
#include <iomanip>
#include <limits>
#include <sstream>
#if _OPENMP
#include <omp.h>
#endif // _OPENMP

#include "../public/VHACD.h"
#include "btConvexHullComputer.h"
#include "vhacdICHull.h"
#include "vhacdMesh.h"
#include "vhacdSArray.h"
#include "vhacdTimer.h"
#include "vhacdVHACD.h"
#include "vhacdVector.h"
#include "vhacdVolume.h"
#include "FloatMath.h"

#define MAX(a, b) (((a) > (b)) ? (a) : (b))
#define MIN(a, b) (((a) < (b)) ? (a) : (b))
#define ABS(a) (((a) < 0) ? -(a) : (a))
#define ZSGN(a) (((a) < 0) ? -1 : (a) > 0 ? 1 : 0)
#define MAX_DOUBLE (1.79769e+308)

#ifdef _MSC_VER
#pragma warning(disable:4267 4100 4244 4456)
#endif

#ifdef USE_SSE
#include <immintrin.h>

const int32_t SIMD_WIDTH = 4;
inline int32_t FindMinimumElement(const float* const d, float* const _, const int32_t n)
{
    // Min within vectors
    __m128 min_i = _mm_set1_ps(-1.0f);
    __m128 min_v = _mm_set1_ps(std::numeric_limits<float>::max());
    for (int32_t i = 0; i <= n - SIMD_WIDTH; i += SIMD_WIDTH) {
        const __m128 data = _mm_load_ps(&d[i]);
        const __m128 pred = _mm_cmplt_ps(data, min_v);

        min_i = _mm_blendv_ps(min_i, _mm_set1_ps(i), pred);
        min_v = _mm_min_ps(data, min_v);
    }

    /* Min within vector */
    const __m128 min1 = _mm_shuffle_ps(min_v, min_v, _MM_SHUFFLE(1, 0, 3, 2));
    const __m128 min2 = _mm_min_ps(min_v, min1);
    const __m128 min3 = _mm_shuffle_ps(min2, min2, _MM_SHUFFLE(0, 1, 0, 1));
    const __m128 min4 = _mm_min_ps(min2, min3);
    float min_d = _mm_cvtss_f32(min4);

    // Min index
    const int32_t min_idx = __builtin_ctz(_mm_movemask_ps(_mm_cmpeq_ps(min_v, min4)));
    int32_t ret = min_i[min_idx] + min_idx;

    // Trailing elements
    for (int32_t i = (n & ~(SIMD_WIDTH - 1)); i < n; ++i) {
        if (d[i] < min_d) {
            min_d = d[i];
            ret = i;
        }
    }

    *m = min_d;
    return ret;
}

inline int32_t FindMinimumElement(const float* const d, float* const m, const int32_t begin, const int32_t end)
{
    // Leading elements
    int32_t min_i = -1;
    float min_d = std::numeric_limits<float>::max();
    const int32_t aligned = (begin & ~(SIMD_WIDTH - 1)) + ((begin & (SIMD_WIDTH - 1)) ? SIMD_WIDTH : 0);
    for (int32_t i = begin; i < std::min(end, aligned); ++i) {
        if (d[i] < min_d) {
            min_d = d[i];
            min_i = i;
        }
    }

    // Middle and trailing elements
    float r_m = std::numeric_limits<float>::max();
    const int32_t n = end - aligned;
    const int32_t r_i = (n > 0) ? FindMinimumElement(&d[aligned], &r_m, n) : 0;

    // Pick the lowest
    if (r_m < min_d) {
        *m = r_m;
        return r_i + aligned;
    }
    else {
        *m = min_d;
        return min_i;
    }
}
#else
inline int32_t FindMinimumElement(const float* const d, float* const m, const int32_t begin, const int32_t end)
{
    int32_t idx = -1;
    float min = (std::numeric_limits<float>::max)();
    for (size_t i = begin; i < size_t(end); ++i) {
        if (d[i] < min) {
            idx = i;
            min = d[i];
        }
    }

    *m = min;
    return idx;
}
#endif

//#define OCL_SOURCE_FROM_FILE
#ifndef OCL_SOURCE_FROM_FILE
const char* oclProgramSource = "\
__kernel void ComputePartialVolumes(__global short4 * voxels,                    \
                                    const    int      numVoxels,                 \
                                    const    float4   plane,                     \
                                    const    float4   minBB,                     \
                                    const    float4   scale,                     \
                                    __local  uint4 *  localPartialVolumes,       \
                                    __global uint4 *  partialVolumes)            \
{                                                                                \
    int localId = get_local_id(0);                                               \
    int groupSize = get_local_size(0);                                           \
    int i0 = get_global_id(0) << 2;                                              \
    float4 voxel;                                                                \
    uint4  v;                                                                    \
    voxel = convert_float4(voxels[i0]);                                          \
    v.s0 = (dot(plane, mad(scale, voxel, minBB)) >= 0.0f) * (i0     < numVoxels);\
    voxel = convert_float4(voxels[i0 + 1]);                                      \
    v.s1 = (dot(plane, mad(scale, voxel, minBB)) >= 0.0f) * (i0 + 1 < numVoxels);\
    voxel = convert_float4(voxels[i0 + 2]);                                      \
    v.s2 = (dot(plane, mad(scale, voxel, minBB)) >= 0.0f) * (i0 + 2 < numVoxels);\
    voxel = convert_float4(voxels[i0 + 3]);                                      \
    v.s3 = (dot(plane, mad(scale, voxel, minBB)) >= 0.0f) * (i0 + 3 < numVoxels);\
    localPartialVolumes[localId] = v;                                            \
    barrier(CLK_LOCAL_MEM_FENCE);                                                \
    for (int i = groupSize >> 1; i > 0; i >>= 1)                                 \
    {                                                                            \
        if (localId < i)                                                         \
        {                                                                        \
            localPartialVolumes[localId] += localPartialVolumes[localId + i];    \
        }                                                                        \
        barrier(CLK_LOCAL_MEM_FENCE);                                            \
    }                                                                            \
    if (localId == 0)                                                            \
    {                                                                            \
        partialVolumes[get_group_id(0)] = localPartialVolumes[0];                \
    }                                                                            \
}                                                                                \
__kernel void ComputePartialSums(__global uint4 * data,                          \
                                 const    int     dataSize,                      \
                                 __local  uint4 * partialSums)                   \
{                                                                                \
    int globalId  = get_global_id(0);                                            \
    int localId   = get_local_id(0);                                             \
    int groupSize = get_local_size(0);                                           \
    int i;                                                                       \
    if (globalId < dataSize)                                                     \
    {                                                                            \
        partialSums[localId] = data[globalId];                                   \
    }                                                                            \
    else                                                                         \
    {                                                                            \
        partialSums[localId] = (0, 0, 0, 0);                                     \
    }                                                                            \
    barrier(CLK_LOCAL_MEM_FENCE);                                                \
    for (i = groupSize >> 1; i > 0; i >>= 1)                                     \
    {                                                                            \
        if (localId < i)                                                         \
        {                                                                        \
            partialSums[localId] += partialSums[localId + i];                    \
        }                                                                        \
        barrier(CLK_LOCAL_MEM_FENCE);                                            \
    }                                                                            \
    if (localId == 0)                                                            \
    {                                                                            \
        data[get_group_id(0)] = partialSums[0];                                  \
    }                                                                            \
}";
#endif //OCL_SOURCE_FROM_FILE

namespace VHACD {
IVHACD* CreateVHACD(void)
{
    return new VHACD();
}
bool VHACD::OCLInit(void* const oclDevice, IUserLogger* const logger)
{
#ifdef CL_VERSION_1_1
    m_oclDevice = (cl_device_id*)oclDevice;
    cl_int error;
    m_oclContext = clCreateContext(NULL, 1, m_oclDevice, NULL, NULL, &error);
    if (error != CL_SUCCESS) {
        if (logger) {
            logger->Log("Couldn't create context\n");
        }
        return false;
    }

