1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
/*
Bullet Continuous Collision Detection and Physics Library
Copyright (c) 2003-2006 Erwin Coumans  http://continuousphysics.com/Bullet/

This software is provided 'as-is', without any express or implied warranty.
In no event will the authors be held liable for any damages arising from the use of this software.
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it freely,
subject to the following restrictions:

1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
*/
///btSoftBody implementation by Nathanael Presson

#ifndef _BT_SOFT_BODY_H
#define _BT_SOFT_BODY_H

#include "LinearMath/btAlignedObjectArray.h"
#include "LinearMath/btTransform.h"
#include "LinearMath/btIDebugDraw.h"
#include "LinearMath/btVector3.h"
#include "BulletDynamics/Dynamics/btRigidBody.h"

#include "BulletCollision/CollisionShapes/btConcaveShape.h"
#include "BulletCollision/CollisionDispatch/btCollisionCreateFunc.h"
#include "btSparseSDF.h"
#include "BulletCollision/BroadphaseCollision/btDbvt.h"
#include "BulletDynamics/Featherstone/btMultiBodyLinkCollider.h"
#include "BulletDynamics/Featherstone/btMultiBodyConstraint.h"
//#ifdef BT_USE_DOUBLE_PRECISION
//#define btRigidBodyData	btRigidBodyDoubleData
//#define btRigidBodyDataName	"btRigidBodyDoubleData"
//#else
#define btSoftBodyData btSoftBodyFloatData
#define btSoftBodyDataName "btSoftBodyFloatData"
static const btScalar  OVERLAP_REDUCTION_FACTOR = 0.1;
static unsigned long seed = 243703;
//#endif //BT_USE_DOUBLE_PRECISION

class btBroadphaseInterface;
class btDispatcher;
class btSoftBodySolver;

/* btSoftBodyWorldInfo	*/
struct btSoftBodyWorldInfo
{
	btScalar air_density;
	btScalar water_density;
	btScalar water_offset;
	btScalar m_maxDisplacement;
	btVector3 water_normal;
	btBroadphaseInterface* m_broadphase;
	btDispatcher* m_dispatcher;
	btVector3 m_gravity;
	btSparseSdf<3> m_sparsesdf;

	btSoftBodyWorldInfo()<--- Member variable 'btSoftBodyWorldInfo::m_sparsesdf' is not initialized in the constructor.
		: air_density((btScalar)1.2),
		  water_density(0),
		  water_offset(0),
		  m_maxDisplacement(1000.f),  //avoid soft body from 'exploding' so use some upper threshold of maximum motion that a node can travel per frame
		  water_normal(0, 0, 0),
		  m_broadphase(0),
		  m_dispatcher(0),
		  m_gravity(0, -10, 0)
	{
	}
};

///The btSoftBody is an class to simulate cloth and volumetric soft bodies.
///There is two-way interaction between btSoftBody and btRigidBody/btCollisionObject.
class btSoftBody : public btCollisionObject
{
public:
	btAlignedObjectArray<const class btCollisionObject*> m_collisionDisabledObjects;

	// The solver object that handles this soft body
	btSoftBodySolver* m_softBodySolver;

	//
	// Enumerations
	//

	///eAeroModel
	struct eAeroModel
	{
		enum _
		{
			V_Point,             ///Vertex normals are oriented toward velocity
			V_TwoSided,          ///Vertex normals are flipped to match velocity
			V_TwoSidedLiftDrag,  ///Vertex normals are flipped to match velocity and lift and drag forces are applied
			V_OneSided,          ///Vertex normals are taken as it is
			F_TwoSided,          ///Face normals are flipped to match velocity
			F_TwoSidedLiftDrag,  ///Face normals are flipped to match velocity and lift and drag forces are applied
			F_OneSided,          ///Face normals are taken as it is
			END
		};
	};

	///eVSolver : velocities solvers
	struct eVSolver
	{
		enum _
		{
			Linear,  ///Linear solver
			END
		};
	};

	///ePSolver : positions solvers
	struct ePSolver
	{
		enum _
		{
			Linear,     ///Linear solver
			Anchors,    ///Anchor solver
			RContacts,  ///Rigid contacts solver
			SContacts,  ///Soft contacts solver
			END
		};
	};

	///eSolverPresets
	struct eSolverPresets
	{
		enum _
		{
			Positions,
			Velocities,
			Default = Positions,
			END
		};
	};

	///eFeature
	struct eFeature
	{
		enum _
		{
			None,
			Node,
			Link,
			Face,
			Tetra,
			END
		};
	};

	typedef btAlignedObjectArray<eVSolver::_> tVSolverArray;
	typedef btAlignedObjectArray<ePSolver::_> tPSolverArray;

	//
	// Flags
	//

	///fCollision
	struct fCollision
	{
		enum _
		{
			RVSmask = 0x000f,  ///Rigid versus soft mask
			SDF_RS = 0x0001,   ///SDF based rigid vs soft
			CL_RS = 0x0002,    ///Cluster vs convex rigid vs soft
			SDF_RD = 0x0004,   ///rigid vs deformable

			SVSmask = 0x00f0,  ///Rigid versus soft mask
			VF_SS = 0x0010,    ///Vertex vs face soft vs soft handling
			CL_SS = 0x0020,    ///Cluster vs cluster soft vs soft handling
			CL_SELF = 0x0040,  ///Cluster soft body self collision
			VF_DD = 0x0080,    ///Vertex vs face soft vs soft handling

			RVDFmask = 0x0f00, /// Rigid versus deformable face mask
			SDF_RDF = 0x0100,  /// GJK based Rigid vs. deformable face
			SDF_MDF = 0x0200,  /// GJK based Multibody vs. deformable face
            SDF_RDN = 0x0400,  /// SDF based Rigid vs. deformable node
			/* presets	*/
			Default = SDF_RS,
			END
		};
	};

	///fMaterial
	struct fMaterial
	{
		enum _
		{
			DebugDraw = 0x0001,  /// Enable debug draw
			/* presets	*/
			Default = DebugDraw,
			END
		};
	};

	//
	// API Types
	//

	/* sRayCast		*/
	struct sRayCast
	{
		btSoftBody* body;     /// soft body
		eFeature::_ feature;  /// feature type
		int index;            /// feature index
		btScalar fraction;    /// time of impact fraction (rayorg+(rayto-rayfrom)*fraction)
	};

	/* ImplicitFn	*/
	struct ImplicitFn
	{
		virtual ~ImplicitFn() {}
		virtual btScalar Eval(const btVector3& x) = 0;
	};

