
go -> gnogo -> gno
generating bytebeat music with smart contractsgenerating bytebeat music with smart contracts

zack scholl (zack scholl (@schollz@schollz))

october 12th, 2023october 12th, 2023

1 / 301 / 30

https://github.com/schollz

what is ...
...gno?

Gno is an interpreted version of the programming
language Go.

Gno was created by Cosmos co-founder Jae Kwon.

Gno is optimized for blockchain - it has
deterministic execution for executing on
distributed systems.

Practically speaking, Gno is Go without
crypto/rand , web calls, and imports from non-
deterministic libraries. Gno code is
transpiled into Go code which then leverages
the Go compiler system.

If you can write Go code, you can write Gno
code.

If you write Gno code, you can immediately
write "smart contracts".

2 / 30

https://github.com/gnolang/gno

what is ...
...gno?
...a smart
contract?

"smart contracts" are essentially computer programs
stored on a blockchain.

they are executed according to what is defined
in the code, and their code cannot be changed.

smart contracts can be used to automate
transactions, but are not limited to DeFi.
they can be used to create incentivized social
networks and rework how we interact with the
web (i.e. "web3").

smart contracts written in Gno run within the
Gno.land ecosystem.

3 / 30

what is ...
...gno?
...a smart
contract?
...gno.land?

Gno.land is a platform to write smart contracts in Gno.

It is the first of a series of Gno Layer 1
chains.

It is built on Tendermint2, Cosmos/IBC,
secured by Proof of Contribution.

It prioritizes simplicity, security,
scalability, and transparency.

For example:
https://test3.gno.land/r/demo/boards:testboard

Currently no main net, but we will get started
by running the entire system locally.

4 / 30

https://gno.land/
https://test3.gno.land/r/demo/boards:testboard

what is ...
...gno?
...a smart
contract?
...gno.land?
...bytebeat?

bytebeat is a minimal programming language for
synthesized music.

was discovered by viznut in 2011 as a way to
type a very short computer programs that
generate chiptune music, for example this is a
bytebeat program:

main(t){
 for(;;t++) putchar(((t<<1)^((t<<1)+(t>>7)&t>>12)));
}

which you can take the raw output of and
convert to audio:

gcc -o crowd crowd.c
./crowd | head -c 4M > crowd.raw
sox -r 8000 -c 1 -t u8 crowd.raw crowd.wav

5 / 30

http://canonical.org/~kragen/bytebeat/
http://countercomplex.blogspot.com/2015/04/bringing-magic-back-to-technology.html

what is ...
...gno?
...a smart
contract?
...gno.land?
...bytebeat?
...is that we
are going to do
today?

today we are going to use Gno to host a smart contract
on Gno.land that implements bytebeat music.

if you know Go, you know Gno.

I will help you get started with the tooling,
the ecosystem, and some first steps into what
can be done with smart contracts.

6 / 30

what is ...
local gno
prerequisites

lets setup a computer to write and run Gno code on a
local Gno.land instance.

what you need before we begin:

linux system (mac os or gitpod may also be
okay)
visual studio code ide (best supported
currently).
golang v1.21.2+

open ide and install gnopls and gofumpt . then
search for and install the Gno VScode
extension.

> go install -v github.com/harry-hov/gnopls@latest
> go install -v mvdan.cc/gofumpt@latest

7 / 30

https://code.visualstudio.com/
https://go.dev/doc/install

what is ...
local gno
prerequisites
install gno

download and build gno

today we will use a forked version of Gno that
removes limits for allocation and CPU usage
and has some ready code for today's tutorial:

> git clone https://github.com/schollz/gno
> cd gno
> git checkout bytebeat-workshop

open up the gno folder in the visual studio
code ide. lets build everything first:

> make build

this will install the gno toolchain, build the
gno.land that runs the gno.land node (locally),
and build the gnoweb server that runs the
frontend interface to gno.land.

8 / 30

what is ...
local gno
prerequisites
install gno
creating a key

Gno.land requires keys to keep track of tokens.

keys are central to blockchains that to track
tokens. lets generate one.