#ifdef OCL_SOURCE_FROM_FILE
    std::string cl_files = OPENCL_CL_FILES;
// read kernal from file
#ifdef _WIN32
    std::replace(cl_files.begin(), cl_files.end(), '/', '\\');
#endif // _WIN32

    FILE* program_handle = fopen(cl_files.c_str(), "rb");
    fseek(program_handle, 0, SEEK_END);
    size_t program_size = ftell(program_handle);
    rewind(program_handle);
    char* program_buffer = new char[program_size + 1];
    program_buffer[program_size] = '\0';
    fread(program_buffer, sizeof(char), program_size, program_handle);
    fclose(program_handle);
    // create program
    m_oclProgram = clCreateProgramWithSource(m_oclContext, 1, (const char**)&program_buffer, &program_size, &error);
    delete[] program_buffer;
#else
    size_t program_size = strlen(oclProgramSource);
    m_oclProgram = clCreateProgramWithSource(m_oclContext, 1, (const char**)&oclProgramSource, &program_size, &error);
#endif
    if (error != CL_SUCCESS) {
        if (logger) {
            logger->Log("Couldn't create program\n");
        }
        return false;
    }

    /* Build program */
    error = clBuildProgram(m_oclProgram, 1, m_oclDevice, "-cl-denorms-are-zero", NULL, NULL);
    if (error != CL_SUCCESS) {
        size_t log_size;
        /* Find Size of log and print to std output */
        clGetProgramBuildInfo(m_oclProgram, *m_oclDevice, CL_PROGRAM_BUILD_LOG, 0, NULL, &log_size);
        char* program_log = new char[log_size + 2];
        program_log[log_size] = '\n';
        program_log[log_size + 1] = '\0';
        clGetProgramBuildInfo(m_oclProgram, *m_oclDevice, CL_PROGRAM_BUILD_LOG, log_size + 1, program_log, NULL);
        if (logger) {
            logger->Log("Couldn't build program\n");
            logger->Log(program_log);
        }
        delete[] program_log;
        return false;
    }

    delete[] m_oclQueue;
    delete[] m_oclKernelComputePartialVolumes;
    delete[] m_oclKernelComputeSum;
    m_oclQueue = new cl_command_queue[m_ompNumProcessors];
    m_oclKernelComputePartialVolumes = new cl_kernel[m_ompNumProcessors];
    m_oclKernelComputeSum = new cl_kernel[m_ompNumProcessors];

    const char nameKernelComputePartialVolumes[] = "ComputePartialVolumes";
    const char nameKernelComputeSum[] = "ComputePartialSums";
    for (int32_t k = 0; k < m_ompNumProcessors; ++k) {
        m_oclKernelComputePartialVolumes[k] = clCreateKernel(m_oclProgram, nameKernelComputePartialVolumes, &error);
        if (error != CL_SUCCESS) {
            if (logger) {
                logger->Log("Couldn't create kernel\n");
            }
            return false;
        }
        m_oclKernelComputeSum[k] = clCreateKernel(m_oclProgram, nameKernelComputeSum, &error);
        if (error != CL_SUCCESS) {
            if (logger) {
                logger->Log("Couldn't create kernel\n");
            }
            return false;
        }
    }

    error = clGetKernelWorkGroupInfo(m_oclKernelComputePartialVolumes[0],<--- error is assigned
        *m_oclDevice,
        CL_KERNEL_WORK_GROUP_SIZE,
        sizeof(size_t),
        &m_oclWorkGroupSize,
        NULL);
    size_t workGroupSize = 0;
    error = clGetKernelWorkGroupInfo(m_oclKernelComputeSum[0],<--- error is overwritten
        *m_oclDevice,
        CL_KERNEL_WORK_GROUP_SIZE,
        sizeof(size_t),
        &workGroupSize,
        NULL);
    if (error != CL_SUCCESS) {
        if (logger) {
            logger->Log("Couldn't query work group info\n");
        }
        return false;
    }

    if (workGroupSize < m_oclWorkGroupSize) {
        m_oclWorkGroupSize = workGroupSize;
    }

    for (int32_t k = 0; k < m_ompNumProcessors; ++k) {
        m_oclQueue[k] = clCreateCommandQueue(m_oclContext, *m_oclDevice, 0 /*CL_QUEUE_PROFILING_ENABLE*/, &error);
        if (error != CL_SUCCESS) {
            if (logger) {
                logger->Log("Couldn't create queue\n");
            }
            return false;
        }
    }
    return true;
#else //CL_VERSION_1_1
    return false;
#endif //CL_VERSION_1_1
}
bool VHACD::OCLRelease(IUserLogger* const logger)
{
#ifdef CL_VERSION_1_1
    cl_int error;
    if (m_oclKernelComputePartialVolumes) {
        for (int32_t k = 0; k < m_ompNumProcessors; ++k) {
            error = clReleaseKernel(m_oclKernelComputePartialVolumes[k]);
            if (error != CL_SUCCESS) {
                if (logger) {
                    logger->Log("Couldn't release kernal\n");
                }
                return false;
            }
        }
        delete[] m_oclKernelComputePartialVolumes;
    }
    if (m_oclKernelComputeSum) {
        for (int32_t k = 0; k < m_ompNumProcessors; ++k) {
            error = clReleaseKernel(m_oclKernelComputeSum[k]);
            if (error != CL_SUCCESS) {
                if (logger) {
                    logger->Log("Couldn't release kernal\n");
                }
                return false;
            }
        }
        delete[] m_oclKernelComputeSum;
    }
    if (m_oclQueue) {
        for (int32_t k = 0; k < m_ompNumProcessors; ++k) {
            error = clReleaseCommandQueue(m_oclQueue[k]);
            if (error != CL_SUCCESS) {
                if (logger) {
                    logger->Log("Couldn't release queue\n");
                }
                return false;
            }
        }
        delete[] m_oclQueue;
    }
    error = clReleaseProgram(m_oclProgram);
    if (error != CL_SUCCESS) {
        if (logger) {
            logger->Log("Couldn't release program\n");
        }
        return false;
    }
    error = clReleaseContext(m_oclContext);
    if (error != CL_SUCCESS) {
        if (logger) {
            logger->Log("Couldn't release context\n");
        }
        return false;
    }

    return true;
#else //CL_VERSION_1_1
    return false;
#endif //CL_VERSION_1_1
}
void VHACD::ComputePrimitiveSet(const Parameters& params)
{
    if (GetCancel()) {
        return;
    }
    m_timer.Tic();

    m_stage = "Compute primitive set";
    m_operation = "Convert volume to pset";

    std::ostringstream msg;
    if (params.m_logger) {
        msg << "+ " << m_stage << std::endl;
        params.m_logger->Log(msg.str().c_str());
    }