	//
	// Internal types
	//

	typedef btAlignedObjectArray<btScalar> tScalarArray;
	typedef btAlignedObjectArray<btVector3> tVector3Array;

	/* sCti is Softbody contact info	*/
	struct sCti
	{
		const btCollisionObject* m_colObj; /* Rigid body			*/
		btVector3 m_normal;                /* Outward normal		*/
		btScalar m_offset;                 /* Offset from origin	*/
        btVector3 m_bary;                  /* Barycentric weights for faces */
	};

	/* sMedium		*/
	struct sMedium
	{
		btVector3 m_velocity; /* Velocity				*/
		btScalar m_pressure;  /* Pressure				*/
		btScalar m_density;   /* Density				*/
	};

	/* Base type	*/
	struct Element
	{
		void* m_tag;  // User data
		Element() : m_tag(0) {}
	};
	/* Material		*/
	struct Material : Element
	{
		btScalar m_kLST;  // Linear stiffness coefficient [0,1]
		btScalar m_kAST;  // Area/Angular stiffness coefficient [0,1]
		btScalar m_kVST;  // Volume stiffness coefficient [0,1]
		int m_flags;      // Flags
	};

	/* Feature		*/
	struct Feature : Element
	{
		Material* m_material;  // Material
	};
	/* Node			*/
	struct Node : Feature
	{
		btVector3 m_x;       // Position
		btVector3 m_q;       // Previous step position/Test position
		btVector3 m_v;       // Velocity
        btVector3 m_vn;      // Previous step velocity
		btVector3 m_f;       // Force accumulator
		btVector3 m_n;       // Normal
		btScalar m_im;       // 1/mass
		btScalar m_area;     // Area
		btDbvtNode* m_leaf;  // Leaf data
		btScalar m_penetration;   // depth of penetration
		int m_battach : 1;   // Attached
        int index;
	};
	/* Link			*/
	ATTRIBUTE_ALIGNED16(struct)
	Link : Feature
	{
		btVector3 m_c3;      // gradient
		Node* m_n[2];        // Node pointers
		btScalar m_rl;       // Rest length
		int m_bbending : 1;  // Bending link
		btScalar m_c0;       // (ima+imb)*kLST
		btScalar m_c1;       // rl^2
		btScalar m_c2;       // |gradient|^2/c0

		BT_DECLARE_ALIGNED_ALLOCATOR();
	};
	/* Face			*/
	struct Face : Feature
	{
		Node* m_n[3];        // Node pointers
		btVector3 m_normal;  // Normal
		btScalar m_ra;       // Rest area
		btDbvtNode* m_leaf;  // Leaf data
        btVector4 m_pcontact; // barycentric weights of the persistent contact
        btVector3 m_n0, m_n1, m_vn;
        int m_index;
	};
	/* Tetra		*/
	struct Tetra : Feature
	{
		Node* m_n[4];        // Node pointers
		btScalar m_rv;       // Rest volume
		btDbvtNode* m_leaf;  // Leaf data
		btVector3 m_c0[4];   // gradients
		btScalar m_c1;       // (4*kVST)/(im0+im1+im2+im3)
		btScalar m_c2;       // m_c1/sum(|g0..3|^2)
        btMatrix3x3 m_Dm_inverse; // rest Dm^-1
        btMatrix3x3 m_F;
        btScalar m_element_measure;
	};
    
    /*  TetraScratch  */
    struct TetraScratch
    {
        btMatrix3x3 m_F;                // deformation gradient F
        btScalar m_trace;               // trace of F^T * F
        btScalar m_J;                   // det(F)
        btMatrix3x3 m_cofF;             // cofactor of F
    };
    
	/* RContact		*/
	struct RContact
	{
		sCti m_cti;        // Contact infos
		Node* m_node;      // Owner node
		btMatrix3x3 m_c0;  // Impulse matrix
		btVector3 m_c1;    // Relative anchor
		btScalar m_c2;     // ima*dt
		btScalar m_c3;     // Friction
		btScalar m_c4;     // Hardness
        
        // jacobians and unit impulse responses for multibody
        btMultiBodyJacobianData jacobianData_normal;
        btMultiBodyJacobianData jacobianData_t1;
        btMultiBodyJacobianData jacobianData_t2;
        btVector3 t1;
        btVector3 t2;
	};
    
    class DeformableRigidContact
    {
    public:
        sCti m_cti;        // Contact infos
        btMatrix3x3 m_c0;  // Impulse matrix
        btVector3 m_c1;    // Relative anchor
        btScalar m_c2;     // inverse mass of node/face
        btScalar m_c3;     // Friction
        btScalar m_c4;     // Hardness
        
        // jacobians and unit impulse responses for multibody
        btMultiBodyJacobianData jacobianData_normal;
        btMultiBodyJacobianData jacobianData_t1;
        btMultiBodyJacobianData jacobianData_t2;
        btVector3 t1;
        btVector3 t2;
    };
    
    class DeformableNodeRigidContact : public DeformableRigidContact
    {
    public:
        Node* m_node;      // Owner node
    };
    
    class DeformableNodeRigidAnchor : public DeformableNodeRigidContact
    {
    public:
        btVector3 m_local;    // Anchor position in body space
    };
    
    class DeformableFaceRigidContact : public DeformableRigidContact
    {
    public:
        Face* m_face;                   // Owner face
        btVector3 m_contactPoint;       // Contact point
        btVector3 m_bary;               // Barycentric weights
        btVector3 m_weights;            // v_contactPoint * m_weights[i] = m_face->m_node[i]->m_v;
    };
    
    struct DeformableFaceNodeContact
    {
        Node* m_node;         // Node
        Face* m_face;         // Face
        btVector3 m_bary;     // Barycentric weights
        btVector3 m_weights;  // v_contactPoint * m_weights[i] = m_face->m_node[i]->m_v;
        btVector3 m_normal;   // Normal
        btScalar m_margin;    // Margin
        btScalar m_friction;  // Friction
        btScalar m_imf;       // inverse mass of the face at contact point
        btScalar m_c0;        // scale of the impulse matrix;
    };
    