> gnokey generate
brush laugh ...

copy the bip39 mnemonic (brush laugh...). Now we
will actually add the key:

> gnokey add --recover mykey

enter a passphrase twice and then the bip39
mnemonic you copied.

now you should see your key when listing them:

> gnokey list
0. mykey (local) - addr: youraddress ...

9 / 30

what is ...
local gno
prerequisites
install gno
creating a key
adding tokens

Gno.land requires tokens for gas fees.

since we are spinning up our own testnet, we
can add tokens directly to our key from the
genesis block.

open gno.land/genesis/genesis_balances.txt and add a new
line with your address:

youraddress=10000000000ugnot

now when we run gno.land the address
associated with mykey will be allocated with
10,000,000,000 gnots.

10 / 30

what is ...
local gno
writing gno
packages v.
realms

smart contract = packages + realms

writing a smart contract is Gno is as easy as
writing a package in Go.

however, Gno distinguishes between a package
and a realm.

A package is Gno code that does not have
state. Usually it is code that may be used by
many realms. However you can also import
realms. This can have any functions or
structures exported to be used within realms.

A realm represents the actual smart contract -
it is Gno code with state, storage, and can
use tokens. Realms have a Render(path string) string

function that can be called from gno.land .
Globals persist.

lets write a smart contract.

11 / 30

what is ...
local gno
writing gno
packages v.
realms
bytebeat
overview

bytebeat smart contracts

lets write some packages and realms in Gno
that makes it easy to generate a smart
contract to generate bytebeat audio on
gno.land.

in the future this could be extended to a
small web3 social network of music + code
sharing where contributions are incentivized
and audio streams are rewarded back to their
creators.

but first, lets write some gno.

12 / 30

what is ...
local gno
writing gno
packages v.
realms
bytebeat
overview

generating audio files

streaming audio comes in many formats, but one
of the most common for uncompressed audio is
the WAVE File format (.wav) which is a subset
of the RIFF file format. the canonical wave
file format is well-defined:

13 / 30

http://soundfile.sapp.org/doc/WaveFormat/
http://soundfile.sapp.org/doc/WaveFormat/

what is ...
local gno
writing gno
packages v.
realms
bytebeat
overview
riff package

WAVE audio files need a RIFF.

lets write our first Gno package to make it
easier to write RIFF files. it will be a
simply io.Writer wrapper to help writing chunks
needed for a RIFF header:

(w *Writer) WriteChunk(chunkID []byte, chunkSize uint32) (n i

we will work in the examples/gno.land/p/demo folder
(/p/ designates package, and /r/ will designate
a realm). lets create the audio folder and a
riff folder in there to hold our gno file.

lets now create the examples/gno.land/p/demo/riff/riff.gno

file.

14 / 30

what is ...
local gno
writing gno
packages v.
realms
bytebeat
overview
riff package

riff.gno

package riff

import (
 "encoding/binary"
 "io"
)

type Writer struct {
 io.Writer
}

func NewWriter(w io.Writer, fileType []byte, fileSize uint32)
 w2 = &Writer{w}
 _, err = w2.Write([]byte("RIFF"))
 if err != nil {
 return
 }
 // convert filesize to uint32
 fileSizeBytes := make([]byte, 4)
 binary.LittleEndian.PutUint32(fileSizeBytes, fileSize)

 _, err = w2.Write(fileSizeBytes)
 if err != nil {
 return
 }
 _, err = w2.Write(fileType)
 if err != nil {
 return
 }
 return
}

15 / 30

what is ...
local gno
writing gno
packages v.
realms
bytebeat
overview
riff package

Run tests in Gno like you do in Go.

testing is done the same way as Go. you create
a test package yourfile_test.gno and you can then
create automated tests.

there is already one setup for the riff

package. you can run a test using the gno tool:

> gno test --verbose examples/gno.land/p/demo/audio/riff
== RUN TestRiff
PASS: TestRiff (0.00s)
ok ./examples/gno.land/p/demo/audio/riff 1.13s

16 / 30

what is ...
local gno
writing gno
packages v.
realms
bytebeat
overview
riff package
wav package

creating a wav package.

