-
Notifications
You must be signed in to change notification settings - Fork 0
/
horizondistance.html
290 lines (242 loc) · 8.11 KB
/
horizondistance.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
<!DOCTYPE html>
<html>
<head>
<title>Compute Horizon Distance</title>
<link rel="stylesheet" href="default.css">
<link rel="stylesheet" href="highlight/styles/default.css">
<meta name="viewport" content="width=device-width, initial-scale=1" />
<style>
.algorithmdiv{
border: solid;
display: inline-block;
padding: 10px;
margin: 10px;
}
td{
text-align: right;
}
.clickOption{
text-decoration: underline;
color: blue;
cursor: pointer;
}
</style>
<link rel="stylesheet" href="https://cdn.jsdelivr.net/npm/[email protected]/dist/katex.min.css" integrity="sha384-Um5gpz1odJg5Z4HAmzPtgZKdTBHZdw8S29IecapCSB31ligYPhHQZMIlWLYQGVoc" crossorigin="anonymous">
<script defer src="https://cdn.jsdelivr.net/npm/[email protected]/dist/katex.min.js" integrity="sha384-YNHdsYkH6gMx9y3mRkmcJ2mFUjTd0qNQQvY9VYZgQd7DcN7env35GzlmFaZ23JGp" crossorigin="anonymous"></script>
<script defer src="https://cdn.jsdelivr.net/npm/[email protected]/dist/contrib/auto-render.min.js" integrity="sha384-vZTG03m+2yp6N6BNi5iM4rW4oIwk5DfcNdFfxkk9ZWpDriOkXX8voJBFrAO7MpVl" crossorigin="anonymous"
onload="renderMathInElement(document.body);"></script>
</head>
<body>
<h1>Compute Horizon Distance</h1>
<canvas id="diagram" width=200 height=200></canvas><br>
Assumes a spherical body, without atmospheric refraction.<br>
\(d\) distance from viewpoint to horizon.<br>
\(R\) radius of body.<br>
\(h\) height of viewpoint above body's surface.<br>
\(s\) Length of the arc along the body's surface, from the point exactly below the observer, to the horizon.<br>
\(\gamma\) Angle between the point on the surface of the body exactly below the observer, the center of the body, and the horizon<br>
<p>For Earth, \(R\) is 6,378 km (3,963 mi) for the equitorial radius, and 6,357 km (3,950 mi) for the polar radius.</p>
<p>The value \(s\) can be used to determine the visible field of a satellite, as well as where a satellite will be visible from Earth.</p>
<h3>Computes the distance from the observer's eye to the point on the horizon</h3>
<div class=algorithmdiv>\(d = \sqrt{2Rh+h^2} \)</div><br>
<h3>Arc length along Earth's surface from observer's position to horizon</h3>
Computes the length of the arc along the Earths surface, starting at the point directly below the observer
to the horzion.<br>
<div class=algorithmdiv>
\(s=R\cos^{-1}\left( \dfrac{R}{R+h}\right)\)
</div>
<h3>Angle to horizon in degrees</h3>
Computes the angle between the point below the observer, the center of the Earth, and the horizon.
<br>
<div class="algorithmdiv">\[\gamma=\cos^{-1}\left( \dfrac{R}{R+h} \right) \]</div>
<h3>Approximate, when height above Erath is small compared to Earth's radius:</h3>
<div class=algorithmdiv>
\(h\) in feet, \(d\) in Miles<br>
\(d \approx s \approx 1.22\sqrt{h}\)<br>
</div>
<div class=algorithmdiv>
\(h\) in meters, \(d\) in kilometers<br>
\(d \approx s \approx 3.57\sqrt{h}\)<br>
</div>
<h3>Test Data for Earth</h3>
<p>
<form>
<label class=formlabel>h = </label>
<input class=formbox type=text id=formH />
<input type=button value="Compute" onclick='computeForm()'>
</form>
</p>
<table border=1 cellspacing=0 id=outputdata>
<tr>
<th>\(h\)</th>
<th>Equitorial</th>
<th>Polar</th>
<th>Approximation</th>
<th>Arc Length</th>
<th>\(\gamma\)</th>
</tr>
</table>
<script>
drawDiagram();
generateTestData();
function drawDiagram(){
const canvas = document.getElementById("diagram");
const w=canvas.width;
const h=canvas.height;
const ctx = canvas.getContext("2d");
