1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
/*******************************************************************************
* Copyright 2018 Intel Corporation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
*     http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*******************************************************************************/

#include <assert.h>

#include "c_types_map.hpp"
#include "memory_desc_wrapper.hpp"
#include "mkldnn_debug.h"
#include "nstl.hpp"
#include "type_helpers.hpp"

#include "cpu_primitive.hpp"
#include "cpu_reorder_pd.hpp"
#include "jit_uni_reorder.hpp"

#include "jit_generator.hpp"

// #define TR_DEBUG
#if defined(TR_DEBUG)
#define DEBUg(...) do { __VA_ARGS__ } while (0)
#else
#define DEBUg(...)
#endif
#define DEBUG(...) DEBUg(__VA_ARGS__)

#ifdef _WIN32
/* seems like s_addr is a reserved macro on Windows */
#undef s_addr
#endif

using namespace Xbyak;
using namespace mkldnn::impl::types;

namespace mkldnn {
namespace impl {
namespace cpu {

namespace tr {

/** Minimal reasonable/desirable kernel size.
 * The constant might be used to determine how a problem should be split
 * between kernel and threading driver. */
const size_t ker_prb_size_min = 64;

/* kernel */
struct jit_uni_reorder_kernel_f32: public kernel_t, public jit_generator {
    DECLARE_CPU_JIT_AUX_FUNCTIONS(jit_uni_reorder_kernel_f32)

    enum {
        len_unroll_max = 256,
        ndims_jit_loop_max = 3,
    };

    struct simple_impl_desc_t {
        int ndims_full_unroll;
        int len_last_dim_unroll;
        int len_unroll;
    };

    static bool simple_impl_desc_init(const prb_t &prb,
            simple_impl_desc_t *desc) {
        const int ndims = prb.ndims;

        int ndims_full_unroll = 0;
        int len_last_dim_unroll = 1;
        int len_unroll = 1;

        for (int d = 0; d < ndims; ++d) {
            auto &node = prb.nodes[d];
            if (len_unroll * node.n <= len_unroll_max) {
                ndims_full_unroll++;
                len_unroll *= node.n;
            } else {
                len_last_dim_unroll = len_unroll_max / len_unroll;
                while (node.n % len_last_dim_unroll)
                    --len_last_dim_unroll;
                len_unroll *= len_last_dim_unroll;
                break;
            }
        }

        if (prb.ndims - ndims_full_unroll > ndims_jit_loop_max)
            return false;

        if (desc) {
            desc->ndims_full_unroll = ndims_full_unroll;
            desc->len_last_dim_unroll = len_last_dim_unroll;
            desc->len_unroll = len_unroll;
        }

        return true;
    }

    static bool applicable(const prb_t &p) {
        using namespace data_type;

        bool ok = true
            && p.ndims > 0
            && utils::one_of(p.itype, f32, s32, s8, u8)
            && utils::one_of(p.otype, f32, s32, s8, u8)
            && utils::everyone_is(0, p.ioff, p.ooff) /* do we need this? */
            && utils::one_of(p.beta, 0.f, 1.f) /* anything else? */
            && simple_impl_desc_init(p, nullptr)
            && mayiuse(sse42)
            && IMPLICATION(!utils::everyone_is(f32, p.itype, p.otype),
                    mayiuse(avx));
        if (!ok) return false;

        const ptrdiff_t max_stride = (1LL<<31) - 1;
        for (int d = 0; d < p.ndims; ++d) {
            const ptrdiff_t cms = max_stride / p.nodes[d].n;
            bool strides_ok = true
                && p.nodes[d].is < cms / (int)data_type_size(p.itype)
                && p.nodes[d].os < cms / (int)data_type_size(p.otype);
            if (!strides_ok) return false;
        }

        return true;
    }

    int n(int d) { assert(d < prb_.ndims); return (int)prb_.nodes[d].n; }
    int is(int d) { assert(d < prb_.ndims); return (int)prb_.nodes[d].is; }
    int os(int d) { assert(d < prb_.ndims); return (int)prb_.nodes[d].os; }
    int ss(int d) { assert(d < prb_.ndims); return (int)prb_.nodes[d].ss; }

    Address i_addr(int i_off)
    { return ptr[reg_ptr_in + reg_off_in + i_off * itype_sz]; }

    Address o_addr(int o_off)
    { return ptr[reg_ptr_out + reg_off_out + o_off * otype_sz]; }