    Update(0.0, 0.0, params);
    if (params.m_mode == 0) {
        VoxelSet* vset = new VoxelSet;
        m_volume->Convert(*vset);
        m_pset = vset;
    }
    else {
        TetrahedronSet* tset = new TetrahedronSet;
        m_volume->Convert(*tset);
        m_pset = tset;
    }

    delete m_volume;
    m_volume = 0;

    if (params.m_logger) {
        msg.str("");
        msg << "\t # primitives               " << m_pset->GetNPrimitives() << std::endl;
        msg << "\t # inside surface           " << m_pset->GetNPrimitivesInsideSurf() << std::endl;
        msg << "\t # on surface               " << m_pset->GetNPrimitivesOnSurf() << std::endl;
        params.m_logger->Log(msg.str().c_str());
    }

    m_overallProgress = 15.0;
    Update(100.0, 100.0, params);
    m_timer.Toc();
    if (params.m_logger) {
        msg.str("");
        msg << "\t time " << m_timer.GetElapsedTime() / 1000.0 << "s" << std::endl;
        params.m_logger->Log(msg.str().c_str());
    }
}
bool VHACD::Compute(const double* const points, const uint32_t nPoints,
    const uint32_t* const triangles,const uint32_t nTriangles, const Parameters& params)
{
    return ComputeACD(points, nPoints, triangles, nTriangles, params);
}
bool VHACD::Compute(const float* const points,const uint32_t nPoints,
    const uint32_t* const triangles,const uint32_t nTriangles, const Parameters& params)
{
    return ComputeACD(points, nPoints, triangles, nTriangles, params);
}
double ComputePreferredCuttingDirection(const PrimitiveSet* const tset, Vec3<double>& dir)
{
    double ex = tset->GetEigenValue(AXIS_X);
    double ey = tset->GetEigenValue(AXIS_Y);
    double ez = tset->GetEigenValue(AXIS_Z);
    double vx = (ey - ez) * (ey - ez);
    double vy = (ex - ez) * (ex - ez);
    double vz = (ex - ey) * (ex - ey);
    if (vx < vy && vx < vz) {
        double e = ey * ey + ez * ez;
        dir[0] = 1.0;
        dir[1] = 0.0;
        dir[2] = 0.0;
        return (e == 0.0) ? 0.0 : 1.0 - vx / e;
    }
    else if (vy < vx && vy < vz) {
        double e = ex * ex + ez * ez;
        dir[0] = 0.0;
        dir[1] = 1.0;
        dir[2] = 0.0;
        return (e == 0.0) ? 0.0 : 1.0 - vy / e;
    }
    else {
        double e = ex * ex + ey * ey;
        dir[0] = 0.0;
        dir[1] = 0.0;
        dir[2] = 1.0;
        return (e == 0.0) ? 0.0 : 1.0 - vz / e;
    }
}
void ComputeAxesAlignedClippingPlanes(const VoxelSet& vset, const short downsampling, SArray<Plane>& planes)
{
    const Vec3<short> minV = vset.GetMinBBVoxels();
    const Vec3<short> maxV = vset.GetMaxBBVoxels();
    Vec3<double> pt;
    Plane plane;
    const short i0 = minV[0];
    const short i1 = maxV[0];
    plane.m_a = 1.0;
    plane.m_b = 0.0;
    plane.m_c = 0.0;
    plane.m_axis = AXIS_X;
    for (short i = i0; i <= i1; i += downsampling) {
        pt = vset.GetPoint(Vec3<double>(i + 0.5, 0.0, 0.0));
        plane.m_d = -pt[0];
        plane.m_index = i;
        planes.PushBack(plane);
    }
    const short j0 = minV[1];
    const short j1 = maxV[1];
    plane.m_a = 0.0;
    plane.m_b = 1.0;
    plane.m_c = 0.0;
    plane.m_axis = AXIS_Y;
    for (short j = j0; j <= j1; j += downsampling) {
        pt = vset.GetPoint(Vec3<double>(0.0, j + 0.5, 0.0));
        plane.m_d = -pt[1];
        plane.m_index = j;
        planes.PushBack(plane);
    }
    const short k0 = minV[2];
    const short k1 = maxV[2];
    plane.m_a = 0.0;
    plane.m_b = 0.0;
    plane.m_c = 1.0;
    plane.m_axis = AXIS_Z;
    for (short k = k0; k <= k1; k += downsampling) {
        pt = vset.GetPoint(Vec3<double>(0.0, 0.0, k + 0.5));
        plane.m_d = -pt[2];
        plane.m_index = k;
        planes.PushBack(plane);
    }
}
void ComputeAxesAlignedClippingPlanes(const TetrahedronSet& tset, const short downsampling, SArray<Plane>& planes)
{
    const Vec3<double> minV = tset.GetMinBB();
    const Vec3<double> maxV = tset.GetMaxBB();
    const double scale = tset.GetSacle();
    const short i0 = 0;
    const short j0 = 0;
    const short k0 = 0;
    const short i1 = static_cast<short>((maxV[0] - minV[0]) / scale + 0.5);
    const short j1 = static_cast<short>((maxV[1] - minV[1]) / scale + 0.5);
    const short k1 = static_cast<short>((maxV[2] - minV[2]) / scale + 0.5);

    Plane plane;
    plane.m_a = 1.0;
    plane.m_b = 0.0;
    plane.m_c = 0.0;
    plane.m_axis = AXIS_X;
    for (short i = i0; i <= i1; i += downsampling) {
        double x = minV[0] + scale * i;
        plane.m_d = -x;
        plane.m_index = i;
        planes.PushBack(plane);
    }
    plane.m_a = 0.0;
    plane.m_b = 1.0;
    plane.m_c = 0.0;
    plane.m_axis = AXIS_Y;
    for (short j = j0; j <= j1; j += downsampling) {
        double y = minV[1] + scale * j;
        plane.m_d = -y;
        plane.m_index = j;
        planes.PushBack(plane);
    }
    plane.m_a = 0.0;
    plane.m_b = 0.0;
    plane.m_c = 1.0;
    plane.m_axis = AXIS_Z;
    for (short k = k0; k <= k1; k += downsampling) {
        double z = minV[2] + scale * k;
        plane.m_d = -z;
        plane.m_index = k;
        planes.PushBack(plane);
    }
}
void RefineAxesAlignedClippingPlanes(const VoxelSet& vset, const Plane& bestPlane, const short downsampling,
    SArray<Plane>& planes)
{
    const Vec3<short> minV = vset.GetMinBBVoxels();
    const Vec3<short> maxV = vset.GetMaxBBVoxels();
    Vec3<double> pt;
    Plane plane;

    if (bestPlane.m_axis == AXIS_X) {
        const short i0 = MAX(minV[0], bestPlane.m_index - downsampling);
        const short i1 = MIN(maxV[0], bestPlane.m_index + downsampling);
        plane.m_a = 1.0;
        plane.m_b = 0.0;
        plane.m_c = 0.0;
        plane.m_axis = AXIS_X;
        for (short i = i0; i <= i1; ++i) {
            pt = vset.GetPoint(Vec3<double>(i + 0.5, 0.0, 0.0));
            plane.m_d = -pt[0];
            plane.m_index = i;
            planes.PushBack(plane);
        }
    }
    else if (bestPlane.m_axis == AXIS_Y) {
        const short j0 = MAX(minV[1], bestPlane.m_index - downsampling);
        const short j1 = MIN(maxV[1], bestPlane.m_index + downsampling);
        plane.m_a = 0.0;
        plane.m_b = 1.0;
        plane.m_c = 0.0;
        plane.m_axis = AXIS_Y;
        for (short j = j0; j <= j1; ++j) {
            pt = vset.GetPoint(Vec3<double>(0.0, j + 0.5, 0.0));
            plane.m_d = -pt[1];
            plane.m_index = j;
            planes.PushBack(plane);
        }
    }
    else {
        const short k0 = MAX(minV[2], bestPlane.m_index - downsampling);
        const short k1 = MIN(maxV[2], bestPlane.m_index + downsampling);
        plane.m_a = 0.0;
        plane.m_b = 0.0;
        plane.m_c = 1.0;
        plane.m_axis = AXIS_Z;
        for (short k = k0; k <= k1; ++k) {
            pt = vset.GetPoint(Vec3<double>(0.0, 0.0, k + 0.5));
            plane.m_d = -pt[2];
            plane.m_index = k;
            planes.PushBack(plane);
        }
    }
}
void RefineAxesAlignedClippingPlanes(const TetrahedronSet& tset, const Plane& bestPlane, const short downsampling,
    SArray<Plane>& planes)
{
    const Vec3<double> minV = tset.GetMinBB();
    const Vec3<double> maxV = tset.GetMaxBB();
    const double scale = tset.GetSacle();
    Plane plane;

