-
-
Notifications
You must be signed in to change notification settings - Fork 21.4k
/
Vector3.xml
644 lines (644 loc) · 32.8 KB
/
Vector3.xml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
<?xml version="1.0" encoding="UTF-8" ?>
<class name="Vector3" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:noNamespaceSchemaLocation="../class.xsd">
<brief_description>
A 3D vector using floating-point coordinates.
</brief_description>
<description>
A 3-element structure that can be used to represent 3D coordinates or any other triplet of numeric values.
It uses floating-point coordinates. By default, these floating-point values use 32-bit precision, unlike [float] which is always 64-bit. If double precision is needed, compile the engine with the option [code]precision=double[/code].
See [Vector3i] for its integer counterpart.
[b]Note:[/b] In a boolean context, a Vector3 will evaluate to [code]false[/code] if it's equal to [code]Vector3(0, 0, 0)[/code]. Otherwise, a Vector3 will always evaluate to [code]true[/code].
</description>
<tutorials>
<link title="Math documentation index">$DOCS_URL/tutorials/math/index.html</link>
<link title="Vector math">$DOCS_URL/tutorials/math/vector_math.html</link>
<link title="Advanced vector math">$DOCS_URL/tutorials/math/vectors_advanced.html</link>
<link title="3Blue1Brown Essence of Linear Algebra">https://www.youtube.com/playlist?list=PLZHQObOWTQDPD3MizzM2xVFitgF8hE_ab</link>
<link title="Matrix Transform Demo">https://godotengine.org/asset-library/asset/2787</link>
<link title="All 3D Demos">https://github.com/godotengine/godot-demo-projects/tree/master/3d</link>
</tutorials>
<constructors>
<constructor name="Vector3">
<return type="Vector3" />
<description>
Constructs a default-initialized [Vector3] with all components set to [code]0[/code].
</description>
</constructor>
<constructor name="Vector3">
<return type="Vector3" />
<param index="0" name="from" type="Vector3" />
<description>
Constructs a [Vector3] as a copy of the given [Vector3].
</description>
</constructor>
<constructor name="Vector3">
<return type="Vector3" />
<param index="0" name="from" type="Vector3i" />
<description>
Constructs a new [Vector3] from [Vector3i].
</description>
</constructor>
<constructor name="Vector3">
<return type="Vector3" />
<param index="0" name="x" type="float" />
<param index="1" name="y" type="float" />
<param index="2" name="z" type="float" />
<description>
Returns a [Vector3] with the given components.
</description>
</constructor>
</constructors>
<methods>
<method name="abs" qualifiers="const">
<return type="Vector3" />
<description>
Returns a new vector with all components in absolute values (i.e. positive).
</description>
</method>
<method name="angle_to" qualifiers="const">
<return type="float" />
<param index="0" name="to" type="Vector3" />
<description>
Returns the unsigned minimum angle to the given vector, in radians.
</description>
</method>
<method name="bezier_derivative" qualifiers="const">
<return type="Vector3" />
<param index="0" name="control_1" type="Vector3" />
<param index="1" name="control_2" type="Vector3" />
<param index="2" name="end" type="Vector3" />
<param index="3" name="t" type="float" />
<description>
Returns the derivative at the given [param t] on the [url=https://en.wikipedia.org/wiki/B%C3%A9zier_curve]Bézier curve[/url] defined by this vector and the given [param control_1], [param control_2], and [param end] points.
</description>
</method>
<method name="bezier_interpolate" qualifiers="const">
<return type="Vector3" />
<param index="0" name="control_1" type="Vector3" />
<param index="1" name="control_2" type="Vector3" />
<param index="2" name="end" type="Vector3" />
<param index="3" name="t" type="float" />
<description>
Returns the point at the given [param t] on the [url=https://en.wikipedia.org/wiki/B%C3%A9zier_curve]Bézier curve[/url] defined by this vector and the given [param control_1], [param control_2], and [param end] points.
</description>
</method>
<method name="bounce" qualifiers="const">
<return type="Vector3" />
<param index="0" name="n" type="Vector3" />
<description>
Returns the vector "bounced off" from a plane defined by the given normal [param n].
[b]Note:[/b] [method bounce] performs the operation that most engines and frameworks call [code skip-lint]reflect()[/code].
