1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
//
// Copyright (C) 2013 LunarG, Inc.
// Copyright (C) 2017 ARM Limited.
// Copyright (C) 2015-2018 Google, Inc.
//
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions
// are met:
//
//    Redistributions of source code must retain the above copyright
//    notice, this list of conditions and the following disclaimer.
//
//    Redistributions in binary form must reproduce the above
//    copyright notice, this list of conditions and the following
//    disclaimer in the documentation and/or other materials provided
//    with the distribution.
//
//    Neither the name of 3Dlabs Inc. Ltd. nor the names of its
//    contributors may be used to endorse or promote products derived
//    from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
// FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
// COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
// INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
// BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
// LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
// CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
// LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
// ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
// POSSIBILITY OF SUCH DAMAGE.
//

//
// Do link-time merging and validation of intermediate representations.
//
// Basic model is that during compilation, each compilation unit (shader) is
// compiled into one TIntermediate instance.  Then, at link time, multiple
// units for the same stage can be merged together, which can generate errors.
// Then, after all merging, a single instance of TIntermediate represents
// the whole stage.  A final error check can be done on the resulting stage,
// even if no merging was done (i.e., the stage was only one compilation unit).
//

#include "localintermediate.h"
#include "../Include/InfoSink.h"

namespace glslang {

//
// Link-time error emitter.
//
void TIntermediate::error(TInfoSink& infoSink, const char* message)
{
#ifndef GLSLANG_WEB
    infoSink.info.prefix(EPrefixError);
    infoSink.info << "Linking " << StageName(language) << " stage: " << message << "\n";
#endif

    ++numErrors;
}

// Link-time warning.
void TIntermediate::warn(TInfoSink& infoSink, const char* message)
{
#ifndef GLSLANG_WEB
    infoSink.info.prefix(EPrefixWarning);
    infoSink.info << "Linking " << StageName(language) << " stage: " << message << "\n";
#endif
}

// TODO: 4.4 offset/align:  "Two blocks linked together in the same program with the same block
// name must have the exact same set of members qualified with offset and their integral-constant
// expression values must be the same, or a link-time error results."

//
// Merge the information from 'unit' into 'this'
//
void TIntermediate::merge(TInfoSink& infoSink, TIntermediate& unit)
{
#if !defined(GLSLANG_WEB) && !defined(GLSLANG_ANGLE)
    mergeCallGraphs(infoSink, unit);
    mergeModes(infoSink, unit);
    mergeTrees(infoSink, unit);
#endif
}

void TIntermediate::mergeCallGraphs(TInfoSink& infoSink, TIntermediate& unit)
{
    if (unit.getNumEntryPoints() > 0) {
        if (getNumEntryPoints() > 0)
            error(infoSink, "can't handle multiple entry points per stage");
        else {
            entryPointName = unit.getEntryPointName();
            entryPointMangledName = unit.getEntryPointMangledName();
        }
    }
    numEntryPoints += unit.getNumEntryPoints();

    callGraph.insert(callGraph.end(), unit.callGraph.begin(), unit.callGraph.end());
}

#if !defined(GLSLANG_WEB) && !defined(GLSLANG_ANGLE)

#define MERGE_MAX(member) member = std::max(member, unit.member)
#define MERGE_TRUE(member) if (unit.member) member = unit.member;

void TIntermediate::mergeModes(TInfoSink& infoSink, TIntermediate& unit)
{
    if (language != unit.language)
        error(infoSink, "stages must match when linking into a single stage");

    if (getSource() == EShSourceNone)<--- Condition 'getSource()==EShSourceNone' is always false
        setSource(unit.getSource());
    if (getSource() != unit.getSource())
        error(infoSink, "can't link compilation units from different source languages");

    if (treeRoot == nullptr) {
        profile = unit.profile;
        version = unit.version;
        requestedExtensions = unit.requestedExtensions;
    } else {
        if ((isEsProfile()) != (unit.isEsProfile()))
            error(infoSink, "Cannot cross link ES and desktop profiles");
        else if (unit.profile == ECompatibilityProfile)
            profile = ECompatibilityProfile;
        version = std::max(version, unit.version);
        requestedExtensions.insert(unit.requestedExtensions.begin(), unit.requestedExtensions.end());
    }

    MERGE_MAX(spvVersion.spv);
    MERGE_MAX(spvVersion.vulkanGlsl);
    MERGE_MAX(spvVersion.vulkan);
    MERGE_MAX(spvVersion.openGl);

    numErrors += unit.getNumErrors();
    // Only one push_constant is allowed, mergeLinkerObjects() will ensure the push_constant
    // is the same for all units.
    if (numPushConstants > 1 || unit.numPushConstants > 1)
        error(infoSink, "Only one push_constant block is allowed per stage");
    numPushConstants = std::min(numPushConstants + unit.numPushConstants, 1);

    if (unit.invocations != TQualifier::layoutNotSet) {
        if (invocations == TQualifier::layoutNotSet)
            invocations = unit.invocations;
        else if (invocations != unit.invocations)
            error(infoSink, "number of invocations must match between compilation units");
    }

    if (vertices == TQualifier::layoutNotSet)
        vertices = unit.vertices;
    else if (unit.vertices != TQualifier::layoutNotSet && vertices != unit.vertices) {
        if (language == EShLangGeometry || language == EShLangMeshNV)
            error(infoSink, "Contradictory layout max_vertices values");
        else if (language == EShLangTessControl)
            error(infoSink, "Contradictory layout vertices values");
        else
            assert(0);
    }
    if (primitives == TQualifier::layoutNotSet)
        primitives = unit.primitives;
    else if (primitives != unit.primitives) {
        if (language == EShLangMeshNV)
            error(infoSink, "Contradictory layout max_primitives values");
        else
            assert(0);
    }

    if (inputPrimitive == ElgNone)
        inputPrimitive = unit.inputPrimitive;
    else if (unit.inputPrimitive != ElgNone && inputPrimitive != unit.inputPrimitive)
        error(infoSink, "Contradictory input layout primitives");

    if (outputPrimitive == ElgNone)
        outputPrimitive = unit.outputPrimitive;
    else if (unit.outputPrimitive != ElgNone && outputPrimitive != unit.outputPrimitive)
        error(infoSink, "Contradictory output layout primitives");

    if (originUpperLeft != unit.originUpperLeft || pixelCenterInteger != unit.pixelCenterInteger)
        error(infoSink, "gl_FragCoord redeclarations must match across shaders");

    if (vertexSpacing == EvsNone)
        vertexSpacing = unit.vertexSpacing;
    else if (vertexSpacing != unit.vertexSpacing)
        error(infoSink, "Contradictory input vertex spacing");

    if (vertexOrder == EvoNone)
        vertexOrder = unit.vertexOrder;
    else if (vertexOrder != unit.vertexOrder)
        error(infoSink, "Contradictory triangle ordering");

    MERGE_TRUE(pointMode);

    for (int i = 0; i < 3; ++i) {
        if (!localSizeNotDefault[i] && unit.localSizeNotDefault[i]) {
            localSize[i] = unit.localSize[i];
            localSizeNotDefault[i] = true;
        }
        else if (localSize[i] != unit.localSize[i])
            error(infoSink, "Contradictory local size");

        if (localSizeSpecId[i] == TQualifier::layoutNotSet)
            localSizeSpecId[i] = unit.localSizeSpecId[i];
        else if (localSizeSpecId[i] != unit.localSizeSpecId[i])
            error(infoSink, "Contradictory local size specialization ids");
    }

    MERGE_TRUE(earlyFragmentTests);
    MERGE_TRUE(postDepthCoverage);

    if (depthLayout == EldNone)
        depthLayout = unit.depthLayout;
    else if (depthLayout != unit.depthLayout)
        error(infoSink, "Contradictory depth layouts");

    MERGE_TRUE(depthReplacing);
    MERGE_TRUE(hlslFunctionality1);

    blendEquations |= unit.blendEquations;

    MERGE_TRUE(xfbMode);

    for (size_t b = 0; b < xfbBuffers.size(); ++b) {
        if (xfbBuffers[b].stride == TQualifier::layoutXfbStrideEnd)
            xfbBuffers[b].stride = unit.xfbBuffers[b].stride;
        else if (xfbBuffers[b].stride != unit.xfbBuffers[b].stride)
            error(infoSink, "Contradictory xfb_stride");
        xfbBuffers[b].implicitStride = std::max(xfbBuffers[b].implicitStride, unit.xfbBuffers[b].implicitStride);
        if (unit.xfbBuffers[b].contains64BitType)
            xfbBuffers[b].contains64BitType = true;
        if (unit.xfbBuffers[b].contains32BitType)
            xfbBuffers[b].contains32BitType = true;
        if (unit.xfbBuffers[b].contains16BitType)
            xfbBuffers[b].contains16BitType = true;
        // TODO: 4.4 link: enhanced layouts: compare ranges
    }