    Address s_addr(int s_off)
    { return ptr[reg_ptr_scale + reg_off_scale + s_off * stype_sz]; }

    void step(int off, int prev_i_off, int prev_o_off, int prev_s_off,
            int &i_off, int &o_off, int &s_off, int step_size = 1) {
        i_off = prev_i_off;
        o_off = prev_o_off;
        s_off = prev_s_off;

        if (off == 0) return;

        int start_dim = 0, dims_prod = 1;
        for (; start_dim < prb_.ndims && dims_prod != step_size; ++start_dim)
            dims_prod *= n(start_dim);
        assert(start_dim < prb_.ndims);
        off /= step_size;

        for (int d = start_dim; d < prb_.ndims; ++d) {
            i_off += is(d);
            o_off += os(d);
            s_off += ss(d);

            if (off % n(d)) break;

            i_off += - n(d) * is(d);
            o_off += - n(d) * os(d);
            s_off += - n(d) * ss(d);
            off /= n(d);

            if (off == 0) break; /* FIXME: is it really required? */
        }
    }

    void step(int off, int prev_i_off, int prev_o_off, int &i_off, int &o_off,
            int step_size = 1) {
        int dummy = 0;
        step(off, prev_i_off, prev_o_off, dummy, i_off, o_off, dummy,
                step_size);
    }

    void tr8x8_avx2(int i_off, int o_off) {
        for (int i = 0; i < 8; i++)
            vmovups(Ymm(i), i_addr(i_off + i * 8));

        for (int i = 0; i < 8 / 2; i++) {
            vunpcklps(Ymm(8 + i), Ymm(2 * i), Ymm(2 * i + 1));
            vunpckhps(Ymm(i), Ymm(2 * i), Ymm(2 * i + 1));
        }

        const unsigned int lfloat = 0x44;
        const unsigned int ufloat = 0xee;
        for (int i = 0; i < 8 / 2; i++) {
            int j = i % 2 == 0 ? 8 + i : i - 1;
            vshufps(Ymm(8 / 2 + 2 * i), Ymm(j), Ymm(j + 1), lfloat);
            vshufps(Ymm(8 / 2 + 2 * i + 1), Ymm(j), Ymm(j + 1), ufloat);
        }

        const unsigned int lquad = 0x20;
        for (int i = 0; i < 8 / 2; i++)
            vperm2f128(Ymm(i), Ymm(8 / 2 + i), Ymm(8 + i), lquad);

        const unsigned int uquad = 0x31;
        for (int i = 8 / 2; i < 8; i++)
            vperm2f128(Ymm(i), Ymm(i), Ymm(8 / 2 + i), uquad);

        for (int i = 0; i < 8; i++)
            vmovups(o_addr(o_off + i * 8), Ymm(i));
    }

    bool process_unroll_tr8x8(int len) {
        bool can_do = true
            && mayiuse(avx2)
            && prb_.ndims >= 2
            && utils::everyone_is(4, itype_sz, otype_sz)
            && utils::everyone_is(8, n(0), n(1))
            && utils::everyone_is(1, os(0), is(1))
            && utils::everyone_is(8, os(1), is(0))
            && prb_.scale_type == scale_type_t::NONE
            && prb_.beta == 0.f;
        if (!can_do) return false;

        const int step_size = n(0) * n(1);
        int i_off = 0, o_off = 0;
        for (int off = 0; off < len; off += step_size) {
            step(off, i_off, o_off, i_off, o_off, step_size);
            tr8x8_avx2(i_off, o_off);
        }

        return true;
    }

    template <cpu_isa_t isa>
    bool process_direct_copy(int len) {
        using namespace data_type;

        using Vmm = typename cpu_isa_traits<isa>::Vmm;
        const int simd_w = cpu_isa_traits<isa>::vlen / itype_sz;

        bool can_do = true
            && mayiuse(isa)
            && utils::everyone_is(1, os(0), is(0))
            && (false
                    || prb_.itype == prb_.otype
                    || (prb_.itype == s32 && prb_.otype == f32)
                    || (prb_.itype == f32 && prb_.otype == s32)
                    )
            && len % simd_w == 0
            && n(0) % len == 0
            && prb_.scale_type == scale_type_t::NONE
            && prb_.beta == 0.f;
        if (!can_do) return false;

        for (int off = 0; off < len;) {
            const int unroll = nstl::min(16, (len - off) / simd_w);

            for (int ur = 0; ur < unroll; ++ur)
                uni_vmovups(Vmm(ur), i_addr(off + ur * simd_w));

            if (prb_.itype != prb_.otype) {
                for (int ur = 0; ur < unroll; ++ur) {
                    if (prb_.itype == s32 && prb_.otype == f32)
                        uni_vcvtdq2ps(Vmm(ur), Vmm(ur));
                    else if (prb_.itype == f32 && prb_.otype == s32)
                        uni_vcvtps2dq(Vmm(ur), Vmm(ur));
                    else assert(!"unreachable");
                }
            }

            for (int ur = 0; ur < unroll; ++ur)
                uni_vmovups(o_addr(off + ur * simd_w), Vmm(ur));

            off += unroll * simd_w;
        }

        return true;
    }

    void process_unroll_generic_step(int reg_unroll, const int *i_off,
            const int *o_off, const int *s_off) {
        using namespace data_type;

        auto cvt2ps = [=](const Xmm &dst, const Operand &src, data_type_t idt) {
            Xmm dst_pure = Xmm(dst.getIdx());
            switch (idt) {
            case f32:
                if (src.isMEM() || src.getIdx() != dst.getIdx())
                    vmovups(dst, src);
                break;
            case s32: vcvtdq2ps(dst, src); break;
            case s8: vpmovsxbd(dst, src); vcvtdq2ps(dst_pure, dst); break;
            case u8: vpmovzxbd(dst, src); vcvtdq2ps(dst_pure, dst); break;
            default: assert(!"unreachable");
            }
        };