</description>
</method>
<method name="ceil" qualifiers="const">
<return type="Vector3" />
<description>
Returns a new vector with all components rounded up (towards positive infinity).
</description>
</method>
<method name="clamp" qualifiers="const">
<return type="Vector3" />
<param index="0" name="min" type="Vector3" />
<param index="1" name="max" type="Vector3" />
<description>
Returns a new vector with all components clamped between the components of [param min] and [param max], by running [method @GlobalScope.clamp] on each component.
</description>
</method>
<method name="clampf" qualifiers="const">
<return type="Vector3" />
<param index="0" name="min" type="float" />
<param index="1" name="max" type="float" />
<description>
Returns a new vector with all components clamped between [param min] and [param max], by running [method @GlobalScope.clamp] on each component.
</description>
</method>
<method name="cross" qualifiers="const">
<return type="Vector3" />
<param index="0" name="with" type="Vector3" />
<description>
Returns the cross product of this vector and [param with].
This returns a vector perpendicular to both this and [param with], which would be the normal vector of the plane defined by the two vectors. As there are two such vectors, in opposite directions, this method returns the vector defined by a right-handed coordinate system. If the two vectors are parallel this returns an empty vector, making it useful for testing if two vectors are parallel.
</description>
</method>
<method name="cubic_interpolate" qualifiers="const">
<return type="Vector3" />
<param index="0" name="b" type="Vector3" />
<param index="1" name="pre_a" type="Vector3" />
<param index="2" name="post_b" type="Vector3" />
<param index="3" name="weight" type="float" />
<description>
Performs a cubic interpolation between this vector and [param b] using [param pre_a] and [param post_b] as handles, and returns the result at position [param weight]. [param weight] is on the range of 0.0 to 1.0, representing the amount of interpolation.
</description>
</method>
<method name="cubic_interpolate_in_time" qualifiers="const">
<return type="Vector3" />
<param index="0" name="b" type="Vector3" />
<param index="1" name="pre_a" type="Vector3" />
<param index="2" name="post_b" type="Vector3" />
<param index="3" name="weight" type="float" />
<param index="4" name="b_t" type="float" />
<param index="5" name="pre_a_t" type="float" />
<param index="6" name="post_b_t" type="float" />
<description>
Performs a cubic interpolation between this vector and [param b] using [param pre_a] and [param post_b] as handles, and returns the result at position [param weight]. [param weight] is on the range of 0.0 to 1.0, representing the amount of interpolation.
It can perform smoother interpolation than [method cubic_interpolate] by the time values.
</description>
</method>
<method name="direction_to" qualifiers="const">
<return type="Vector3" />
<param index="0" name="to" type="Vector3" />
<description>
Returns the normalized vector pointing from this vector to [param to]. This is equivalent to using [code](b - a).normalized()[/code].
</description>
</method>
<method name="distance_squared_to" qualifiers="const">
<return type="float" />
<param index="0" name="to" type="Vector3" />
<description>
Returns the squared distance between this vector and [param to].
This method runs faster than [method distance_to], so prefer it if you need to compare vectors or need the squared distance for some formula.
</description>
</method>
<method name="distance_to" qualifiers="const">
<return type="float" />
<param index="0" name="to" type="Vector3" />
<description>
Returns the distance between this vector and [param to].
</description>
</method>
<method name="dot" qualifiers="const">
<return type="float" />
<param index="0" name="with" type="Vector3" />
<description>
Returns the dot product of this vector and [param with]. This can be used to compare the angle between two vectors. For example, this can be used to determine whether an enemy is facing the player.
The dot product will be [code]0[/code] for a right angle (90 degrees), greater than 0 for angles narrower than 90 degrees and lower than 0 for angles wider than 90 degrees.
When using unit (normalized) vectors, the result will always be between [code]-1.0[/code] (180 degree angle) when the vectors are facing opposite directions, and [code]1.0[/code] (0 degree angle) when the vectors are aligned.
[b]Note:[/b] [code]a.dot(b)[/code] is equivalent to [code]b.dot(a)[/code].
</description>
</method>
<method name="floor" qualifiers="const">
<return type="Vector3" />
<description>
Returns a new vector with all components rounded down (towards negative infinity).