    MERGE_TRUE(multiStream);
    MERGE_TRUE(layoutOverrideCoverage);
    MERGE_TRUE(geoPassthroughEXT);

    for (unsigned int i = 0; i < unit.shiftBinding.size(); ++i) {
        if (unit.shiftBinding[i] > 0)
            setShiftBinding((TResourceType)i, unit.shiftBinding[i]);
    }

    for (unsigned int i = 0; i < unit.shiftBindingForSet.size(); ++i) {
        for (auto it = unit.shiftBindingForSet[i].begin(); it != unit.shiftBindingForSet[i].end(); ++it)
            setShiftBindingForSet((TResourceType)i, it->second, it->first);
    }

    resourceSetBinding.insert(resourceSetBinding.end(), unit.resourceSetBinding.begin(), unit.resourceSetBinding.end());

    MERGE_TRUE(autoMapBindings);
    MERGE_TRUE(autoMapLocations);
    MERGE_TRUE(invertY);
    MERGE_TRUE(flattenUniformArrays);
    MERGE_TRUE(useUnknownFormat);
    MERGE_TRUE(hlslOffsets);
    MERGE_TRUE(useStorageBuffer);
    MERGE_TRUE(hlslIoMapping);

    // TODO: sourceFile
    // TODO: sourceText
    // TODO: processes

    MERGE_TRUE(needToLegalize);
    MERGE_TRUE(binaryDoubleOutput);
    MERGE_TRUE(usePhysicalStorageBuffer);
}

//
// Merge the 'unit' AST into 'this' AST.
// That includes rationalizing the unique IDs, which were set up independently,
// and might have overlaps that are not the same symbol, or might have different
// IDs for what should be the same shared symbol.
//
void TIntermediate::mergeTrees(TInfoSink& infoSink, TIntermediate& unit)
{
    if (unit.treeRoot == nullptr)
        return;

    if (treeRoot == nullptr) {
        treeRoot = unit.treeRoot;
        return;
    }

    // Getting this far means we have two existing trees to merge...
    numShaderRecordBlocks += unit.numShaderRecordBlocks;
    numTaskNVBlocks += unit.numTaskNVBlocks;

    // Get the top-level globals of each unit
    TIntermSequence& globals = treeRoot->getAsAggregate()->getSequence();
    TIntermSequence& unitGlobals = unit.treeRoot->getAsAggregate()->getSequence();<--- Variable 'unitGlobals' can be declared with const

    // Get the linker-object lists
    TIntermSequence& linkerObjects = findLinkerObjects()->getSequence();
    const TIntermSequence& unitLinkerObjects = unit.findLinkerObjects()->getSequence();

    // Map by global name to unique ID to rationalize the same object having
    // differing IDs in different trees.
    TIdMaps idMaps;
    int maxId;
    seedIdMap(idMaps, maxId);
    remapIds(idMaps, maxId + 1, unit);

    mergeBodies(infoSink, globals, unitGlobals);
    mergeLinkerObjects(infoSink, linkerObjects, unitLinkerObjects);
    ioAccessed.insert(unit.ioAccessed.begin(), unit.ioAccessed.end());
}

#endif

static const TString& getNameForIdMap(TIntermSymbol* symbol)
{
    TShaderInterface si = symbol->getType().getShaderInterface();
    if (si == EsiNone)
        return symbol->getName();
    else
        return symbol->getType().getTypeName();
}



// Traverser that seeds an ID map with all built-ins, and tracks the
// maximum ID used.
// (It would be nice to put this in a function, but that causes warnings
// on having no bodies for the copy-constructor/operator=.)
class TBuiltInIdTraverser : public TIntermTraverser {
public:
    TBuiltInIdTraverser(TIdMaps& idMaps) : idMaps(idMaps), maxId(0) { }
    // If it's a built in, add it to the map.
    // Track the max ID.
    virtual void visitSymbol(TIntermSymbol* symbol)<--- Function in derived class
    {
        const TQualifier& qualifier = symbol->getType().getQualifier();
        if (qualifier.builtIn != EbvNone) {
            TShaderInterface si = symbol->getType().getShaderInterface();
            idMaps[si][getNameForIdMap(symbol)] = symbol->getId();
        }
        maxId = std::max(maxId, symbol->getId());
    }
    int getMaxId() const { return maxId; }
protected:
    TBuiltInIdTraverser(TBuiltInIdTraverser&);
    TBuiltInIdTraverser& operator=(TBuiltInIdTraverser&);
    TIdMaps& idMaps;
    int maxId;
};

// Traverser that seeds an ID map with non-builtins.
// (It would be nice to put this in a function, but that causes warnings
// on having no bodies for the copy-constructor/operator=.)
class TUserIdTraverser : public TIntermTraverser {
public:
    TUserIdTraverser(TIdMaps& idMaps) : idMaps(idMaps) { }
    // If its a non-built-in global, add it to the map.
    virtual void visitSymbol(TIntermSymbol* symbol)<--- Function in derived class
    {
        const TQualifier& qualifier = symbol->getType().getQualifier();
        if (qualifier.builtIn == EbvNone) {
            TShaderInterface si = symbol->getType().getShaderInterface();
            idMaps[si][getNameForIdMap(symbol)] = symbol->getId();
        }
    }

protected:
    TUserIdTraverser(TUserIdTraverser&);
    TUserIdTraverser& operator=(TUserIdTraverser&);
    TIdMaps& idMaps; // over biggest id
};

// Initialize the the ID map with what we know of 'this' AST.
void TIntermediate::seedIdMap(TIdMaps& idMaps, int& maxId)
{
    // all built-ins everywhere need to align on IDs and contribute to the max ID
    TBuiltInIdTraverser builtInIdTraverser(idMaps);
    treeRoot->traverse(&builtInIdTraverser);
    maxId = builtInIdTraverser.getMaxId();

    // user variables in the linker object list need to align on ids
    TUserIdTraverser userIdTraverser(idMaps);
    findLinkerObjects()->traverse(&userIdTraverser);
}

// Traverser to map an AST ID to what was known from the seeding AST.
// (It would be nice to put this in a function, but that causes warnings
// on having no bodies for the copy-constructor/operator=.)
class TRemapIdTraverser : public TIntermTraverser {
public:
    TRemapIdTraverser(const TIdMaps& idMaps, int idShift) : idMaps(idMaps), idShift(idShift) { }
    // Do the mapping:
    //  - if the same symbol, adopt the 'this' ID
    //  - otherwise, ensure a unique ID by shifting to a new space
    virtual void visitSymbol(TIntermSymbol* symbol)<--- Function in derived class
    {
        const TQualifier& qualifier = symbol->getType().getQualifier();
        bool remapped = false;
        if (qualifier.isLinkable() || qualifier.builtIn != EbvNone) {
            TShaderInterface si = symbol->getType().getShaderInterface();
            auto it = idMaps[si].find(getNameForIdMap(symbol));
            if (it != idMaps[si].end()) {
                symbol->changeId(it->second);
                remapped = true;
            }
        }
        if (!remapped)
            symbol->changeId(symbol->getId() + idShift);
    }
protected:
    TRemapIdTraverser(TRemapIdTraverser&);
    TRemapIdTraverser& operator=(TRemapIdTraverser&);
    const TIdMaps& idMaps;
    int idShift;
};

void TIntermediate::remapIds(const TIdMaps& idMaps, int idShift, TIntermediate& unit)<--- Parameter 'unit' can be declared with const
{
    // Remap all IDs to either share or be unique, as dictated by the idMap and idShift.
    TRemapIdTraverser idTraverser(idMaps, idShift);
    unit.getTreeRoot()->traverse(&idTraverser);
}

//
// Merge the function bodies and global-level initializers from unitGlobals into globals.
// Will error check duplication of function bodies for the same signature.
//
void TIntermediate::mergeBodies(TInfoSink& infoSink, TIntermSequence& globals, const TIntermSequence& unitGlobals)
{
    // TODO: link-time performance: Processing in alphabetical order will be faster

    // Error check the global objects, not including the linker objects
    for (unsigned int child = 0; child < globals.size() - 1; ++child) {
        for (unsigned int unitChild = 0; unitChild < unitGlobals.size() - 1; ++unitChild) {
            TIntermAggregate* body = globals[child]->getAsAggregate();
            TIntermAggregate* unitBody = unitGlobals[unitChild]->getAsAggregate();
            if (body && unitBody && body->getOp() == EOpFunction && unitBody->getOp() == EOpFunction && body->getName() == unitBody->getName()) {
                error(infoSink, "Multiple function bodies in multiple compilation units for the same signature in the same stage:");
                infoSink.info << "    " << globals[child]->getAsAggregate()->getName() << "\n";
            }
        }
    }

    // Merge the global objects, just in front of the linker objects
    globals.insert(globals.end() - 1, unitGlobals.begin(), unitGlobals.end() - 1);
}