        auto cvt2int = [=](const Xmm &xmm, data_type_t odt, data_type_t idt) {
            switch (odt) {
            case s32:
                if (idt == f32) vcvtps2dq(xmm, xmm);
                else if (idt == s8) vpmovsxbd(xmm, xmm);
                else if (idt == u8) vpmovzxbd(xmm, xmm);
                break;
            case s8:
                if (idt == f32) vcvtps2dq(xmm, xmm);
                if (idt == f32 || idt == s32) {
                    if (mayiuse(avx512_core)) {
                        vpmovsdb(xmm, xmm);
                    } else {
                        vpackssdw(xmm, xmm, xmm_zero);
                        vpacksswb(xmm, xmm, xmm_zero);
                    }
                }
                if (idt == u8) vpminub(xmm, xmm, xmm_4x127b);
                break;
            case u8:
                if (idt == f32) vcvtps2dq(xmm, xmm);
                if (idt == f32 || idt == s32) {
                    if (mayiuse(avx512_core)) {
                        vpmaxsd(xmm, xmm, xmm_zero);
                        vpmovusdb(xmm, xmm);
                    } else {
                        vpackssdw(xmm, xmm, xmm_zero);
                        vpackuswb(xmm, xmm, xmm_zero);
                    }
                }
                if (idt == s8) vpmaxsb(xmm, xmm, xmm_zero);
                break;
            default: assert(!"unreachable");
            }
        };

        auto load = [=](const Xmm &xmm, const Address &addr, int size) {
            switch (size) {
            case 16: movups(xmm, addr); break;
            case 4: movss(xmm, addr); break;
            case 1: pinsrb(xmm, addr, 0x0); break;
            default: assert(!"unreachable");
            }
        };

        auto store = [=](const Address &addr, const Xmm &xmm, int size) {
            switch (size) {
            case 16: movups(addr, xmm); break;
            case 4: movss(addr, xmm); break;
            case 1: pextrb(addr, xmm, 0x0); break;
            default: assert(!"unreachable");
            }
        };

        /* check whether loading 4 values at once is possible */
        bool can_load_xmm = mayiuse(avx) && reg_unroll % 4 == 0;
        for (int ur = 1; ur < reg_unroll; ++ur)
            if (i_off[ur] != i_off[ur - 1] + 1)
                can_load_xmm = false;
        const int load_step = can_load_xmm ? 4 : 1;

        /* check whether storing 4 values at once is possible */
        bool can_store_xmm = reg_unroll % 4 == 0;
        for (int ur = 1; ur < reg_unroll; ++ur)
            if (o_off[ur] != o_off[ur - 1] + 1)
                can_store_xmm = false;
        const int ur_step = can_store_xmm ? 4 : 1;

        const bool interim_f32 = false
            || utils::one_of(f32, prb_.itype, prb_.otype)
            || prb_.scale_type != scale_type_t::NONE
            || prb_.beta != 0.f;

        if (!can_load_xmm && can_store_xmm) {
            assert(ur_step == 4);
            /* load with stride */
            for (int ur = 0; ur < reg_unroll; ur += ur_step) {
                for (int r = 0; r < ur_step; ++r) {
                    if (itype_sz == 4)
                        pinsrd(Xmm(ur), i_addr(i_off[ur + r]), r);
                    else
                        pinsrb(Xmm(ur), i_addr(i_off[ur + r]), r);
                }
            }
        } else {
            for (int ur = 0; ur < reg_unroll; ur += load_step)
                load(Xmm(ur), i_addr(i_off[ur]), load_step * itype_sz);
        }

        /* xmm[:] <-- (f32)xmm[:] */
        if (interim_f32) {
            const int cvt_step = nstl::max(load_step, ur_step);
            for (int ur = 0; ur < reg_unroll; ur += cvt_step)
                cvt2ps(Xmm(ur), Xmm(ur), prb_.itype);
        }

        if (can_load_xmm && !can_store_xmm) {
            const bool fast_return = true // transposition on the fly
                && prb_.scale_type != scale_type_t::MANY
                && prb_.beta == 0.f;
            if (fast_return) {
                for (int ur = 0; ur < reg_unroll; ur += load_step) {
                    if (prb_.scale_type == scale_type_t::COMMON)
                        mulps(Xmm(ur), xmm_scale);
                    if (prb_.otype != f32)
                        cvt2int(Xmm(ur), prb_.otype,
                                interim_f32 ? f32 : prb_.itype);
                    for (int r = 0; r < load_step; ++r) {
                        if (otype_sz == 4)
                            pextrd(o_addr(o_off[ur + r]), Xmm(ur), r);
                        else
                            pextrb(o_addr(o_off[ur + r]), Xmm(ur), r);
                    }
                }
                return;
            }

