
Service Mesh with gRPC and xDS 

Megan Yahya, Product Manager @ Google



Agenda

● gRPC in microservices
● gRPC in service mesh
● gRPC without service mesh integration
● Limitations with side-car proxies
● Extensibility with interceptors
● High industry adoption



gRPC in Microservices

gRPC is very popular in microservices based applications.

● High performance and efficiency
● Available in multiple languages
● Easy backward/forward compatibility with Protocol Buffers
● Features like deadline, cancellation and metadata
● Extensibility with interceptors
● High industry adoption



gRPC in Service Mesh

gRPC lacks service mesh functionality.

● Service discovery - only DNS resolver
● Load balancing - only pick-first and round-robin policy
● Security - user managed with TLS
● Observability - user managed with OpenCensus



gRPC Without Service Mesh Integration

● Sidecar proxies get service mesh policies from the control plane.
● gRPC applications use DNS lookup and send requests to the virtual IP of the service.
● Sidecar proxies intercept requests, apply service mesh policies and route accordingly.

Service Mesh 
Control Plane

Kubernetes PodKubernetes PodProxy

gRPC Service 
B

Proxy

gRPC Service 
A

Data Plane 
APIs

Service Instance

Pod or VM

Localhost/UDS 
Connection

RPCs



Limitations With Sidecar Proxies

● Performance overhead
● CPU cost overhead
● Added complexity due to traffic interception
● Overhead of managing additional binaries in the data plane
● No lifecycle management of proxies
● No end-to-end security



gRPC Service Mesh - Proxyless!

● gRPC applications get service mesh policies directly from the control plane.
● No sidecar proxies. Services talk to each other directly.

Service Mesh 
Control Plane

Kubernetes PodKubernetes Pod

gRPC Service 
B

gRPC Service 
A

Data Plane 
APIs

Service Instance

Pods or VMs

RPCs



xDS APIs

● xDS is a set of data plane APIs - APIs between mesh control plane and the 
proxies.

● Developed for Envoy proxy - a popular proxy used in many open source and 
proprietary service meshes.

● xDS is open, extensible and has strong community support. 

xDS is the right choice for service mesh integration in gRPC.

https://github.com/envoyproxy/data-plane-api


xDS Explained

Locality2 Locality3Locality1 (e.g. Zone)

● It’s all about discovering!
● (x)Discovery Service - Listener, Route, Cluster, Endpoint, Health, Secret etc.

VIP1

Route 
Rules1

Cluster1

Endpoint1 Endpoint2 Endpoint3 Endpoint4 Endpoint5

Cluster2

Route 
Rules2

VIP2 VIP3Listener Discovery Service
Service VIP(IP:Port) configuration 

Route Discovery Service
Route matching rules and actions 

configuration 

Cluster Discovery Service
Cluster (Backend Service) 

configuration

Endpoint Discovery Service
Prioritized and weighted list of 

localities and endpoints



xDS in gRPC

● Build a gRPC channel with ‘xds’ resolver scheme.
○ Example: ManagedChannelBuilder.forTarget("xds:///foo.myservice")

● Provide a bootstrap file with xDS server address, credentials and node info via 
an environment variable.

That’s it!

● Easy to adopt xDS.
● Easy to mix proxied and proxyless deployments.

Plan ahead and write mesh-ready gRPC applications!



Limitations

● Feature gap with Envoy
○ But, gRPC is catching up

● Ecosystem around Envoy filters and observability tools
○ gRPC has interceptors and OpenCensus integration

● gRPC applications need some changes
○ xDS dependency
○ Bootstrap

● Limited language support
○ C++, Java, Go, Python, PHP, Ruby, C# and Node.js



Current Status

● First released in v1.30.0 in June’20 
● Features currently supported as of v1.35.0

○ LDS, RDS, CDS and EDS
○ Load reporting via LRS
○ Weighted locality picking and round robin endpoint LB within the locality
○ Route matching with path and headers field
○ Traffic splitting between weighted clusters

● In development
○ xDS v3 support
○ Timeout, circuit breaking and fault injection
○ gRPC server xDS integration
○ Security with mTLS

● Checkout xDS features in gRPC for latest updates.

https://github.com/grpc/grpc/blob/master/doc/grpc_xds_features.md


Control Planes For Proxyless gRPC Applications

● Google Cloud’s Traffic Director service mesh control plane
○ Global load balancing with request routing based on geographical proximity, health and capacity 

of backends.
○ Automatic routing of overflow traffic across regions based on health and capacity of backends.
○ Automatic failover of traffic across regions based on health and capacity of backends.
○ Scalable centralized gRPC health checks of backends in the mesh.
○ Automatic endpoint discovery when backend instances come and go.
○ Demand driven auto-scaling of backends.
○ Works on GCE and GKE.

● Istio
○ Experimental support with no documentation. See this test for an example

● go-control-plane
○ This issue is requesting support for proxyless gRPC.

https://cloud.google.com/traffic-director/docs/proxyless-overview
https://github.com/grpc/grpc/blob/master/doc/health-checking.md
https://istio.io/
https://github.com/istio/istio/blob/master/pilot/pkg/networking/grpcgen/grpcgen_test.go
https://github.com/envoyproxy/go-control-plane/issues/349


Resources

● gRFCs
○ xDS load balancing design
○ xDS traffic splitting and routing design
○ xDS timeout, circuit breaking, fault injection
○ xDS-enabled servers
○ xDS based security

● xDS features in gRPC by release
● Data plane vs. control plane, Concepts and terminology
● Envoy xDS APIs, xDS support in gRPC
● Traffic Director, a production ready control plane for proxyless gRPC

https://github.com/grpc/proposal/blob/master/A27-xds-global-load-balancing.md
https://github.com/grpc/proposal/blob/master/A28-xds-traffic-splitting-and-routing.md
https://github.com/grpc/proposal/blob/master/A31-xds-timeout-support-and-config-selector.md
https://github.com/grpc/proposal/blob/master/A32-xds-circuit-breaking.md
https://github.com/grpc/proposal/pull/201
https://github.com/grpc/proposal/pull/214
https://github.com/grpc/proposal/pull/184
https://github.com/grpc/grpc/blob/master/doc/grpc_xds_features.md
https://medium.com/@aburnos/data-plane-control-plane-and-their-apis-explained-d0a3fa7291f3
https://jimmysong.io/en/blog/service-mesh-the-microservices-in-post-kubernetes-era/
https://www.envoyproxy.io/docs/envoy/latest/api-docs/xds_protocol
https://www.youtube.com/watch?v=IbcJ8kNmsrE
https://cloud.google.com/traffic-director


Thank you!

Questions?