now that we have examples/gno.land/p/demo/riff/riff.gno we
can create another package for handling wav
files. this file is examples/gno.land/p/demo/wav/wav.gno

and is based on an open-source Go package for
handling wav files. this file will ease the
creation of wave files and adding samples. we
will create a writer:

func NewWriter(w io.Writer,
 numSamples uint32,
 numChannels uint16,
 sampleRate uint32,
 bitsPerSample uint16) (writer *Writer, err error) ...

and a function for writing samples:

func (w *Writer) WriteSamples(samples []Sample) (err error)

17 / 30

https://github.com/youpy/go-wav
https://github.com/youpy/go-wav

what is ...
local gno
writing gno
packages v.
realms
bytebeat
overview
riff package
wav package
bytebeat
package

creating a bytebeat package.

now we can utilize the packages we've created
(riff and wav) and create a bytebeat package
that utilizes them.

the bytebeat package will export a single
function that can take an argument for
processing a bytebeat function:

func ByteBeat(seconds uint32,
 sampleRate uint32,
 bytebeat_func func(t int) int) (data string)

since this package is designed to be used with
the bytebeat realm, we will return a string

since gno.land communicates through strings.
in this case the string will be the base64-
encoded WAVE file format audio.

18 / 30

what is ...
local gno
writing gno
packages v.
realms
bytebeat
overview
riff package
wav package
bytebeat
package

testing the bytebeat package

we will write a test for this package that
enables us to generate + playback the audio.
find a bytebeat and print it out:

func TestByteBeat(tt *testing.T) {
 data := ByteBeat(10, 8000, func(t int) int {
 return (t>>10^t>>11)
 })
 if strings.Contains(data, "error") {
 tt.Fatalf("%s", data)
 }
 println(data)
}

then we can output, convert, and playback the
audio:

> gno test --verbose examples/gno.land/p/demo/audio/bytebeat
 base64 -d > bytebeat.wav
> play bytebeat.wav

19 / 30

http://macumbista.net/wp-content/uploads/2016/11/music_formula_collection.txt

what is ...
local gno
writing gno
packages v.
realms
bytebeat
overview
riff package
wav package
bytebeat
package
bytebeat realm

creating a bytebeat realm.

a realm needs a Render function that can be used
to render markdown to the web frontend.

it also has global persistence, so we can
easily add a comment function:

var comments []Comment // global persists data without ORM
func AddComment(msg string) string {
 caller := std.GetOrigCaller() // smart-contract call
 comments = append(comments, Comment{
 User: string(caller),
 Message: msg,
 })
 ...
}

20 / 30

what is ...
local gno
writing gno
running
gno

package + realms finished

now we are finished with packages and realms,
we can spin up a test net and upload them as a
smart contract to interact with.

21 / 30

what is ...
local gno
writing gno
running
gno
local net

spinning up a test net

first we will spinup a test net on our local
machine to upload our package + realms.

> make run

which is a quick way to kill old servers,
delete their content, and then spin up the
gno.land server and web interface. i.e.:

pkill -f 'build/gnoland'
pkill -f 'build/gnoweb'
rm -rf gno.land/testdir
cd gno.land && ./build/gnoland start >/dev/null 2>&1 &
sleep 5
cd gno.land && ./build/gnoweb &
sleep 3

22 / 30

what is ...
local gno
writing gno
running
gno
local net
pushing
packages &
realms

here is the command for pushing the first
package from the file in
examples/gno.land/p/demo/audio/riff :

gnokey maketx addpkg \
 --pkgpath "gno.land/p/demo/audio/riff/v1" \
 --pkgdir "examples/gno.land/p/demo/audio/riff" \
 --deposit 100000000ugnot \
 --gas-fee 1000000ugnot \
 --gas-wanted 2000000 \
 --broadcast --chainid dev --remote localhost:26657
 YOURKEY

the argument pkgpath defines how our package or
realm is imported. the pkgdir defines where it
sits on the disk.

the deposit , gas-fee , and gas-wanted are related to
allocations needed for processing the package
or realm.

be sure to change YOURKEY to the key that you
setup (gnokey list lists all of them).