            /* scatter elements of xmm into 4 xmms */
            if (itype_sz == 4 || interim_f32) {
                for (int ur = 0; ur < reg_unroll; ur += load_step)
                    for (int r = 1; r < load_step; ++r)
                        vshufps(Xmm(ur + r), Xmm(ur), Xmm(ur), r);
            } else {
                for (int ur = 0; ur < reg_unroll; ur += load_step)
                    for (int r = 1; r < load_step; ++r)
                        vpalignr(Xmm(ur + r), Xmm(ur), Xmm(ur), r);
            }
        }

        /* scale and beta processing */
        if (can_store_xmm) {
            /* xmm <-- scale * xmm[:] */
            if (prb_.scale_type == scale_type_t::COMMON) {
                for (int ur = 0; ur < reg_unroll; ur += ur_step)
                    mulps(Xmm(ur), xmm_scale);
            } else if (prb_.scale_type == scale_type_t::MANY) {
                enum class scale_load_type_t { bcast, load, gather };

                for (int ur = 0; ur < reg_unroll; ur += ur_step) {
                    scale_load_type_t scale_load_type =
                        scale_load_type_t::bcast; // the best case

                    for (int r = ur + 1; r < ur + ur_step; ++r)
                        if (s_off[r] != s_off[r - 1] + 0)
                            scale_load_type = scale_load_type_t::load;

                    if (scale_load_type == scale_load_type_t::bcast) {
                        movss(xmm_scale, s_addr(s_off[ur]));
                        shufps(xmm_scale, xmm_scale, 0x0);
                        mulps(Xmm(ur), xmm_scale);
                        continue;
                    }

                    // bcast doesn't work, the next try -- load
                    for (int r = ur + 1; r < ur + ur_step; ++r)
                        if (s_off[r] != s_off[r - 1] + 1)
                            scale_load_type = scale_load_type_t::gather;

                    if (scale_load_type == scale_load_type_t::load) {
                        movups(xmm_scale, s_addr(s_off[ur]));
                        mulps(Xmm(ur), xmm_scale);
                        continue;
                    }

                    // load doesn't work as well
                    // so gather the scale factors one by one
                    for (int r = ur; r < ur + ur_step; ++r)
                        pinsrd(xmm_scale, s_addr(s_off[r]), r - ur);
                    mulps(Xmm(ur), xmm_scale);
                }
            }

            /* dst <-- beta * dst + xmm[:] */
            assert(prb_.beta == 0.f || prb_.beta == 1.f);
            if (prb_.beta == 1.f) {
                for (int ur = 0; ur < reg_unroll; ur += ur_step) {
                    if (prb_.otype == f32) {
                        /* non VEX instructions do not support unaligned
                         * memory for instructions other than movups. */
                        if (mayiuse(avx)) {
                            vaddps(Xmm(ur), o_addr(o_off[ur]));
                        } else {
                            /* register xmm(1) is unused */
                            movups(Xmm(1), o_addr(o_off[ur]));
                            addps(Xmm(ur), Xmm(1));
                        }
                    } else {
                        cvt2ps(Xmm(1), o_addr(o_off[ur]), prb_.otype);
                        vaddps(Xmm(ur), Xmm(1));
                    }
                }
            }
        } else {
            /* xmm[0] <-- scale * xmm[0] */
            if (prb_.scale_type == scale_type_t::COMMON) {
                for (int ur = 0; ur < reg_unroll; ur += ur_step)
                    mulss(Xmm(ur), xmm_scale);
            } else if (prb_.scale_type == scale_type_t::MANY) {
                for (int ur = 0; ur < reg_unroll; ur += ur_step) {
                    mulss(Xmm(ur), s_addr(s_off[ur]));
                }
            }

            /* dst <-- beta * dst + xmm[0] */
            assert(prb_.beta == 0.f || prb_.beta == 1.f);
            if (prb_.beta == 1.f) {
                for (int ur = 0; ur < reg_unroll; ur += ur_step) {
                    if (prb_.otype == f32) {
                        addss(Xmm(ur), o_addr(o_off[ur]));
                    } else {
                        if (prb_.otype == s32) {
                            vmovss(xmm_tmp, o_addr(o_off[ur]));
                        } else if (utils::one_of(prb_.otype, s8, u8)) {
                            pinsrb(xmm_tmp, o_addr(o_off[ur]), 0x0);
                        } else {
                            assert(!"unsupported o_type");
                        }
                        cvt2ps(xmm_tmp, xmm_tmp, prb_.otype);
                        addps(Xmm(ur), xmm_tmp);
                    }
                }
            }
        }

        for (int ur = 0; ur < reg_unroll; ur += ur_step) {
            if (prb_.otype != f32)
                cvt2int(Xmm(ur), prb_.otype, interim_f32 ? f32 : prb_.itype);
            store(o_addr(o_off[ur]), Xmm(ur), ur_step * otype_sz);
        }
    }

    void process_unroll_generic(int len) {
        const int blk = 8;

        int i_off[2 * blk] = {0};
        int o_off[2 * blk] = {0};
        int s_off[2 * blk] = {0};

        int curr = 0; // will switch between 0 and 1

        for (int off = 0; off < len; off += blk) {
            const int reg_unroll = nstl::min(off + blk, len) - off;

