From e30c858c5d959c9216006839bed00a30a6977d6b Mon Sep 17 00:00:00 2001 From: Aaron Franke Date: Mon, 19 Sep 2022 18:22:29 -0500 Subject: [PATCH 1/2] Rename Transform2D "elements" to "columns" https://github.com/godotengine/godot/pull/60627 --- include/godot_cpp/variant/transform2d.hpp | 82 +++++++++---------- src/variant/rect2.cpp | 32 ++++---- src/variant/transform2d.cpp | 96 +++++++++++------------ 3 files changed, 105 insertions(+), 105 deletions(-) diff --git a/include/godot_cpp/variant/transform2d.hpp b/include/godot_cpp/variant/transform2d.hpp index c87ffbadd..be816875b 100644 --- a/include/godot_cpp/variant/transform2d.hpp +++ b/include/godot_cpp/variant/transform2d.hpp @@ -45,32 +45,32 @@ class Transform2D { friend class Variant; public: - // Warning #1: basis of Transform2D is stored differently from Basis. In terms of elements array, the basis matrix looks like "on paper": - // M = (elements[0][0] elements[1][0]) - // (elements[0][1] elements[1][1]) - // This is such that the columns, which can be interpreted as basis vectors of the coordinate system "painted" on the object, can be accessed as elements[i]. - // Note that this is the opposite of the indices in mathematical texts, meaning: $M_{12}$ in a math book corresponds to elements[1][0] here. + // Warning #1: basis of Transform2D is stored differently from Basis. In terms of columns array, the basis matrix looks like "on paper": + // M = (columns[0][0] columns[1][0]) + // (columns[0][1] columns[1][1]) + // This is such that the columns, which can be interpreted as basis vectors of the coordinate system "painted" on the object, can be accessed as columns[i]. + // Note that this is the opposite of the indices in mathematical texts, meaning: $M_{12}$ in a math book corresponds to columns[1][0] here. // This requires additional care when working with explicit indices. // See https://en.wikipedia.org/wiki/Row-_and_column-major_order for further reading. // Warning #2: 2D be aware that unlike 3D code, 2D code uses a left-handed coordinate system: Y-axis points down, // and angle is measure from +X to +Y in a clockwise-fashion. - Vector2 elements[3]; + Vector2 columns[3]; - inline real_t tdotx(const Vector2 &v) const { return elements[0][0] * v.x + elements[1][0] * v.y; } - inline real_t tdoty(const Vector2 &v) const { return elements[0][1] * v.x + elements[1][1] * v.y; } + inline real_t tdotx(const Vector2 &v) const { return columns[0][0] * v.x + columns[1][0] * v.y; } + inline real_t tdoty(const Vector2 &v) const { return columns[0][1] * v.x + columns[1][1] * v.y; } - const Vector2 &operator[](int p_idx) const { return elements[p_idx]; } - Vector2 &operator[](int p_idx) { return elements[p_idx]; } + const Vector2 &operator[](int p_idx) const { return columns[p_idx]; } + Vector2 &operator[](int p_idx) { return columns[p_idx]; } inline Vector2 get_axis(int p_axis) const { ERR_FAIL_INDEX_V(p_axis, 3, Vector2()); - return elements[p_axis]; + return columns[p_axis]; } inline void set_axis(int p_axis, const Vector2 &p_vec) { ERR_FAIL_INDEX(p_axis, 3); - elements[p_axis] = p_vec; + columns[p_axis] = p_vec; } void invert(); @@ -97,8 +97,8 @@ class Transform2D { Size2 get_scale() const; void set_scale(const Size2 &p_scale); - inline const Vector2 &get_origin() const { return elements[2]; } - inline void set_origin(const Vector2 &p_origin) { elements[2] = p_origin; } + inline const Vector2 &get_origin() const { return columns[2]; } + inline void set_origin(const Vector2 &p_origin) { columns[2] = p_origin; } Transform2D scaled(const Size2 &p_scale) const; Transform2D basis_scaled(const Size2 &p_scale) const; @@ -131,24 +131,24 @@ class Transform2D { operator String() const; Transform2D(real_t xx, real_t xy, real_t yx, real_t yy, real_t ox, real_t oy) { - elements[0][0] = xx; - elements[0][1] = xy; - elements[1][0] = yx; - elements[1][1] = yy; - elements[2][0] = ox; - elements[2][1] = oy; + columns[0][0] = xx; + columns[0][1] = xy; + columns[1][0] = yx; + columns[1][1] = yy; + columns[2][0] = ox; + columns[2][1] = oy; } Transform2D(const Vector2 &p_x, const Vector2 &p_y, const Vector2 &p_origin) { - elements[0] = p_x; - elements[1] = p_y; - elements[2] = p_origin; + columns[0] = p_x; + columns[1] = p_y; + columns[2] = p_origin; } Transform2D(real_t p_rot, const Vector2 &p_pos); Transform2D() { - elements[0][0] = 1.0; - elements[1][1] = 1.0; + columns[0][0] = 1.0; + columns[1][1] = 1.0; } }; @@ -160,28 +160,28 @@ Vector2 Transform2D::basis_xform(const Vector2 &p_vec) const { Vector2 Transform2D::basis_xform_inv(const Vector2 &p_vec) const { return Vector2( - elements[0].dot(p_vec), - elements[1].dot(p_vec)); + columns[0].dot(p_vec), + columns[1].dot(p_vec)); } Vector2 Transform2D::xform(const Vector2 &p_vec) const { return Vector2( tdotx(p_vec), tdoty(p_vec)) + - elements[2]; + columns[2]; } Vector2 Transform2D::xform_inv(const Vector2 &p_vec) const { - Vector2 v = p_vec - elements[2]; + Vector2 v = p_vec - columns[2]; return Vector2( - elements[0].dot(v), - elements[1].dot(v)); + columns[0].dot(v), + columns[1].dot(v)); } Rect2 Transform2D::xform(const Rect2 &p_rect) const { - Vector2 x = elements[0] * p_rect.size.x; - Vector2 y = elements[1] * p_rect.size.y; + Vector2 x = columns[0] * p_rect.size.x; + Vector2 y = columns[1] * p_rect.size.y; Vector2 pos = xform(p_rect.position); Rect2 new_rect; @@ -193,17 +193,17 @@ Rect2 Transform2D::xform(const Rect2 &p_rect) const { } void Transform2D::set_rotation_and_scale(real_t p_rot, const Size2 &p_scale) { - elements[0][0] = Math::cos(p_rot) * p_scale.x; - elements[1][1] = Math::cos(p_rot) * p_scale.y; - elements[1][0] = -Math::sin(p_rot) * p_scale.y; - elements[0][1] = Math::sin(p_rot) * p_scale.x; + columns[0][0] = Math::cos(p_rot) * p_scale.x; + columns[1][1] = Math::cos(p_rot) * p_scale.y; + columns[1][0] = -Math::sin(p_rot) * p_scale.y; + columns[0][1] = Math::sin(p_rot) * p_scale.x; } void Transform2D::set_rotation_scale_and_skew(real_t p_rot, const Size2 &p_scale, float p_skew) { - elements[0][0] = Math::cos(p_rot) * p_scale.x; - elements[1][1] = Math::cos(p_rot + p_skew) * p_scale.y; - elements[1][0] = -Math::sin(p_rot + p_skew) * p_scale.y; - elements[0][1] = Math::sin(p_rot) * p_scale.x; + columns[0][0] = Math::cos(p_rot) * p_scale.x; + columns[1][1] = Math::cos(p_rot + p_skew) * p_scale.y; + columns[1][0] = -Math::sin(p_rot + p_skew) * p_scale.y; + columns[0][1] = Math::sin(p_rot) * p_scale.x; } Rect2 Transform2D::xform_inv(const Rect2 &p_rect) const { diff --git a/src/variant/rect2.cpp b/src/variant/rect2.cpp index 3148f841f..53f06c6b7 100644 --- a/src/variant/rect2.cpp +++ b/src/variant/rect2.cpp @@ -193,33 +193,33 @@ bool Rect2::intersects_transformed(const Transform2D &p_xform, const Rect2 &p_re Vector2(position.x + size.x, position.y + size.y), }; - real_t maxa = p_xform.elements[0].dot(xf_points2[0]); + real_t maxa = p_xform.columns[0].dot(xf_points2[0]); real_t mina = maxa; - real_t dp = p_xform.elements[0].dot(xf_points2[1]); + real_t dp = p_xform.columns[0].dot(xf_points2[1]); maxa = Math::max(dp, maxa); mina = Math::min(dp, mina); - dp = p_xform.elements[0].dot(xf_points2[2]); + dp = p_xform.columns[0].dot(xf_points2[2]); maxa = Math::max(dp, maxa); mina = Math::min(dp, mina); - dp = p_xform.elements[0].dot(xf_points2[3]); + dp = p_xform.columns[0].dot(xf_points2[3]); maxa = Math::max(dp, maxa); mina = Math::min(dp, mina); - real_t maxb = p_xform.elements[0].dot(xf_points[0]); + real_t maxb = p_xform.columns[0].dot(xf_points[0]); real_t minb = maxb; - dp = p_xform.elements[0].dot(xf_points[1]); + dp = p_xform.columns[0].dot(xf_points[1]); maxb = Math::max(dp, maxb); minb = Math::min(dp, minb); - dp = p_xform.elements[0].dot(xf_points[2]); + dp = p_xform.columns[0].dot(xf_points[2]); maxb = Math::max(dp, maxb); minb = Math::min(dp, minb); - dp = p_xform.elements[0].dot(xf_points[3]); + dp = p_xform.columns[0].dot(xf_points[3]); maxb = Math::max(dp, maxb); minb = Math::min(dp, minb); @@ -230,33 +230,33 @@ bool Rect2::intersects_transformed(const Transform2D &p_xform, const Rect2 &p_re return false; } - maxa = p_xform.elements[1].dot(xf_points2[0]); + maxa = p_xform.columns[1].dot(xf_points2[0]); mina = maxa; - dp = p_xform.elements[1].dot(xf_points2[1]); + dp = p_xform.columns[1].dot(xf_points2[1]); maxa = Math::max(dp, maxa); mina = Math::min(dp, mina); - dp = p_xform.elements[1].dot(xf_points2[2]); + dp = p_xform.columns[1].dot(xf_points2[2]); maxa = Math::max(dp, maxa); mina = Math::min(dp, mina); - dp = p_xform.elements[1].dot(xf_points2[3]); + dp = p_xform.columns[1].dot(xf_points2[3]); maxa = Math::max(dp, maxa); mina = Math::min(dp, mina); - maxb = p_xform.elements[1].dot(xf_points[0]); + maxb = p_xform.columns[1].dot(xf_points[0]); minb = maxb; - dp = p_xform.elements[1].dot(xf_points[1]); + dp = p_xform.columns[1].dot(xf_points[1]); maxb = Math::max(dp, maxb); minb = Math::min(dp, minb); - dp = p_xform.elements[1].dot(xf_points[2]); + dp = p_xform.columns[1].dot(xf_points[2]); maxb = Math::max(dp, maxb); minb = Math::min(dp, minb); - dp = p_xform.elements[1].dot(xf_points[3]); + dp = p_xform.columns[1].dot(xf_points[3]); maxb = Math::max(dp, maxb); minb = Math::min(dp, minb); diff --git a/src/variant/transform2d.cpp b/src/variant/transform2d.cpp index fb13a7d1e..d2c996595 100644 --- a/src/variant/transform2d.cpp +++ b/src/variant/transform2d.cpp @@ -35,8 +35,8 @@ namespace godot { void Transform2D::invert() { // FIXME: this function assumes the basis is a rotation matrix, with no scaling. // Transform2D::affine_inverse can handle matrices with scaling, so GDScript should eventually use that. - SWAP(elements[0][1], elements[1][0]); - elements[2] = basis_xform(-elements[2]); + SWAP(columns[0][1], columns[1][0]); + columns[2] = basis_xform(-columns[2]); } Transform2D Transform2D::inverse() const { @@ -52,11 +52,11 @@ void Transform2D::affine_invert() { #endif real_t idet = 1.0 / det; - SWAP(elements[0][0], elements[1][1]); - elements[0] *= Vector2(idet, -idet); - elements[1] *= Vector2(-idet, idet); + SWAP(columns[0][0], columns[1][1]); + columns[0] *= Vector2(idet, -idet); + columns[1] *= Vector2(-idet, idet); - elements[2] = basis_xform(-elements[2]); + columns[2] = basis_xform(-columns[2]); } Transform2D Transform2D::affine_inverse() const { @@ -71,61 +71,61 @@ void Transform2D::rotate(real_t p_phi) { real_t Transform2D::get_skew() const { real_t det = basis_determinant(); - return Math::acos(elements[0].normalized().dot(Math::sign(det) * elements[1].normalized())) - Math_PI * 0.5; + return Math::acos(columns[0].normalized().dot(Math::sign(det) * columns[1].normalized())) - Math_PI * 0.5; } void Transform2D::set_skew(float p_angle) { real_t det = basis_determinant(); - elements[1] = Math::sign(det) * elements[0].rotated((Math_PI * 0.5 + p_angle)).normalized() * elements[1].length(); + columns[1] = Math::sign(det) * columns[0].rotated((Math_PI * 0.5 + p_angle)).normalized() * columns[1].length(); } real_t Transform2D::get_rotation() const { - return Math::atan2(elements[0].y, elements[0].x); + return Math::atan2(columns[0].y, columns[0].x); } void Transform2D::set_rotation(real_t p_rot) { Size2 scale = get_scale(); real_t cr = Math::cos(p_rot); real_t sr = Math::sin(p_rot); - elements[0][0] = cr; - elements[0][1] = sr; - elements[1][0] = -sr; - elements[1][1] = cr; + columns[0][0] = cr; + columns[0][1] = sr; + columns[1][0] = -sr; + columns[1][1] = cr; set_scale(scale); } Transform2D::Transform2D(real_t p_rot, const Vector2 &p_pos) { real_t cr = Math::cos(p_rot); real_t sr = Math::sin(p_rot); - elements[0][0] = cr; - elements[0][1] = sr; - elements[1][0] = -sr; - elements[1][1] = cr; - elements[2] = p_pos; + columns[0][0] = cr; + columns[0][1] = sr; + columns[1][0] = -sr; + columns[1][1] = cr; + columns[2] = p_pos; } Size2 Transform2D::get_scale() const { real_t det_sign = Math::sign(basis_determinant()); - return Size2(elements[0].length(), det_sign * elements[1].length()); + return Size2(columns[0].length(), det_sign * columns[1].length()); } void Transform2D::set_scale(const Size2 &p_scale) { - elements[0].normalize(); - elements[1].normalize(); - elements[0] *= p_scale.x; - elements[1] *= p_scale.y; + columns[0].normalize(); + columns[1].normalize(); + columns[0] *= p_scale.x; + columns[1] *= p_scale.y; } void Transform2D::scale(const Size2 &p_scale) { scale_basis(p_scale); - elements[2] *= p_scale; + columns[2] *= p_scale; } void Transform2D::scale_basis(const Size2 &p_scale) { - elements[0][0] *= p_scale.x; - elements[0][1] *= p_scale.y; - elements[1][0] *= p_scale.x; - elements[1][1] *= p_scale.y; + columns[0][0] *= p_scale.x; + columns[0][1] *= p_scale.y; + columns[1][0] *= p_scale.x; + columns[1][1] *= p_scale.y; } void Transform2D::translate(real_t p_tx, real_t p_ty) { @@ -133,21 +133,21 @@ void Transform2D::translate(real_t p_tx, real_t p_ty) { } void Transform2D::translate(const Vector2 &p_translation) { - elements[2] += basis_xform(p_translation); + columns[2] += basis_xform(p_translation); } void