	/* SContact		*/
	struct SContact
	{
		Node* m_node;         // Node
		Face* m_face;         // Face
		btVector3 m_weights;  // Weigths
		btVector3 m_normal;   // Normal
		btScalar m_margin;    // Margin
		btScalar m_friction;  // Friction
		btScalar m_cfm[2];    // Constraint force mixing
	};
	/* Anchor		*/
	struct Anchor
	{
		Node* m_node;         // Node pointer
		btVector3 m_local;    // Anchor position in body space
		btRigidBody* m_body;  // Body
		btScalar m_influence;
		btMatrix3x3 m_c0;  // Impulse matrix
		btVector3 m_c1;    // Relative anchor
		btScalar m_c2;     // ima*dt
	};
	/* Note			*/
	struct Note : Element
	{
		const char* m_text;    // Text
		btVector3 m_offset;    // Offset
		int m_rank;            // Rank
		Node* m_nodes[4];      // Nodes
		btScalar m_coords[4];  // Coordinates
	};
	/* Pose			*/
	struct Pose
	{
		bool m_bvolume;       // Is valid
		bool m_bframe;        // Is frame
		btScalar m_volume;    // Rest volume
		tVector3Array m_pos;  // Reference positions
		tScalarArray m_wgh;   // Weights
		btVector3 m_com;      // COM
		btMatrix3x3 m_rot;    // Rotation
		btMatrix3x3 m_scl;    // Scale
		btMatrix3x3 m_aqq;    // Base scaling
	};
	/* Cluster		*/
	struct Cluster
	{
		tScalarArray m_masses;
		btAlignedObjectArray<Node*> m_nodes;
		tVector3Array m_framerefs;
		btTransform m_framexform;
		btScalar m_idmass;
		btScalar m_imass;
		btMatrix3x3 m_locii;
		btMatrix3x3 m_invwi;
		btVector3 m_com;
		btVector3 m_vimpulses[2];
		btVector3 m_dimpulses[2];
		int m_nvimpulses;
		int m_ndimpulses;
		btVector3 m_lv;
		btVector3 m_av;
		btDbvtNode* m_leaf;
		btScalar m_ndamping; /* Node damping		*/
		btScalar m_ldamping; /* Linear damping	*/
		btScalar m_adamping; /* Angular damping	*/
		btScalar m_matching;
		btScalar m_maxSelfCollisionImpulse;
		btScalar m_selfCollisionImpulseFactor;
		bool m_containsAnchor;
		bool m_collide;
		int m_clusterIndex;
		Cluster() : m_leaf(0), m_ndamping(0), m_ldamping(0), m_adamping(0), m_matching(0), m_maxSelfCollisionImpulse(100.f), m_selfCollisionImpulseFactor(0.01f), m_containsAnchor(false)<--- Member variable 'Cluster::m_nvimpulses' is not initialized in the constructor.<--- Member variable 'Cluster::m_ndimpulses' is not initialized in the constructor.<--- Member variable 'Cluster::m_collide' is not initialized in the constructor.<--- Member variable 'Cluster::m_clusterIndex' is not initialized in the constructor.
		{
		}
	};
	/* Impulse		*/
	struct Impulse
	{
		btVector3 m_velocity;
		btVector3 m_drift;
		int m_asVelocity : 1;
		int m_asDrift : 1;
		Impulse() : m_velocity(0, 0, 0), m_drift(0, 0, 0), m_asVelocity(0), m_asDrift(0) {}
		Impulse operator-() const
		{
			Impulse i = *this;
			i.m_velocity = -i.m_velocity;
			i.m_drift = -i.m_drift;
			return (i);
		}
		Impulse operator*(btScalar x) const
		{
			Impulse i = *this;
			i.m_velocity *= x;
			i.m_drift *= x;
			return (i);
		}
	};
	/* Body			*/
	struct Body
	{
		Cluster* m_soft;
		btRigidBody* m_rigid;
		const btCollisionObject* m_collisionObject;

		Body() : m_soft(0), m_rigid(0), m_collisionObject(0) {}
		Body(Cluster* p) : m_soft(p), m_rigid(0), m_collisionObject(0) {}
		Body(const btCollisionObject* colObj) : m_soft(0), m_collisionObject(colObj)
		{
			m_rigid = (btRigidBody*)btRigidBody::upcast(m_collisionObject);
		}

