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● gRPC in microservices
● gRPC in service mesh
● gRPC without service mesh integration
● Limitations with side-car proxies
● Extensibility with interceptors
● High industry adoption



gRPC in Microservices

gRPC is very popular in microservices based applications.

● High performance and efficiency
● Available in multiple languages
● Easy backward/forward compatibility with Protocol Buffers
● Features like deadline, cancellation and metadata
● Extensibility with interceptors
● High industry adoption



gRPC in Service Mesh

gRPC lacks service mesh functionality.

● Service discovery - only DNS resolver
● Load balancing - only pick-first and round-robin policy
● Security - user managed with TLS
● Observability - user managed with OpenCensus



gRPC Without Service Mesh Integration

● Sidecar proxies get service mesh policies from the control plane.
● gRPC applications use DNS lookup and send requests to the virtual IP of the service.
● Sidecar proxies intercept requests, apply service mesh policies and route accordingly.
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Limitations With Sidecar Proxies

● Performance overhead
● CPU cost overhead
● Added complexity due to traffic interception
● Overhead of managing additional binaries in the data plane
● No lifecycle management of proxies
● No end-to-end security



gRPC Service Mesh - Proxyless!

● gRPC applications get service mesh policies directly from the control plane.
● No sidecar proxies. Services talk to each other directly.
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xDS APIs

● xDS is a set of data plane APIs - APIs between mesh control plane and the 
proxies.

● Developed for Envoy proxy - a popular proxy used in many open source and 
proprietary service meshes.

● xDS is open, extensible and has strong community support. 

xDS is the right choice for service mesh integration in gRPC.

https://github.com/envoyproxy/data-plane-api


xDS Explained

Locality2 Locality3Locality1 (e.g. Zone)

● It’s all about discovering!
● (x)Discovery Service - Listener, Route, Cluster, Endpoint, Health, Secret etc.
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xDS in gRPC

● Build a gRPC channel with ‘xds’ resolver scheme.
○ Example: ManagedChannelBuilder.forTarget("xds:///foo.myservice")

● Provide a bootstrap file with xDS server address, credentials and node info via 
an environment variable.

That’s it!

● Easy to adopt xDS.
● Easy to mix proxied and proxyless deployments.

Plan ahead and write mesh-ready gRPC applications!



Limitations

● Feature gap with Envoy
○ But, gRPC is catching up

● Ecosystem around Envoy filters and observability tools
○ gRPC has interceptors and OpenCensus integration

● gRPC applications need some changes
○ xDS dependency
○ Bootstrap

● Limited language support
○ C++, Java, Go, Python, PHP, Ruby, C# and Node.js



Current Status

● First released in v1.30.0 in June’20 
● Features currently supported as of v1.35.0

○ LDS, RDS, CDS and EDS
○ Load reporting via LRS
○ Weighted locality picking and round robin endpoint LB within the locality
○ Route matching with path and headers field
○ Traffic splitting between weighted clusters

● In development
○ xDS v3 support
○ Timeout, circuit breaking and fault injection
○ gRPC server xDS integration
○ Security with mTLS

● Checkout xDS features in gRPC for latest updates.

https://github.com/grpc/grpc/blob/master/doc/grpc_xds_features.md


Control Planes For Proxyless gRPC Applications

● Google Cloud’s Traffic Director service mesh control plane
○ Global load balancing with request routing based on geographical proximity, health and capacity 

of backends.
○ Automatic routing of overflow traffic across regions based on health and capacity of backends.
○ Automatic failover of traffic across regions based on health and capacity of backends.
○ Scalable centralized gRPC health checks of backends in the mesh.
○ Automatic endpoint discovery when backend instances come and go.
○ Demand driven auto-scaling of backends.
○ Works on GCE and GKE.

● Istio
○ Experimental support with no documentation. See this test for an example

● go-control-plane
○ This issue is requesting support for proxyless gRPC.

https://cloud.google.com/traffic-director/docs/proxyless-overview
https://github.com/grpc/grpc/blob/master/doc/health-checking.md
https://istio.io/
https://github.com/istio/istio/blob/master/pilot/pkg/networking/grpcgen/grpcgen_test.go
https://github.com/envoyproxy/go-control-plane/issues/349


Resources

● gRFCs
○ xDS load balancing design
○ xDS traffic splitting and routing design
○ xDS timeout, circuit breaking, fault injection
○ xDS-enabled servers
○ xDS based security

● xDS features in gRPC by release
● Data plane vs. control plane, Concepts and terminology
● Envoy xDS APIs, xDS support in gRPC
● Traffic Director, a production ready control plane for proxyless gRPC

https://github.com/grpc/proposal/blob/master/A27-xds-global-load-balancing.md
https://github.com/grpc/proposal/blob/master/A28-xds-traffic-splitting-and-routing.md
https://github.com/grpc/proposal/blob/master/A31-xds-timeout-support-and-config-selector.md
https://github.com/grpc/proposal/blob/master/A32-xds-circuit-breaking.md
https://github.com/grpc/proposal/pull/201
https://github.com/grpc/proposal/pull/214
https://github.com/grpc/proposal/pull/184
https://github.com/grpc/grpc/blob/master/doc/grpc_xds_features.md
https://medium.com/@aburnos/data-plane-control-plane-and-their-apis-explained-d0a3fa7291f3
https://jimmysong.io/en/blog/service-mesh-the-microservices-in-post-kubernetes-era/
https://www.envoyproxy.io/docs/envoy/latest/api-docs/xds_protocol
https://www.youtube.com/watch?v=IbcJ8kNmsrE
https://cloud.google.com/traffic-director


Thank you!

Questions?