            /* compute offsets */
            for (int ur = off != 0 ? 0 : 1; ur < reg_unroll; ++ur) {
                const int ur_c = curr * blk + ur;
                const int ur_p = (ur_c - 1 + 2 * blk) % (2 * blk); // prev ur
                step(off + ur,
                        i_off[ur_p], o_off[ur_p], s_off[ur_p],
                        i_off[ur_c], o_off[ur_c], s_off[ur_c]);
            }

            process_unroll_generic_step(reg_unroll, i_off + curr * blk,
                    o_off + curr * blk, s_off + curr * blk);

            curr = 1 - curr;
        }
    }

    void loop_begin(Label &l, Reg64 reg_cnt, int len) {
        mov(reg_cnt, len);
        L(l);
    }

    void loop_end(Label &l, Reg64 reg_cnt, int len,
            int i_step, int o_step, int s_step) {
        add(reg_off_in, i_step * itype_sz);
        add(reg_off_out, o_step * otype_sz);
        if (prb_.scale_type == scale_type_t::MANY)
            add(reg_off_scale, s_step * stype_sz);
        dec(reg_cnt);
        jnz(l);

        sub(reg_off_in, len * i_step * itype_sz);
        sub(reg_off_out, len * o_step * otype_sz);
        if (prb_.scale_type == scale_type_t::MANY)
            sub(reg_off_scale, len * s_step * stype_sz);
    }

    bool simple_impl() {
        simple_impl_desc_t d;
        if (!simple_impl_desc_init(prb_, &d)) return false;

        const int nfu = d.ndims_full_unroll;
        const int ldu = d.len_last_dim_unroll;
        const int n_jit_loops = prb_.ndims - d.ndims_full_unroll;
        assert(n_jit_loops <= ndims_jit_loop_max);

        xor_(reg_off_in, reg_off_in);
        xor_(reg_off_out, reg_off_out);
        if (prb_.scale_type == scale_type_t::MANY)
            xor_(reg_off_scale, reg_off_scale);

        Label l_loop[3];
        Reg64 reg_cnt[3] = {r15, r14, r13};

        if (n_jit_loops > 2)
            loop_begin(l_loop[2], reg_cnt[2], n(nfu + 2));

        if (n_jit_loops > 1)
            loop_begin(l_loop[1], reg_cnt[1], n(nfu + 1));

        if (n_jit_loops > 0)
            loop_begin(l_loop[0], reg_cnt[0], n(nfu + 0) / ldu);

        const bool optimized = false
            || process_direct_copy<avx>(d.len_unroll)
            || process_direct_copy<sse42>(d.len_unroll)
            || process_unroll_tr8x8(d.len_unroll);
        if (!optimized)
            process_unroll_generic(d.len_unroll);

        if (n_jit_loops > 0)
            loop_end(l_loop[0], reg_cnt[0],
                    n(nfu + 0) / ldu, is(nfu + 0) * ldu, os(nfu + 0) * ldu,
                    ss(nfu + 0) * ldu);

        if (n_jit_loops > 1)
            loop_end(l_loop[1], reg_cnt[1],
                    n(nfu + 1), is(nfu + 1), os(nfu + 1), ss(nfu + 1));

        if (n_jit_loops > 2)
            loop_end(l_loop[2], reg_cnt[2],
                    n(nfu + 2), is(nfu + 2), os(nfu + 2), ss(nfu + 2));

        return true;
    }

    void impl() {
        if (simple_impl()) return;
        assert(!"no implementation available");
    }

    jit_uni_reorder_kernel_f32(const desc_t &desc)
        : kernel_t(desc), jit_generator() {
        itype_sz = data_type_size(prb_.itype);
        otype_sz = data_type_size(prb_.otype);
        stype_sz = sizeof(float);

        preamble();
#       define PARAM(x) ptr[abi_param1 + offsetof(call_param_t, x)]
        if (prb_.scale_type == scale_type_t::COMMON) {
            auto reg_ptr_scale_tmp = reg_ptr_in;
            mov(reg_ptr_scale_tmp, PARAM(scale));
            movups(xmm_scale, ptr[reg_ptr_scale_tmp]);
        } else if (prb_.scale_type == scale_type_t::MANY) {
            mov(reg_ptr_scale, PARAM(scale));
        }
        mov(reg_ptr_in, PARAM(in));
        mov(reg_ptr_out, PARAM(out));
#       undef PARAM

        if (mayiuse(avx)) {
            vxorps(xmm_zero, xmm_zero, xmm_zero);

            if (prb_.itype == data_type::u8 && prb_.otype == data_type::s8) {
                mov(reg_tmp.cvt32(), 0x7f7f7f7f);
                movd(xmm_4x127b, reg_tmp.cvt32());
            }
        }

        impl();
        postamble();
        ker_ = (void (*)(const call_param_t *))getCode();
    }

private:
    int itype_sz;
    int otype_sz;
    int stype_sz;