		void activate() const
		{
			if (m_rigid)
				m_rigid->activate();
			if (m_collisionObject)
				m_collisionObject->activate();
		}
		const btMatrix3x3& invWorldInertia() const
		{
			static const btMatrix3x3 iwi(0, 0, 0, 0, 0, 0, 0, 0, 0);
			if (m_rigid) return (m_rigid->getInvInertiaTensorWorld());
			if (m_soft) return (m_soft->m_invwi);
			return (iwi);
		}
		btScalar invMass() const
		{
			if (m_rigid) return (m_rigid->getInvMass());
			if (m_soft) return (m_soft->m_imass);
			return (0);
		}
		const btTransform& xform() const
		{
			static const btTransform identity = btTransform::getIdentity();
			if (m_collisionObject) return (m_collisionObject->getWorldTransform());
			if (m_soft) return (m_soft->m_framexform);
			return (identity);
		}
		btVector3 linearVelocity() const
		{
			if (m_rigid) return (m_rigid->getLinearVelocity());
			if (m_soft) return (m_soft->m_lv);
			return (btVector3(0, 0, 0));
		}
		btVector3 angularVelocity(const btVector3& rpos) const
		{
			if (m_rigid) return (btCross(m_rigid->getAngularVelocity(), rpos));
			if (m_soft) return (btCross(m_soft->m_av, rpos));
			return (btVector3(0, 0, 0));
		}
		btVector3 angularVelocity() const
		{
			if (m_rigid) return (m_rigid->getAngularVelocity());
			if (m_soft) return (m_soft->m_av);
			return (btVector3(0, 0, 0));
		}
		btVector3 velocity(const btVector3& rpos) const
		{
			return (linearVelocity() + angularVelocity(rpos));
		}
		void applyVImpulse(const btVector3& impulse, const btVector3& rpos) const
		{
			if (m_rigid) m_rigid->applyImpulse(impulse, rpos);
			if (m_soft) btSoftBody::clusterVImpulse(m_soft, rpos, impulse);
		}
		void applyDImpulse(const btVector3& impulse, const btVector3& rpos) const
		{
			if (m_rigid) m_rigid->applyImpulse(impulse, rpos);
			if (m_soft) btSoftBody::clusterDImpulse(m_soft, rpos, impulse);
		}
		void applyImpulse(const Impulse& impulse, const btVector3& rpos) const
		{
			if (impulse.m_asVelocity)
			{
				//				printf("impulse.m_velocity = %f,%f,%f\n",impulse.m_velocity.getX(),impulse.m_velocity.getY(),impulse.m_velocity.getZ());
				applyVImpulse(impulse.m_velocity, rpos);
			}
			if (impulse.m_asDrift)
			{
				//				printf("impulse.m_drift = %f,%f,%f\n",impulse.m_drift.getX(),impulse.m_drift.getY(),impulse.m_drift.getZ());
				applyDImpulse(impulse.m_drift, rpos);
			}
		}
		void applyVAImpulse(const btVector3& impulse) const
		{
			if (m_rigid) m_rigid->applyTorqueImpulse(impulse);
			if (m_soft) btSoftBody::clusterVAImpulse(m_soft, impulse);
		}
		void applyDAImpulse(const btVector3& impulse) const
		{
			if (m_rigid) m_rigid->applyTorqueImpulse(impulse);
			if (m_soft) btSoftBody::clusterDAImpulse(m_soft, impulse);
		}
		void applyAImpulse(const Impulse& impulse) const
		{
			if (impulse.m_asVelocity) applyVAImpulse(impulse.m_velocity);
			if (impulse.m_asDrift) applyDAImpulse(impulse.m_drift);
		}
		void applyDCImpulse(const btVector3& impulse) const
		{
			if (m_rigid) m_rigid->applyCentralImpulse(impulse);
			if (m_soft) btSoftBody::clusterDCImpulse(m_soft, impulse);
		}
	};
	/* Joint		*/
	struct Joint
	{
		struct eType
		{
			enum _
			{
				Linear = 0,
				Angular,
				Contact
			};
		};
		struct Specs
		{
			Specs() : erp(1), cfm(1), split(1) {}
			btScalar erp;
			btScalar cfm;
			btScalar split;
		};
		Body m_bodies[2];
		btVector3 m_refs[2];
		btScalar m_cfm;
		btScalar m_erp;
		btScalar m_split;
		btVector3 m_drift;
		btVector3 m_sdrift;
		btMatrix3x3 m_massmatrix;
		bool m_delete;
		virtual ~Joint() {}
		Joint() : m_delete(false) {}
		virtual void Prepare(btScalar dt, int iterations);<--- Virtual function in base class<--- Virtual function in base class<--- Virtual function in base class
		virtual void Solve(btScalar dt, btScalar sor) = 0;<--- Virtual function in base class<--- Virtual function in base class<--- Virtual function in base class
		virtual void Terminate(btScalar dt) = 0;<--- Virtual function in base class<--- Virtual function in base class<--- Virtual function in base class
		virtual eType::_ Type() const = 0;<--- Virtual function in base class<--- Virtual function in base class<--- Virtual function in base class
	};
	/* LJoint		*/
	struct LJoint : Joint
	{
		struct Specs : Joint::Specs
		{
			btVector3 position;
		};
		btVector3 m_rpos[2];
		void Prepare(btScalar dt, int iterations);<--- Function in derived class
		void Solve(btScalar dt, btScalar sor);<--- Function in derived class
		void Terminate(btScalar dt);<--- Function in derived class
		eType::_ Type() const { return (eType::Linear); }<--- Function in derived class
	};
	/* AJoint		*/
	struct AJoint : Joint
	{
		struct IControl
		{
			virtual ~IControl() {}
			virtual void Prepare(AJoint*) {}
			virtual btScalar Speed(AJoint*, btScalar current) { return (current); }
			static IControl* Default()
			{
				static IControl def;
				return (&def);
			}
		};
		struct Specs : Joint::Specs
		{
			Specs() : icontrol(IControl::Default()) {}
			btVector3 axis;
			IControl* icontrol;
		};
		btVector3 m_axis[2];
		IControl* m_icontrol;
		void Prepare(btScalar dt, int iterations);<--- Function in derived class
		void Solve(btScalar dt, btScalar sor);<--- Function in derived class
		void Terminate(btScalar dt);<--- Function in derived class
		eType::_ Type() const { return (eType::Angular); }<--- Function in derived class
	};
	/* CJoint		*/
	struct CJoint : Joint
	{
		int m_life;
		int m_maxlife;
		btVector3 m_rpos[2];
		btVector3 m_normal;
		btScalar m_friction;
		void Prepare(btScalar dt, int iterations);<--- Function in derived class
		void Solve(btScalar dt, btScalar sor);<--- Function in derived class
		void Terminate(btScalar dt);<--- Function in derived class
		eType::_ Type() const { return (eType::Contact); }<--- Function in derived class
	};
	/* Config		*/
	struct Config
	{
		eAeroModel::_ aeromodel;    // Aerodynamic model (default: V_Point)
		btScalar kVCF;              // Velocities correction factor (Baumgarte)
		btScalar kDP;               // Damping coefficient [0,1]
		btScalar kDG;               // Drag coefficient [0,+inf]
		btScalar kLF;               // Lift coefficient [0,+inf]
		btScalar kPR;               // Pressure coefficient [-inf,+inf]
		btScalar kVC;               // Volume conversation coefficient [0,+inf]
		btScalar kDF;               // Dynamic friction coefficient [0,1]
		btScalar kMT;               // Pose matching coefficient [0,1]
		btScalar kCHR;              // Rigid contacts hardness [0,1]
		btScalar kKHR;              // Kinetic contacts hardness [0,1]
		btScalar kSHR;              // Soft contacts hardness [0,1]
		btScalar kAHR;              // Anchors hardness [0,1]
		btScalar kSRHR_CL;          // Soft vs rigid hardness [0,1] (cluster only)
		btScalar kSKHR_CL;          // Soft vs kinetic hardness [0,1] (cluster only)
		btScalar kSSHR_CL;          // Soft vs soft hardness [0,1] (cluster only)
		btScalar kSR_SPLT_CL;       // Soft vs rigid impulse split [0,1] (cluster only)
		btScalar kSK_SPLT_CL;       // Soft vs rigid impulse split [0,1] (cluster only)
		btScalar kSS_SPLT_CL;       // Soft vs rigid impulse split [0,1] (cluster only)
		btScalar maxvolume;         // Maximum volume ratio for pose
		btScalar timescale;         // Time scale
		int viterations;            // Velocities solver iterations
		int piterations;            // Positions solver iterations
		int diterations;            // Drift solver iterations
		int citerations;            // Cluster solver iterations
		int collisions;             // Collisions flags
		tVSolverArray m_vsequence;  // Velocity solvers sequence
		tPSolverArray m_psequence;  // Position solvers sequence
		tPSolverArray m_dsequence;  // Drift solvers sequence
        btScalar drag;           // deformable air drag
        btScalar m_maxStress;       // Maximum principle first Piola stress
	};
	/* SolverState	*/
	struct SolverState
	{
		//if you add new variables, always initialize them!
		SolverState()
			:sdt(0),
			isdt(0),
			velmrg(0),
			radmrg(0),
			updmrg(0)
		{
		}
		btScalar sdt;     // dt*timescale
		btScalar isdt;    // 1/sdt
		btScalar velmrg;  // velocity margin
		btScalar radmrg;  // radial margin
		btScalar updmrg;  // Update margin
	};
	/// RayFromToCaster takes a ray from, ray to (instead of direction!)
	struct RayFromToCaster : btDbvt::ICollide
	{
		btVector3 m_rayFrom;
		btVector3 m_rayTo;
		btVector3 m_rayNormalizedDirection;
		btScalar m_mint;
		Face* m_face;
		int m_tests;
		RayFromToCaster(const btVector3& rayFrom, const btVector3& rayTo, btScalar mxt);
		void Process(const btDbvtNode* leaf);