//
// Merge the linker objects from unitLinkerObjects into linkerObjects.
// Duplication is expected and filtered out, but contradictions are an error.
//
void TIntermediate::mergeLinkerObjects(TInfoSink& infoSink, TIntermSequence& linkerObjects, const TIntermSequence& unitLinkerObjects)
{
    // Error check and merge the linker objects (duplicates should not be created)
    std::size_t initialNumLinkerObjects = linkerObjects.size();
    for (unsigned int unitLinkObj = 0; unitLinkObj < unitLinkerObjects.size(); ++unitLinkObj) {
        bool merge = true;
        for (std::size_t linkObj = 0; linkObj < initialNumLinkerObjects; ++linkObj) {
            TIntermSymbol* symbol = linkerObjects[linkObj]->getAsSymbolNode();
            TIntermSymbol* unitSymbol = unitLinkerObjects[unitLinkObj]->getAsSymbolNode();
            assert(symbol && unitSymbol);

            bool isSameSymbol = false;
            // If they are both blocks in the same shader interface,
            // match by the block-name, not the identifier name.
            if (symbol->getType().getBasicType() == EbtBlock && unitSymbol->getType().getBasicType() == EbtBlock) {
                if (symbol->getType().getShaderInterface() == unitSymbol->getType().getShaderInterface()) {
                    isSameSymbol = symbol->getType().getTypeName() == unitSymbol->getType().getTypeName();
                }
            }
            else if (symbol->getName() == unitSymbol->getName())
                isSameSymbol = true;

            if (isSameSymbol) {
                // filter out copy
                merge = false;

                // but if one has an initializer and the other does not, update
                // the initializer
                if (symbol->getConstArray().empty() && ! unitSymbol->getConstArray().empty())
                    symbol->setConstArray(unitSymbol->getConstArray());

                // Similarly for binding
                if (! symbol->getQualifier().hasBinding() && unitSymbol->getQualifier().hasBinding())
                    symbol->getQualifier().layoutBinding = unitSymbol->getQualifier().layoutBinding;

                // Update implicit array sizes
                mergeImplicitArraySizes(symbol->getWritableType(), unitSymbol->getType());

                // Check for consistent types/qualification/initializers etc.
                mergeErrorCheck(infoSink, *symbol, *unitSymbol, false);
            }
            // If different symbols, verify they arn't push_constant since there can only be one per stage
            else if (symbol->getQualifier().isPushConstant() && unitSymbol->getQualifier().isPushConstant())
                error(infoSink, "Only one push_constant block is allowed per stage");
        }
        if (merge)
            linkerObjects.push_back(unitLinkerObjects[unitLinkObj]);
    }
}

// TODO 4.5 link functionality: cull distance array size checking

// Recursively merge the implicit array sizes through the objects' respective type trees.
void TIntermediate::mergeImplicitArraySizes(TType& type, const TType& unitType)
{
    if (type.isUnsizedArray()) {
        if (unitType.isUnsizedArray()) {
            type.updateImplicitArraySize(unitType.getImplicitArraySize());
            if (unitType.isArrayVariablyIndexed())
                type.setArrayVariablyIndexed();
        } else if (unitType.isSizedArray())
            type.changeOuterArraySize(unitType.getOuterArraySize());
    }

    // Type mismatches are caught and reported after this, just be careful for now.
    if (! type.isStruct() || ! unitType.isStruct() || type.getStruct()->size() != unitType.getStruct()->size())
        return;

    for (int i = 0; i < (int)type.getStruct()->size(); ++i)
        mergeImplicitArraySizes(*(*type.getStruct())[i].type, *(*unitType.getStruct())[i].type);
}

//
// Compare two global objects from two compilation units and see if they match
// well enough.  Rules can be different for intra- vs. cross-stage matching.
//
// This function only does one of intra- or cross-stage matching per call.
//
void TIntermediate::mergeErrorCheck(TInfoSink& infoSink, const TIntermSymbol& symbol, const TIntermSymbol& unitSymbol, bool crossStage)
{
#if !defined(GLSLANG_WEB) && !defined(GLSLANG_ANGLE)
    bool writeTypeComparison = false;

    // Types have to match
    if (symbol.getType() != unitSymbol.getType()) {
        // but, we make an exception if one is an implicit array and the other is sized
        if (! (symbol.getType().isArray() && unitSymbol.getType().isArray() &&
                symbol.getType().sameElementType(unitSymbol.getType()) &&
                (symbol.getType().isUnsizedArray() || unitSymbol.getType().isUnsizedArray()))) {
            error(infoSink, "Types must match:");
            writeTypeComparison = true;
        }
    }

    // Qualifiers have to (almost) match

    // Storage...
    if (symbol.getQualifier().storage != unitSymbol.getQualifier().storage) {
        error(infoSink, "Storage qualifiers must match:");
        writeTypeComparison = true;
    }

    // Uniform and buffer blocks must either both have an instance name, or
    // must both be anonymous. The names don't need to match though.
    if (symbol.getQualifier().isUniformOrBuffer() &&
        (IsAnonymous(symbol.getName()) != IsAnonymous(unitSymbol.getName()))) {
        error(infoSink, "Matched Uniform or Storage blocks must all be anonymous,"
                        " or all be named:");
        writeTypeComparison = true;
    }

    if (symbol.getQualifier().storage == unitSymbol.getQualifier().storage &&
        (IsAnonymous(symbol.getName()) != IsAnonymous(unitSymbol.getName()) ||
         (!IsAnonymous(symbol.getName()) && symbol.getName() != unitSymbol.getName()))) {
        warn(infoSink, "Matched shader interfaces are using different instance names.");
        writeTypeComparison = true;
    }

    // Precision...
    if (symbol.getQualifier().precision != unitSymbol.getQualifier().precision) {
        error(infoSink, "Precision qualifiers must match:");
        writeTypeComparison = true;
    }

    // Invariance...
    if (! crossStage && symbol.getQualifier().invariant != unitSymbol.getQualifier().invariant) {
        error(infoSink, "Presence of invariant qualifier must match:");
        writeTypeComparison = true;
    }

    // Precise...
    if (! crossStage && symbol.getQualifier().isNoContraction() != unitSymbol.getQualifier().isNoContraction()) {
        error(infoSink, "Presence of precise qualifier must match:");
        writeTypeComparison = true;
    }

    // Auxiliary and interpolation...
    if (symbol.getQualifier().centroid  != unitSymbol.getQualifier().centroid ||
        symbol.getQualifier().smooth    != unitSymbol.getQualifier().smooth ||
        symbol.getQualifier().flat      != unitSymbol.getQualifier().flat ||
        symbol.getQualifier().isSample()!= unitSymbol.getQualifier().isSample() ||
        symbol.getQualifier().isPatch() != unitSymbol.getQualifier().isPatch() ||
        symbol.getQualifier().isNonPerspective() != unitSymbol.getQualifier().isNonPerspective()) {
        error(infoSink, "Interpolation and auxiliary storage qualifiers must match:");
        writeTypeComparison = true;
    }

    // Memory...
    if (symbol.getQualifier().coherent          != unitSymbol.getQualifier().coherent ||
        symbol.getQualifier().devicecoherent    != unitSymbol.getQualifier().devicecoherent ||
        symbol.getQualifier().queuefamilycoherent  != unitSymbol.getQualifier().queuefamilycoherent ||
        symbol.getQualifier().workgroupcoherent != unitSymbol.getQualifier().workgroupcoherent ||
        symbol.getQualifier().subgroupcoherent  != unitSymbol.getQualifier().subgroupcoherent ||
        symbol.getQualifier().shadercallcoherent!= unitSymbol.getQualifier().shadercallcoherent ||
        symbol.getQualifier().nonprivate        != unitSymbol.getQualifier().nonprivate ||
        symbol.getQualifier().volatil           != unitSymbol.getQualifier().volatil ||
        symbol.getQualifier().restrict          != unitSymbol.getQualifier().restrict ||
        symbol.getQualifier().readonly          != unitSymbol.getQualifier().readonly ||
        symbol.getQualifier().writeonly         != unitSymbol.getQualifier().writeonly) {
        error(infoSink, "Memory qualifiers must match:");
        writeTypeComparison = true;
    }

    // Layouts...
    // TODO: 4.4 enhanced layouts: Generalize to include offset/align: current spec
    //       requires separate user-supplied offset from actual computed offset, but
    //       current implementation only has one offset.
    if (symbol.getQualifier().layoutMatrix    != unitSymbol.getQualifier().layoutMatrix ||
        symbol.getQualifier().layoutPacking   != unitSymbol.getQualifier().layoutPacking ||
        symbol.getQualifier().layoutLocation  != unitSymbol.getQualifier().layoutLocation ||
        symbol.getQualifier().layoutComponent != unitSymbol.getQualifier().layoutComponent ||
        symbol.getQualifier().layoutIndex     != unitSymbol.getQualifier().layoutIndex ||
        symbol.getQualifier().layoutBinding   != unitSymbol.getQualifier().layoutBinding ||
        (symbol.getQualifier().hasBinding() && (symbol.getQualifier().layoutOffset != unitSymbol.getQualifier().layoutOffset))) {
        error(infoSink, "Layout qualification must match:");
        writeTypeComparison = true;
    }

