-
-
Notifications
You must be signed in to change notification settings - Fork 21.3k
/
paged_array.h
367 lines (296 loc) · 11.1 KB
/
paged_array.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
/**************************************************************************/
/* paged_array.h */
/**************************************************************************/
/* This file is part of: */
/* GODOT ENGINE */
/* https://godotengine.org */
/**************************************************************************/
/* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */
/* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */
/* */
/* Permission is hereby granted, free of charge, to any person obtaining */
/* a copy of this software and associated documentation files (the */
/* "Software"), to deal in the Software without restriction, including */
/* without limitation the rights to use, copy, modify, merge, publish, */
/* distribute, sublicense, and/or sell copies of the Software, and to */
/* permit persons to whom the Software is furnished to do so, subject to */
/* the following conditions: */
/* */
/* The above copyright notice and this permission notice shall be */
/* included in all copies or substantial portions of the Software. */
/* */
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
/**************************************************************************/
#ifndef PAGED_ARRAY_H
#define PAGED_ARRAY_H
#include "core/os/memory.h"
#include "core/os/spin_lock.h"
#include "core/typedefs.h"
#include <type_traits>
// PagedArray is used mainly for filling a very large array from multiple threads efficiently and without causing major fragmentation
// PageArrayPool manages central page allocation in a thread safe matter
template <class T>
class PagedArrayPool {
T **page_pool = nullptr;
uint32_t pages_allocated = 0;
uint32_t *available_page_pool = nullptr;
uint32_t pages_available = 0;
uint32_t page_size = 0;
SpinLock spin_lock;
public:
uint32_t alloc_page() {
spin_lock.lock();
if (unlikely(pages_available == 0)) {
uint32_t pages_used = pages_allocated;
pages_allocated++;
page_pool = (T **)memrealloc(page_pool, sizeof(T *) * pages_allocated);
available_page_pool = (uint32_t *)memrealloc(available_page_pool, sizeof(uint32_t) * pages_allocated);
page_pool[pages_used] = (T *)memalloc(sizeof(T) * page_size);
available_page_pool[0] = pages_used;
pages_available++;
}
pages_available--;
uint32_t page = available_page_pool[pages_available];
spin_lock.unlock();
return page;
}
T *get_page(uint32_t p_page_id) {
return page_pool[p_page_id];
}
void free_page(uint32_t p_page_id) {
spin_lock.lock();
available_page_pool[pages_available] = p_page_id;
pages_available++;
spin_lock.unlock();
}
uint32_t get_page_size_shift() const {
return get_shift_from_power_of_2(page_size);
}
uint32_t get_page_size_mask() const {
return page_size - 1;
}
void reset() {
ERR_FAIL_COND(pages_available < pages_allocated);
if (pages_allocated) {
for (uint32_t i = 0; i < pages_allocated; i++) {
memfree(page_pool[i]);
}
memfree(page_pool);
memfree(available_page_pool);
page_pool = nullptr;
available_page_pool = nullptr;
pages_allocated = 0;
pages_available = 0;
}
}
bool is_configured() const {
return page_size > 0;
}
void configure(uint32_t p_page_size) {
ERR_FAIL_COND(page_pool != nullptr); // Safety check.
ERR_FAIL_COND(p_page_size == 0);
page_size = nearest_power_of_2_templated(p_page_size);
}
PagedArrayPool(uint32_t p_page_size = 4096) { // power of 2 recommended because of alignment with OS page sizes. Even if element is bigger, its still a multiple and get rounded amount of pages
configure(p_page_size);
}
~PagedArrayPool() {
ERR_FAIL_COND_MSG(pages_available < pages_allocated, "Pages in use exist at exit in PagedArrayPool");
reset();
}
};
// PageArray is a local array that is optimized to grow in place, then be cleared often.
// It does so by allocating pages from a PagedArrayPool.
// It is safe to use multiple PagedArrays from different threads, sharing a single PagedArrayPool
template <class T>
class PagedArray {
PagedArrayPool<T> *page_pool = nullptr;
T **page_data = nullptr;
uint32_t *page_ids = nullptr;
uint32_t max_pages_used = 0;
uint32_t page_size_shift = 0;
uint32_t page_size_mask = 0;
uint64_t count = 0;
_FORCE_INLINE_ uint32_t _get_pages_in_use() const {
if (count == 0) {
return 0;
} else {
return ((count - 1) >> page_size_shift) + 1;
}
}
void _grow_page_array() {
//no more room in the page array to put the new page, make room
if (max_pages_used == 0) {
max_pages_used = 1;
} else {
max_pages_used *= 2; // increase in powers of 2 to keep allocations to minimum
}
page_data = (T **)memrealloc(page_data, sizeof(T *) * max_pages_used);
page_ids = (uint32_t *)memrealloc(page_ids, sizeof(uint32_t) * max_pages_used);
}
public:
_FORCE_INLINE_ const T &operator[](uint64_t p_index) const {
CRASH_BAD_UNSIGNED_INDEX(p_index, count);
uint32_t page = p_index >> page_size_shift;
uint32_t offset = p_index & page_size_mask;
return page_data[page][offset];
}
_FORCE_INLINE_ T &operator[](uint64_t p_index) {
CRASH_BAD_UNSIGNED_INDEX(p_index, count);
uint32_t page = p_index >> page_size_shift;
uint32_t offset = p_index & page_size_mask;
return page_data[page][offset];
}
_FORCE_INLINE_ void push_back(const T &p_value) {
uint32_t remainder = count & page_size_mask;
if (unlikely(remainder == 0)) {
// at 0, so time to request a new page
uint32_t page_count = _get_pages_in_use();
uint32_t new_page_count = page_count + 1;
if (unlikely(new_page_count > max_pages_used)) {
ERR_FAIL_NULL(page_pool); // Safety check.