    Reg64 reg_ptr_in = rsi;
    Reg64 reg_ptr_out = rdx;
    Reg64 reg_ptr_scale = abi_not_param1;

    Reg64 reg_off_in = r8;
    Reg64 reg_off_out = r9;
    Reg64 reg_off_scale = r10;

    Reg64 reg_tmp = rax;

    Xmm xmm_scale = xmm15;
    Xmm xmm_zero = xmm14;
    Xmm xmm_4x127b = xmm13; // TODO: unite with xmm_zero
    Xmm xmm_tmp = xmm12;
};

status_t kernel_t::desc_init(kernel_t::desc_t &desc, const prb_t &prb,
        int ndims_ker_max) {
    desc.prb = prb;
    desc.prb.ioff = desc.prb.ooff = 0;

    if (ndims_ker_max > prb.ndims)
        return status::invalid_arguments;

    auto ndims_ker_max_f = [&]() {
        size_t cur_size = 1;
        for (int d = 0; d < prb.ndims; cur_size *= prb.nodes[d++].n)
            if (cur_size >= ker_prb_size_min) return d;
        return prb.ndims;
    };

    if (ndims_ker_max <= 0)
        ndims_ker_max = ndims_ker_max_f();

    /* traverse through kernel implementations */
    /* TODO: find a better way to do that... */
    desc.id = 0;
    for (int ndims_ker = ndims_ker_max; ndims_ker > 0; --ndims_ker) {
        desc.prb.ndims = ndims_ker;
        if (jit_uni_reorder_kernel_f32::applicable(desc.prb))
            return status::success;
    }

    return status::unimplemented;
}

kernel_t *kernel_t::create(const kernel_t::desc_t &desc) {
    switch (desc.id) {
    case 0: return new jit_uni_reorder_kernel_f32(desc);
    default: assert(!"unknown kernel id"); return nullptr;
    }

    return nullptr;
}

}

static void prb_block_for_cache(tr::prb_t &prb) {
    if (prb.nodes[0].is % 64 == 0 && prb.nodes[0].n > 16) {
        /** an attempt to use caches more efficient and
         * address the 4K-aliasing issue */
        /* TODO: improve the logic around here */
        int j = 1;
        for (; j < prb.ndims && prb.nodes[j].is != 1; ++j);
        if (j == prb.ndims) return;

        /* it makes sense to re-prioritize sequential read over
         * sequential write if the former would not trash the
         * cache, i.e. is == 1 and os % 2^smth != 0. Smth is
         * set to 2 at the moment */
        const int move_to = prb.nodes[j].os % 4 != 0 ? 0 : 1;
        if (j == move_to) return;

        if (prb.nodes[j].n > 16 && prb.nodes[j].n % 16 == 0)
            prb_node_split(prb, j, 16);

        prb_node_move(prb, j, move_to);
        DEBUG({ printf("cache: "); prb_dump(prb); });
    }
}

/** finds the maximum number of dimension the kernel should process and
 * optionally splits one of the dimension to achieve better balance between
 * parallel driver and the kernel. */
static void prb_thread_kernel_balance(tr::prb_t &prb, int &ndims_ker_max) {
    size_t sz_total = 1;
    for (int d = 0; d < prb.ndims; ++d)
        sz_total *= prb.nodes[d].n;

    /* sz_drv_min is the minimal size for the parallel
     * driver required for good parallelization */
    const size_t sz_drv_min = nstl::min<size_t>(
            16 * mkldnn_get_max_threads(),
            utils::div_up(sz_total, 1024));

    /* kdims -- # of dimensions processed by a kernel
     * sz_ker_cur -- product of the dimension processed by a kernel
     * sz_drv_cur -- product of the dimension processed by a driver */

    int kdims = prb.ndims;
    size_t sz_drv_cur = 1;
    for (; kdims > 1 && sz_drv_cur < sz_drv_min; --kdims)
        sz_drv_cur *= prb.nodes[kdims - 1].n;

    size_t sz_ker_cur = 1;
    for (int d = 0; d < kdims; ++d)
        sz_ker_cur *= prb.nodes[d].n;

    /* Initially kdims is chosen so that sz_drv_cur >= sz_drv_min.
     *
     * It might happen that for chosen kdims the sz_ker_cur is too small
     * (less than tr::ker_prb_size_min). In that case try to split the
     * innermost driver dimension into two, to increase sz_ker_cur. */
    bool want_borrow_ker_from_drv = true
        && kdims < prb.ndims
        && sz_ker_cur < tr::ker_prb_size_min
        && sz_drv_cur > sz_drv_min;
    if (want_borrow_ker_from_drv) {
        /* sz_want_borrow is the minimal sz, so that:
         *  o) sz_ker_cur * sz_want_borrow >= tr::ker_prb_size_min
         *  o) current innermost driver dimension is divisible by
         *     sz_want_borrow (so that we can evenly split that
         *     dimension into two)
         *
         *  In the worst case the minimal sz_want_borrow is equal
         *  to the innermost driver dimension itself. In that case
         *  we will sacrifice it in favor of kernel (is it fine?). */
        size_t sz_want_borrow
            = utils::div_up(tr::ker_prb_size_min, sz_ker_cur);
        for (; prb.nodes[kdims].n % sz_want_borrow; ++sz_want_borrow);
        if (sz_want_borrow != prb.nodes[kdims].n)
            prb_node_split(prb, kdims, sz_want_borrow);
        kdims += 1;
    }