    if (bestPlane.m_axis == AXIS_X) {
        const short i0 = MAX(0, bestPlane.m_index - downsampling);
        const short i1 = static_cast<short>(MIN((maxV[0] - minV[0]) / scale + 0.5, bestPlane.m_index + downsampling));
        plane.m_a = 1.0;
        plane.m_b = 0.0;
        plane.m_c = 0.0;
        plane.m_axis = AXIS_X;
        for (short i = i0; i <= i1; ++i) {
            double x = minV[0] + scale * i;
            plane.m_d = -x;
            plane.m_index = i;
            planes.PushBack(plane);
        }
    }
    else if (bestPlane.m_axis == AXIS_Y) {
        const short j0 = MAX(0, bestPlane.m_index - downsampling);
        const short j1 = static_cast<short>(MIN((maxV[1] - minV[1]) / scale + 0.5, bestPlane.m_index + downsampling));
        plane.m_a = 0.0;
        plane.m_b = 1.0;
        plane.m_c = 0.0;
        plane.m_axis = AXIS_Y;
        for (short j = j0; j <= j1; ++j) {
            double y = minV[1] + scale * j;
            plane.m_d = -y;
            plane.m_index = j;
            planes.PushBack(plane);
        }
    }
    else {
        const short k0 = MAX(0, bestPlane.m_index - downsampling);
        const short k1 = static_cast<short>(MIN((maxV[2] - minV[2]) / scale + 0.5, bestPlane.m_index + downsampling));
        plane.m_a = 0.0;
        plane.m_b = 0.0;
        plane.m_c = 1.0;
        plane.m_axis = AXIS_Z;
        for (short k = k0; k <= k1; ++k) {
            double z = minV[2] + scale * k;
            plane.m_d = -z;
            plane.m_index = k;
            planes.PushBack(plane);
        }
    }
}
inline double ComputeLocalConcavity(const double volume, const double volumeCH)
{
    return fabs(volumeCH - volume) / volumeCH;
}
inline double ComputeConcavity(const double volume, const double volumeCH, const double volume0)
{
    return fabs(volumeCH - volume) / volume0;
}

//#define DEBUG_TEMP
void VHACD::ComputeBestClippingPlane(const PrimitiveSet* inputPSet, const double volume, const SArray<Plane>& planes,
    const Vec3<double>& preferredCuttingDirection, const double w, const double alpha, const double beta,
    const int32_t convexhullDownsampling, const double progress0, const double progress1, Plane& bestPlane,
    double& minConcavity, const Parameters& params)
{
    if (GetCancel()) {
        return;
    }
    char msg[256];
    size_t nPrimitives = inputPSet->GetNPrimitives();
    bool oclAcceleration = (nPrimitives > OCL_MIN_NUM_PRIMITIVES && params.m_oclAcceleration && params.m_mode == 0) ? true : false;<--- oclAcceleration is initialized
    int32_t iBest = -1;
    int32_t nPlanes = static_cast<int32_t>(planes.Size());
    bool cancel = false;
    int32_t done = 0;
    double minTotal = MAX_DOUBLE;
    double minBalance = MAX_DOUBLE;
    double minSymmetry = MAX_DOUBLE;
    minConcavity = MAX_DOUBLE;

    SArray<Vec3<double> >* chPts = new SArray<Vec3<double> >[2 * m_ompNumProcessors];
    Mesh* chs = new Mesh[2 * m_ompNumProcessors];
    PrimitiveSet* onSurfacePSet = inputPSet->Create();
    inputPSet->SelectOnSurface(onSurfacePSet);

    PrimitiveSet** psets = 0;
    if (!params.m_convexhullApproximation) {
        psets = new PrimitiveSet*[2 * m_ompNumProcessors];
        for (int32_t i = 0; i < 2 * m_ompNumProcessors; ++i) {
            psets[i] = inputPSet->Create();
        }
    }

#ifdef CL_VERSION_1_1
    // allocate OpenCL data structures
    cl_mem voxels;
    cl_mem* partialVolumes = 0;
    size_t globalSize = 0;<--- Shadowed declaration
    size_t nWorkGroups = 0;<--- Shadowed declaration
    double unitVolume = 0.0;
    if (oclAcceleration) {
        VoxelSet* vset = (VoxelSet*)inputPSet;
        const Vec3<double> minBB = vset->GetMinBB();
        const float fMinBB[4] = { (float)minBB[0], (float)minBB[1], (float)minBB[2], 1.0f };
        const float fSclae[4] = { (float)vset->GetScale(), (float)vset->GetScale(), (float)vset->GetScale(), 0.0f };
        const int32_t nVoxels = (int32_t)nPrimitives;
        unitVolume = vset->GetUnitVolume();
        nWorkGroups = (nPrimitives + 4 * m_oclWorkGroupSize - 1) / (4 * m_oclWorkGroupSize);
        globalSize = nWorkGroups * m_oclWorkGroupSize;
        cl_int error;
        voxels = clCreateBuffer(m_oclContext,
            CL_MEM_READ_ONLY | CL_MEM_COPY_HOST_PTR,
            sizeof(Voxel) * nPrimitives,
            vset->GetVoxels(),
            &error);
        if (error != CL_SUCCESS) {
            if (params.m_logger) {
                params.m_logger->Log("Couldn't create buffer\n");
            }
            SetCancel(true);
        }

        partialVolumes = new cl_mem[m_ompNumProcessors];
        for (int32_t i = 0; i < m_ompNumProcessors; ++i) {
            partialVolumes[i] = clCreateBuffer(m_oclContext,
                CL_MEM_WRITE_ONLY,
                sizeof(uint32_t) * 4 * nWorkGroups,
                NULL,
                &error);
            if (error != CL_SUCCESS) {
                if (params.m_logger) {
                    params.m_logger->Log("Couldn't create buffer\n");
                }
                SetCancel(true);
                break;
            }
            error = clSetKernelArg(m_oclKernelComputePartialVolumes[i], 0, sizeof(cl_mem), &voxels);
            error |= clSetKernelArg(m_oclKernelComputePartialVolumes[i], 1, sizeof(uint32_t), &nVoxels);
            error |= clSetKernelArg(m_oclKernelComputePartialVolumes[i], 3, sizeof(float) * 4, fMinBB);
            error |= clSetKernelArg(m_oclKernelComputePartialVolumes[i], 4, sizeof(float) * 4, &fSclae);
            error |= clSetKernelArg(m_oclKernelComputePartialVolumes[i], 5, sizeof(uint32_t) * 4 * m_oclWorkGroupSize, NULL);
            error |= clSetKernelArg(m_oclKernelComputePartialVolumes[i], 6, sizeof(cl_mem), &(partialVolumes[i]));
            error |= clSetKernelArg(m_oclKernelComputeSum[i], 0, sizeof(cl_mem), &(partialVolumes[i]));
            error |= clSetKernelArg(m_oclKernelComputeSum[i], 2, sizeof(uint32_t) * 4 * m_oclWorkGroupSize, NULL);
            if (error != CL_SUCCESS) {
                if (params.m_logger) {
                    params.m_logger->Log("Couldn't kernel arguments \n");
                }
                SetCancel(true);
            }
        }
    }
#else // CL_VERSION_1_1
    oclAcceleration = false;<--- Assignment 'oclAcceleration=false', assigned value is 0<--- Assignment 'oclAcceleration=false', assigned value is 0<--- oclAcceleration is overwritten
#endif // CL_VERSION_1_1

#ifdef DEBUG_TEMP
    Timer timerComputeCost;
    timerComputeCost.Tic();
#endif // DEBUG_TEMP