_grow_page_array(); //keep out of inline
}
uint32_t page_id = page_pool->alloc_page();
page_data[page_count] = page_pool->get_page(page_id);
page_ids[page_count] = page_id;
}
// place the new value
uint32_t page = count >> page_size_shift;
uint32_t offset = count & page_size_mask;
if (!std::is_trivially_constructible<T>::value) {
memnew_placement(&page_data[page][offset], T(p_value));
} else {
page_data[page][offset] = p_value;
}
count++;
}
_FORCE_INLINE_ void pop_back() {
ERR_FAIL_COND(count == 0);
if (!std::is_trivially_destructible<T>::value) {
uint32_t page = (count - 1) >> page_size_shift;
uint32_t offset = (count - 1) & page_size_mask;
page_data[page][offset].~T();
}
uint32_t remainder = count & page_size_mask;
if (unlikely(remainder == 1)) {
// one element remained, so page must be freed.
uint32_t last_page = _get_pages_in_use() - 1;
page_pool->free_page(page_ids[last_page]);
}
count--;
}
void clear() {
//destruct if needed
if (!std::is_trivially_destructible<T>::value) {
for (uint64_t i = 0; i < count; i++) {
uint32_t page = i >> page_size_shift;
uint32_t offset = i & page_size_mask;
page_data[page][offset].~T();
}
}
//return the pages to the pagepool, so they can be used by another array eventually
uint32_t pages_used = _get_pages_in_use();
for (uint32_t i = 0; i < pages_used; i++) {
page_pool->free_page(page_ids[i]);
}
count = 0;
//note we leave page_data and page_indices intact for next use. If you really want to clear them call reset()
}
void reset() {
clear();
if (page_data) {
memfree(page_data);
memfree(page_ids);
page_data = nullptr;
page_ids = nullptr;
max_pages_used = 0;
}
}
// This takes the pages from a source array and merges them to this one
// resulting order is undefined, but content is merged very efficiently,
// making it ideal to fill content on several threads to later join it.
void merge_unordered(PagedArray<T> &p_array) {
ERR_FAIL_COND(page_pool != p_array.page_pool);
uint32_t remainder = count & page_size_mask;
T *remainder_page = nullptr;
uint32_t remainder_page_id = 0;
if (remainder > 0) {
uint32_t last_page = _get_pages_in_use() - 1;
remainder_page = page_data[last_page];
remainder_page_id = page_ids[last_page];
}
count -= remainder;
uint32_t src_page_index = 0;
uint32_t page_size = page_size_mask + 1;
while (p_array.count > 0) {
uint32_t page_count = _get_pages_in_use();
uint32_t new_page_count = page_count + 1;
if (unlikely(new_page_count > max_pages_used)) {
_grow_page_array(); //keep out of inline
}
page_data[page_count] = p_array.page_data[src_page_index];
page_ids[page_count] = p_array.page_ids[src_page_index];
uint32_t take = MIN(p_array.count, page_size); //pages to take away
p_array.count -= take;
count += take;
src_page_index++;
}
//handle the remainder page if exists
if (remainder_page) {
uint32_t new_remainder = count & page_size_mask;
if (new_remainder > 0) {
//must merge old remainder with new remainder
T *dst_page = page_data[_get_pages_in_use() - 1];
uint32_t to_copy = MIN(page_size - new_remainder, remainder);
for (uint32_t i = 0; i < to_copy; i++) {
if (!std::is_trivially_constructible<T>::value) {
memnew_placement(&dst_page[i + new_remainder], T(remainder_page[i + remainder - to_copy]));
} else {
dst_page[i + new_remainder] = remainder_page[i + remainder - to_copy];
}
if (!std::is_trivially_destructible<T>::value) {
remainder_page[i + remainder - to_copy].~T();
}
}
remainder -= to_copy; //subtract what was copied from remainder
count += to_copy; //add what was copied to the count
if (remainder == 0) {
//entire remainder copied, let go of remainder page
page_pool->free_page(remainder_page_id);
remainder_page = nullptr;
}
}
if (remainder > 0) {
//there is still remainder, append it
uint32_t page_count = _get_pages_in_use();
uint32_t new_page_count = page_count + 1;
if (unlikely(new_page_count > max_pages_used)) {
_grow_page_array(); //keep out of inline
}
page_data[page_count] = remainder_page;
page_ids[page_count] = remainder_page_id;
count += remainder;
}
}
}
_FORCE_INLINE_ uint64_t size() const {
return count;
}
void set_page_pool(PagedArrayPool<T> *p_page_pool) {
ERR_FAIL_COND(max_pages_used > 0); // Safety check.
page_pool = p_page_pool;
page_size_mask = page_pool->get_page_size_mask();
page_size_shift = page_pool->get_page_size_shift();
}
~PagedArray() {
reset();
}
};
#endif // PAGED_ARRAY_H