23 / 30

what is ...
local gno
writing gno
running
gno
local net
pushing
packages &
realms

quick note: if you change your code and want
to update your realm, you can just use --pkgpath

to generate a new version.

gnokey maketx addpkg \
 --pkgpath "gno.land/p/demo/audio/riff/v2" \
 --pkgdir "examples/gno.land/p/demo/audio/riff" \
 --deposit 100000000ugnot \
 --gas-fee 1000000ugnot \
 --gas-wanted 2000000 \
 --broadcast --chainid dev --remote localhost:26657
 YOURKEY

in this case, gno.land/p/demo/audio/riff/v1 was changed
to gno.land/p/demo/audio/riff/v2 , but defined from the
same directory.

24 / 30

what is ...
local gno
writing gno
running
gno
local net
pushing
packages &
realms

to ease pushing packages and realms during
development, you can add a flag --insecure-password-

stdin=true . this way you can save the password to
a file, e.g. password and pass it in to run from
a script, e.g.:

cat password | gnokey maktex addpkg \
 ... (same as before) ... \
 ---insecure-password-stdin=true YOURKEY

for now, this is encapsulated in the Makefile

when you run

KEY=YOURKEY make push

(make sure your password is saved into a local
file password).

25 / 30

what is ...
local gno
writing gno
running
gno
local net
pushing
packages &
realms
realms on
gno.land

realms pushed to gno.land are available by their path.

The pkgpath for the bytebeat realm was set in
the gnokey maketx as gno.land/r/demo/bytebeat/v1 .

It is now available on the Gno.land web
interface at

localhost:8888/r/demo/bytebeat/v1

check it out!

26 / 30

http://localhost:8888/r/demo/bytebeat/v1

what is ...
local gno
writing gno
running
gno
local net
pushing
packages &
realms
gno.land +
realms
maketx +
realms

exported functions in realms can be accessed by the
gnokey command.

remember we exported AddComment ? we can utilize
that function with our key and the Gno.land
server:

gnokey maketx call --pkgpath "gno.land/r/demo/bytebeat/v1" \
 --func "AddComment" --args "hello, world!" \
 --gas-fee 1000000ugnot --gas-wanted 8000000 \
 --broadcast --chainid dev --remote localhost:26657 \
 YOURKEY

You can specify --pkgpath to target a realm and
then use --func to specify the exported
function. Arguments for the function are
sequential --args arguments.

27 / 30

what is ...
local gno
writing gno
running
gno
more gno
more
bytebeats

create more bytebeat realms!

simply change the bytebeat function callback
and you can create a new realm!

 data = bytebeat.ByteBeat(seconds, 8000, func(t int) int {
 return ... // <- your bytebeat function!!
 })

and then upload a new realm:

gnokey maketx addpkg \
 --pkgpath "gno.land/p/demo/audio/bytebeat/whatever" \
 --pkgdir "examples/gno.land/r/demo/bytebeat" \
 --deposit 100000000ugnot \
 --gas-fee 1000000ugnot \
 --gas-wanted 2000000 \
 --broadcast --chainid dev --remote localhost:26657
 YOURKEY

anyone can now use those packages and realms
to upload their own smart contract that
generates bytebeat!

28 / 30

what is ...
local gno
writing gno
running
gno
more gno
more
bytebeats
resources

Gno and Gno.land are more than anything here.

continue exploring with the dozens of
examples
more information on getting started
checkout what people are building
read previous talks about Gno
join the discord

29 / 30

https://github.com/gnolang/gno/tree/master/examples
https://github.com/gnolang/gno/tree/master/examples
https://github.com/gnolang/gno/blob/master/examples/gno.land/r/demo/boards/README.md
https://github.com/gnolang/awesome-gno
https://github.com/gnolang/workshops
https://discord.com/invite/YFtMjWwUN7

what is ...
local gno
writing gno
running
gno
more gno
more
bytebeats
resources
thanks!

thank you for listening and following along!

special thanks to the amazing growing Gno team
- Jae (@jaekwon), Manfred (@moul), Morgan
(@thehowl), Miloš (@zivkovicmilos), Antonio
(@ajnavarro), Michelle, Johnny, Valeh, and so
so many more!!

30 / 30

https://github.com/jaekwon
https://github.com/moul
https://github.com/thehowl
https://github.com/zivkovicmilos
https://github.com/ajnavarro