</description>
</method>
<method name="inverse" qualifiers="const">
<return type="Vector3" />
<description>
Returns the inverse of the vector. This is the same as [code]Vector3(1.0 / v.x, 1.0 / v.y, 1.0 / v.z)[/code].
</description>
</method>
<method name="is_equal_approx" qualifiers="const">
<return type="bool" />
<param index="0" name="to" type="Vector3" />
<description>
Returns [code]true[/code] if this vector and [param to] are approximately equal, by running [method @GlobalScope.is_equal_approx] on each component.
</description>
</method>
<method name="is_finite" qualifiers="const">
<return type="bool" />
<description>
Returns [code]true[/code] if this vector is finite, by calling [method @GlobalScope.is_finite] on each component.
</description>
</method>
<method name="is_normalized" qualifiers="const">
<return type="bool" />
<description>
Returns [code]true[/code] if the vector is normalized, i.e. its length is approximately equal to 1.
</description>
</method>
<method name="is_zero_approx" qualifiers="const">
<return type="bool" />
<description>
Returns [code]true[/code] if this vector's values are approximately zero, by running [method @GlobalScope.is_zero_approx] on each component.
This method is faster than using [method is_equal_approx] with one value as a zero vector.
</description>
</method>
<method name="length" qualifiers="const" keywords="size">
<return type="float" />
<description>
Returns the length (magnitude) of this vector.
</description>
</method>
<method name="length_squared" qualifiers="const">
<return type="float" />
<description>
Returns the squared length (squared magnitude) of this vector.
This method runs faster than [method length], so prefer it if you need to compare vectors or need the squared distance for some formula.
</description>
</method>
<method name="lerp" qualifiers="const" keywords="interpolate">
<return type="Vector3" />
<param index="0" name="to" type="Vector3" />
<param index="1" name="weight" type="float" />
<description>
Returns the result of the linear interpolation between this vector and [param to] by amount [param weight]. [param weight] is on the range of [code]0.0[/code] to [code]1.0[/code], representing the amount of interpolation.
</description>
</method>
<method name="limit_length" qualifiers="const" keywords="truncate">
<return type="Vector3" />
<param index="0" name="length" type="float" default="1.0" />
<description>
Returns the vector with a maximum length by limiting its length to [param length]. If the vector is non-finite, the result is undefined.
</description>
</method>
<method name="max" qualifiers="const">
<return type="Vector3" />
<param index="0" name="with" type="Vector3" />
<description>
Returns the component-wise maximum of this and [param with], equivalent to [code]Vector3(maxf(x, with.x), maxf(y, with.y), maxf(z, with.z))[/code].
</description>
</method>
<method name="max_axis_index" qualifiers="const">
<return type="int" />
<description>
Returns the axis of the vector's highest value. See [code]AXIS_*[/code] constants. If all components are equal, this method returns [constant AXIS_X].
</description>
</method>
<method name="maxf" qualifiers="const">
<return type="Vector3" />
<param index="0" name="with" type="float" />
<description>
Returns the component-wise maximum of this and [param with], equivalent to [code]Vector3(maxf(x, with), maxf(y, with), maxf(z, with))[/code].
</description>
</method>
<method name="min" qualifiers="const">
<return type="Vector3" />
<param index="0" name="with" type="Vector3" />
<description>
Returns the component-wise minimum of this and [param with], equivalent to [code]Vector3(minf(x, with.x), minf(y, with.y), minf(z, with.z))[/code].
</description>
</method>
<method name="min_axis_index" qualifiers="const">
<return type="int" />
<description>
Returns the axis of the vector's lowest value. See [code]AXIS_*[/code] constants. If all components are equal, this method returns [constant AXIS_Z].
</description>
</method>
<method name="minf" qualifiers="const">
<return type="Vector3" />
<param index="0" name="with" type="float" />
<description>
Returns the component-wise minimum of this and [param with], equivalent to [code]Vector3(minf(x, with), minf(y, with), minf(z, with))[/code].
</description>
</method>
<method name="move_toward" qualifiers="const">
<return type="Vector3" />
<param index="0" name="to" type="Vector3" />
<param index="1" name="delta" type="float" />
<description>
Returns a new vector moved toward [param to] by the fixed [param delta] amount. Will not go past the final value.