		static /*inline*/ btScalar rayFromToTriangle(const btVector3& rayFrom,
													 const btVector3& rayTo,
													 const btVector3& rayNormalizedDirection,
													 const btVector3& a,
													 const btVector3& b,
													 const btVector3& c,
													 btScalar maxt = SIMD_INFINITY);
	};

	//
	// Typedefs
	//

	typedef void (*psolver_t)(btSoftBody*, btScalar, btScalar);
	typedef void (*vsolver_t)(btSoftBody*, btScalar);
	typedef btAlignedObjectArray<Cluster*> tClusterArray;
	typedef btAlignedObjectArray<Note> tNoteArray;
	typedef btAlignedObjectArray<Node> tNodeArray;
	typedef btAlignedObjectArray<btDbvtNode*> tLeafArray;
	typedef btAlignedObjectArray<Link> tLinkArray;
	typedef btAlignedObjectArray<Face> tFaceArray;
	typedef btAlignedObjectArray<Tetra> tTetraArray;
	typedef btAlignedObjectArray<Anchor> tAnchorArray;
	typedef btAlignedObjectArray<RContact> tRContactArray;
	typedef btAlignedObjectArray<SContact> tSContactArray;
	typedef btAlignedObjectArray<Material*> tMaterialArray;
	typedef btAlignedObjectArray<Joint*> tJointArray;
	typedef btAlignedObjectArray<btSoftBody*> tSoftBodyArray;

	//
	// Fields
	//

	Config m_cfg;                      // Configuration
	SolverState m_sst;                 // Solver state
	Pose m_pose;                       // Pose
	void* m_tag;                       // User data
	btSoftBodyWorldInfo* m_worldInfo;  // World info
	tNoteArray m_notes;                // Notes
	tNodeArray m_nodes;                // Nodes
    tNodeArray m_renderNodes;                // Nodes
	tLinkArray m_links;                // Links
	tFaceArray m_faces;                // Faces
    tFaceArray m_renderFaces;                // Faces
	tTetraArray m_tetras;              // Tetras
    btAlignedObjectArray<TetraScratch> m_tetraScratches;
    btAlignedObjectArray<TetraScratch> m_tetraScratchesTn;
	tAnchorArray m_anchors;            // Anchors
    btAlignedObjectArray<DeformableNodeRigidAnchor> m_deformableAnchors;
	tRContactArray m_rcontacts;        // Rigid contacts
    btAlignedObjectArray<DeformableNodeRigidContact> m_nodeRigidContacts;
    btAlignedObjectArray<DeformableFaceNodeContact> m_faceNodeContacts;
    btAlignedObjectArray<DeformableFaceRigidContact> m_faceRigidContacts;
	tSContactArray m_scontacts;        // Soft contacts
	tJointArray m_joints;              // Joints
	tMaterialArray m_materials;        // Materials
	btScalar m_timeacc;                // Time accumulator
	btVector3 m_bounds[2];             // Spatial bounds
	bool m_bUpdateRtCst;               // Update runtime constants
	btDbvt m_ndbvt;                    // Nodes tree
	btDbvt m_fdbvt;                    // Faces tree
	btDbvntNode* m_fdbvnt;              // Faces tree with normals
	btDbvt m_cdbvt;                    // Clusters tree
	tClusterArray m_clusters;          // Clusters
	btScalar m_dampingCoefficient;     // Damping Coefficient
	btScalar m_sleepingThreshold;
	btScalar m_maxSpeedSquared;
	btAlignedObjectArray<btVector3> m_quads; // quadrature points for collision detection
	btScalar m_repulsionStiffness;
    btAlignedObjectArray<btVector3> m_X;   // initial positions

	btAlignedObjectArray<btVector4> m_renderNodesInterpolationWeights;
	btAlignedObjectArray<btAlignedObjectArray<const btSoftBody::Node*> > m_renderNodesParents;
	btAlignedObjectArray<btScalar> m_z; // vertical distance used in extrapolation
	bool m_useSelfCollision;
	bool m_softSoftCollision;

	btAlignedObjectArray<bool> m_clusterConnectivity;  //cluster connectivity, for self-collision

	btVector3 m_windVelocity;

	btScalar m_restLengthScale;

	//
	// Api
	//

	/* ctor																	*/
	btSoftBody(btSoftBodyWorldInfo* worldInfo, int node_count, const btVector3* x, const btScalar* m);

	/* ctor																	*/
	btSoftBody(btSoftBodyWorldInfo* worldInfo);

	void initDefaults();

	/* dtor																	*/
	virtual ~btSoftBody();
	/* Check for existing link												*/

	btAlignedObjectArray<int> m_userIndexMapping;

	btSoftBodyWorldInfo* getWorldInfo()
	{
		return m_worldInfo;
	}
    
    void setDampingCoefficient(btScalar damping_coeff)
    {
        m_dampingCoefficient = damping_coeff;
    }