#if USE_THREAD == 1 && _OPENMP
#pragma omp parallel for
#endif
    for (int32_t x = 0; x < nPlanes; ++x) {
        int32_t threadID = 0;
#if USE_THREAD == 1 && _OPENMP
        threadID = omp_get_thread_num();
#pragma omp flush(cancel)
#endif
        if (!cancel) {
            //Update progress
            if (GetCancel()) {
                cancel = true;
#if USE_THREAD == 1 && _OPENMP
#pragma omp flush(cancel)
#endif
            }
            Plane plane = planes[x];

            if (oclAcceleration) {<--- Condition 'oclAcceleration' is always false
#ifdef CL_VERSION_1_1
                const float fPlane[4] = { (float)plane.m_a, (float)plane.m_b, (float)plane.m_c, (float)plane.m_d };
                cl_int error = clSetKernelArg(m_oclKernelComputePartialVolumes[threadID], 2, sizeof(float) * 4, fPlane);
                if (error != CL_SUCCESS) {
                    if (params.m_logger) {
                        params.m_logger->Log("Couldn't kernel atguments \n");
                    }
                    SetCancel(true);
                }

                error = clEnqueueNDRangeKernel(m_oclQueue[threadID], m_oclKernelComputePartialVolumes[threadID],
                    1, NULL, &globalSize, &m_oclWorkGroupSize, 0, NULL, NULL);
                if (error != CL_SUCCESS) {
                    if (params.m_logger) {
                        params.m_logger->Log("Couldn't run kernel \n");
                    }
                    SetCancel(true);
                }
                int32_t nValues = (int32_t)nWorkGroups;
                while (nValues > 1) {
                    error = clSetKernelArg(m_oclKernelComputeSum[threadID], 1, sizeof(int32_t), &nValues);
                    if (error != CL_SUCCESS) {
                        if (params.m_logger) {
                            params.m_logger->Log("Couldn't kernel atguments \n");
                        }
                        SetCancel(true);
                    }
                    size_t nWorkGroups = (nValues + m_oclWorkGroupSize - 1) / m_oclWorkGroupSize;<--- Shadow variable
                    size_t globalSize = nWorkGroups * m_oclWorkGroupSize;<--- Shadow variable
                    error = clEnqueueNDRangeKernel(m_oclQueue[threadID], m_oclKernelComputeSum[threadID],
                        1, NULL, &globalSize, &m_oclWorkGroupSize, 0, NULL, NULL);
                    if (error != CL_SUCCESS) {
                        if (params.m_logger) {
                            params.m_logger->Log("Couldn't run kernel \n");
                        }
                        SetCancel(true);
                    }
                    nValues = (int32_t)nWorkGroups;
                }
#endif // CL_VERSION_1_1
            }

            Mesh& leftCH = chs[threadID];
            Mesh& rightCH = chs[threadID + m_ompNumProcessors];
            rightCH.ResizePoints(0);
            leftCH.ResizePoints(0);
            rightCH.ResizeTriangles(0);
            leftCH.ResizeTriangles(0);

// compute convex-hulls
#ifdef TEST_APPROX_CH
            double volumeLeftCH1;
            double volumeRightCH1;
#endif //TEST_APPROX_CH
            if (params.m_convexhullApproximation) {
                SArray<Vec3<double> >& leftCHPts = chPts[threadID];
                SArray<Vec3<double> >& rightCHPts = chPts[threadID + m_ompNumProcessors];
                rightCHPts.Resize(0);
                leftCHPts.Resize(0);
                onSurfacePSet->Intersect(plane, &rightCHPts, &leftCHPts, convexhullDownsampling * 32);
                inputPSet->GetConvexHull().Clip(plane, rightCHPts, leftCHPts);
                rightCH.ComputeConvexHull((double*)rightCHPts.Data(), rightCHPts.Size());
                leftCH.ComputeConvexHull((double*)leftCHPts.Data(), leftCHPts.Size());
#ifdef TEST_APPROX_CH
                Mesh leftCH1;
                Mesh rightCH1;
                VoxelSet right;
                VoxelSet left;
                onSurfacePSet->Clip(plane, &right, &left);
                right.ComputeConvexHull(rightCH1, convexhullDownsampling);
                left.ComputeConvexHull(leftCH1, convexhullDownsampling);

                volumeLeftCH1 = leftCH1.ComputeVolume();
                volumeRightCH1 = rightCH1.ComputeVolume();
#endif //TEST_APPROX_CH
            }
            else {
                PrimitiveSet* const right = psets[threadID];
                PrimitiveSet* const left = psets[threadID + m_ompNumProcessors];
                onSurfacePSet->Clip(plane, right, left);
                right->ComputeConvexHull(rightCH, convexhullDownsampling);
                left->ComputeConvexHull(leftCH, convexhullDownsampling);
            }
            double volumeLeftCH = leftCH.ComputeVolume();
            double volumeRightCH = rightCH.ComputeVolume();

            // compute clipped volumes
            double volumeLeft = 0.0;
            double volumeRight = 0.0;
            if (oclAcceleration) {<--- Condition 'oclAcceleration' is always false
#ifdef CL_VERSION_1_1
                uint32_t volumes[4];
                cl_int error = clEnqueueReadBuffer(m_oclQueue[threadID], partialVolumes[threadID], CL_TRUE,
                    0, sizeof(uint32_t) * 4, volumes, 0, NULL, NULL);
                size_t nPrimitivesRight = volumes[0] + volumes[1] + volumes[2] + volumes[3];
                size_t nPrimitivesLeft = nPrimitives - nPrimitivesRight;
                volumeRight = nPrimitivesRight * unitVolume;
                volumeLeft = nPrimitivesLeft * unitVolume;
                if (error != CL_SUCCESS) {
                    if (params.m_logger) {
                        params.m_logger->Log("Couldn't read buffer \n");
                    }
                    SetCancel(true);
                }
#endif // CL_VERSION_1_1
            }
            else {
                inputPSet->ComputeClippedVolumes(plane, volumeRight, volumeLeft);
            }
            double concavityLeft = ComputeConcavity(volumeLeft, volumeLeftCH, m_volumeCH0);
            double concavityRight = ComputeConcavity(volumeRight, volumeRightCH, m_volumeCH0);
            double concavity = (concavityLeft + concavityRight);

            // compute cost
            double balance = alpha * fabs(volumeLeft - volumeRight) / m_volumeCH0;
            double d = w * (preferredCuttingDirection[0] * plane.m_a + preferredCuttingDirection[1] * plane.m_b + preferredCuttingDirection[2] * plane.m_c);
            double symmetry = beta * d;
            double total = concavity + balance + symmetry;

#if USE_THREAD == 1 && _OPENMP
#pragma omp critical
#endif
            {
                if (total < minTotal || (total == minTotal && x < iBest)) {
                    minConcavity = concavity;
                    minBalance = balance;
                    minSymmetry = symmetry;
                    bestPlane = plane;
                    minTotal = total;
                    iBest = x;
                }
                ++done;
                if (!(done & 127)) // reduce update frequency
                {
                    double progress = done * (progress1 - progress0) / nPlanes + progress0;
                    Update(m_stageProgress, progress, params);
                }
            }
        }
    }

#ifdef DEBUG_TEMP
    timerComputeCost.Toc();
    printf_s("Cost[%i] = %f\n", nPlanes, timerComputeCost.GetElapsedTime());
#endif // DEBUG_TEMP

#ifdef CL_VERSION_1_1
    if (oclAcceleration) {
        clReleaseMemObject(voxels);
        for (int32_t i = 0; i < m_ompNumProcessors; ++i) {
            clReleaseMemObject(partialVolumes[i]);
        }
        delete[] partialVolumes;
    }
#endif // CL_VERSION_1_1

    if (psets) {
        for (int32_t i = 0; i < 2 * m_ompNumProcessors; ++i) {
            delete psets[i];
        }
        delete[] psets;
    }
    delete onSurfacePSet;
    delete[] chPts;
    delete[] chs;
    if (params.m_logger) {
        sprintf(msg, "\n\t\t\t Best  %04i T=%2.6f C=%2.6f B=%2.6f S=%2.6f (%1.1f, %1.1f, %1.1f, %3.3f)\n\n", iBest, minTotal, minConcavity, minBalance, minSymmetry, bestPlane.m_a, bestPlane.m_b, bestPlane.m_c, bestPlane.m_d);
        params.m_logger->Log(msg);
    }
}
void VHACD::ComputeACD(const Parameters& params)
{
    if (GetCancel()) {
        return;
    }
    m_timer.Tic();

    m_stage = "Approximate Convex Decomposition";
    m_stageProgress = 0.0;
    std::ostringstream msg;
    if (params.m_logger) {
        msg << "+ " << m_stage << std::endl;
        params.m_logger->Log(msg.str().c_str());
    }