</description>
</method>
<method name="normalized" qualifiers="const">
<return type="Vector3" />
<description>
Returns the result of scaling the vector to unit length. Equivalent to [code]v / v.length()[/code]. Returns [code](0, 0, 0)[/code] if [code]v.length() == 0[/code]. See also [method is_normalized].
[b]Note:[/b] This function may return incorrect values if the input vector length is near zero.
</description>
</method>
<method name="octahedron_decode" qualifiers="static">
<return type="Vector3" />
<param index="0" name="uv" type="Vector2" />
<description>
Returns the [Vector3] from an octahedral-compressed form created using [method octahedron_encode] (stored as a [Vector2]).
</description>
</method>
<method name="octahedron_encode" qualifiers="const">
<return type="Vector2" />
<description>
Returns the octahedral-encoded (oct32) form of this [Vector3] as a [Vector2]. Since a [Vector2] occupies 1/3 less memory compared to [Vector3], this form of compression can be used to pass greater amounts of [method normalized] [Vector3]s without increasing storage or memory requirements. See also [method octahedron_decode].
[b]Note:[/b] [method octahedron_encode] can only be used for [method normalized] vectors. [method octahedron_encode] does [i]not[/i] check whether this [Vector3] is normalized, and will return a value that does not decompress to the original value if the [Vector3] is not normalized.
[b]Note:[/b] Octahedral compression is [i]lossy[/i], although visual differences are rarely perceptible in real world scenarios.
</description>
</method>
<method name="outer" qualifiers="const">
<return type="Basis" />
<param index="0" name="with" type="Vector3" />
<description>
Returns the outer product with [param with].
</description>
</method>
<method name="posmod" qualifiers="const">
<return type="Vector3" />
<param index="0" name="mod" type="float" />
<description>
Returns a vector composed of the [method @GlobalScope.fposmod] of this vector's components and [param mod].
</description>
</method>
<method name="posmodv" qualifiers="const">
<return type="Vector3" />
<param index="0" name="modv" type="Vector3" />
<description>
Returns a vector composed of the [method @GlobalScope.fposmod] of this vector's components and [param modv]'s components.
</description>
</method>
<method name="project" qualifiers="const">
<return type="Vector3" />
<param index="0" name="b" type="Vector3" />
<description>
Returns a new vector resulting from projecting this vector onto the given vector [param b]. The resulting new vector is parallel to [param b]. See also [method slide].
[b]Note:[/b] If the vector [param b] is a zero vector, the components of the resulting new vector will be [constant @GDScript.NAN].
</description>
</method>
<method name="reflect" qualifiers="const">
<return type="Vector3" />
<param index="0" name="n" type="Vector3" />
<description>
Returns the result of reflecting the vector through a plane defined by the given normal vector [param n].
[b]Note:[/b] [method reflect] differs from what other engines and frameworks call [code skip-lint]reflect()[/code]. In other engines, [code skip-lint]reflect()[/code] returns the result of the vector reflected by the given plane. The reflection thus passes through the given normal. While in Godot the reflection passes through the plane and can be thought of as bouncing off the normal. See also [method bounce] which does what most engines call [code skip-lint]reflect()[/code].
</description>
</method>
<method name="rotated" qualifiers="const">
<return type="Vector3" />
<param index="0" name="axis" type="Vector3" />
<param index="1" name="angle" type="float" />
<description>
Returns the result of rotating this vector around a given axis by [param angle] (in radians). The axis must be a normalized vector. See also [method @GlobalScope.deg_to_rad].
</description>
</method>
<method name="round" qualifiers="const">
<return type="Vector3" />
<description>
Returns a new vector with all components rounded to the nearest integer, with halfway cases rounded away from zero.
</description>
</method>
<method name="sign" qualifiers="const">
<return type="Vector3" />
<description>
Returns a new vector with each component set to [code]1.0[/code] if it's positive, [code]-1.0[/code] if it's negative, and [code]0.0[/code] if it's zero. The result is identical to calling [method @GlobalScope.sign] on each component.
</description>
</method>
<method name="signed_angle_to" qualifiers="const">
<return type="float" />
<param index="0" name="to" type="Vector3" />
<param index="1" name="axis" type="Vector3" />
<description>
Returns the signed angle to the given vector, in radians. The sign of the angle is positive in a counter-clockwise direction and negative in a clockwise direction when viewed from the side specified by the [param axis].