	///@todo: avoid internal softbody shape hack and move collision code to collision library
	virtual void setCollisionShape(btCollisionShape* collisionShape)
	{
	}

	bool checkLink(int node0,
				   int node1) const;
	bool checkLink(const Node* node0,
				   const Node* node1) const;
	/* Check for existring face												*/
	bool checkFace(int node0,
				   int node1,
				   int node2) const;
	/* Append material														*/
	Material* appendMaterial();
	/* Append note															*/
	void appendNote(const char* text,
					const btVector3& o,
					const btVector4& c = btVector4(1, 0, 0, 0),
					Node* n0 = 0,
					Node* n1 = 0,
					Node* n2 = 0,
					Node* n3 = 0);
	void appendNote(const char* text,
					const btVector3& o,
					Node* feature);
	void appendNote(const char* text,
					const btVector3& o,
					Link* feature);
	void appendNote(const char* text,
					const btVector3& o,
					Face* feature);
	/* Append node															*/
	void appendNode(const btVector3& x, btScalar m);
	/* Append link															*/
	void appendLink(int model = -1, Material* mat = 0);
	void appendLink(int node0,
					int node1,
					Material* mat = 0,
					bool bcheckexist = false);
	void appendLink(Node* node0,
					Node* node1,
					Material* mat = 0,
					bool bcheckexist = false);
	/* Append face															*/
	void appendFace(int model = -1, Material* mat = 0);
	void appendFace(int node0,
					int node1,
					int node2,
					Material* mat = 0);
	void appendTetra(int model, Material* mat);
	//
	void appendTetra(int node0,
					 int node1,
					 int node2,
					 int node3,
					 Material* mat = 0);

	/* Append anchor														*/
    void appendDeformableAnchor(int node, btRigidBody* body);
    void appendDeformableAnchor(int node, btMultiBodyLinkCollider* link);
    void appendAnchor(int node,
					  btRigidBody* body, bool disableCollisionBetweenLinkedBodies = false, btScalar influence = 1);
	void appendAnchor(int node, btRigidBody* body, const btVector3& localPivot, bool disableCollisionBetweenLinkedBodies = false, btScalar influence = 1);
	/* Append linear joint													*/
	void appendLinearJoint(const LJoint::Specs& specs, Cluster* body0, Body body1);
	void appendLinearJoint(const LJoint::Specs& specs, Body body = Body());
	void appendLinearJoint(const LJoint::Specs& specs, btSoftBody* body);
	/* Append linear joint													*/
	void appendAngularJoint(const AJoint::Specs& specs, Cluster* body0, Body body1);
	void appendAngularJoint(const AJoint::Specs& specs, Body body = Body());
	void appendAngularJoint(const AJoint::Specs& specs, btSoftBody* body);
	/* Add force (or gravity) to the entire body							*/
	void addForce(const btVector3& force);
	/* Add force (or gravity) to a node of the body							*/
	void addForce(const btVector3& force,
				  int node);
	/* Add aero force to a node of the body */
	void addAeroForceToNode(const btVector3& windVelocity, int nodeIndex);

	/* Add aero force to a face of the body */
	void addAeroForceToFace(const btVector3& windVelocity, int faceIndex);

	/* Add velocity to the entire body										*/
	void addVelocity(const btVector3& velocity);

	/* Set velocity for the entire body										*/
	void setVelocity(const btVector3& velocity);

	/* Add velocity to a node of the body									*/
	void addVelocity(const btVector3& velocity,
					 int node);
	/* Set mass																*/
	void setMass(int node,
				 btScalar mass);
	/* Get mass																*/
	btScalar getMass(int node) const;
	/* Get total mass														*/
	btScalar getTotalMass() const;
	/* Set total mass (weighted by previous masses)							*/
	void setTotalMass(btScalar mass,
					  bool fromfaces = false);
	/* Set total density													*/
	void setTotalDensity(btScalar density);
	/* Set volume mass (using tetrahedrons)									*/
	void setVolumeMass(btScalar mass);
	/* Set volume density (using tetrahedrons)								*/
	void setVolumeDensity(btScalar density);
	/* Get the linear velocity of the center of mass                        */
	btVector3 getLinearVelocity();
	/* Set the linear velocity of the center of mass                        */
	void setLinearVelocity(const btVector3& linVel);
	/* Set the angular velocity of the center of mass                       */
	void setAngularVelocity(const btVector3& angVel);
    /* Get best fit rigid transform                                         */
    btTransform getRigidTransform();
    /* Transform to given pose                                              */
    void transformTo(const btTransform& trs);
	/* Transform															*/
	void transform(const btTransform& trs);
	/* Translate															*/
	void translate(const btVector3& trs);
	/* Rotate															*/
	void rotate(const btQuaternion& rot);
	/* Scale																*/
	void scale(const btVector3& scl);
	/* Get link resting lengths scale										*/
	btScalar getRestLengthScale();
	/* Scale resting length of all springs									*/
	void setRestLengthScale(btScalar restLength);
	/* Set current state as pose											*/
	void setPose(bool bvolume,
				 bool bframe);
	/* Set current link lengths as resting lengths							*/
	void resetLinkRestLengths();
	/* Return the volume													*/
	btScalar getVolume() const;
	/* Cluster count														*/
	btVector3 getCenterOfMass() const
	{
		btVector3 com(0, 0, 0);
		for (int i = 0; i < m_nodes.size(); i++)
		{
			com += (m_nodes[i].m_x * this->getMass(i));
		}
		com /= this->getTotalMass();
		return com;
	}
	int clusterCount() const;
	/* Cluster center of mass												*/
	static btVector3 clusterCom(const Cluster* cluster);
	btVector3 clusterCom(int cluster) const;
	/* Cluster velocity at rpos												*/
	static btVector3 clusterVelocity(const Cluster* cluster, const btVector3& rpos);
	/* Cluster impulse														*/
	static void clusterVImpulse(Cluster* cluster, const btVector3& rpos, const btVector3& impulse);
	static void clusterDImpulse(Cluster* cluster, const btVector3& rpos, const btVector3& impulse);
	static void clusterImpulse(Cluster* cluster, const btVector3& rpos, const Impulse& impulse);
	static void clusterVAImpulse(Cluster* cluster, const btVector3& impulse);
	static void clusterDAImpulse(Cluster* cluster, const btVector3& impulse);
	static void clusterAImpulse(Cluster* cluster, const Impulse& impulse);
	static void clusterDCImpulse(Cluster* cluster, const btVector3& impulse);
	/* Generate bending constraints based on distance in the adjency graph	*/
	int generateBendingConstraints(int distance,
								   Material* mat = 0);
	/* Randomize constraints to reduce solver bias							*/
	void randomizeConstraints();
	/* Release clusters														*/
	void releaseCluster(int index);
	void releaseClusters();
	/* Generate clusters (K-mean)											*/
	///generateClusters with k=0 will create a convex cluster for each tetrahedron or triangle
	///otherwise an approximation will be used (better performance)
	int generateClusters(int k, int maxiterations = 8192);
	/* Refine																*/
	void refine(ImplicitFn* ifn, btScalar accurary, bool cut);
	/* CutLink																*/
	bool cutLink(int node0, int node1, btScalar position);
	bool cutLink(const Node* node0, const Node* node1, btScalar position);