    SArray<PrimitiveSet*> parts;
    SArray<PrimitiveSet*> inputParts;
    SArray<PrimitiveSet*> temp;
    inputParts.PushBack(m_pset);
    m_pset = 0;
    SArray<Plane> planes;
    SArray<Plane> planesRef;
    uint32_t sub = 0;
    bool firstIteration = true;
    m_volumeCH0 = 1.0;

	// Compute the decomposition depth based on the number of convex hulls being requested..
	uint32_t hullCount = 2;
	uint32_t depth = 1;
	while (params.m_maxConvexHulls > hullCount)
	{
		depth++;
		hullCount *= 2;
	}
	// We must always increment the decomposition depth one higher than the maximum number of hulls requested.
	// The reason for this is as follows.
	// Say, for example, the user requests 32 convex hulls exactly.  This would be a decomposition depth of 5.
	// However, when we do that, we do *not* necessarily get 32 hulls as a result.  This is because, during
	// the recursive descent of the binary tree, one or more of the leaf nodes may have no concavity and
	// will not be split.  So, in this way, even with a decomposition depth of 5, you can produce fewer than
	// 32 hulls.  So, in this case, we would set the decomposition depth to 6 (producing up to as high as 64 convex hulls).
	// Then, the merge step which combines over-described hulls down to the user requested amount, we will end up
	// getting exactly 32 convex hulls as a result.
	// We could just allow the artist to directly control the decomposition depth directly, but this would be a bit
	// too complex and the preference is simply to let them specify how many hulls they want and derive the solution
	// from that.
	depth++;


    while (sub++ < depth && inputParts.Size() > 0 && !m_cancel) {
        msg.str("");
        msg << "Subdivision level " << sub;
        m_operation = msg.str();

        if (params.m_logger) {
            msg.str("");
            msg << "\t Subdivision level " << sub << std::endl;
            params.m_logger->Log(msg.str().c_str());
        }

        double maxConcavity = 0.0;
        const size_t nInputParts = inputParts.Size();
        Update(m_stageProgress, 0.0, params);
        for (size_t p = 0; p < nInputParts && !m_cancel; ++p) {
            const double progress0 = p * 100.0 / nInputParts;
            const double progress1 = (p + 0.75) * 100.0 / nInputParts;
            const double progress2 = (p + 1.00) * 100.0 / nInputParts;

            Update(m_stageProgress, progress0, params);

            PrimitiveSet* pset = inputParts[p];
            inputParts[p] = 0;
            double volume = pset->ComputeVolume();
            pset->ComputeBB();
            pset->ComputePrincipalAxes();
            if (params.m_pca) {
                pset->AlignToPrincipalAxes();
            }

            pset->ComputeConvexHull(pset->GetConvexHull());
            double volumeCH = fabs(pset->GetConvexHull().ComputeVolume());
            if (firstIteration) {
                m_volumeCH0 = volumeCH;
            }

            double concavity = ComputeConcavity(volume, volumeCH, m_volumeCH0);
            double error = 1.01 * pset->ComputeMaxVolumeError() / m_volumeCH0;

            if (firstIteration) {
                firstIteration = false;
            }

            if (params.m_logger) {
                msg.str("");
                msg << "\t -> Part[" << p
                    << "] C  = " << concavity
                    << ", E  = " << error
                    << ", VS = " << pset->GetNPrimitivesOnSurf()
                    << ", VI = " << pset->GetNPrimitivesInsideSurf()
                    << std::endl;
                params.m_logger->Log(msg.str().c_str());
            }

            if (concavity > params.m_concavity && concavity > error) {
                Vec3<double> preferredCuttingDirection;
                double w = ComputePreferredCuttingDirection(pset, preferredCuttingDirection);
                planes.Resize(0);
                if (params.m_mode == 0) {
                    VoxelSet* vset = (VoxelSet*)pset;
                    ComputeAxesAlignedClippingPlanes(*vset, params.m_planeDownsampling, planes);
                }
                else {
                    TetrahedronSet* tset = (TetrahedronSet*)pset;
                    ComputeAxesAlignedClippingPlanes(*tset, params.m_planeDownsampling, planes);
                }

                if (params.m_logger) {
                    msg.str("");
                    msg << "\t\t [Regular sampling] Number of clipping planes " << planes.Size() << std::endl;
                    params.m_logger->Log(msg.str().c_str());
                }

                Plane bestPlane;
                double minConcavity = MAX_DOUBLE;
                ComputeBestClippingPlane(pset,
                    volume,
                    planes,
                    preferredCuttingDirection,
                    w,
                    concavity * params.m_alpha,
                    concavity * params.m_beta,
                    params.m_convexhullDownsampling,
                    progress0,
                    progress1,
                    bestPlane,
                    minConcavity,
                    params);
                if (!m_cancel && (params.m_planeDownsampling > 1 || params.m_convexhullDownsampling > 1)) {
                    planesRef.Resize(0);

                    if (params.m_mode == 0) {
                        VoxelSet* vset = (VoxelSet*)pset;
                        RefineAxesAlignedClippingPlanes(*vset, bestPlane, params.m_planeDownsampling, planesRef);
                    }
                    else {
                        TetrahedronSet* tset = (TetrahedronSet*)pset;
                        RefineAxesAlignedClippingPlanes(*tset, bestPlane, params.m_planeDownsampling, planesRef);
                    }

                    if (params.m_logger) {
                        msg.str("");
                        msg << "\t\t [Refining] Number of clipping planes " << planesRef.Size() << std::endl;
                        params.m_logger->Log(msg.str().c_str());
                    }
                    ComputeBestClippingPlane(pset,
                        volume,
                        planesRef,
                        preferredCuttingDirection,
                        w,
                        concavity * params.m_alpha,
                        concavity * params.m_beta,
                        1, // convexhullDownsampling = 1
                        progress1,
                        progress2,
                        bestPlane,
                        minConcavity,
                        params);
                }
                if (GetCancel()) {
                    delete pset; // clean up
                    break;
                }
                else {
                    if (maxConcavity < minConcavity) {
                        maxConcavity = minConcavity;
                    }
                    PrimitiveSet* bestLeft = pset->Create();
                    PrimitiveSet* bestRight = pset->Create();
                    temp.PushBack(bestLeft);
                    temp.PushBack(bestRight);
                    pset->Clip(bestPlane, bestRight, bestLeft);
                    if (params.m_pca) {
                        bestRight->RevertAlignToPrincipalAxes();
                        bestLeft->RevertAlignToPrincipalAxes();
                    }
                    delete pset;
                }
            }
            else {
                if (params.m_pca) {
                    pset->RevertAlignToPrincipalAxes();
                }
                parts.PushBack(pset);
            }
        }

        Update(95.0 * (1.0 - maxConcavity) / (1.0 - params.m_concavity), 100.0, params);
        if (GetCancel()) {
            const size_t nTempParts = temp.Size();
            for (size_t p = 0; p < nTempParts; ++p) {
                delete temp[p];
            }
            temp.Resize(0);
        }
        else {
            inputParts = temp;
            temp.Resize(0);
        }
    }
    const size_t nInputParts = inputParts.Size();
    for (size_t p = 0; p < nInputParts; ++p) {
        parts.PushBack(inputParts[p]);
    }

    if (GetCancel()) {
        const size_t nParts = parts.Size();
        for (size_t p = 0; p < nParts; ++p) {
            delete parts[p];
        }
        return;
    }

    m_overallProgress = 90.0;
    Update(m_stageProgress, 100.0, params);

    msg.str("");
    msg << "Generate convex-hulls";
    m_operation = msg.str();
    size_t nConvexHulls = parts.Size();<--- Shadowed declaration
    if (params.m_logger) {
        msg.str("");
        msg << "+ Generate " << nConvexHulls << " convex-hulls " << std::endl;
        params.m_logger->Log(msg.str().c_str());
    }