    // Initializers have to match, if both are present, and if we don't already know the types don't match
    if (! writeTypeComparison) {
        if (! symbol.getConstArray().empty() && ! unitSymbol.getConstArray().empty()) {
            if (symbol.getConstArray() != unitSymbol.getConstArray()) {
                error(infoSink, "Initializers must match:");
                infoSink.info << "    " << symbol.getName() << "\n";
            }
        }
    }

    if (writeTypeComparison) {
        infoSink.info << "    " << symbol.getName() << ": \"" << symbol.getType().getCompleteString() << "\" versus ";
        if (symbol.getName() != unitSymbol.getName())
            infoSink.info << unitSymbol.getName() << ": ";

        infoSink.info << "\"" << unitSymbol.getType().getCompleteString() << "\"\n";
    }
#endif
}

//
// Do final link-time error checking of a complete (merged) intermediate representation.
// (Much error checking was done during merging).
//
// Also, lock in defaults of things not set, including array sizes.
//
void TIntermediate::finalCheck(TInfoSink& infoSink, bool keepUncalled)
{
    if (getTreeRoot() == nullptr)
        return;

    if (numEntryPoints < 1) {
        if (getSource() == EShSourceGlsl)<--- Condition 'getSource()==EShSourceGlsl' is always true
            error(infoSink, "Missing entry point: Each stage requires one entry point");
        else
            warn(infoSink, "Entry point not found");
    }

    // recursion and missing body checking
    checkCallGraphCycles(infoSink);
    checkCallGraphBodies(infoSink, keepUncalled);

    // overlap/alias/missing I/O, etc.
    inOutLocationCheck(infoSink);

#ifndef GLSLANG_WEB
    if (getNumPushConstants() > 1)
        error(infoSink, "Only one push_constant block is allowed per stage");

    // invocations
    if (invocations == TQualifier::layoutNotSet)
        invocations = 1;

    if (inIoAccessed("gl_ClipDistance") && inIoAccessed("gl_ClipVertex"))
        error(infoSink, "Can only use one of gl_ClipDistance or gl_ClipVertex (gl_ClipDistance is preferred)");
    if (inIoAccessed("gl_CullDistance") && inIoAccessed("gl_ClipVertex"))
        error(infoSink, "Can only use one of gl_CullDistance or gl_ClipVertex (gl_ClipDistance is preferred)");

    if (userOutputUsed() && (inIoAccessed("gl_FragColor") || inIoAccessed("gl_FragData")))
        error(infoSink, "Cannot use gl_FragColor or gl_FragData when using user-defined outputs");
    if (inIoAccessed("gl_FragColor") && inIoAccessed("gl_FragData"))
        error(infoSink, "Cannot use both gl_FragColor and gl_FragData");

    for (size_t b = 0; b < xfbBuffers.size(); ++b) {
        if (xfbBuffers[b].contains64BitType)
            RoundToPow2(xfbBuffers[b].implicitStride, 8);
        else if (xfbBuffers[b].contains32BitType)
            RoundToPow2(xfbBuffers[b].implicitStride, 4);
        else if (xfbBuffers[b].contains16BitType)
            RoundToPow2(xfbBuffers[b].implicitStride, 2);

        // "It is a compile-time or link-time error to have
        // any xfb_offset that overflows xfb_stride, whether stated on declarations before or after the xfb_stride, or
        // in different compilation units. While xfb_stride can be declared multiple times for the same buffer, it is a
        // compile-time or link-time error to have different values specified for the stride for the same buffer."
        if (xfbBuffers[b].stride != TQualifier::layoutXfbStrideEnd && xfbBuffers[b].implicitStride > xfbBuffers[b].stride) {
            error(infoSink, "xfb_stride is too small to hold all buffer entries:");
            infoSink.info.prefix(EPrefixError);
            infoSink.info << "    xfb_buffer " << (unsigned int)b << ", xfb_stride " << xfbBuffers[b].stride << ", minimum stride needed: " << xfbBuffers[b].implicitStride << "\n";
        }
        if (xfbBuffers[b].stride == TQualifier::layoutXfbStrideEnd)
            xfbBuffers[b].stride = xfbBuffers[b].implicitStride;

        // "If the buffer is capturing any
        // outputs with double-precision or 64-bit integer components, the stride must be a multiple of 8, otherwise it must be a
        // multiple of 4, or a compile-time or link-time error results."
        if (xfbBuffers[b].contains64BitType && ! IsMultipleOfPow2(xfbBuffers[b].stride, 8)) {
            error(infoSink, "xfb_stride must be multiple of 8 for buffer holding a double or 64-bit integer:");
            infoSink.info.prefix(EPrefixError);
            infoSink.info << "    xfb_buffer " << (unsigned int)b << ", xfb_stride " << xfbBuffers[b].stride << "\n";
        } else if (xfbBuffers[b].contains32BitType && ! IsMultipleOfPow2(xfbBuffers[b].stride, 4)) {
            error(infoSink, "xfb_stride must be multiple of 4:");
            infoSink.info.prefix(EPrefixError);
            infoSink.info << "    xfb_buffer " << (unsigned int)b << ", xfb_stride " << xfbBuffers[b].stride << "\n";
        }
        // "If the buffer is capturing any
        // outputs with half-precision or 16-bit integer components, the stride must be a multiple of 2"
        else if (xfbBuffers[b].contains16BitType && ! IsMultipleOfPow2(xfbBuffers[b].stride, 2)) {
            error(infoSink, "xfb_stride must be multiple of 2 for buffer holding a half float or 16-bit integer:");
            infoSink.info.prefix(EPrefixError);
            infoSink.info << "    xfb_buffer " << (unsigned int)b << ", xfb_stride " << xfbBuffers[b].stride << "\n";
        }

        // "The resulting stride (implicit or explicit), when divided by 4, must be less than or equal to the
        // implementation-dependent constant gl_MaxTransformFeedbackInterleavedComponents."
        if (xfbBuffers[b].stride > (unsigned int)(4 * resources.maxTransformFeedbackInterleavedComponents)) {
            error(infoSink, "xfb_stride is too large:");
            infoSink.info.prefix(EPrefixError);
            infoSink.info << "    xfb_buffer " << (unsigned int)b << ", components (1/4 stride) needed are " << xfbBuffers[b].stride/4 << ", gl_MaxTransformFeedbackInterleavedComponents is " << resources.maxTransformFeedbackInterleavedComponents << "\n";
        }
    }

    switch (language) {
    case EShLangVertex:
        break;
    case EShLangTessControl:
        if (vertices == TQualifier::layoutNotSet)
            error(infoSink, "At least one shader must specify an output layout(vertices=...)");
        break;
    case EShLangTessEvaluation:
        if (getSource() == EShSourceGlsl) {<--- Condition 'getSource()==EShSourceGlsl' is always true
            if (inputPrimitive == ElgNone)
                error(infoSink, "At least one shader must specify an input layout primitive");
            if (vertexSpacing == EvsNone)
                vertexSpacing = EvsEqual;
            if (vertexOrder == EvoNone)
                vertexOrder = EvoCcw;
        }
        break;
    case EShLangGeometry:
        if (inputPrimitive == ElgNone)
            error(infoSink, "At least one shader must specify an input layout primitive");
        if (outputPrimitive == ElgNone)
            error(infoSink, "At least one shader must specify an output layout primitive");
        if (vertices == TQualifier::layoutNotSet)
            error(infoSink, "At least one shader must specify a layout(max_vertices = value)");
        break;
    case EShLangFragment:
        // for GL_ARB_post_depth_coverage, EarlyFragmentTest is set automatically in 
        // ParseHelper.cpp. So if we reach here, this must be GL_EXT_post_depth_coverage 
        // requiring explicit early_fragment_tests
        if (getPostDepthCoverage() && !getEarlyFragmentTests())
            error(infoSink, "post_depth_coverage requires early_fragment_tests");
        break;
    case EShLangCompute:
        break;
    case EShLangRayGen:
    case EShLangIntersect:
    case EShLangAnyHit:
    case EShLangClosestHit:
    case EShLangMiss:
    case EShLangCallable:
        if (numShaderRecordBlocks > 1)
            error(infoSink, "Only one shaderRecordNV buffer block is allowed per stage");
        break;
    case EShLangMeshNV:
        // NV_mesh_shader doesn't allow use of both single-view and per-view builtins.
        if (inIoAccessed("gl_Position") && inIoAccessed("gl_PositionPerViewNV"))
            error(infoSink, "Can only use one of gl_Position or gl_PositionPerViewNV");
        if (inIoAccessed("gl_ClipDistance") && inIoAccessed("gl_ClipDistancePerViewNV"))
            error(infoSink, "Can only use one of gl_ClipDistance or gl_ClipDistancePerViewNV");
        if (inIoAccessed("gl_CullDistance") && inIoAccessed("gl_CullDistancePerViewNV"))
            error(infoSink, "Can only use one of gl_CullDistance or gl_CullDistancePerViewNV");
        if (inIoAccessed("gl_Layer") && inIoAccessed("gl_LayerPerViewNV"))
            error(infoSink, "Can only use one of gl_Layer or gl_LayerPerViewNV");
        if (inIoAccessed("gl_ViewportMask") && inIoAccessed("gl_ViewportMaskPerViewNV"))
            error(infoSink, "Can only use one of gl_ViewportMask or gl_ViewportMaskPerViewNV");
        if (outputPrimitive == ElgNone)
            error(infoSink, "At least one shader must specify an output layout primitive");
        if (vertices == TQualifier::layoutNotSet)
            error(infoSink, "At least one shader must specify a layout(max_vertices = value)");
        if (primitives == TQualifier::layoutNotSet)
            error(infoSink, "At least one shader must specify a layout(max_primitives = value)");
        // fall through
    case EShLangTaskNV:
        if (numTaskNVBlocks > 1)
            error(infoSink, "Only one taskNV interface block is allowed per shader");
        break;
    default:
        error(infoSink, "Unknown Stage.");
        break;
    }