	///Ray casting using rayFrom and rayTo in worldspace, (not direction!)
	bool rayTest(const btVector3& rayFrom,
				 const btVector3& rayTo,
				 sRayCast& results);
	bool rayFaceTest(const btVector3& rayFrom,
					 const btVector3& rayTo,
					 sRayCast& results);
	int rayFaceTest(const btVector3& rayFrom, const btVector3& rayTo,
					btScalar& mint, int& index) const;
	/* Solver presets														*/
	void setSolver(eSolverPresets::_ preset);
	/* predictMotion														*/
	void predictMotion(btScalar dt);
	/* solveConstraints														*/
	void solveConstraints();
	/* staticSolve															*/
	void staticSolve(int iterations);
	/* solveCommonConstraints												*/
	static void solveCommonConstraints(btSoftBody** bodies, int count, int iterations);
	/* solveClusters														*/
	static void solveClusters(const btAlignedObjectArray<btSoftBody*>& bodies);
	/* integrateMotion														*/
	void integrateMotion();
	/* defaultCollisionHandlers												*/
	void defaultCollisionHandler(const btCollisionObjectWrapper* pcoWrap);
	void defaultCollisionHandler(btSoftBody* psb);
    void setSelfCollision(bool useSelfCollision);
    bool useSelfCollision();
    void updateDeactivation(btScalar timeStep);
    void setZeroVelocity();
    bool wantsSleeping();

	//
	// Functionality to deal with new accelerated solvers.
	//

	/**
	 * Set a wind velocity for interaction with the air.
	 */
	void setWindVelocity(const btVector3& velocity);

	/**
	 * Return the wind velocity for interaction with the air.
	 */
	const btVector3& getWindVelocity();

	//
	// Set the solver that handles this soft body
	// Should not be allowed to get out of sync with reality
	// Currently called internally on addition to the world
	void setSoftBodySolver(btSoftBodySolver* softBodySolver)
	{
		m_softBodySolver = softBodySolver;
	}

	//
	// Return the solver that handles this soft body
	//
	btSoftBodySolver* getSoftBodySolver()
	{
		return m_softBodySolver;
	}

	//
	// Return the solver that handles this soft body
	//
	btSoftBodySolver* getSoftBodySolver() const
	{
		return m_softBodySolver;
	}

	//
	// Cast
	//

	static const btSoftBody* upcast(const btCollisionObject* colObj)
	{
		if (colObj->getInternalType() == CO_SOFT_BODY)
			return (const btSoftBody*)colObj;
		return 0;
	}
	static btSoftBody* upcast(btCollisionObject* colObj)
	{
		if (colObj->getInternalType() == CO_SOFT_BODY)
			return (btSoftBody*)colObj;
		return 0;
	}

	//
	// ::btCollisionObject
	//

	virtual void getAabb(btVector3& aabbMin, btVector3& aabbMax) const
	{
		aabbMin = m_bounds[0];
		aabbMax = m_bounds[1];
	}
	//
	// Private
	//
	void pointersToIndices();
	void indicesToPointers(const int* map = 0);

	int rayTest(const btVector3& rayFrom, const btVector3& rayTo,
				btScalar& mint, eFeature::_& feature, int& index, bool bcountonly) const;
	void initializeFaceTree();
	void rebuildNodeTree();
	btVector3 evaluateCom() const;
	bool checkDeformableContact(const btCollisionObjectWrapper* colObjWrap, const btVector3& x, btScalar margin, btSoftBody::sCti& cti, bool predict = false) const;
    bool checkDeformableFaceContact(const btCollisionObjectWrapper* colObjWrap, Face& f, btVector3& contact_point, btVector3& bary, btScalar margin, btSoftBody::sCti& cti, bool predict = false) const;
    bool checkContact(const btCollisionObjectWrapper* colObjWrap, const btVector3& x, btScalar margin, btSoftBody::sCti& cti) const;
	void updateNormals();
	void updateBounds();
	void updatePose();
	void updateConstants();
	void updateLinkConstants();
	void updateArea(bool averageArea = true);
	void initializeClusters();
	void updateClusters();
	void cleanupClusters();
	void prepareClusters(int iterations);
	void solveClusters(btScalar sor);
	void applyClusters(bool drift);
	void dampClusters();
    void setSpringStiffness(btScalar k);
    void initializeDmInverse();
    void updateDeformation();
    void advanceDeformation();
	void applyForces();
    void setMaxStress(btScalar maxStress);
    void interpolateRenderMesh();
    void setCollisionQuadrature(int N);
	static void PSolve_Anchors(btSoftBody* psb, btScalar kst, btScalar ti);
	static void PSolve_RContacts(btSoftBody* psb, btScalar kst, btScalar ti);
	static void PSolve_SContacts(btSoftBody* psb, btScalar, btScalar ti);
	static void PSolve_Links(btSoftBody* psb, btScalar kst, btScalar ti);
	static void VSolve_Links(btSoftBody* psb, btScalar kst);
	static psolver_t getSolver(ePSolver::_ solver);
	static vsolver_t getSolver(eVSolver::_ solver);
	void geometricCollisionHandler(btSoftBody* psb);
#define SAFE_EPSILON SIMD_EPSILON*100.0
	void updateNode(btDbvtNode* node, bool use_velocity, bool margin)
	{
		if (node->isleaf())
		{
			btSoftBody::Node* n = (btSoftBody::Node*)(node->data);
			ATTRIBUTE_ALIGNED16(btDbvtVolume) vol;
			btScalar pad = margin ? m_sst.radmrg : SAFE_EPSILON; // use user defined margin or margin for floating point precision
			if (use_velocity)
			{
				btVector3 points[2] = {n->m_x, n->m_x + m_sst.sdt * n->m_v};
				vol = btDbvtVolume::FromPoints(points, 2);
				vol.Expand(btVector3(pad, pad, pad));
			}
			else
			{
				vol = btDbvtVolume::FromCR(n->m_x, pad);
			}
			node->volume = vol;
			return;
		}
		else
		{
			updateNode(node->childs[0], use_velocity, margin);
			updateNode(node->childs[1], use_velocity, margin);
			ATTRIBUTE_ALIGNED16(btDbvtVolume) vol;
			Merge(node->childs[0]->volume, node->childs[1]->volume, vol);
			node->volume = vol;
		}
	}
	