const r=w/2.75;
const angle=(-45)*Math.PI/180.0; //convert to radians
const cx=w/2;
const cy=h/2;
ctx.font = "20px Georgia";
//full circle
ctx.strokeStyle="rgba(150,150,150,1)";
ctx.fillStyle=ctx.strokeStyle;
ctx.lineWidth=3;
ctx.beginPath();
ctx.arc(cx, cy, r, 0, Math.PI * 2, true);
ctx.stroke();
//Radius line
ctx.beginPath();
ctx.strokeStyle="rgb(50,220,50)";
ctx.fillStyle=ctx.strokeStyle;
ctx.moveTo(cx,cy);
ctx.lineTo(cx,cy-r);
ctx.stroke();
ctx.fillText("R",cx-25,cy-r/2);
//angled line
ctx.beginPath();
ctx.strokeStyle="rgb(150,150,150)";
ctx.fillStyle=ctx.strokeStyle;
ctx.moveTo(cx,cy);
ctx.lineTo(cx+r*Math.cos(angle),cy+r*Math.sin(angle));
ctx.stroke();
//h line
ctx.beginPath();
ctx.strokeStyle="rgb(150,150,255)";
ctx.fillStyle=ctx.strokeStyle;
ctx.moveTo(cx,cy-r);
ctx.lineTo(cx,0);
ctx.stroke();
ctx.fillText("h",cx-25,(cy-r)/2);
//d line
ctx.beginPath();
ctx.strokeStyle="rgb(100,200,200)";
ctx.fillStyle=ctx.strokeStyle;
ctx.moveTo(cx,0);
ctx.lineTo(cx+r*Math.cos(angle),cy+r*Math.sin(angle));
ctx.stroke();
ctx.fillText("d",cx+r/.9*Math.cos(angle+angle/2),cy+r/.9*Math.sin(angle+angle/2));
//gamma angle arc
ctx.beginPath();
ctx.strokeStyle="rgb(255,150,255)";
ctx.fillStyle=ctx.strokeStyle;
ctx.arc(cx,cy,r/3,-Math.PI/2,-Math.PI/2-angle,false);
ctx.stroke();
ctx.fillText("\u03b3",cx+r/3*Math.cos(angle/2),cy+r/3*Math.sin(angle/2));
//gamma angle arc
ctx.beginPath();
ctx.strokeStyle="rgb(255,150,150)";
ctx.fillStyle=ctx.strokeStyle;
ctx.arc(cx,cy,r,-Math.PI/2,-Math.PI/2-angle,false);
ctx.stroke();
ctx.fillText("s",cx+r/1.35*Math.cos(angle+angle/2),cy+r/1.35*Math.sin(angle+angle/2));
}
function generateTestData(){
const h=[0,.5,1,1.5,2,3,4,5,6,7,8,9,10,20,30,40,50,100,200,500,1000,2000,10000,100000,1000000,10000000,1000000000]; //meters
for(let i=0;i<h.length;i++){
testValue(h[i],false);
}
}
function computeForm(){
testValue(document.getElementById("formH").value,true);
}
function prettyMetric(f){
//const hFeet=3.28084*h;
let t=f;
let units="m";
if(t>=1000){
units="km";
t/=1000;
}
if(t>20){
t= Math.floor(t);
} else {
t=Math.floor(t*10)/10;
}
return Number(t).toLocaleString()+" "+units;
}
function prettyUS(f){
let t=f;
let units="feet";
if(t>=5280){
units="mi";
t/=5280;
}
if(t>20){
t= Math.floor(t);
} else {
t=Math.floor(t*10)/10;
}
return Number(t).toLocaleString()+" "+units;
}
function pretty(f){
const metric=prettyMetric(f);
const US=prettyUS(f*3.28084);
return metric+" ("+US+")";
}
function testValue(h,top){
const t=document.getElementById("outputdata");
let r;
if(top==true){
r=t.insertRow(1);
} else {
r=t.insertRow(t.rows.length);
}
let c;
c=r.insertCell(0);
c.innerHTML=pretty(h);
c=r.insertCell(r.cells.length);
c.innerHTML=pretty(horizonEquitorial(h/1000)*1000);
c=r.insertCell(r.cells.length);
c.innerHTML=pretty(horizonPolar(h/1000)*1000);
c=r.insertCell(r.cells.length);
c.innerHTML=pretty(horizonApproxKm(h)*1000);
c=r.insertCell(r.cells.length);
c.innerHTML=pretty(horizonArcLength(h/1000)*1000);
c=r.insertCell(r.cells.length);
c.innerHTML=Math.floor(horizonAngle(h/1000)*1000)/1000 + "°"
}
function horizonAngle(h){
const R=6378;
const gamma=Math.acos(R/(R+h));
return gamma*180/Math.PI; //Convert from radians to Degrees
}
function horizonArcLength(h){
const R=6378;
const s=R*Math.acos(R/(R+h));
return s;
}
function horizonEquitorial(h){
const R=6378;
const d=Math.sqrt(2*R*h+h*h);
return d;
}
function horizonPolar(h){
const R=6357;
const d=Math.sqrt(2*R*h+h*h);
return d;
}
function horizonApproxKm(h){
const R=6378;
const d=3.57*Math.sqrt(h);
return d;
}
function horizonApproxMi(h){
const R=3963;
const d=1.22*Math.sqrt(h);
return d;
}
</script>
</body>
</html>