    // Process the tree for any node-specific work.
    class TFinalLinkTraverser : public TIntermTraverser {
    public:
        TFinalLinkTraverser() { }
        virtual ~TFinalLinkTraverser() { }

        virtual void visitSymbol(TIntermSymbol* symbol)
        {
            // Implicitly size arrays.
            // If an unsized array is left as unsized, it effectively
            // becomes run-time sized.
            symbol->getWritableType().adoptImplicitArraySizes(false);
        }
    } finalLinkTraverser;

    treeRoot->traverse(&finalLinkTraverser);
#endif
}

//
// See if the call graph contains any static recursion, which is disallowed
// by the specification.
//
void TIntermediate::checkCallGraphCycles(TInfoSink& infoSink)
{
    // Clear fields we'll use for this.
    for (TGraph::iterator call = callGraph.begin(); call != callGraph.end(); ++call) {
        call->visited = false;
        call->currentPath = false;
        call->errorGiven = false;
    }

    //
    // Loop, looking for a new connected subgraph.  One subgraph is handled per loop iteration.
    //

    TCall* newRoot;
    do {
        // See if we have unvisited parts of the graph.
        newRoot = 0;
        for (TGraph::iterator call = callGraph.begin(); call != callGraph.end(); ++call) {
            if (! call->visited) {
                newRoot = &(*call);
                break;
            }
        }

        // If not, we are done.
        if (! newRoot)
            break;

        // Otherwise, we found a new subgraph, process it:
        // See what all can be reached by this new root, and if any of
        // that is recursive.  This is done by depth-first traversals, seeing
        // if a new call is found that was already in the currentPath (a back edge),
        // thereby detecting recursion.
        std::list<TCall*> stack;
        newRoot->currentPath = true; // currentPath will be true iff it is on the stack
        stack.push_back(newRoot);
        while (! stack.empty()) {
            // get a caller
            TCall* call = stack.back();

            // Add to the stack just one callee.
            // This algorithm always terminates, because only !visited and !currentPath causes a push
            // and all pushes change currentPath to true, and all pops change visited to true.
            TGraph::iterator child = callGraph.begin();
            for (; child != callGraph.end(); ++child) {

                // If we already visited this node, its whole subgraph has already been processed, so skip it.
                if (child->visited)
                    continue;

                if (call->callee == child->caller) {
                    if (child->currentPath) {
                        // Then, we found a back edge
                        if (! child->errorGiven) {
                            error(infoSink, "Recursion detected:");
                            infoSink.info << "    " << call->callee << " calling " << child->callee << "\n";
                            child->errorGiven = true;
                            recursive = true;
                        }
                    } else {
                        child->currentPath = true;
                        stack.push_back(&(*child));
                        break;
                    }
                }
            }
            if (child == callGraph.end()) {
                // no more callees, we bottomed out, never look at this node again
                stack.back()->currentPath = false;
                stack.back()->visited = true;
                stack.pop_back();
            }
        }  // end while, meaning nothing left to process in this subtree

    } while (newRoot);  // redundant loop check; should always exit via the 'break' above
}

//
// See which functions are reachable from the entry point and which have bodies.
// Reachable ones with missing bodies are errors.
// Unreachable bodies are dead code.
//
void TIntermediate::checkCallGraphBodies(TInfoSink& infoSink, bool keepUncalled)
{
    // Clear fields we'll use for this.
    for (TGraph::iterator call = callGraph.begin(); call != callGraph.end(); ++call) {
        call->visited = false;
        call->calleeBodyPosition = -1;
    }

    // The top level of the AST includes function definitions (bodies).
    // Compare these to function calls in the call graph.
    // We'll end up knowing which have bodies, and if so,
    // how to map the call-graph node to the location in the AST.
    TIntermSequence &functionSequence = getTreeRoot()->getAsAggregate()->getSequence();
    std::vector<bool> reachable(functionSequence.size(), true); // so that non-functions are reachable
    for (int f = 0; f < (int)functionSequence.size(); ++f) {
        glslang::TIntermAggregate* node = functionSequence[f]->getAsAggregate();
        if (node && (node->getOp() == glslang::EOpFunction)) {
            if (node->getName().compare(getEntryPointMangledName().c_str()) != 0)
                reachable[f] = false; // so that function bodies are unreachable, until proven otherwise
            for (TGraph::iterator call = callGraph.begin(); call != callGraph.end(); ++call) {
                if (call->callee == node->getName())
                    call->calleeBodyPosition = f;
            }
        }
    }

    // Start call-graph traversal by visiting the entry point nodes.
    for (TGraph::iterator call = callGraph.begin(); call != callGraph.end(); ++call) {
        if (call->caller.compare(getEntryPointMangledName().c_str()) == 0)
            call->visited = true;
    }

    // Propagate 'visited' through the call-graph to every part of the graph it
    // can reach (seeded with the entry-point setting above).
    bool changed;
    do {
        changed = false;
        for (auto call1 = callGraph.begin(); call1 != callGraph.end(); ++call1) {
            if (call1->visited) {
                for (TGraph::iterator call2 = callGraph.begin(); call2 != callGraph.end(); ++call2) {
                    if (! call2->visited) {
                        if (call1->callee == call2->caller) {
                            changed = true;
                            call2->visited = true;
                        }
                    }
                }
            }
        }
    } while (changed);

    // Any call-graph node set to visited but without a callee body is an error.
    for (TGraph::iterator call = callGraph.begin(); call != callGraph.end(); ++call) {
        if (call->visited) {
            if (call->calleeBodyPosition == -1) {
                error(infoSink, "No function definition (body) found: ");
                infoSink.info << "    " << call->callee << "\n";
            } else
                reachable[call->calleeBodyPosition] = true;
        }
    }

    // Bodies in the AST not reached by the call graph are dead;
    // clear them out, since they can't be reached and also can't
    // be translated further due to possibility of being ill defined.
    if (! keepUncalled) {
        for (int f = 0; f < (int)functionSequence.size(); ++f) {
            if (! reachable[f])
                functionSequence[f] = nullptr;
        }
        functionSequence.erase(std::remove(functionSequence.begin(), functionSequence.end(), nullptr), functionSequence.end());
    }
}

//
// Satisfy rules for location qualifiers on inputs and outputs
//
void TIntermediate::inOutLocationCheck(TInfoSink& infoSink)
{
    // ES 3.0 requires all outputs to have location qualifiers if there is more than one output
    bool fragOutWithNoLocation = false;
    int numFragOut = 0;

    // TODO: linker functionality: location collision checking

    TIntermSequence& linkObjects = findLinkerObjects()->getSequence();
    for (size_t i = 0; i < linkObjects.size(); ++i) {
        const TType& type = linkObjects[i]->getAsTyped()->getType();
        const TQualifier& qualifier = type.getQualifier();
        if (language == EShLangFragment) {
            if (qualifier.storage == EvqVaryingOut && qualifier.builtIn == EbvNone) {
                ++numFragOut;
                if (!qualifier.hasAnyLocation())
                    fragOutWithNoLocation = true;
            }
        }
    }

    if (isEsProfile()) {
        if (numFragOut > 1 && fragOutWithNoLocation)
            error(infoSink, "when more than one fragment shader output, all must have location qualifiers");
    }
}

TIntermAggregate* TIntermediate::findLinkerObjects() const
{
    // Get the top-level globals
    TIntermSequence& globals = treeRoot->getAsAggregate()->getSequence();