    Update(m_stageProgress, 0.0, params);
    m_convexHulls.Resize(0);
    for (size_t p = 0; p < nConvexHulls && !m_cancel; ++p) {
        Update(m_stageProgress, p * 100.0 / nConvexHulls, params);
        m_convexHulls.PushBack(new Mesh);
        parts[p]->ComputeConvexHull(*m_convexHulls[p]);
        size_t nv = m_convexHulls[p]->GetNPoints();
        double x, y, z;
        for (size_t i = 0; i < nv; ++i) {
            Vec3<double>& pt = m_convexHulls[p]->GetPoint(i);
            x = pt[0];
            y = pt[1];
            z = pt[2];
            pt[0] = m_rot[0][0] * x + m_rot[0][1] * y + m_rot[0][2] * z + m_barycenter[0];
            pt[1] = m_rot[1][0] * x + m_rot[1][1] * y + m_rot[1][2] * z + m_barycenter[1];
            pt[2] = m_rot[2][0] * x + m_rot[2][1] * y + m_rot[2][2] * z + m_barycenter[2];
        }
    }

    const size_t nParts = parts.Size();
    for (size_t p = 0; p < nParts; ++p) {
        delete parts[p];
        parts[p] = 0;
    }
    parts.Resize(0);

    if (GetCancel()) {
        const size_t nConvexHulls = m_convexHulls.Size();<--- Shadow variable
        for (size_t p = 0; p < nConvexHulls; ++p) {
            delete m_convexHulls[p];
        }
        m_convexHulls.Clear();
        return;
    }

    m_overallProgress = 95.0;
    Update(100.0, 100.0, params);
    m_timer.Toc();
    if (params.m_logger) {
        msg.str("");
        msg << "\t time " << m_timer.GetElapsedTime() / 1000.0 << "s" << std::endl;
        params.m_logger->Log(msg.str().c_str());
    }
}
void AddPoints(const Mesh* const mesh, SArray<Vec3<double> >& pts)
{
    const int32_t n = (int32_t)mesh->GetNPoints();
    for (int32_t i = 0; i < n; ++i) {
        pts.PushBack(mesh->GetPoint(i));
    }
}
void ComputeConvexHull(const Mesh* const ch1, const Mesh* const ch2, SArray<Vec3<double> >& pts, Mesh* const combinedCH)
{
    pts.Resize(0);
    AddPoints(ch1, pts);
    AddPoints(ch2, pts);

    btConvexHullComputer ch;
    ch.compute((double*)pts.Data(), 3 * sizeof(double), (int32_t)pts.Size(), -1.0, -1.0);
    combinedCH->ResizePoints(0);
    combinedCH->ResizeTriangles(0);
    for (int32_t v = 0; v < ch.vertices.size(); v++) {
        combinedCH->AddPoint(Vec3<double>(ch.vertices[v].getX(), ch.vertices[v].getY(), ch.vertices[v].getZ()));
    }
    const int32_t nt = ch.faces.size();
    for (int32_t t = 0; t < nt; ++t) {
        const btConvexHullComputer::Edge* sourceEdge = &(ch.edges[ch.faces[t]]);
        int32_t a = sourceEdge->getSourceVertex();
        int32_t b = sourceEdge->getTargetVertex();
        const btConvexHullComputer::Edge* edge = sourceEdge->getNextEdgeOfFace();
        int32_t c = edge->getTargetVertex();
        while (c != a) {
            combinedCH->AddTriangle(Vec3<int32_t>(a, b, c));
            edge = edge->getNextEdgeOfFace();
            b = c;
            c = edge->getTargetVertex();
        }
    }
}
void VHACD::MergeConvexHulls(const Parameters& params)
{
    if (GetCancel()) {
        return;
    }
    m_timer.Tic();

    m_stage = "Merge Convex Hulls";

    std::ostringstream msg;
    if (params.m_logger) {
        msg << "+ " << m_stage << std::endl;
        params.m_logger->Log(msg.str().c_str());
    }

	// Get the current number of convex hulls
    size_t nConvexHulls = m_convexHulls.Size();
	// Iteration counter
    int32_t iteration = 0;
	// While we have more than at least one convex hull and the user has not asked us to cancel the operation
    if (nConvexHulls > 1 && !m_cancel) 
	{
		// Get the gamma error threshold for when to exit
        SArray<Vec3<double> > pts;
        Mesh combinedCH;

        // Populate the cost matrix
        size_t idx = 0;
        SArray<float> costMatrix;
        costMatrix.Resize(((nConvexHulls * nConvexHulls) - nConvexHulls) >> 1);
        for (size_t p1 = 1; p1 < nConvexHulls; ++p1) 
		{
            const float volume1 = m_convexHulls[p1]->ComputeVolume();
            for (size_t p2 = 0; p2 < p1; ++p2) 
			{
                ComputeConvexHull(m_convexHulls[p1], m_convexHulls[p2], pts, &combinedCH);
                costMatrix[idx++] = ComputeConcavity(volume1 + m_convexHulls[p2]->ComputeVolume(), combinedCH.ComputeVolume(), m_volumeCH0);
            }
        }

        // Until we cant merge below the maximum cost
        size_t costSize = m_convexHulls.Size();
        while (!m_cancel) 
		{
            msg.str("");
            msg << "Iteration " << iteration++;
            m_operation = msg.str();

            // Search for lowest cost
            float bestCost = (std::numeric_limits<float>::max)();
            const size_t addr = FindMinimumElement(costMatrix.Data(), &bestCost, 0, costMatrix.Size());
			if ( (costSize-1) < params.m_maxConvexHulls)
			{
				break;
			}
            const size_t addrI = (static_cast<int32_t>(sqrt(1 + (8 * addr))) - 1) >> 1;
            const size_t p1 = addrI + 1;
            const size_t p2 = addr - ((addrI * (addrI + 1)) >> 1);
            assert(p1 >= 0);<--- Unsigned positive
            assert(p2 >= 0);<--- Unsigned positive
            assert(p1 < costSize);
            assert(p2 < costSize);

            if (params.m_logger) 
			{
                msg.str("");
                msg << "\t\t Merging (" << p1 << ", " << p2 << ") " << bestCost << std::endl
                    << std::endl;
                params.m_logger->Log(msg.str().c_str());
            }

            // Make the lowest cost row and column into a new hull
            Mesh* cch = new Mesh;
            ComputeConvexHull(m_convexHulls[p1], m_convexHulls[p2], pts, cch);
            delete m_convexHulls[p2];
            m_convexHulls[p2] = cch;

            delete m_convexHulls[p1];
            std::swap(m_convexHulls[p1], m_convexHulls[m_convexHulls.Size() - 1]);
            m_convexHulls.PopBack();

            costSize = costSize - 1;

            // Calculate costs versus the new hull
            size_t rowIdx = ((p2 - 1) * p2) >> 1;
            const float volume1 = m_convexHulls[p2]->ComputeVolume();
            for (size_t i = 0; (i < p2) && (!m_cancel); ++i) 
			{
                ComputeConvexHull(m_convexHulls[p2], m_convexHulls[i], pts, &combinedCH);
                costMatrix[rowIdx++] = ComputeConcavity(volume1 + m_convexHulls[i]->ComputeVolume(), combinedCH.ComputeVolume(), m_volumeCH0);
            }

            rowIdx += p2;
            for (size_t i = p2 + 1; (i < costSize) && (!m_cancel); ++i) 
			{
                ComputeConvexHull(m_convexHulls[p2], m_convexHulls[i], pts, &combinedCH);
                costMatrix[rowIdx] = ComputeConcavity(volume1 + m_convexHulls[i]->ComputeVolume(), combinedCH.ComputeVolume(), m_volumeCH0);
                rowIdx += i;
                assert(rowIdx >= 0);<--- Unsigned positive
            }