    /* On the other hand it might happen that for chosen kdims
     * the sz_drv_cur is too small (less than sz_drv_min). In that case
     * try to split the outermost kernel dimension into two, to increase
     * sz_drv_cur. */
    bool want_borrow_drv_from_ker = true
        && sz_ker_cur > tr::ker_prb_size_min
        && sz_drv_cur < sz_drv_min;
    if (want_borrow_drv_from_ker) {
        size_t sz_want_borrow = utils::div_up(sz_drv_min, sz_drv_cur);
        for (; prb.nodes[kdims - 1].n % sz_want_borrow; ++sz_want_borrow);
        if (sz_want_borrow != prb.nodes[kdims - 1].n)
            prb_node_split(prb, kdims - 1,
                    prb.nodes[kdims - 1].n / sz_want_borrow);
    }

    ndims_ker_max = kdims;

    if (want_borrow_ker_from_drv || want_borrow_drv_from_ker) {
        DEBUG({ printf("split: "); prb_dump(prb);
                printf("ndims_ker_max = %d\n", ndims_ker_max); });
    }
}

struct jit_uni_reorder_t : public cpu_primitive_t {
    struct pd_t : public cpu_reorder_pd_t {
        using cpu_reorder_pd_t::cpu_reorder_pd_t;

        DECLARE_COMMON_PD_T("jit:uni", jit_uni_reorder_t);

        static status_t create(reorder_pd_t **reorder_pd,
                engine_t *engine, const primitive_attr_t *attr,
                engine_t *src_engine, const memory_desc_t *src_md,
                engine_t *dst_engine, const memory_desc_t *dst_md) {
            auto prb = tr::prb_t();

            status_t prb_init_status = prb_init(prb, *src_md, *dst_md, attr);
            if (prb_init_status != status::success) return prb_init_status;

            DEBUG({ printf("init : "); prb_dump(prb); });
            prb_normalize(prb);
            DEBUG({ printf("norm : "); prb_dump(prb); });
            prb_simplify(prb);
            DEBUG({ printf("smpl : "); prb_dump(prb); });

            prb_block_for_cache(prb);

            int ndims_ker_max;
            prb_thread_kernel_balance(prb, ndims_ker_max);

            tr::kernel_t::desc_t ker_desc;
            status_t ker_init_status
                = tr::kernel_t::desc_init(ker_desc, prb, ndims_ker_max);
            if (ker_init_status != status::success) return ker_init_status;

            const int ndims_driver = prb.ndims - ker_desc.prb.ndims;
            if (ndims_driver > jit_uni_reorder_t::ndims_driver_max)
                return status::unimplemented;

            DEBUG({ printf("ker  : "); prb_dump(ker_desc.prb); });

            auto _pd = new pd_t(engine, attr, src_engine, src_md, dst_engine,
                    dst_md);
            if (_pd == nullptr) return status::out_of_memory;
            if (_pd->init() != status::success) {
                delete _pd;
                return status::unimplemented;
            }
            _pd->prb_ = prb;
            _pd->ker_desc_ = ker_desc;
            return safe_ptr_assign<reorder_pd_t>(*reorder_pd, _pd);
        }

        tr::prb_t prb_;
        tr::kernel_t::desc_t ker_desc_;
    };

    jit_uni_reorder_t(const pd_t *apd): cpu_primitive_t(apd) {
        kernel_ = tr::kernel_t::create(pd()->ker_desc_);
        assert(kernel_);
    }
    ~jit_uni_reorder_t() { delete kernel_; }

    void omp_driver_0d(int off, const char *in, char *out,
            const float *scale) const {
        tr::call_param_t c{in, out, scale};
        (*kernel_)(&c);
    }

    void omp_driver_1d(int ithr, int nthr, int off, const char *in, char *out,
            const float *scale) const {
        const tr::node_t *ns = pd()->prb_.nodes + off;
        for_nd(ithr, nthr, (ptrdiff_t)ns[0].n, [&](ptrdiff_t d0) {
            auto c = tr::call_param_t();
            c.in = in + d0 * ns[0].is * data_type_size(pd()->prb_.itype);
            c.out = out + d0 * ns[0].os * data_type_size(pd()->prb_.otype);
            c.scale = scale + d0 * ns[0].ss;
            (*kernel_)(&c);
        });
    }