    // Get the last member of the sequences, expected to be the linker-object lists
    assert(globals.back()->getAsAggregate()->getOp() == EOpLinkerObjects);

    return globals.back()->getAsAggregate();
}

// See if a variable was both a user-declared output and used.
// Note: the spec discusses writing to one, but this looks at read or write, which
// is more useful, and perhaps the spec should be changed to reflect that.
bool TIntermediate::userOutputUsed() const
{
    const TIntermSequence& linkerObjects = findLinkerObjects()->getSequence();

    bool found = false;
    for (size_t i = 0; i < linkerObjects.size(); ++i) {
        const TIntermSymbol& symbolNode = *linkerObjects[i]->getAsSymbolNode();
        if (symbolNode.getQualifier().storage == EvqVaryingOut &&
            symbolNode.getName().compare(0, 3, "gl_") != 0 &&
            inIoAccessed(symbolNode.getName())) {
            found = true;
            break;
        }
    }

    return found;
}

// Accumulate locations used for inputs, outputs, and uniforms, and check for collisions
// as the accumulation is done.
//
// Returns < 0 if no collision, >= 0 if collision and the value returned is a colliding value.
//
// typeCollision is set to true if there is no direct collision, but the types in the same location
// are different.
//
int TIntermediate::addUsedLocation(const TQualifier& qualifier, const TType& type, bool& typeCollision)
{
    typeCollision = false;

    int set;
    if (qualifier.isPipeInput())
        set = 0;
    else if (qualifier.isPipeOutput())
        set = 1;
    else if (qualifier.storage == EvqUniform)
        set = 2;
    else if (qualifier.storage == EvqBuffer)
        set = 3;
    else
        return -1;

    int size;
    if (qualifier.isUniformOrBuffer() || qualifier.isTaskMemory()) {
        if (type.isSizedArray())
            size = type.getCumulativeArraySize();
        else
            size = 1;
    } else {
        // Strip off the outer array dimension for those having an extra one.
        if (type.isArray() && qualifier.isArrayedIo(language)) {
            TType elementType(type, 0);
            size = computeTypeLocationSize(elementType, language);
        } else
            size = computeTypeLocationSize(type, language);
    }

    // Locations, and components within locations.
    //
    // Almost always, dealing with components means a single location is involved.
    // The exception is a dvec3. From the spec:
    //
    // "A dvec3 will consume all four components of the first location and components 0 and 1 of
    // the second location. This leaves components 2 and 3 available for other component-qualified
    // declarations."
    //
    // That means, without ever mentioning a component, a component range
    // for a different location gets specified, if it's not a vertex shader input. (!)
    // (A vertex shader input will show using only one location, even for a dvec3/4.)
    //
    // So, for the case of dvec3, we need two independent ioRanges.

    int collision = -1; // no collision
#ifndef GLSLANG_WEB
    if (size == 2 && type.getBasicType() == EbtDouble && type.getVectorSize() == 3 &&
        (qualifier.isPipeInput() || qualifier.isPipeOutput())) {
        // Dealing with dvec3 in/out split across two locations.
        // Need two io-ranges.
        // The case where the dvec3 doesn't start at component 0 was previously caught as overflow.

        // First range:
        TRange locationRange(qualifier.layoutLocation, qualifier.layoutLocation);
        TRange componentRange(0, 3);
        TIoRange range(locationRange, componentRange, type.getBasicType(), 0);

        // check for collisions
        collision = checkLocationRange(set, range, type, typeCollision);
        if (collision < 0) {
            usedIo[set].push_back(range);

            // Second range:
            TRange locationRange2(qualifier.layoutLocation + 1, qualifier.layoutLocation + 1);
            TRange componentRange2(0, 1);
            TIoRange range2(locationRange2, componentRange2, type.getBasicType(), 0);

            // check for collisions
            collision = checkLocationRange(set, range2, type, typeCollision);
            if (collision < 0)
                usedIo[set].push_back(range2);
        }
    } else
#endif
    {
        // Not a dvec3 in/out split across two locations, generic path.
        // Need a single IO-range block.

        TRange locationRange(qualifier.layoutLocation, qualifier.layoutLocation + size - 1);
        TRange componentRange(0, 3);
        if (qualifier.hasComponent() || type.getVectorSize() > 0) {
            int consumedComponents = type.getVectorSize() * (type.getBasicType() == EbtDouble ? 2 : 1);
            if (qualifier.hasComponent())
                componentRange.start = qualifier.layoutComponent;
            componentRange.last  = componentRange.start + consumedComponents - 1;
        }

        // combine location and component ranges
        TIoRange range(locationRange, componentRange, type.getBasicType(), qualifier.hasIndex() ? qualifier.getIndex() : 0);

        // check for collisions, except for vertex inputs on desktop targeting OpenGL
        if (! (!isEsProfile() && language == EShLangVertex && qualifier.isPipeInput()) || spvVersion.vulkan > 0)
            collision = checkLocationRange(set, range, type, typeCollision);

        if (collision < 0)
            usedIo[set].push_back(range);
    }

    return collision;
}

// Compare a new (the passed in) 'range' against the existing set, and see
// if there are any collisions.
//
// Returns < 0 if no collision, >= 0 if collision and the value returned is a colliding value.
//
int TIntermediate::checkLocationRange(int set, const TIoRange& range, const TType& type, bool& typeCollision)
{
    for (size_t r = 0; r < usedIo[set].size(); ++r) {
        if (range.overlap(usedIo[set][r])) {
            // there is a collision; pick one
            return std::max(range.location.start, usedIo[set][r].location.start);
        } else if (range.location.overlap(usedIo[set][r].location) && type.getBasicType() != usedIo[set][r].basicType) {
            // aliased-type mismatch
            typeCollision = true;
            return std::max(range.location.start, usedIo[set][r].location.start);
        }
    }

    return -1; // no collision
}

// Accumulate bindings and offsets, and check for collisions
// as the accumulation is done.
//
// Returns < 0 if no collision, >= 0 if collision and the value returned is a colliding value.
//
int TIntermediate::addUsedOffsets(int binding, int offset, int numOffsets)
{
    TRange bindingRange(binding, binding);
    TRange offsetRange(offset, offset + numOffsets - 1);
    TOffsetRange range(bindingRange, offsetRange);

    // check for collisions, except for vertex inputs on desktop
    for (size_t r = 0; r < usedAtomics.size(); ++r) {
        if (range.overlap(usedAtomics[r])) {
            // there is a collision; pick one
            return std::max(offset, usedAtomics[r].offset.start);
        }
    }

    usedAtomics.push_back(range);

    return -1; // no collision
}

// Accumulate used constant_id values.
//
// Return false is one was already used.
bool TIntermediate::addUsedConstantId(int id)
{
    if (usedConstantId.find(id) != usedConstantId.end())
        return false;

    usedConstantId.insert(id);

    return true;
}

// Recursively figure out how many locations are used up by an input or output type.
// Return the size of type, as measured by "locations".
int TIntermediate::computeTypeLocationSize(const TType& type, EShLanguage stage)
{
    // "If the declared input is an array of size n and each element takes m locations, it will be assigned m * n
    // consecutive locations..."
    if (type.isArray()) {
        // TODO: perf: this can be flattened by using getCumulativeArraySize(), and a deref that discards all arrayness
        // TODO: are there valid cases of having an unsized array with a location?  If so, running this code too early.
        TType elementType(type, 0);
        if (type.isSizedArray() && !type.getQualifier().isPerView())
            return type.getOuterArraySize() * computeTypeLocationSize(elementType, stage);
        else {
#ifndef GLSLANG_WEB
            // unset perViewNV attributes for arrayed per-view outputs: "perviewNV vec4 v[MAX_VIEWS][3];"
            elementType.getQualifier().perViewNV = false;
#endif
            return computeTypeLocationSize(elementType, stage);
        }
    }

    // "The locations consumed by block and structure members are determined by applying the rules above
    // recursively..."
    if (type.isStruct()) {
        int size = 0;
        for (int member = 0; member < (int)type.getStruct()->size(); ++member) {
            TType memberType(type, member);
            size += computeTypeLocationSize(memberType, stage);
        }
        return size;
    }

    // ES: "If a shader input is any scalar or vector type, it will consume a single location."