Transform2D::orthonormalize() { // Gram-Schmidt Process - Vector2 x = elements[0]; - Vector2 y = elements[1]; + Vector2 x = columns[0]; + Vector2 y = columns[1]; x.normalize(); y = (y - x * (x.dot(y))); y.normalize(); - elements[0] = x; - elements[1] = y; + columns[0] = x; + columns[1] = y; } Transform2D Transform2D::orthonormalized() const { @@ -157,12 +157,12 @@ Transform2D Transform2D::orthonormalized() const { } bool Transform2D::is_equal_approx(const Transform2D &p_transform) const { - return elements[0].is_equal_approx(p_transform.elements[0]) && elements[1].is_equal_approx(p_transform.elements[1]) && elements[2].is_equal_approx(p_transform.elements[2]); + return columns[0].is_equal_approx(p_transform.columns[0]) && columns[1].is_equal_approx(p_transform.columns[1]) && columns[2].is_equal_approx(p_transform.columns[2]); } bool Transform2D::operator==(const Transform2D &p_transform) const { for (int i = 0; i < 3; i++) { - if (elements[i] != p_transform.elements[i]) { + if (columns[i] != p_transform.columns[i]) { return false; } } @@ -172,7 +172,7 @@ bool Transform2D::operator==(const Transform2D &p_transform) const { bool Transform2D::operator!=(const Transform2D &p_transform) const { for (int i = 0; i < 3; i++) { - if (elements[i] != p_transform.elements[i]) { + if (columns[i] != p_transform.columns[i]) { return true; } } @@ -181,19 +181,19 @@ bool Transform2D::operator!=(const Transform2D &p_transform) const { } void Transform2D::operator*=(const Transform2D &p_transform) { - elements[2] = xform(p_transform.elements[2]); + columns[2] = xform(p_transform.columns[2]); real_t x0, x1, y0, y1; - x0 = tdotx(p_transform.elements[0]); - x1 = tdoty(p_transform.elements[0]); - y0 = tdotx(p_transform.elements[1]); - y1 = tdoty(p_transform.elements[1]); + x0 = tdotx(p_transform.columns[0]); + x1 = tdoty(p_transform.columns[0]); + y0 = tdotx(p_transform.columns[1]); + y1 = tdoty(p_transform.columns[1]); - elements[0][0] = x0; - elements[0][1] = x1; - elements[1][0] = y0; - elements[1][1] = y1; + columns[0][0] = x0; + columns[0][1] = x1; + columns[1][0] = y0; + columns[1][1] = y1; } Transform2D Transform2D::operator*(const Transform2D &p_transform) const { @@ -216,7 +216,7 @@ Transform2D Transform2D::basis_scaled(const Size2 &p_scale) const { Transform2D Transform2D::untranslated() const { Transform2D copy = *this; - copy.elements[2] = Vector2(); + copy.columns[2] = Vector2(); return copy; } @@ -233,7 +233,7 @@ Transform2D Transform2D::rotated(real_t p_phi) const { } real_t Transform2D::basis_determinant() const { - return elements[0].x * elements[1].y - elements[0].y * elements[1].x; + return columns[0].x * columns[1].y - columns[0].y * columns[1].x; } Transform2D Transform2D::interpolate_with(const Transform2D &p_transform, real_t p_c) const { @@ -272,7 +272,7 @@ Transform2D Transform2D::interpolate_with(const Transform2D &p_transform, real_t } Transform2D::operator String() const { - return elements[0].operator String() + ", " + elements[1].operator String() + ", " + elements[2].operator String(); + return columns[0].operator String() + ", " + columns[1].operator String() + ", " + columns[2].operator String(); } } // namespace godot From e26a75cd0cff77b0956f1c7d98fdcbb89b08d38b Mon Sep 17 00:00:00 2001 From: Aaron Franke Date: Mon, 19 Sep 2022 18:19:03 -0500 Subject: [PATCH 2/2] Rename Basis "elements" to "rows" https://github.com/godotengine/godot/pull/60627 --- include/godot_cpp/variant/basis.hpp | 126 +++++----- include/godot_cpp/variant/transform3d.hpp | 6 +- src/variant/basis.cpp | 284 +++++++++++----------- src/variant/projection.cpp | 36 +-- 4 files changed, 226 insertions(+), 226 deletions(-) diff --git a/include/godot_cpp/variant/basis.hpp b/include/godot_cpp/variant/basis.hpp index 777c9b5c0..7e11f399b 100644 --- a/include/godot_cpp/variant/basis.hpp +++ b/include/godot_cpp/variant/basis.hpp @@ -43,17 +43,17 @@ class Basis { friend class Variant; public: - Vector3 elements[3] = { + Vector3 rows[3] = { Vector3(1, 0, 0), Vector3(0, 1, 0), Vector3(0, 0, 1) }; inline const Vector3 &operator[](int axis) const { - return elements[axis]; + return rows[axis]; } inline Vector3 &operator[](int axis) { - return elements[axis]; + return rows[axis]; } void invert(); @@ -67,14 +67,14 @@ class Basis { void from_z(const Vector3 &p_z); inline Vector3 get_axis(int p_axis) const { - // get actual basis axis (elements is transposed for performance) - return Vector3(elements[0][p_axis], elements[1][p_axis], elements[2][p_axis]); + // get actual basis axis (rows is transposed for performance) + return Vector3(rows[0][p_axis], rows[1][p_axis], rows[2][p_axis]); } inline void set_axis(int p_axis, const Vector3 &p_value) { - // get actual basis axis (elements is transposed for performance) - elements[0][p_axis] = p_value.x; - elements[1][p_axis] = p_value.y; - elements[2][p_axis] = p_value.z; + // get actual basis axis (rows is transposed for performance) + rows[0][p_axis] = p_value.x; + rows[1][p_axis] = p_value.y; + rows[2][p_axis] = p_value.z; } void rotate(const Vector3 &p_axis, real_t p_phi); @@ -143,13 +143,13 @@ class Basis { // transposed dot products inline real_t tdotx(const Vector3 &v) const { - return elements[0][0] * v[0] + elements[1][0] * v[1] + elements[2][0] * v[2]; + return rows[0][0] * v[0] + rows[1][0] * v[1] + rows[2][0] * v[2]; } inline real_t tdoty(const Vector3 &v) const { - return elements[0][1] * v[0] + elements[1][1] * v[1] + elements[2][1] * v[2]; + return rows[0][1] * v[0] + rows[1][1] * v[1] + rows[2][1] * v[2]; } inline real_t tdotz(const Vector3 &v) const { - return elements[0][2] * v[0] + elements[1][2] * v[1] + elements[2][2] * v[2]; + return rows[0][2] * v[0] + rows[1][2] * v[1] + rows[2][2] * v[2]; } bool is_equal_approx(const Basis &p_basis) const; @@ -185,15 +185,15 @@ class Basis { /* create / set */ inline void set(real_t xx, real_t xy, real_t xz, real_t yx, real_t yy, real_t yz, real_t zx, real_t zy, real_t zz) { - elements[0][0] = xx; - elements[0][1] = xy; - elements[0][2] = xz; - elements[1][0] = yx; - elements[1][1] = yy; - elements[1][2] = yz; - elements[2][0] = zx; - elements[2][1] = zy; - elements[2][2] = zz; + rows[0][0] = xx; + rows[0][1] = xy; + rows[0][2] = xz; + rows[1][0] = yx; + rows[1][1] = yy; + rows[1][2] = yz; + rows[2][0] = zx; + rows[2][1] = zy; + rows[2][2] = zz; } inline void set(const Vector3 &p_x, const Vector3 &p_y, const Vector3 &p_z) { set_axis(0, p_x); @@ -201,39 +201,39 @@ class Basis { set_axis(2, p_z); } inline Vector3 get_column(int i) const { - return Vector3(elements[0][i], elements[1][i], elements[2][i]); + return Vector3(rows[0][i], rows[1][i], rows[2][i]); } inline Vector3 get_row(int i) const { - return Vector3(elements[i][0], elements[i][1], elements[i][2]); + return Vector3(rows[i][0], rows[i][1], rows[i][2]); } inline Vector3 get_main_diagonal() const { - return Vector3(elements[0][0], elements[1][1], elements[2][2]); + return Vector3(rows[0][0], rows[1][1], rows[2][2]); } inline void set_row(int i, const Vector3 &p_row) { - elements[i][0] = p_row.x; - elements[i][1] = p_row.y; - elements[i][2] = p_row.z; + rows[i][0] = p_row.x; + rows[i][1] = p_row.y; + rows[i][2] = p_row.z; } inline void set_zero() { - elements[0].zero(); - elements[1].zero(); - elements[2].zero(); + rows[0].zero(); + rows[1].zero(); + rows[2].zero(); } inline Basis transpose_xform(const Basis &m) const { return Basis( - elements[0].x * m[0].x + elements[1].x * m[1].x + elements[2].x * m[2].x, - elements[0].x * m[0].y + elements[1].x * m[1].y + elements[2].x * m[2].y, - elements[0].x * m[0].z + elements[1].x * m[1].z + elements[2].x * m[2].z, - elements[0].y * m[0].x + elements[1].y * m[1].x + elements[2].y * m[2].x, - elements[0].y * m[0].y + elements[1].y * m[1].y + elements[2].y * m[2].y, - elements[0].y * m[0].z + elements[1].y * m[1].z + elements[2].y * m[2].z, - elements[0].z * m[0].x + elements[1].z * m[1].x + elements[2].z * m[2].x, - elements[0].z * m[0].y + elements[1].z * m[1].y + elements[2].z * m[2].y, - elements[0].z * m[0].z + elements[1].z * m[1].z + elements[2].z * m[2].z); + rows[0].x * m[0].x + rows[1].x * m[1].x + rows[2].x * m[2].x, + rows[0].x * m[0].y + rows[1].x * m[1].y + rows[2].x * m[2].y, + rows[0].x * m[0].z + rows[1].x * m[1].z + rows[2].x * m[2].z, + rows[0].y * m[0].x + rows[1].y * m[1].x + rows[2].y * m[2].x, + rows[0].y * m[0].y + rows[1].y * m[1].y + rows[2].y * m[2].y, + rows[0].y * m[0].z + rows[1].y * m[1].z + rows[2].y * m[2].z, + rows[0].z * m[0].x + rows[1].z * m[1].x + rows[2].z * m[2].x, + rows[0].z * m[0].y + rows[1].z * m[1].y + rows[2].z * m[2].y, + rows[0].z * m[0].z + rows[1].z * m[1].z + rows[2].z * m[2].z); } Basis(real_t xx, real_t xy, real_t xz, real_t yx, real_t yy, real_t yz, real_t zx, real_t zy, real_t zz) { set(xx, xy, xz, yx, yy, yz, zx, zy, zz); @@ -269,22 +269,22 @@ class Basis { inline void Basis::operator*=(const Basis &p_matrix) { set( - p_matrix.tdotx(elements[0]), p_matrix.tdoty(elements[0]), p_matrix.tdotz(elements[0]), - p_matrix.tdotx(elements[1]), p_matrix.tdoty(elements[1]), p_matrix.tdotz(elements[1]), - p_matrix.tdotx(elements[2]), p_matrix.tdoty(elements[2]), p_matrix.tdotz(elements[2])); + p_matrix.tdotx(rows[0]), p_matrix.tdoty(rows[0]), p_matrix.tdotz(rows[0]), + p_matrix.tdotx(rows[1]), p_matrix.tdoty(rows[1]), p_matrix.tdotz(rows[1]), + p_matrix.tdotx(rows[2]), p_matrix.tdoty(rows[2]), p_matrix.tdotz(rows[2])); } inline Basis Basis::operator*(const Basis &p_matrix) const { return Basis( - p_matrix.tdotx(elements[0]), p_matrix.tdoty(elements[0]), p_matrix.tdotz(elements[0]), - p_matrix.tdotx(elements[1]), p_matrix.tdoty(elements[1]), p_matrix.tdotz(elements[1]), - p_matrix.tdotx(elements[2]), p_matrix.tdoty(elements[2]), p_matrix.tdotz(elements[2])); + p_matrix.tdotx(rows[0]), p_matrix.tdoty(rows[0]), p_matrix.tdotz(rows[0]), + p_matrix.tdotx(rows[1]), p_matrix.tdoty(rows[1]), p_matrix.tdotz(rows[1]), + p_matrix.tdotx(rows[2]), p_matrix.tdoty(rows[2]), p_matrix.tdotz(rows[2])); } inline void Basis::operator+=(const Basis &p_matrix) { - elements[0] += p_matrix.elements[0]; - elements[1] += p_matrix.elements[1]; - elements[2] += p_matrix.elements[2]; + rows[0] += p_matrix.rows[0]; + rows[1] += p_matrix.rows[1]; + rows[2] += p_matrix.rows[2]; } inline Basis Basis::operator+(const Basis &p_matrix) const { @@ -294,9 +294,9 @@ inline Basis Basis::operator+(const Basis &p_matrix) const { } inline void Basis::operator-=(const Basis &p_matrix) { - elements[0] -= p_matrix.elements[0]; - elements[1] -= p_matrix.elements[1]; - elements[2] -= p_matrix.elements[2]; + rows[0] -= p_matrix.rows[0]; + rows[1] -= p_matrix.rows[1]; + rows[2] -= p_matrix.rows[2]; } inline Basis Basis::operator-(const Basis &p_matrix) const { @@ -306,9 +306,9 @@ inline Basis Basis::operator-(const Basis &p_matrix) const { } inline void Basis::operator*=(real_t p_val) { - elements[0] *= p_val; - elements[1] *= p_val; - elements[2] *= p_val; + rows[0] *= p_val; + rows[1] *= p_val; + rows[2] *= p_val; } inline Basis Basis::operator*(real_t p_val) const { @@ -319,22 +319,22 @@ inline Basis Basis::operator*(real_t p_val) const { Vector3 Basis::xform(const Vector3 &p_vector) const { return Vector3( - elements[0].dot(p_vector), - elements[1].dot(p_vector), - elements[2].dot(p_vector)); + rows[0].dot(p_vector), + rows[1].dot(p_vector), + rows[2].dot(p_vector)); } Vector3 Basis::xform_inv(const Vector3 &p_vector) const { return Vector3( - (elements[0][0] * p_vector.x) + (elements[1][0] * p_vector.y) + (elements[2][0] * p_vector.z), - (elements[0][1] * p_vector.x) + (elements[1][1] * p_vector.y) + (elements[2][1] * p_vector.z), - (elements[0][2] * p_vector.x) + (elements[1][2] * p_vector.y) + (elements[2][2] * p_vector.z)); + (rows[0][0] * p_vector.x) + (rows[1][0] * p_vector.y) + (rows[2][0] * p_vector.z), + (rows[0][1] * p_vector.x) + (rows[1][1] * p_vector.y) + (rows[2][1] * p_vector.z), + (rows[0][2] * p_vector.x) + (rows[1][2] * p_vector.y) + (rows[2][2] * p_vector.z)); } real_t Basis::determinant() const { - return elements[0][0] * (elements[1][1] * elements[2][2] - elements[2][1] * elements[1][2]) - - elements[1][0] * (elements[0][1] * elements[2][2] - elements[2][1] * elements[0][2]) + - elements[2][0] * (elements[0][1] * elements[1][2] - elements[1][1] * elements[0][2]); + return rows[0][0] * (rows[1][1] * rows[2][2] - rows[2][1] * rows[1][2]) - + rows[1][0] * (rows[0][1] * rows[2][2] - rows[2][1] * rows[0][2]) + + rows[2][0] * (rows[0][1] * rows[1][2] - rows[1][1] * rows[0][2]); } } // namespace godot diff --git a/include/godot_cpp/variant/transform3d.hpp b/include/godot_cpp/variant/transform3d.hpp index 26ebca966..01d788781 100644 --- a/include/godot_cpp/variant/transform3d.hpp +++ b/include/godot_cpp/variant/transform3d.hpp @@ -134,9 +134,9 @@ inline Vector3 Transform3D::xform_inv(const Vector3 &p_vector) const { Vector3 v = p_vector - origin; return