    void omp_driver_2d(int ithr, int nthr, int off, const char *in, char *out,
            const float *scale) const {
        const tr::node_t *ns = pd()->prb_.nodes + off;
        for_nd(ithr, nthr, (ptrdiff_t)ns[1].n, (ptrdiff_t)ns[0].n,
                [&](ptrdiff_t d1, ptrdiff_t d0) {
            auto c = tr::call_param_t();
            c.in = in + (d0 * ns[0].is + d1 * ns[1].is)
                * data_type_size(pd()->prb_.itype);
            c.out = out + (d0 * ns[0].os + d1 * ns[1].os)
                * data_type_size(pd()->prb_.otype);
            c.scale = scale + d0 * ns[0].ss + d1 * ns[1].ss;
            (*kernel_)(&c);
        });
    }

    void omp_driver_3d(int ithr, int nthr, int off, const char *in, char *out,
            const float *scale) const {
        const tr::node_t *ns = pd()->prb_.nodes + off;
        for_nd(ithr, nthr, (ptrdiff_t)ns[2].n, (ptrdiff_t)ns[1].n,
                (ptrdiff_t)ns[0].n,
                [&](ptrdiff_t d2, ptrdiff_t d1, ptrdiff_t d0) {
            auto c = tr::call_param_t();
            c.in = in + (d0 * ns[0].is + d1 * ns[1].is + d2 * ns[2].is)
                * data_type_size(pd()->prb_.itype);
            c.out = out + (d0 * ns[0].os + d1 * ns[1].os + d2 * ns[2].os)
                * data_type_size(pd()->prb_.otype);
            c.scale = scale + d0 * ns[0].ss + d1 * ns[1].ss + d2 * ns[2].ss;
            (*kernel_)(&c);
        });
    }

    void omp_driver_4d(int ithr, int nthr, int off, const char *in, char *out,
            const float *scale) const {
        const tr::node_t *ns = pd()->prb_.nodes + off;
        for_nd(ithr, nthr, (ptrdiff_t)ns[3].n, (ptrdiff_t)ns[2].n,
                (ptrdiff_t)ns[1].n, (ptrdiff_t)ns[0].n,
                [&](ptrdiff_t d3, ptrdiff_t d2, ptrdiff_t d1, ptrdiff_t d0) {
            auto c = tr::call_param_t();
            c.in = in + (d0 * ns[0].is + d1 * ns[1].is + d2 * ns[2].is
                    + d3 * ns[3].is) * data_type_size(pd()->prb_.itype);
            c.out = out + (d0 * ns[0].os + d1 * ns[1].os + d2 * ns[2].os
                    + d3 * ns[3].os) * data_type_size(pd()->prb_.otype);
            c.scale = scale + d0 * ns[0].ss + d1 * ns[1].ss + d2 * ns[2].ss
                + d3 * ns[3].ss;
            (*kernel_)(&c);
        });
    }

    void omp_driver(const char *in, char *out, const float *scale) const {
        in += pd()->prb_.ioff * data_type_size(pd()->prb_.itype);
        out += pd()->prb_.ooff * data_type_size(pd()->prb_.otype);

        DEBUG({ printf("prb : "); tr::prb_dump(pd()->prb_); });
        DEBUG({ printf("ker : "); tr::prb_dump(pd()->ker_desc_.prb); });

        int ndims = pd()->prb_.ndims;
        int ndims_ker = pd()->ker_desc_.prb.ndims;
        assert(ndims - ndims_ker <= ndims_driver_max);

        if (ndims - ndims_ker == 0) {
            omp_driver_0d(ndims_ker, in, out, scale);
        } else {
            parallel(0, [&](const int ithr, const int nthr) {
                switch (ndims - ndims_ker) {
                case 1: omp_driver_1d(ithr, nthr, ndims_ker, in, out, scale); break;
                case 2: omp_driver_2d(ithr, nthr, ndims_ker, in, out, scale); break;
                case 3: omp_driver_3d(ithr, nthr, ndims_ker, in, out, scale); break;
                case 4: omp_driver_4d(ithr, nthr, ndims_ker, in, out, scale); break;
                default: assert(!"unimplemented");
                }
            });
        }
    }

    virtual status_t execute(const exec_ctx_t &ctx) const override {
        auto in = CTX_IN_MEM(const char *, MKLDNN_ARG_FROM);
        auto out = CTX_OUT_MEM(char *, MKLDNN_ARG_TO);

        omp_driver(in, out, pd()->attr()->output_scales_.scales_);

        return status::success;
    }

    enum { ndims_driver_max = 4 };

private:
    const pd_t *pd() const { return (const pd_t *)primitive_t::pd(); }
    tr::kernel_t *kernel_;
};

status_t jit_uni_reorder_create(reorder_pd_t **reorder_pd,
        engine_t *engine, const primitive_attr_t *attr,
        engine_t *src_engine, const memory_desc_t *src_md,
        engine_t *dst_engine, const memory_desc_t *dst_md) {
    return jit_uni_reorder_t::pd_t::create(reorder_pd, engine, attr,
            src_engine, src_md, dst_engine, dst_md);
}

}
}
}