</description>
</method>
<method name="slerp" qualifiers="const" keywords="interpolate">
<return type="Vector3" />
<param index="0" name="to" type="Vector3" />
<param index="1" name="weight" type="float" />
<description>
Returns the result of spherical linear interpolation between this vector and [param to], by amount [param weight]. [param weight] is on the range of 0.0 to 1.0, representing the amount of interpolation.
This method also handles interpolating the lengths if the input vectors have different lengths. For the special case of one or both input vectors having zero length, this method behaves like [method lerp].
</description>
</method>
<method name="slide" qualifiers="const">
<return type="Vector3" />
<param index="0" name="n" type="Vector3" />
<description>
Returns a new vector resulting from sliding this vector along a plane with normal [param n]. The resulting new vector is perpendicular to [param n], and is equivalent to this vector minus its projection on [param n]. See also [method project].
[b]Note:[/b] The vector [param n] must be normalized. See also [method normalized].
</description>
</method>
<method name="snapped" qualifiers="const">
<return type="Vector3" />
<param index="0" name="step" type="Vector3" />
<description>
Returns a new vector with each component snapped to the nearest multiple of the corresponding component in [param step]. This can also be used to round the components to an arbitrary number of decimals.
</description>
</method>
<method name="snappedf" qualifiers="const">
<return type="Vector3" />
<param index="0" name="step" type="float" />
<description>
Returns a new vector with each component snapped to the nearest multiple of [param step]. This can also be used to round the components to an arbitrary number of decimals.
</description>
</method>
</methods>
<members>
<member name="x" type="float" setter="" getter="" default="0.0">
The vector's X component. Also accessible by using the index position [code][0][/code].
</member>
<member name="y" type="float" setter="" getter="" default="0.0">
The vector's Y component. Also accessible by using the index position [code][1][/code].
</member>
<member name="z" type="float" setter="" getter="" default="0.0">
The vector's Z component. Also accessible by using the index position [code][2][/code].
</member>
</members>
<constants>
<constant name="AXIS_X" value="0" enum="Axis">
Enumerated value for the X axis. Returned by [method max_axis_index] and [method min_axis_index].
</constant>
<constant name="AXIS_Y" value="1" enum="Axis">
Enumerated value for the Y axis. Returned by [method max_axis_index] and [method min_axis_index].
</constant>
<constant name="AXIS_Z" value="2" enum="Axis">
Enumerated value for the Z axis. Returned by [method max_axis_index] and [method min_axis_index].
</constant>
<constant name="ZERO" value="Vector3(0, 0, 0)">
Zero vector, a vector with all components set to [code]0[/code].
</constant>
<constant name="ONE" value="Vector3(1, 1, 1)">
One vector, a vector with all components set to [code]1[/code].
</constant>
<constant name="INF" value="Vector3(inf, inf, inf)">
Infinity vector, a vector with all components set to [constant @GDScript.INF].
</constant>
<constant name="LEFT" value="Vector3(-1, 0, 0)">
Left unit vector. Represents the local direction of left, and the global direction of west.
</constant>
<constant name="RIGHT" value="Vector3(1, 0, 0)">
Right unit vector. Represents the local direction of right, and the global direction of east.
</constant>
<constant name="UP" value="Vector3(0, 1, 0)">
Up unit vector.
</constant>
<constant name="DOWN" value="Vector3(0, -1, 0)">
Down unit vector.
</constant>
<constant name="FORWARD" value="Vector3(0, 0, -1)">
Forward unit vector. Represents the local direction of forward, and the global direction of north. Keep in mind that the forward direction for lights, cameras, etc is different from 3D assets like characters, which face towards the camera by convention. Use [constant Vector3.MODEL_FRONT] and similar constants when working in 3D asset space.
</constant>
<constant name="BACK" value="Vector3(0, 0, 1)">
Back unit vector. Represents the local direction of back, and the global direction of south.
</constant>
<constant name="MODEL_LEFT" value="Vector3(1, 0, 0)">
Unit vector pointing towards the left side of imported 3D assets.
</constant>
<constant name="MODEL_RIGHT" value="Vector3(-1, 0, 0)">
Unit vector pointing towards the right side of imported 3D assets.