    void updateNodeTree(bool use_velocity, bool margin)
	{
		if (m_ndbvt.m_root)
			updateNode(m_ndbvt.m_root, use_velocity, margin);
	}

	template <class DBVTNODE> // btDbvtNode or btDbvntNode
	void updateFace(DBVTNODE* node, bool use_velocity, bool margin)
	{
		if (node->isleaf())
		{
			btSoftBody::Face* f = (btSoftBody::Face*)(node->data);
			btScalar pad = margin ? m_sst.radmrg : SAFE_EPSILON; // use user defined margin or margin for floating point precision
			ATTRIBUTE_ALIGNED16(btDbvtVolume) vol;
			if (use_velocity)
			{
				btVector3 points[6] = {f->m_n[0]->m_x, f->m_n[0]->m_x + m_sst.sdt * f->m_n[0]->m_v,
					f->m_n[1]->m_x, f->m_n[1]->m_x + m_sst.sdt * f->m_n[1]->m_v,
					f->m_n[2]->m_x, f->m_n[2]->m_x + m_sst.sdt * f->m_n[2]->m_v};
				vol = btDbvtVolume::FromPoints(points, 6);
			}
			else
			{
				btVector3 points[3] = {f->m_n[0]->m_x,
					f->m_n[1]->m_x,
					f->m_n[2]->m_x};
				vol = btDbvtVolume::FromPoints(points, 3);
			}
			vol.Expand(btVector3(pad, pad, pad));
			node->volume = vol;
			return;
		}
		else
		{
			updateFace(node->childs[0], use_velocity, margin);
			updateFace(node->childs[1], use_velocity, margin);
			ATTRIBUTE_ALIGNED16(btDbvtVolume) vol;
			Merge(node->childs[0]->volume, node->childs[1]->volume, vol);
			node->volume = vol;
		}
	}
	void updateFaceTree(bool use_velocity, bool margin)
	{
		if (m_fdbvt.m_root)
			updateFace(m_fdbvt.m_root, use_velocity, margin);
		if (m_fdbvnt)
			updateFace(m_fdbvnt, use_velocity, margin);
	}

	template <typename T>
	static inline T BaryEval(const T& a,
							 const T& b,
							 const T& c,
							 const btVector3& coord)
	{
		return (a * coord.x() + b * coord.y() + c * coord.z());
	}

    void applyRepulsionForce(btScalar timeStep, bool applySpringForce)
	{
		btAlignedObjectArray<int> indices;
		{
			// randomize the order of repulsive force
			indices.resize(m_faceNodeContacts.size());
			for (int i = 0; i < m_faceNodeContacts.size(); ++i)
				indices[i] = i;
#define NEXTRAND (seed = (1664525L * seed + 1013904223L) & 0xffffffff)
			int i, ni;

			for (i = 0, ni = indices.size(); i < ni; ++i)
			{
				btSwap(indices[i], indices[NEXTRAND % ni]);
			}
		}
		for (int k = 0; k < m_faceNodeContacts.size(); ++k)
		{
			int i = indices[k];<--- Shadowed declaration
			btSoftBody::DeformableFaceNodeContact& c = m_faceNodeContacts[i];
			btSoftBody::Node* node = c.m_node;
			btSoftBody::Face* face = c.m_face;
			const btVector3& w = c.m_bary;
			const btVector3& n = c.m_normal;
			btVector3 l = node->m_x - BaryEval(face->m_n[0]->m_x, face->m_n[1]->m_x, face->m_n[2]->m_x, w);
			btScalar d = c.m_margin - n.dot(l);
			d = btMax(btScalar(0),d);
			
			const btVector3& va = node->m_v;
			btVector3 vb = BaryEval(face->m_n[0]->m_v, face->m_n[1]->m_v, face->m_n[2]->m_v, w);
			btVector3 vr = va - vb;
			const btScalar vn = btDot(vr, n); // dn < 0 <==> opposing
			if (vn > OVERLAP_REDUCTION_FACTOR * d / timeStep)
				continue;
			btVector3 vt = vr - vn*n;
			btScalar I = 0;
			btScalar mass = node->m_im == 0 ? 0 : btScalar(1)/node->m_im;
			if (applySpringForce)
				I = -btMin(m_repulsionStiffness * timeStep * d, mass * (OVERLAP_REDUCTION_FACTOR * d / timeStep - vn));
			if (vn < 0)
				I += 0.5 * mass * vn;
			btScalar face_penetration = 0, node_penetration = node->m_penetration;
			for (int i = 0; i < 3; ++i)<--- Shadow variable
				face_penetration =  btMax(face_penetration, face->m_n[i]->m_penetration);
			btScalar I_tilde = .5 *I /(1.0+w.length2());
			
//             double the impulse if node or face is constrained.
            if (face_penetration > 0 || node_penetration > 0)
                I_tilde *= 2.0;
            if (face_penetration <= node_penetration)
			{
				for (int j = 0; j < 3; ++j)
					face->m_n[j]->m_v += w[j]*n*I_tilde*node->m_im;
			}
            if (face_penetration >= node_penetration)
			{
				node->m_v -= I_tilde*node->m_im*n;
			}
			
			// apply frictional impulse
			btScalar vt_norm = vt.safeNorm();
			if (vt_norm > SIMD_EPSILON)
			{
				btScalar delta_vn = -2 * I * node->m_im;
				btScalar mu = c.m_friction;
				btScalar vt_new = btMax(btScalar(1) - mu * delta_vn / (vt_norm + SIMD_EPSILON), btScalar(0))*vt_norm;
				I = 0.5 * mass * (vt_norm-vt_new);
				vt.safeNormalize();
				I_tilde = .5 *I /(1.0+w.length2());
//                 double the impulse if node or face is constrained.
//                if (face_penetration > 0 || node_penetration > 0)
//                    I_tilde *= 2.0;
                if (face_penetration <= node_penetration)
				{
					for (int j = 0; j < 3; ++j)
						face->m_n[j]->m_v += w[j] * vt * I_tilde * (face->m_n[j])->m_im;
				}
                if (face_penetration >= node_penetration)
				{
					node->m_v -= I_tilde * node->m_im * vt;
				}
			}
		}
	}
	virtual int calculateSerializeBufferSize() const;
  
	///fills the dataBuffer and returns the struct name (and 0 on failure)
	virtual const char* serialize(void* dataBuffer, class btSerializer* serializer) const;
};

#endif  //_BT_SOFT_BODY_H