    // Desktop: "If a vertex shader input is any scalar or vector type, it will consume a single location. If a non-vertex
    // shader input is a scalar or vector type other than dvec3 or dvec4, it will consume a single location, while
    // types dvec3 or dvec4 will consume two consecutive locations. Inputs of type double and dvec2 will
    // consume only a single location, in all stages."
    if (type.isScalar())
        return 1;
    if (type.isVector()) {
        if (stage == EShLangVertex && type.getQualifier().isPipeInput())
            return 1;
        if (type.getBasicType() == EbtDouble && type.getVectorSize() > 2)
            return 2;
        else
            return 1;
    }

    // "If the declared input is an n x m single- or double-precision matrix, ...
    // The number of locations assigned for each matrix will be the same as
    // for an n-element array of m-component vectors..."
    if (type.isMatrix()) {
        TType columnType(type, 0);
        return type.getMatrixCols() * computeTypeLocationSize(columnType, stage);
    }

    assert(0);
    return 1;
}

// Same as computeTypeLocationSize but for uniforms
int TIntermediate::computeTypeUniformLocationSize(const TType& type)
{
    // "Individual elements of a uniform array are assigned
    // consecutive locations with the first element taking location
    // location."
    if (type.isArray()) {
        // TODO: perf: this can be flattened by using getCumulativeArraySize(), and a deref that discards all arrayness
        TType elementType(type, 0);
        if (type.isSizedArray()) {
            return type.getOuterArraySize() * computeTypeUniformLocationSize(elementType);
        } else {
            // TODO: are there valid cases of having an implicitly-sized array with a location?  If so, running this code too early.
            return computeTypeUniformLocationSize(elementType);
        }
    }

    // "Each subsequent inner-most member or element gets incremental
    // locations for the entire structure or array."
    if (type.isStruct()) {
        int size = 0;
        for (int member = 0; member < (int)type.getStruct()->size(); ++member) {
            TType memberType(type, member);
            size += computeTypeUniformLocationSize(memberType);
        }
        return size;
    }

    return 1;
}

#ifndef GLSLANG_WEB

// Accumulate xfb buffer ranges and check for collisions as the accumulation is done.
//
// Returns < 0 if no collision, >= 0 if collision and the value returned is a colliding value.
//
int TIntermediate::addXfbBufferOffset(const TType& type)
{
    const TQualifier& qualifier = type.getQualifier();

    assert(qualifier.hasXfbOffset() && qualifier.hasXfbBuffer());
    TXfbBuffer& buffer = xfbBuffers[qualifier.layoutXfbBuffer];

    // compute the range
    unsigned int size = computeTypeXfbSize(type, buffer.contains64BitType, buffer.contains32BitType, buffer.contains16BitType);
    buffer.implicitStride = std::max(buffer.implicitStride, qualifier.layoutXfbOffset + size);
    TRange range(qualifier.layoutXfbOffset, qualifier.layoutXfbOffset + size - 1);

    // check for collisions
    for (size_t r = 0; r < buffer.ranges.size(); ++r) {
        if (range.overlap(buffer.ranges[r])) {
            // there is a collision; pick an example to return
            return std::max(range.start, buffer.ranges[r].start);
        }
    }

    buffer.ranges.push_back(range);

    return -1;  // no collision
}

// Recursively figure out how many bytes of xfb buffer are used by the given type.
// Return the size of type, in bytes.
// Sets contains64BitType to true if the type contains a 64-bit data type.
// Sets contains32BitType to true if the type contains a 32-bit data type.
// Sets contains16BitType to true if the type contains a 16-bit data type.
// N.B. Caller must set contains64BitType, contains32BitType, and contains16BitType to false before calling.
unsigned int TIntermediate::computeTypeXfbSize(const TType& type, bool& contains64BitType, bool& contains32BitType, bool& contains16BitType) const
{
    // "...if applied to an aggregate containing a double or 64-bit integer, the offset must also be a multiple of 8,
    // and the space taken in the buffer will be a multiple of 8.
    // ...within the qualified entity, subsequent components are each
    // assigned, in order, to the next available offset aligned to a multiple of
    // that component's size.  Aggregate types are flattened down to the component
    // level to get this sequence of components."

    if (type.isSizedArray()) {
        // TODO: perf: this can be flattened by using getCumulativeArraySize(), and a deref that discards all arrayness
        // Unsized array use to xfb should be a compile error.
        TType elementType(type, 0);
        return type.getOuterArraySize() * computeTypeXfbSize(elementType, contains64BitType, contains16BitType, contains16BitType);
    }

    if (type.isStruct()) {
        unsigned int size = 0;
        bool structContains64BitType = false;
        bool structContains32BitType = false;
        bool structContains16BitType = false;
        for (int member = 0; member < (int)type.getStruct()->size(); ++member) {
            TType memberType(type, member);
            // "... if applied to
            // an aggregate containing a double or 64-bit integer, the offset must also be a multiple of 8,
            // and the space taken in the buffer will be a multiple of 8."
            bool memberContains64BitType = false;
            bool memberContains32BitType = false;
            bool memberContains16BitType = false;
            int memberSize = computeTypeXfbSize(memberType, memberContains64BitType, memberContains32BitType, memberContains16BitType);
            if (memberContains64BitType) {
                structContains64BitType = true;
                RoundToPow2(size, 8);
            } else if (memberContains32BitType) {
                structContains32BitType = true;
                RoundToPow2(size, 4);
            } else if (memberContains16BitType) {
                structContains16BitType = true;
                RoundToPow2(size, 2);
            }
            size += memberSize;
        }

        if (structContains64BitType) {
            contains64BitType = true;
            RoundToPow2(size, 8);
        } else if (structContains32BitType) {
            contains32BitType = true;
            RoundToPow2(size, 4);
        } else if (structContains16BitType) {
            contains16BitType = true;
            RoundToPow2(size, 2);
        }
        return size;
    }

    int numComponents;
    if (type.isScalar())
        numComponents = 1;
    else if (type.isVector())
        numComponents = type.getVectorSize();
    else if (type.isMatrix())
        numComponents = type.getMatrixCols() * type.getMatrixRows();
    else {
        assert(0);
        numComponents = 1;
    }

    if (type.getBasicType() == EbtDouble || type.getBasicType() == EbtInt64 || type.getBasicType() == EbtUint64) {
        contains64BitType = true;
        return 8 * numComponents;
    } else if (type.getBasicType() == EbtFloat16 || type.getBasicType() == EbtInt16 || type.getBasicType() == EbtUint16) {
        contains16BitType = true;
        return 2 * numComponents;
    } else if (type.getBasicType() == EbtInt8 || type.getBasicType() == EbtUint8)
        return numComponents;
    else {
        contains32BitType = true;
        return 4 * numComponents;
    }
}

#endif

const int baseAlignmentVec4Std140 = 16;

// Return the size and alignment of a component of the given type.
// The size is returned in the 'size' parameter
// Return value is the alignment..
int TIntermediate::getBaseAlignmentScalar(const TType& type, int& size)
{
#ifdef GLSLANG_WEB
    size = 4; return 4;
#endif

    switch (type.getBasicType()) {
    case EbtInt64:
    case EbtUint64:
    case EbtDouble:  size = 8; return 8;
    case EbtFloat16: size = 2; return 2;
    case EbtInt8:
    case EbtUint8:   size = 1; return 1;
    case EbtInt16:
    case EbtUint16:  size = 2; return 2;
    case EbtReference: size = 8; return 8;
    default:         size = 4; return 4;
    }
}

// Implement base-alignment and size rules from section 7.6.2.2 Standard Uniform Block Layout
// Operates recursively.
//
// If std140 is true, it does the rounding up to vec4 size required by std140,
// otherwise it does not, yielding std430 rules.
//
// The size is returned in the 'size' parameter
//
// The stride is only non-0 for arrays or matrices, and is the stride of the
// top-level object nested within the type.  E.g., for an array of matrices,
// it is the distances needed between matrices, despite the rules saying the
// stride comes from the flattening down to vectors.
//
// Return value is the alignment of the type.
int TIntermediate::getBaseAlignment(const TType& type, int& size, int& stride, TLayoutPacking layoutPacking, bool rowMajor)
{
    int alignment;

    bool std140 = layoutPacking == glslang::ElpStd140;
    // When using the std140 storage layout, structures will be laid out in buffer
    // storage with its members stored in monotonically increasing order based on their
    // location in the declaration. A structure and each structure member have a base
    // offset and a base alignment, from which an aligned offset is computed by rounding
    // the base offset up to a multiple of the base alignment. The base offset of the first
    // member of a structure is taken from the aligned offset of the structure itself. The
    // base offset of all other structure members is derived by taking the offset of the
    // last basic machine unit consumed by the previous member and adding one. Each
    // structure member is stored in memory at its aligned offset. The members of a top-
    // level uniform block are laid out in buffer storage by treating the uniform block as
    // a structure with a base offset of zero.
    //
    //   1. If the member is a scalar consuming N basic machine units, the base alignment is N.
    //
    //   2. If the member is a two- or four-component vector with components consuming N basic
    //      machine units, the base alignment is 2N or 4N, respectively.
    //
    //   3. If the member is a three-component vector with components consuming N
    //      basic machine units, the base alignment is 4N.
    //
    //   4. If the member is an array of scalars or vectors, the base alignment and array
    //      stride are set to match the base alignment of a single array element, according
    //      to rules (1), (2), and (3), and rounded up to the base alignment of a vec4. The
    //      array may have padding at the end; the base offset of the member following
    //      the array is rounded up to the next multiple of the base alignment.
    //
    //   5. If the member is a column-major matrix with C columns and R rows, the
    //      matrix is stored identically to an array of C column vectors with R
    //      components each, according to rule (4).
    //
    //   6. If the member is an array of S column-major matrices with C columns and
    //      R rows, the matrix is stored identically to a row of S X C column vectors
    //      with R components each, according to rule (4).
    //
    //   7. If the member is a row-major matrix with C columns and R rows, the matrix
    //      is stored identically to an array of R row vectors with C components each,
    //      according to rule (4).
    //
    //   8. If the member is an array of S row-major matrices with C columns and R
    //      rows, the matrix is stored identically to a row of S X R row vectors with C
    //      components each, according to rule (4).
    //
    //   9. If the member is a structure, the base alignment of the structure is N , where
    //      N is the largest base alignment value of any    of its members, and rounded
    //      up to the base alignment of a vec4. The individual members of this substructure
    //      are then assigned offsets by applying this set of rules recursively,
    //      where the base offset of the first member of the sub-structure is equal to the
    //      aligned offset of the structure. The structure may have padding at the end;
    //      the base offset of the member following the sub-structure is rounded up to
    //      the next multiple of the base alignment of the structure.
    //
    //   10. If the member is an array of S structures, the S elements of the array are laid
    //       out in order, according to rule (9).
    //
    //   Assuming, for rule 10:  The stride is the same as the size of an element.