</constant>
<constant name="MODEL_TOP" value="Vector3(0, 1, 0)">
Unit vector pointing towards the top side (up) of imported 3D assets.
</constant>
<constant name="MODEL_BOTTOM" value="Vector3(0, -1, 0)">
Unit vector pointing towards the bottom side (down) of imported 3D assets.
</constant>
<constant name="MODEL_FRONT" value="Vector3(0, 0, 1)">
Unit vector pointing towards the front side (facing forward) of imported 3D assets.
</constant>
<constant name="MODEL_REAR" value="Vector3(0, 0, -1)">
Unit vector pointing towards the rear side (back) of imported 3D assets.
</constant>
</constants>
<operators>
<operator name="operator !=">
<return type="bool" />
<param index="0" name="right" type="Vector3" />
<description>
Returns [code]true[/code] if the vectors are not equal.
[b]Note:[/b] Due to floating-point precision errors, consider using [method is_equal_approx] instead, which is more reliable.
[b]Note:[/b] Vectors with [constant @GDScript.NAN] elements don't behave the same as other vectors. Therefore, the results from this operator may not be accurate if NaNs are included.
</description>
</operator>
<operator name="operator *">
<return type="Vector3" />
<param index="0" name="right" type="Basis" />
<description>
Inversely transforms (multiplies) the [Vector3] by the given [Basis] matrix, under the assumption that the basis is orthonormal (i.e. rotation/reflection is fine, scaling/skew is not).
[code]vector * basis[/code] is equivalent to [code]basis.transposed() * vector[/code]. See [method Basis.transposed].
For transforming by inverse of a non-orthonormal basis (e.g. with scaling) [code]basis.inverse() * vector[/code] can be used instead. See [method Basis.inverse].
</description>
</operator>
<operator name="operator *">
<return type="Vector3" />
<param index="0" name="right" type="Quaternion" />
<description>
Inversely transforms (multiplies) the [Vector3] by the given [Quaternion].
[code]vector * quaternion[/code] is equivalent to [code]quaternion.inverse() * vector[/code]. See [method Quaternion.inverse].
</description>
</operator>
<operator name="operator *">
<return type="Vector3" />
<param index="0" name="right" type="Transform3D" />
<description>
Inversely transforms (multiplies) the [Vector3] by the given [Transform3D] transformation matrix, under the assumption that the transformation basis is orthonormal (i.e. rotation/reflection is fine, scaling/skew is not).
[code]vector * transform[/code] is equivalent to [code]transform.inverse() * vector[/code]. See [method Transform3D.inverse].
For transforming by inverse of an affine transformation (e.g. with scaling) [code]transform.affine_inverse() * vector[/code] can be used instead. See [method Transform3D.affine_inverse].
</description>
</operator>
<operator name="operator *">
<return type="Vector3" />
<param index="0" name="right" type="Vector3" />
<description>
Multiplies each component of the [Vector3] by the components of the given [Vector3].
[codeblock]
print(Vector3(10, 20, 30) * Vector3(3, 4, 5)) # Prints (30.0, 80.0, 150.0)
[/codeblock]
</description>
</operator>
<operator name="operator *">
<return type="Vector3" />
<param index="0" name="right" type="float" />
<description>
Multiplies each component of the [Vector3] by the given [float].
</description>
</operator>
<operator name="operator *">
<return type="Vector3" />
<param index="0" name="right" type="int" />
<description>
Multiplies each component of the [Vector3] by the given [int].
</description>
</operator>
<operator name="operator +">
<return type="Vector3" />
<param index="0" name="right" type="Vector3" />
<description>
Adds each component of the [Vector3] by the components of the given [Vector3].
[codeblock]
print(Vector3(10, 20, 30) + Vector3(3, 4, 5)) # Prints (13.0, 24.0, 35.0)
[/codeblock]
</description>
</operator>
<operator name="operator -">
<return type="Vector3" />
<param index="0" name="right" type="Vector3" />
<description>
Subtracts each component of the [Vector3] by the components of the given [Vector3].
[codeblock]
print(Vector3(10, 20, 30) - Vector3(3, 4, 5)) # Prints (7.0, 16.0, 25.0)
[/codeblock]
</description>
</operator>
<operator name="operator /">
<return type="Vector3" />
<param index="0" name="right" type="Vector3" />
<description>
Divides each component of the [Vector3] by the components of the given [Vector3].