            // Move the top column in to replace its space
            const size_t erase_idx = ((costSize - 1) * costSize) >> 1;
            if (p1 < costSize) {
                rowIdx = (addrI * p1) >> 1;
                size_t top_row = erase_idx;
                for (size_t i = 0; i < p1; ++i) {
                    if (i != p2) {
                        costMatrix[rowIdx] = costMatrix[top_row];
                    }
                    ++rowIdx;
                    ++top_row;
                }

                ++top_row;
                rowIdx += p1;
                for (size_t i = p1 + 1; i < (costSize + 1); ++i) {
                    costMatrix[rowIdx] = costMatrix[top_row++];
                    rowIdx += i;
                    assert(rowIdx >= 0);<--- Unsigned positive
                }
            }
            costMatrix.Resize(erase_idx);
        }
    }
    m_overallProgress = 99.0;
    Update(100.0, 100.0, params);
    m_timer.Toc();
    if (params.m_logger) {
        msg.str("");
        msg << "\t time " << m_timer.GetElapsedTime() / 1000.0 << "s" << std::endl;
        params.m_logger->Log(msg.str().c_str());
    }
}
void VHACD::SimplifyConvexHull(Mesh* const ch, const size_t nvertices, const double minVolume)
{
    if (nvertices <= 4) {
        return;
    }
    ICHull icHull;
    if (mRaycastMesh)
    {
        // We project these points onto the original source mesh to increase precision
        // The voxelization process drops floating point precision so returned data points are not exactly lying on the 
        // surface of the original source mesh.
        // The first step is we need to compute the bounding box of the mesh we are trying to build a convex hull for.
        // From this bounding box, we compute the length of the diagonal to get a relative size and center for point projection
        uint32_t nPoints = ch->GetNPoints();
        Vec3<double> *inputPoints = ch->GetPointsBuffer();
        Vec3<double> bmin(inputPoints[0]);
        Vec3<double> bmax(inputPoints[1]);
        for (uint32_t i = 1; i < nPoints; i++)
        {
            const Vec3<double> &p = inputPoints[i];
            p.UpdateMinMax(bmin, bmax);
        }
        Vec3<double> center;
        double diagonalLength = center.GetCenter(bmin, bmax);   // Get the center of the bounding box
        // This is the error threshold for determining if we should use the raycast result data point vs. the voxelized result.
        double pointDistanceThreshold = diagonalLength * 0.05;
        // If a new point is within 1/100th the diagonal length of the bounding volume we do not add it.  To do so would create a
        // thin sliver in the resulting convex hull
        double snapDistanceThreshold = diagonalLength * 0.01;
        double snapDistanceThresholdSquared = snapDistanceThreshold*snapDistanceThreshold;

        // Allocate buffer for projected vertices
        Vec3<double> *outputPoints = new Vec3<double>[nPoints];
        uint32_t outCount = 0;
        for (uint32_t i = 0; i < nPoints; i++)
        {
            Vec3<double> &inputPoint = inputPoints[i];
            Vec3<double> &outputPoint = outputPoints[outCount];
            // Compute the direction vector from the center of this mesh to the vertex
            Vec3<double> dir = inputPoint - center;
            // Normalize the direction vector.
            dir.Normalize();
            // Multiply times the diagonal length of the mesh
            dir *= diagonalLength;
            // Add the center back in again to get the destination point
            dir += center;
            // By default the output point is equal to the input point
            outputPoint = inputPoint;
            double pointDistance;
            if (mRaycastMesh->raycast(center.GetData(), dir.GetData(), inputPoint.GetData(), outputPoint.GetData(),&pointDistance) )
            {
                // If the nearest intersection point is too far away, we keep the original source data point.
                // Not all points lie directly on the original mesh surface
                if (pointDistance > pointDistanceThreshold)
                {
                    outputPoint = inputPoint;
                }
            }
            // Ok, before we add this point, we do not want to create points which are extremely close to each other.
            // This will result in tiny sliver triangles which are really bad for collision detection.
            bool foundNearbyPoint = false;
            for (uint32_t j = 0; j < outCount; j++)
            {
                // If this new point is extremely close to an existing point, we do not add it!
                double squaredDistance = outputPoints[j].GetDistanceSquared(outputPoint);
                if (squaredDistance < snapDistanceThresholdSquared )
                {
                    foundNearbyPoint = true;
                    break;
                }
            }
            if (!foundNearbyPoint)
            {
                outCount++;
            }
        }
        icHull.AddPoints(outputPoints, outCount);
        delete[]outputPoints;
    }
    else
    {
        icHull.AddPoints(ch->GetPointsBuffer(), ch->GetNPoints());
    }
    icHull.Process((uint32_t)nvertices, minVolume);
    TMMesh& mesh = icHull.GetMesh();
    const size_t nT = mesh.GetNTriangles();
    const size_t nV = mesh.GetNVertices();
    ch->ResizePoints(nV);
    ch->ResizeTriangles(nT);
    mesh.GetIFS(ch->GetPointsBuffer(), ch->GetTrianglesBuffer());
}
void VHACD::SimplifyConvexHulls(const Parameters& params)
{
    if (m_cancel || params.m_maxNumVerticesPerCH < 4) {
        return;
    }
    m_timer.Tic();

    m_stage = "Simplify convex-hulls";
    m_operation = "Simplify convex-hulls";

    std::ostringstream msg;
    const size_t nConvexHulls = m_convexHulls.Size();
    if (params.m_logger) {
        msg << "+ Simplify " << nConvexHulls << " convex-hulls " << std::endl;
        params.m_logger->Log(msg.str().c_str());
    }

    Update(0.0, 0.0, params);
    for (size_t i = 0; i < nConvexHulls && !m_cancel; ++i) {
        if (params.m_logger) {
            msg.str("");
            msg << "\t\t Simplify CH[" << std::setfill('0') << std::setw(5) << i << "] " << m_convexHulls[i]->GetNPoints() << " V, " << m_convexHulls[i]->GetNTriangles() << " T" << std::endl;
            params.m_logger->Log(msg.str().c_str());
        }
        SimplifyConvexHull(m_convexHulls[i], params.m_maxNumVerticesPerCH, m_volumeCH0 * params.m_minVolumePerCH);
    }

    m_overallProgress = 100.0;
    Update(100.0, 100.0, params);
    m_timer.Toc();
    if (params.m_logger) {
        msg.str("");
        msg << "\t time " << m_timer.GetElapsedTime() / 1000.0 << "s" << std::endl;
        params.m_logger->Log(msg.str().c_str());
    }
}

bool VHACD::ComputeCenterOfMass(double centerOfMass[3]) const
{
	bool ret = false;

	centerOfMass[0] = 0;
	centerOfMass[1] = 0;
	centerOfMass[2] = 0;
	// Get number of convex hulls in the result
	uint32_t hullCount = GetNConvexHulls();
	if (hullCount) // if we have results
	{
		ret = true;
		double totalVolume = 0;
		// Initialize the center of mass to zero
		centerOfMass[0] = 0;
		centerOfMass[1] = 0;
		centerOfMass[2] = 0;
		// Compute the total volume of all convex hulls
		for (uint32_t i = 0; i < hullCount; i++)
		{
			ConvexHull ch;
			GetConvexHull(i, ch);
			totalVolume += ch.m_volume;
		}
		// compute the reciprocal of the total volume
		double recipVolume = 1.0 / totalVolume;
		// Add in the weighted by volume average of the center point of each convex hull
		for (uint32_t i = 0; i < hullCount; i++)
		{
			ConvexHull ch;
			GetConvexHull(i, ch);
			double ratio = ch.m_volume*recipVolume;
			centerOfMass[0] += ch.m_center[0] * ratio;
			centerOfMass[1] += ch.m_center[1] * ratio;
			centerOfMass[2] += ch.m_center[2] * ratio;
		}
	}
	return ret;
}

} // end of VHACD namespace