    stride = 0;
    int dummyStride;

    // rules 4, 6, 8, and 10
    if (type.isArray()) {
        // TODO: perf: this might be flattened by using getCumulativeArraySize(), and a deref that discards all arrayness
        TType derefType(type, 0);
        alignment = getBaseAlignment(derefType, size, dummyStride, layoutPacking, rowMajor);
        if (std140)
            alignment = std::max(baseAlignmentVec4Std140, alignment);
        RoundToPow2(size, alignment);
        stride = size;  // uses full matrix size for stride of an array of matrices (not quite what rule 6/8, but what's expected)
                        // uses the assumption for rule 10 in the comment above
        // use one element to represent the last member of SSBO which is unsized array
        int arraySize = (type.isUnsizedArray() && (type.getOuterArraySize() == 0)) ? 1 : type.getOuterArraySize();
        size = stride * arraySize;
        return alignment;
    }

    // rule 9
    if (type.getBasicType() == EbtStruct) {
        const TTypeList& memberList = *type.getStruct();

        size = 0;
        int maxAlignment = std140 ? baseAlignmentVec4Std140 : 0;
        for (size_t m = 0; m < memberList.size(); ++m) {
            int memberSize;
            // modify just the children's view of matrix layout, if there is one for this member
            TLayoutMatrix subMatrixLayout = memberList[m].type->getQualifier().layoutMatrix;
            int memberAlignment = getBaseAlignment(*memberList[m].type, memberSize, dummyStride, layoutPacking,
                                                   (subMatrixLayout != ElmNone) ? (subMatrixLayout == ElmRowMajor) : rowMajor);
            maxAlignment = std::max(maxAlignment, memberAlignment);
            RoundToPow2(size, memberAlignment);
            size += memberSize;
        }

        // The structure may have padding at the end; the base offset of
        // the member following the sub-structure is rounded up to the next
        // multiple of the base alignment of the structure.
        RoundToPow2(size, maxAlignment);

        return maxAlignment;
    }

    // rule 1
    if (type.isScalar())
        return getBaseAlignmentScalar(type, size);

    // rules 2 and 3
    if (type.isVector()) {
        int scalarAlign = getBaseAlignmentScalar(type, size);
        switch (type.getVectorSize()) {
        case 1: // HLSL has this, GLSL does not
            return scalarAlign;
        case 2:
            size *= 2;
            return 2 * scalarAlign;
        default:
            size *= type.getVectorSize();
            return 4 * scalarAlign;
        }
    }

    // rules 5 and 7
    if (type.isMatrix()) {
        // rule 5: deref to row, not to column, meaning the size of vector is num columns instead of num rows
        TType derefType(type, 0, rowMajor);

        alignment = getBaseAlignment(derefType, size, dummyStride, layoutPacking, rowMajor);
        if (std140)
            alignment = std::max(baseAlignmentVec4Std140, alignment);
        RoundToPow2(size, alignment);
        stride = size;  // use intra-matrix stride for stride of a just a matrix
        if (rowMajor)
            size = stride * type.getMatrixRows();
        else
            size = stride * type.getMatrixCols();

        return alignment;
    }

    assert(0);  // all cases should be covered above
    size = baseAlignmentVec4Std140;
    return baseAlignmentVec4Std140;
}

// To aid the basic HLSL rule about crossing vec4 boundaries.
bool TIntermediate::improperStraddle(const TType& type, int size, int offset)
{
    if (! type.isVector() || type.isArray())
        return false;

    return size <= 16 ? offset / 16 != (offset + size - 1) / 16
                      : offset % 16 != 0;
}

int TIntermediate::getScalarAlignment(const TType& type, int& size, int& stride, bool rowMajor)
{
    int alignment;

    stride = 0;
    int dummyStride;

    if (type.isArray()) {
        TType derefType(type, 0);
        alignment = getScalarAlignment(derefType, size, dummyStride, rowMajor);

        stride = size;
        RoundToPow2(stride, alignment);

        size = stride * (type.getOuterArraySize() - 1) + size;
        return alignment;
    }

    if (type.getBasicType() == EbtStruct) {
        const TTypeList& memberList = *type.getStruct();

        size = 0;
        int maxAlignment = 0;
        for (size_t m = 0; m < memberList.size(); ++m) {
            int memberSize;
            // modify just the children's view of matrix layout, if there is one for this member
            TLayoutMatrix subMatrixLayout = memberList[m].type->getQualifier().layoutMatrix;
            int memberAlignment = getScalarAlignment(*memberList[m].type, memberSize, dummyStride,
                                                     (subMatrixLayout != ElmNone) ? (subMatrixLayout == ElmRowMajor) : rowMajor);
            maxAlignment = std::max(maxAlignment, memberAlignment);
            RoundToPow2(size, memberAlignment);
            size += memberSize;
        }

        return maxAlignment;
    }

    if (type.isScalar())
        return getBaseAlignmentScalar(type, size);

    if (type.isVector()) {
        int scalarAlign = getBaseAlignmentScalar(type, size);
        
        size *= type.getVectorSize();
        return scalarAlign;
    }

    if (type.isMatrix()) {
        TType derefType(type, 0, rowMajor);

        alignment = getScalarAlignment(derefType, size, dummyStride, rowMajor);

        stride = size;  // use intra-matrix stride for stride of a just a matrix
        if (rowMajor)
            size = stride * type.getMatrixRows();
        else
            size = stride * type.getMatrixCols();

        return alignment;
    }

    assert(0);  // all cases should be covered above
    size = 1;
    return 1;    
}

int TIntermediate::getMemberAlignment(const TType& type, int& size, int& stride, TLayoutPacking layoutPacking, bool rowMajor)
{
    if (layoutPacking == glslang::ElpScalar) {
        return getScalarAlignment(type, size, stride, rowMajor);
    } else {
        return getBaseAlignment(type, size, stride, layoutPacking, rowMajor);
    }
}

// shared calculation by getOffset and getOffsets
void TIntermediate::updateOffset(const TType& parentType, const TType& memberType, int& offset, int& memberSize)
{
    int dummyStride;

    // modify just the children's view of matrix layout, if there is one for this member
    TLayoutMatrix subMatrixLayout = memberType.getQualifier().layoutMatrix;
    int memberAlignment = getMemberAlignment(memberType, memberSize, dummyStride,
                                             parentType.getQualifier().layoutPacking,
                                             subMatrixLayout != ElmNone
                                                 ? subMatrixLayout == ElmRowMajor
                                                 : parentType.getQualifier().layoutMatrix == ElmRowMajor);
    RoundToPow2(offset, memberAlignment);
}

// Lookup or calculate the offset of a block member, using the recursively
// defined block offset rules.
int TIntermediate::getOffset(const TType& type, int index)
{
    const TTypeList& memberList = *type.getStruct();

    // Don't calculate offset if one is present, it could be user supplied
    // and different than what would be calculated.  That is, this is faster,
    // but not just an optimization.
    if (memberList[index].type->getQualifier().hasOffset())
        return memberList[index].type->getQualifier().layoutOffset;

    int memberSize = 0;
    int offset = 0;
    for (int m = 0; m <= index; ++m) {
        updateOffset(type, *memberList[m].type, offset, memberSize);

        if (m < index)
            offset += memberSize;
    }

    return offset;
}

// Calculate the block data size.
// Block arrayness is not taken into account, each element is backed by a separate buffer.
int TIntermediate::getBlockSize(const TType& blockType)
{
    const TTypeList& memberList = *blockType.getStruct();
    int lastIndex = (int)memberList.size() - 1;
    int lastOffset = getOffset(blockType, lastIndex);

    int lastMemberSize;
    int dummyStride;
    getMemberAlignment(*memberList[lastIndex].type, lastMemberSize, dummyStride,
                       blockType.getQualifier().layoutPacking,
                       blockType.getQualifier().layoutMatrix == ElmRowMajor);

    return lastOffset + lastMemberSize;
}

int TIntermediate::computeBufferReferenceTypeSize(const TType& type)
{
    assert(type.isReference());
    int size = getBlockSize(*type.getReferentType());

    int align = type.getBufferReferenceAlignment();

    if (align) {
        size = (size + align - 1) & ~(align-1);
    }

    return size;
}

} // end namespace glslang