[codeblock]
print(Vector3(10, 20, 30) / Vector3(2, 5, 3)) # Prints (5.0, 4.0, 10.0)
[/codeblock]
</description>
</operator>
<operator name="operator /">
<return type="Vector3" />
<param index="0" name="right" type="float" />
<description>
Divides each component of the [Vector3] by the given [float].
</description>
</operator>
<operator name="operator /">
<return type="Vector3" />
<param index="0" name="right" type="int" />
<description>
Divides each component of the [Vector3] by the given [int].
</description>
</operator>
<operator name="operator <">
<return type="bool" />
<param index="0" name="right" type="Vector3" />
<description>
Compares two [Vector3] vectors by first checking if the X value of the left vector is less than the X value of the [param right] vector. If the X values are exactly equal, then it repeats this check with the Y values of the two vectors, and then with the Z values. This operator is useful for sorting vectors.
[b]Note:[/b] Vectors with [constant @GDScript.NAN] elements don't behave the same as other vectors. Therefore, the results from this operator may not be accurate if NaNs are included.
</description>
</operator>
<operator name="operator <=">
<return type="bool" />
<param index="0" name="right" type="Vector3" />
<description>
Compares two [Vector3] vectors by first checking if the X value of the left vector is less than or equal to the X value of the [param right] vector. If the X values are exactly equal, then it repeats this check with the Y values of the two vectors, and then with the Z values. This operator is useful for sorting vectors.
[b]Note:[/b] Vectors with [constant @GDScript.NAN] elements don't behave the same as other vectors. Therefore, the results from this operator may not be accurate if NaNs are included.
</description>
</operator>
<operator name="operator ==">
<return type="bool" />
<param index="0" name="right" type="Vector3" />
<description>
Returns [code]true[/code] if the vectors are exactly equal.
[b]Note:[/b] Due to floating-point precision errors, consider using [method is_equal_approx] instead, which is more reliable.
[b]Note:[/b] Vectors with [constant @GDScript.NAN] elements don't behave the same as other vectors. Therefore, the results from this operator may not be accurate if NaNs are included.
</description>
</operator>
<operator name="operator >">
<return type="bool" />
<param index="0" name="right" type="Vector3" />
<description>
Compares two [Vector3] vectors by first checking if the X value of the left vector is greater than the X value of the [param right] vector. If the X values are exactly equal, then it repeats this check with the Y values of the two vectors, and then with the Z values. This operator is useful for sorting vectors.
[b]Note:[/b] Vectors with [constant @GDScript.NAN] elements don't behave the same as other vectors. Therefore, the results from this operator may not be accurate if NaNs are included.
</description>
</operator>
<operator name="operator >=">
<return type="bool" />
<param index="0" name="right" type="Vector3" />
<description>
Compares two [Vector3] vectors by first checking if the X value of the left vector is greater than or equal to the X value of the [param right] vector. If the X values are exactly equal, then it repeats this check with the Y values of the two vectors, and then with the Z values. This operator is useful for sorting vectors.
[b]Note:[/b] Vectors with [constant @GDScript.NAN] elements don't behave the same as other vectors. Therefore, the results from this operator may not be accurate if NaNs are included.
</description>
</operator>
<operator name="operator []">
<return type="float" />
<param index="0" name="index" type="int" />
<description>
Access vector components using their [param index]. [code]v[0][/code] is equivalent to [code]v.x[/code], [code]v[1][/code] is equivalent to [code]v.y[/code], and [code]v[2][/code] is equivalent to [code]v.z[/code].
</description>
</operator>
<operator name="operator unary+">
<return type="Vector3" />
<description>
Returns the same value as if the [code]+[/code] was not there. Unary [code]+[/code] does nothing, but sometimes it can make your code more readable.
</description>
</operator>
<operator name="operator unary-">
<return type="Vector3" />
<description>
Returns the negative value of the [Vector3]. This is the same as writing [code]Vector3(-v.x, -v.y, -v.z)[/code]. This operation flips the direction of the vector while keeping the same magnitude. With floats, the number zero can be either positive or negative.
</description>
</operator>
</operators>
</class>