Vector3( - (basis.elements[0][0] * v.x) + (basis.elements[1][0] * v.y) + (basis.elements[2][0] * v.z), - (basis.elements[0][1] * v.x) + (basis.elements[1][1] * v.y) + (basis.elements[2][1] * v.z), - (basis.elements[0][2] * v.x) + (basis.elements[1][2] * v.y) + (basis.elements[2][2] * v.z)); + (basis.rows[0][0] * v.x) + (basis.rows[1][0] * v.y) + (basis.rows[2][0] * v.z), + (basis.rows[0][1] * v.x) + (basis.rows[1][1] * v.y) + (basis.rows[2][1] * v.z), + (basis.rows[0][2] * v.x) + (basis.rows[1][2] * v.y) + (basis.rows[2][2] * v.z)); } inline Plane Transform3D::xform(const Plane &p_plane) const { diff --git a/src/variant/basis.cpp b/src/variant/basis.cpp index 0684dcadf..0385214ed 100644 --- a/src/variant/basis.cpp +++ b/src/variant/basis.cpp @@ -33,7 +33,7 @@ #include #define cofac(row1, col1, row2, col2) \ - (elements[row1][col1] * elements[row2][col2] - elements[row1][col2] * elements[row2][col1]) + (rows[row1][col1] * rows[row2][col2] - rows[row1][col2] * rows[row2][col1]) namespace godot { @@ -42,25 +42,25 @@ void Basis::from_z(const Vector3 &p_z) { // choose p in y-z plane real_t a = p_z[1] * p_z[1] + p_z[2] * p_z[2]; real_t k = 1.0 / Math::sqrt(a); - elements[0] = Vector3(0, -p_z[2] * k, p_z[1] * k); - elements[1] = Vector3(a * k, -p_z[0] * elements[0][2], p_z[0] * elements[0][1]); + rows[0] = Vector3(0, -p_z[2] * k, p_z[1] * k); + rows[1] = Vector3(a * k, -p_z[0] * rows[0][2], p_z[0] * rows[0][1]); } else { // choose p in x-y plane real_t a = p_z.x * p_z.x + p_z.y * p_z.y; real_t k = 1.0 / Math::sqrt(a); - elements[0] = Vector3(-p_z.y * k, p_z.x * k, 0); - elements[1] = Vector3(-p_z.z * elements[0].y, p_z.z * elements[0].x, a * k); + rows[0] = Vector3(-p_z.y * k, p_z.x * k, 0); + rows[1] = Vector3(-p_z.z * rows[0].y, p_z.z * rows[0].x, a * k); } - elements[2] = p_z; + rows[2] = p_z; } void Basis::invert() { real_t co[3] = { cofac(1, 1, 2, 2), cofac(1, 2, 2, 0), cofac(1, 0, 2, 1) }; - real_t det = elements[0][0] * co[0] + - elements[0][1] * co[1] + - elements[0][2] * co[2]; + real_t det = rows[0][0] * co[0] + + rows[0][1] * co[1] + + rows[0][2] * co[2]; #ifdef MATH_CHECKS ERR_FAIL_COND(det == 0); #endif @@ -104,9 +104,9 @@ bool Basis::is_orthogonal() const { bool Basis::is_diagonal() const { return ( - Math::is_zero_approx(elements[0][1]) && Math::is_zero_approx(elements[0][2]) && - Math::is_zero_approx(elements[1][0]) && Math::is_zero_approx(elements[1][2]) && - Math::is_zero_approx(elements[2][0]) && Math::is_zero_approx(elements[2][1])); + Math::is_zero_approx(rows[0][1]) && Math::is_zero_approx(rows[0][2]) && + Math::is_zero_approx(rows[1][0]) && Math::is_zero_approx(rows[1][2]) && + Math::is_zero_approx(rows[2][0]) && Math::is_zero_approx(rows[2][1])); } bool Basis::is_rotation() const { @@ -116,13 +116,13 @@ bool Basis::is_rotation() const { #ifdef MATH_CHECKS // This method is only used once, in diagonalize. If it's desired elsewhere, feel free to remove the #ifdef. bool Basis::is_symmetric() const { - if (!Math::is_equal_approx(elements[0][1], elements[1][0])) { + if (!Math::is_equal_approx(rows[0][1], rows[1][0])) { return false; } - if (!Math::is_equal_approx(elements[0][2], elements[2][0])) { + if (!Math::is_equal_approx(rows[0][2], rows[2][0])) { return false; } - if (!Math::is_equal_approx(elements[1][2], elements[2][1])) { + if (!Math::is_equal_approx(rows[1][2], rows[2][1])) { return false; } @@ -138,14 +138,14 @@ Basis Basis::diagonalize() { #endif const int ite_max = 1024; - real_t off_matrix_norm_2 = elements[0][1] * elements[0][1] + elements[0][2] * elements[0][2] + elements[1][2] * elements[1][2]; + real_t off_matrix_norm_2 = rows[0][1] * rows[0][1] + rows[0][2] * rows[0][2] + rows[1][2] * rows[1][2]; int ite = 0; Basis acc_rot; while (off_matrix_norm_2 > CMP_EPSILON2 && ite++ < ite_max) { - real_t el01_2 = elements[0][1] * elements[0][1]; - real_t el02_2 = elements[0][2] * elements[0][2]; - real_t el12_2 = elements[1][2] * elements[1][2]; + real_t el01_2 = rows[0][1] * rows[0][1]; + real_t el02_2 = rows[0][2] * rows[0][2]; + real_t el12_2 = rows[1][2] * rows[1][2]; // Find the pivot element int i, j; if (el01_2 > el02_2) { @@ -168,19 +168,19 @@ Basis Basis::diagonalize() { // Compute the rotation angle real_t angle; - if (Math::is_equal_approx(elements[j][j], elements[i][i])) { + if (Math::is_equal_approx(rows[j][j], rows[i][i])) { angle = Math_PI / 4; } else { - angle = 0.5 * Math::atan(2 * elements[i][j] / (elements[j][j] - elements[i][i])); + angle = 0.5 * Math::atan(2 * rows[i][j] / (rows[j][j] - rows[i][i])); } // Compute the rotation matrix Basis rot; - rot.elements[i][i] = rot.elements[j][j] = Math::cos(angle); - rot.elements[i][j] = -(rot.elements[j][i] = Math::sin(angle)); + rot.rows[i][i] = rot.rows[j][j] = Math::cos(angle); + rot.rows[i][j] = -(rot.rows[j][i] = Math::sin(angle)); // Update the off matrix norm - off_matrix_norm_2 -= elements[i][j] * elements[i][j]; + off_matrix_norm_2 -= rows[i][j] * rows[i][j]; // Apply the rotation *this = rot * *this * rot.transposed(); @@ -197,9 +197,9 @@ Basis Basis::inverse() const { } void Basis::transpose() { - SWAP(elements[0][1], elements[1][0]); - SWAP(elements[0][2], elements[2][0]); - SWAP(elements[1][2], elements[2][1]); + SWAP(rows[0][1], rows[1][0]); + SWAP(rows[0][2], rows[2][0]); + SWAP(rows[1][2], rows[2][1]); } Basis Basis::transposed() const { @@ -211,15 +211,15 @@ Basis Basis::transposed() const { // Multiplies the matrix from left by the scaling matrix: M -> S.M // See the comment for Basis::rotated for further explanation. void Basis::scale(const Vector3 &p_scale) { - elements[0][0] *= p_scale.x; - elements[0][1] *= p_scale.x; - elements[0][2] *= p_scale.x; - elements[1][0] *= p_scale.y; - elements[1][1] *= p_scale.y; - elements[1][2] *= p_scale.y; - elements[2][0] *= p_scale.z; - elements[2][1] *= p_scale.z; - elements[2][2] *= p_scale.z; + rows[0][0] *= p_scale.x; + rows[0][1] *= p_scale.x; + rows[0][2] *= p_scale.x; + rows[1][0] *= p_scale.y; + rows[1][1] *= p_scale.y; + rows[1][2] *= p_scale.y; + rows[2][0] *= p_scale.z; + rows[2][1] *= p_scale.z; + rows[2][2] *= p_scale.z; } Basis Basis::scaled(const Vector3 &p_scale) const { @@ -235,14 +235,14 @@ void Basis::scale_local(const Vector3 &p_scale) { } float Basis::get_uniform_scale() const { - return (elements[0].length() + elements[1].length() + elements[2].length()) / 3.0; + return (rows[0].length() + rows[1].length() + rows[2].length()) / 3.0; } void Basis::make_scale_uniform() { - float l = (elements[0].length() + elements[1].length() + elements[2].length()) / 3.0; + float l = (rows[0].length() + rows[1].length() + rows[2].length()) / 3.0; for (int i = 0; i < 3; i++) { - elements[i].normalize(); - elements[i] *= l; + rows[i].normalize(); + rows[i] *= l; } } @@ -255,14 +255,14 @@ Basis Basis::scaled_local(const Vector3 &p_scale) const { Vector3 Basis::get_scale_abs() const { return Vector3( - Vector3(elements[0][0], elements[1][0], elements[2][0]).length(), - Vector3(elements[0][1], elements[1][1], elements[2][1]).length(), - Vector3(elements[0][2], elements[1][2], elements[2][2]).length()); + Vector3(rows[0][0], rows[1][0], rows[2][0]).length(), + Vector3(rows[0][1], rows[1][1], rows[2][1]).length(), + Vector3(rows[0][2], rows[1][2], rows[2][2]).length()); } Vector3 Basis::get_scale_local() const { real_t det_sign = Math::sign(determinant()); - return det_sign * Vector3(elements[0].length(), elements[1].length(), elements[2].length()); + return det_sign * Vector3(rows[0].length(), rows[1].length(), rows[2].length()); } // get_scale works with get_rotation, use get_scale_abs if you need to enforce positive signature. @@ -284,14 +284,14 @@ Vector3 Basis::get_scale() const { // // A proper way to get rid of this issue would be to store the scaling values (or at least their signs) // as a part of Basis. However, if we go that path, we need to disable direct (write) access to the - // matrix elements. + // matrix rows. // // The rotation part of this decomposition is returned by get_rotation* functions. real_t det_sign = Math::sign(determinant()); return det_sign * Vector3( - Vector3(elements[0][0], elements[1][0], elements[2][0]).length(), - Vector3(elements[0][1], elements[1][1], elements[2][1]).length(), - Vector3(elements[0][2], elements[1][2], elements[2][2]).length()); + Vector3(rows[0][0], rows[1][0], rows[2][0]).length(), + Vector3(rows[0][1], rows[1][1], rows[2][1]).length(), + Vector3(rows[0][2], rows[1][2], rows[2][2]).length()); } // Decomposes a Basis into a rotation-reflection matrix (an element of the group O(3)) and a positive scaling matrix as B = O.S. @@ -431,27 +431,27 @@ Vector3 Basis::get_euler_xyz() const { // -cx*cz*sy+sx*sz cz*sx+cx*sy*sz cx*cy Vector3 euler; - real_t sy = elements[0][2]; + real_t sy = rows[0][2]; if (sy < (1.0 - CMP_EPSILON)) { if (sy > -(1.0 - CMP_EPSILON)) { // is this a pure Y rotation? - if (elements[1][0] == 0.0 && elements[0][1] == 0.0 && elements[1][2] == 0 && elements[2][1] == 0 && elements[1][1] == 1) { + if (rows[1][0] == 0.0 && rows[0][1] == 0.0 && rows[1][2] == 0 && rows[2][1] == 0 && rows[1][1] == 1) { // return the simplest form (human friendlier in editor and scripts) euler.x = 0; - euler.y = atan2(elements[0][2], elements[0][0]); + euler.y = atan2(rows[0][2], rows[0][0]); euler.z = 0; } else { - euler.x = Math::atan2(-elements[1][2], elements[2][2]); + euler.x = Math::atan2(-rows[1][2], rows[2][2]); euler.y = Math::asin(sy); - euler.z = Math::atan2(-elements[0][1], elements[0][0]); + euler.z = Math::atan2(-rows[0][1], rows[0][0]); } } else { - euler.x = Math::atan2(elements[2][1], elements[1][1]); + euler.x = Math::atan2(rows[2][1], rows[1][1]); euler.y = -Math_PI / 2.0; euler.z = 0.0; } } else { - euler.x = Math::atan2(elements[2][1], elements[1][1]); + euler.x = Math::atan2(rows[2][1], rows[1][1]); euler.y = Math_PI / 2.0; euler.z = 0.0; } @@ -490,21 +490,21 @@ Vector3 Basis::get_euler_xzy() const { // cy*sx*sz cz*sx cx*cy+sx*sz*sy Vector3 euler; - real_t sz = elements[0][1]; + real_t sz = rows[0][1]; if (sz < (1.0 - CMP_EPSILON)) { if (sz > -(1.0 - CMP_EPSILON)) { - euler.x = Math::atan2(elements[2][1], elements[1][1]); - euler.y = Math::atan2(elements[0][2], elements[0][0]); + euler.x = Math::atan2(rows[2][1], rows[1][1]); + euler.y = Math::atan2(rows[0][2], rows[0][0]); euler.z = Math::asin(-sz); } else { // It's -1 - euler.x = -Math::atan2(elements[1][2], elements[2][2]); + euler.x = -Math::atan2(rows[1][2], rows[2][2]); euler.y = 0.0; euler.z = Math_PI / 2.0; } } else { // It's 1 - euler.x = -Math::atan2(elements[1][2], elements[2][2]); + euler.x = -Math::atan2(rows[1][2], rows[2][2]); euler.y = 0.0; euler.z = -Math_PI / 2.0; } @@ -538,21 +538,21 @@ Vector3 Basis::get_euler_yzx() const { // -cz*sy cy*sx+cx*sy*sz cy*cx-sy*sz*sx Vector3 euler; - real_t sz = elements[1][0]; + real_t sz = rows[1][0]; if (sz < (1.0 - CMP_EPSILON)) { if (sz > -(1.0 - CMP_EPSILON)) { - euler.x = Math::atan2(-elements[1][2], elements[1][1]); - euler.y = Math::atan2(-elements[2][0], elements[0][0]); + euler.x = Math::atan2(-rows[1][2], rows[1][1]); + euler.y = Math::atan2(-rows[2][0], rows[0][0]); euler.z = Math::asin(sz); } else { // It's -1 - euler.x = Math::atan2(elements[2][1], elements[2][2]); + euler.x = Math::atan2(rows[2][1], rows[2][2]); euler.y = 0.0; euler.z = -Math_PI / 2.0; } } else { // It's 1 - euler.x = Math::atan2(elements[2][1], elements[2][2]); + euler.x = Math::atan2(rows[2][1], rows[2][2]); euler.y = 0.0; euler.z = Math_PI / 2.0; } @@ -590,29 +590,29 @@ Vector3 Basis::get_euler_yxz() const { Vector3 euler; - real_t m12 = elements[1][2]; + real_t m12 = rows[1][2]; if (m12 < (1 - CMP_EPSILON)) { if (m12 > -(1 - CMP_EPSILON)) { // is this a pure X rotation? - if (elements[1][0] == 0 && elements[0][1] == 0 && elements[0][2] == 0 && elements[2][0] == 0 && elements[0][0] == 1) { + if (rows[1][0] == 0 && rows[0][1] == 0 && rows[0][2] == 0 && rows[2][0] == 0 && rows[0][0] == 1) { // return the simplest form (human friendlier in editor and scripts) - euler.x = atan2(-m12, elements[1][1]); + euler.x = atan2(-m12, rows[1][1]); euler.y = 0; euler.z = 0; } else { euler.x = asin(-m12); - euler.y = atan2(elements[0][2], elements[2][2]); - euler.z = atan2(elements[1][0], elements[1][1]); + euler.y = atan2(rows[0][2], rows[2][2]); + euler.z = atan2(rows[1][0], rows[1][1]); } } else { // m12 == -1 euler.x = Math_PI * 0.5; - euler.y = atan2(elements[0][1], elements[0][0]); + euler.y = atan2(rows[0][1], rows[0][0]); euler.z = 0; } } else { // m12 == 1 euler.x = -Math_PI * 0.5; - euler.y = -atan2(elements[0][1], elements[0][0]); + euler.y = -atan2(rows[0][1], rows[0][0]); euler.z = 0; } @@ -650,22 +650,22 @@ Vector3 Basis::get_euler_zxy() const { // cy*sz+cz*sx*sy cz*cx sz*sy-cz*cy*sx // -cx*sy sx cx*cy Vector3 euler; - real_t sx = elements[2][1]; + real_t sx = rows[2][1]; if (sx < (1.0 - CMP_EPSILON)) { if (sx > -(1.0 - CMP_EPSILON)) { euler.x = Math::asin(sx); - euler.y = Math::atan2(-elements[2][0], elements[2][2]); - euler.z = Math::atan2(-elements[0][1], elements[1][1]); + euler.y = Math::atan2(-rows[2][0], rows[2][2]); + euler.z = Math::atan2(-rows[0][1], rows[1][1]); } else { // It's -1 euler.x = -Math_PI / 2.0; - euler.y = Math::atan2(elements[0][2], elements[0][0]); + euler.y = Math::atan2(rows[0][2], rows[0][0]); euler.z = 0; } } else { // It's 1 euler.x = Math_PI / 2.0; - euler.y = Math::atan2(elements[0][2], elements[0][0]); + euler.y = Math::atan2(rows[0][2], rows[0][0]); euler.z = 0; } return euler; @@ -697,23 +697,23 @@ Vector3 Basis::get_euler_zyx() const { // cy*sz cz*cx+sz*sy*sx cx*sz*sy-cz*sx // -sy cy*sx cy*cx Vector3 euler; - real_t sy = elements[2][0]; + real_t sy = rows[2][0]; if (sy < (1.0 - CMP_EPSILON)) { if (sy > -(1.0 - CMP_EPSILON)) { - euler.x = Math::atan2(elements[2][1], elements[2][2]); + euler.x = Math::atan2(rows[2][1], rows[2][2]); euler.y = Math::asin(-sy); - euler.z = Math::atan2(elements[1][0], elements[0][0]); + euler.z = Math::atan2(rows[1][0], rows[0][0]); } else { // It's -1 euler.x = 0; euler.y = Math_PI / 2.0; - euler.z = -Math::atan2(elements[0][1], elements[1][1]); + euler.z = -Math::atan2(rows[0][1], rows[1][1]); } } else { // It's 1 euler.x = 0; euler.y = -Math_PI / 2.0; - euler.z = -Math::atan2(elements[0][1], elements[1][1]); + euler.z = -Math::atan2(rows[0][1], rows[1][1]); } return euler; } @@ -737,13 +737,13 @@ void Basis::set_euler_zyx(const Vector3 &p_euler) { } bool Basis::is_equal_approx(const Basis &p_basis) const { - return elements[0].is_equal_approx(p_basis.elements[0]) && elements[1].is_equal_approx(p_basis.elements[1]) && elements[2].is_equal_approx(p_basis.elements[2]); + return rows[0].is_equal_approx(p_basis.rows[0]) && rows[1].is_equal_approx(p_basis.rows[1]) && rows[2].is_equal_approx(p_basis.rows[2]); } bool Basis::operator==(const Basis &p_matrix) const { for (int i = 0; i < 3; i++) { for (int j = 0; j < 3; j++) { - if (elements[i][j] != p_matrix.elements[i][j]) { + if (rows[i][j] != p_matrix.rows[i][j]) { return false; } } @@ -764,7 +764,7 @@ Basis::operator String() const { mtx = mtx + ", "; } - mtx = mtx + String::num(elements[j][i]); // matrix is stored transposed for performance, so print it transposed + mtx = mtx + String::num(rows[j][i]); // matrix is stored transposed for performance, so print it transposed } } @@ -777,7 +777,7 @@ Quaternion Basis::get_quaternion() const { #endif /* Allow getting a quaternion from an unnormalized transform */ Basis m = *this; - real_t trace = m.elements[0][0] + m.elements[1][1] + m.elements[2][2]; + real_t trace = m.rows[0][0] + m.rows[1][1] + m.rows[2][2]; real_t temp[4]; if (trace > 0.0) { @@ -785,23 +785,23 @@ Quaternion Basis::get_quaternion() const { temp[3] = (s * 0.5); s = 0.5 / s; - temp[0] = ((m.elements[2][1] - m.elements[1][2]) * s); - temp[1] = ((m.elements[0][2] - m.elements[2][0]) * s); - temp[2] = ((m.elements[1][0] - m.elements[0][1]) * s); + temp[0] = ((m.rows[2][1] - m.rows[1][2]) * s); + temp[1] = ((m.rows[0][2] - m.rows[2][0]) * s); + temp[2] = ((m.rows[1][0] - m.rows[0][1]) * s); } else { - int i = m.elements[0][0] < m.elements[1][1] ? - (m.elements[1][1] < m.elements[2][2] ? 2 : 1) : - (m.elements[0][0] < m.elements[2][2] ? 2 : 0); + int i = m.rows[0][0] < m.rows[1][1] ? + (m.rows[1][1] < m.rows[2][2] ? 2 : 1) : + (m.rows[0][0] < m.rows[2][2] ? 2 : 0); int j = (i + 1) % 3; int k = (i + 2) % 3; - real_t s = Math::sqrt(m.elements[i][i] - m.elements[j][j] - m.elements[k][k] + 1.0); + real_t s = Math::sqrt(m.rows[i][i] - m.rows[j][j] - m.rows[k][k] + 1.0); temp[i] = s * 0.5; s = 0.5 / s; - temp[3] = (m.elements[k][j] - m.elements[j][k]) * s; - temp[j] = (m.elements[j][i] + m.elements[i][j]) * s; - temp[k] = (m.elements[k][i] + m.elements[i][k]) * s; + temp[3] = (m.rows[k][j] - m.rows[j][k]) * s; + temp[j] = (m.rows[j][i] + m.rows[i][j]) * s; + temp[k] = (m.rows[k][i] + m.rows[i][k]) * s; } return Quaternion(temp[0], temp[1], temp[2], temp[3]); @@ -878,11 +878,11 @@ void Basis::get_axis_angle(Vector3 &r_axis, real_t &r_angle) const { real_t epsilon = 0.01; // margin to allow for rounding errors real_t epsilon2 = 0.1; // margin to distinguish between 0 and 180 degrees - if ((Math::abs(elements[1][0] - elements[0][1]) < epsilon) && (Math::abs(elements[2][0] - elements[0][2]) < epsilon) && (Math::abs(elements[2][1] - elements[1][2]) < epsilon)) { + if ((Math::abs(rows[1][0] - rows[0][1]) < epsilon) && (Math::abs(rows[2][0] - rows[0][2]) < epsilon) && (Math::abs(rows[2][1] - rows[1][2]) < epsilon)) { // singularity found // first check for identity matrix which must have +1 for all terms // in leading diagonaland zero in other terms - if ((Math::abs(elements[1][0] + elements[0][1]) < epsilon2) && (Math::abs(elements[2][0] + elements[0][2]) < epsilon2) && (Math::abs(elements[2][1] + elements[1][2]) < epsilon2) && (Math::abs(elements[0][0] + elements[1][1] + elements[2][2] - 3) < epsilon2)) { + if ((Math::abs(rows[1][0] + rows[0][1]) < epsilon2) && (Math::abs(rows[2][0] + rows[0][2]) < epsilon2) && (Math::abs(rows[2][1] + rows[1][2]) < epsilon2) && (Math::abs(rows[0][0] + rows[1][1] + rows[2][2] - 3) < epsilon2)) { // this singularity is identity matrix so angle = 0 r_axis = Vector3(0, 1, 0); r_angle = 0; @@ -890,13 +890,13 @@ void Basis::get_axis_angle(Vector3 &r_axis, real_t &r_angle) const { } // otherwise this singularity is angle = 180 angle = Math_PI; - real_t xx = (elements[0][0] + 1) / 2; - real_t yy = (elements[1][1] + 1) / 2; - real_t zz = (elements[2][2] + 1) / 2; - real_t xy = (elements[1][0] + elements[0][1]) / 4; - real_t xz = (elements[2][0] + elements[0][2]) / 4; - real_t yz = (elements[2][1] + elements[1][2]) / 4; - if ((xx > yy) && (xx > zz)) { // elements[0][0] is the largest diagonal term + real_t xx = (rows[0][0] + 1) / 2; + real_t yy = (rows[1][1] + 1) / 2; + real_t zz = (rows[2][2] + 1) / 2; + real_t xy = (rows[1][0] + rows[0][1]) / 4; + real_t xz = (rows[2][0] + rows[0][2]) / 4; + real_t yz = (rows[2][1] + rows[1][2]) / 4; + if ((xx > yy) && (xx > zz)) { // rows[0][0] is the largest diagonal term if (xx < epsilon) { x = 0; y = Math_SQRT12; @@ -906,7 +906,7 @@ void Basis::get_axis_angle(Vector3 &r_axis, real_t &r_angle) const { y = xy / x; z = xz / x; } - } else if (yy > zz) { // elements[1][1] is the largest diagonal term + } else if (yy > zz) { // rows[1][1] is the largest diagonal term if (yy < epsilon) { x = Math_SQRT12; y = 0; @@ -916,7 +916,7 @@ void Basis::get_axis_angle(Vector3 &r_axis, real_t &r_angle) const { x = xy / y; z = yz / y; } - } else { // elements[2][2] is the largest diagonal term so base result on this + } else { // rows[2][2] is the largest diagonal term so base result on this if (zz < epsilon) { x = Math_SQRT12; y = Math_SQRT12; @@ -932,15 +932,15 @@ void Basis::get_axis_angle(Vector3 &r_axis, real_t &r_angle) const { return; } // as we have reached here there are no singularities so we can handle normally - real_t s = Math::sqrt((elements[1][2] - elements[2][1]) * (elements[1][2] - elements[2][1]) + (elements[2][0] - elements[0][2]) * (elements[2][0] - elements[0][2]) + (elements[0][1] - elements[1][0]) * (elements[0][1] - elements[1][0])); // s=|axis||sin(angle)|, used to normalise + real_t s = Math::sqrt((rows[1][2] - rows[2][1]) * (rows[1][2] - rows[2][1]) + (rows[2][0] - rows[0][2]) * (rows[2][0] - rows[0][2]) + (rows[0][1] - rows[1][0]) * (rows[0][1] - rows[1][0])); // s=|axis||sin(angle)|, used to normalise - angle = Math::acos((elements[0][0] + elements[1][1] + elements[2][2] - 1) / 2); + angle = Math::acos((rows[0][0] + rows[1][1] + rows[2][2] - 1) / 2); if (angle < 0) { s = -s; } - x = (elements[2][1] - elements[1][2]) / s; - y = (elements[0][2] - elements[2][0]) / s; - z = (elements[1][0] - elements[0][1]) / s; + x = (rows[2][1] - rows[1][2]) / s; + y = (rows[0][2] - rows[2][0]) / s; + z = (rows[1][0] - rows[0][1]) / s; r_axis = Vector3(x, y, z); r_angle = angle; @@ -965,27 +965,27 @@ void Basis::set_axis_angle(const Vector3 &p_axis, real_t p_phi) { #endif Vector3 axis_sq(p_axis.x * p_axis.x, p_axis.y * p_axis.y, p_axis.z * p_axis.z); real_t cosine = Math::cos(p_phi); - elements[0][0] = axis_sq.x + cosine * (1.0 - axis_sq.x); - elements[1][1] = axis_sq.y + cosine * (1.0 - axis_sq.y); - elements[2][2] = axis_sq.z + cosine * (1.0 - axis_sq.z); + rows[0][0] = axis_sq.x + cosine * (1.0 - axis_sq.x); + rows[1][1] = axis_sq.y + cosine * (1.0 - axis_sq.y); + rows[2][2] = axis_sq.z + cosine * (1.0 - axis_sq.z); real_t sine = Math::sin(p_phi); real_t t = 1 - cosine; real_t xyzt = p_axis.x * p_axis.y * t; real_t zyxs = p_axis.z * sine; - elements[0][1] = xyzt - zyxs; - elements[1][0] = xyzt + zyxs; + rows[0][1] = xyzt - zyxs; + rows[1][0] = xyzt + zyxs; xyzt = p_axis.x * p_axis.z * t; zyxs = p_axis.y * sine; - elements[0][2] = xyzt + zyxs; - elements[2][0] = xyzt - zyxs; + rows[0][2] = xyzt + zyxs; + rows[2][0] = xyzt - zyxs; xyzt = p_axis.y * p_axis.z * t; zyxs = p_axis.x * sine; - elements[1][2] = xyzt - zyxs; - elements[2][1] = xyzt + zyxs; + rows[1][2] = xyzt - zyxs; + rows[2][1] = xyzt + zyxs; } void Basis::set_axis_angle_scale(const Vector3 &p_axis, real_t p_phi, const Vector3 &p_scale) { @@ -1004,17 +1004,17 @@ void Basis::set_quaternion_scale(const Quaternion &p_quat, const Vector3 &p_scal } void Basis::set_diagonal(const Vector3 &p_diag) { - elements[0][0] = p_diag.x; - elements[0][1] = 0; - elements[0][2] = 0; + rows[0][0] = p_diag.x; + rows[0][1] = 0; + rows[0][2] = 0; - elements[1][0] = 0; - elements[1][1] = p_diag.y; - elements[1][2] = 0; + rows[1][0] = 0; + rows[1][1] = p_diag.y; + rows[1][2] = 0; - elements[2][0] = 0; - elements[2][1] = 0; - elements[2][2] = p_diag.z; + rows[2][0] = 0; + rows[2][1] = 0; + rows[2][2] = p_diag.z; } Basis Basis::slerp(const Basis &p_to, const real_t &p_weight) const { @@ -1023,9 +1023,9 @@ Basis Basis::slerp(const Basis &p_to, const real_t &p_weight) const { Quaternion to(p_to); Basis b(from.slerp(to, p_weight)); - b.elements[0] *= Math::lerp(elements[0].length(), p_to.elements[0].length(), p_weight); - b.elements[1] *= Math::lerp(elements[1].length(), p_to.elements[1].length(), p_weight); - b.elements[2] *= Math::lerp(elements[2].length(), p_to.elements[2].length(), p_weight); + b.rows[0] *= Math::lerp(rows[0].length(), p_to.rows[0].length(), p_weight); + b.rows[1] *= Math::lerp(rows[1].length(), p_to.rows[1].length(), p_weight); + b.rows[2] *= Math::lerp(rows[2].length(), p_to.rows[2].length(), p_weight); return b; } @@ -1051,15 +1051,15 @@ void Basis::rotate_sh(real_t *p_values) { real_t src[9] = { p_values[0], p_values[1], p_values[2], p_values[3], p_values[4], p_values[5], p_values[6], p_values[7], p_values[8] }; - real_t m00 = elements[0][0]; - real_t m01 = elements[0][1]; - real_t m02 = elements[0][2]; - real_t m10 = elements[1][0]; - real_t m11 = elements[1][1]; - real_t m12 = elements[1][2]; - real_t m20 = elements[2][0]; - real_t m21 = elements[2][1]; - real_t m22 = elements[2][2]; + real_t m00 = rows[0][0]; + real_t m01 = rows[0][1]; + real_t m02 = rows[0][2]; + real_t m10 = rows[1][0]; + real_t m11 = rows[1][1]; + real_t m12 = rows[1][2]; + real_t m20 = rows[2][0]; + real_t m21 = rows[2][1]; + real_t m22 = rows[2][2]; p_values[0] = src[0]; p_values[1] = m11 * src[1] - m12 * src[2] + m10 * src[3]; diff --git a/src/variant/projection.cpp b/src/variant/projection.cpp index 731ddcddc..a65e770c7 100644 --- a/src/variant/projection.cpp +++ b/src/variant/projection.cpp @@ -882,17 +882,17 @@ Projection::operator Transform3D() const { Transform3D tr; const real_t *m = &matrix[0][0]; - tr.basis.elements[0][0] = m[0]; - tr.basis.elements[1][0] = m[1]; - tr.basis.elements[2][0] = m[2]; + tr.basis.rows[0][0] = m[0]; + tr.basis.rows[1][0] = m[1]; + tr.basis.rows[2][0] = m[2]; - tr.basis.elements[0][1] = m[4]; - tr.basis.elements[1][1] = m[5]; - tr.basis.elements[2][1] = m[6]; + tr.basis.rows[0][1] = m[4]; + tr.basis.rows[1][1] = m[5]; + tr.basis.rows[2][1] = m[6]; - tr.basis.elements[0][2] = m[8]; - tr.basis.elements[1][2] = m[9]; - tr.basis.elements[2][2] = m[10]; + tr.basis.rows[0][2] = m[8]; + tr.basis.rows[1][2] = m[9]; + tr.basis.rows[2][2] = m[10]; tr.origin.x = m[12]; tr.origin.y = m[13]; @@ -910,17 +910,17 @@ Projection::Projection(const Transform3D &p_transform) { const Transform3D &tr = p_transform; real_t *m = &matrix[0][0]; - m[0] = tr.basis.elements[0][0]; - m[1] = tr.basis.elements[1][0]; - m[2] = tr.basis.elements[2][0]; + m[0] = tr.basis.rows[0][0]; + m[1] = tr.basis.rows[1][0]; + m[2] = tr.basis.rows[2][0]; m[3] = 0.0; - m[4] = tr.basis.elements[0][1]; - m[5] = tr.basis.elements[1][1]; - m[6] = tr.basis.elements[2][1]; + m[4] = tr.basis.rows[0][1]; + m[5] = tr.basis.rows[1][1]; + m[6] = tr.basis.rows[2][1]; m[7] = 0.0; - m[8] = tr.basis.elements[0][2]; - m[9] = tr.basis.elements[1][2]; - m[10] = tr.basis.elements[2][2]; + m[8] = tr.basis.rows[0][2]; + m[9] = tr.basis.rows[1][2]; + m[10] = tr.basis.rows[2][2]; m[11] = 0.0; m[12] = tr.origin.x; m[13] = tr.origin.y;