-
Notifications
You must be signed in to change notification settings - Fork 17
/
Copy pathart_model.py
106 lines (102 loc) · 4.73 KB
/
art_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
import torch
from torch.nn import functional as F
from basicsr.utils.registry import MODEL_REGISTRY
from basicsr.models.sr_model import SRModel
@MODEL_REGISTRY.register()
class ARTModel(SRModel):
"""ART model for image restoration."""
# test by partitioning
def test(self):
_, C, h, w = self.lq.size()
split_token_h = h // 200 + 1 # number of horizontal cut sections
split_token_w = w // 200 + 1 # number of vertical cut sections
# padding
mod_pad_h, mod_pad_w = 0, 0
if h % split_token_h != 0:
mod_pad_h = split_token_h - h % split_token_h
if w % split_token_w != 0:
mod_pad_w = split_token_w - w % split_token_w
img = F.pad(self.lq, (0, mod_pad_w, 0, mod_pad_h), 'reflect')
_, _, H, W = img.size()
split_h = H // split_token_h # height of each partition
split_w = W // split_token_w # width of each partition
# overlapping
shave_h = split_h // 10
shave_w = split_w // 10
scale = self.opt.get('scale', 1)
ral = H // split_h
row = W // split_w
slices = [] # list of partition borders
for i in range(ral):
for j in range(row):
if i == 0 and i == ral - 1:
top = slice(i * split_h, (i + 1) * split_h)
elif i == 0:
top = slice(i*split_h, (i+1)*split_h+shave_h)
elif i == ral - 1:
top = slice(i*split_h-shave_h, (i+1)*split_h)
else:
top = slice(i*split_h-shave_h, (i+1)*split_h+shave_h)
if j == 0 and j == row - 1:
left = slice(j*split_w, (j+1)*split_w)
elif j == 0:
left = slice(j*split_w, (j+1)*split_w+shave_w)
elif j == row - 1:
left = slice(j*split_w-shave_w, (j+1)*split_w)
else:
left = slice(j*split_w-shave_w, (j+1)*split_w+shave_w)
temp = (top, left)
slices.append(temp)
img_chops = [] # list of partitions
for temp in slices:
top, left = temp
img_chops.append(img[..., top, left])
if hasattr(self, 'net_g_ema'):
self.net_g_ema.eval()
with torch.no_grad():
outputs = []
for chop in img_chops:
out = self.net_g_ema(chop) # image processing of each partition
outputs.append(out)
_img = torch.zeros(1, C, H * scale, W * scale)
# merge
for i in range(ral):
for j in range(row):
top = slice(i * split_h * scale, (i + 1) * split_h * scale)
left = slice(j * split_w * scale, (j + 1) * split_w * scale)
if i == 0:
_top = slice(0, split_h * scale)
else:
_top = slice(shave_h*scale, (shave_h+split_h)*scale)
if j == 0:
_left = slice(0, split_w*scale)
else:
_left = slice(shave_w*scale, (shave_w+split_w)*scale)
_img[..., top, left] = outputs[i * row + j][..., _top, _left]
self.output = _img
else:
self.net_g.eval()
with torch.no_grad():
outputs = []
for chop in img_chops:
out = self.net_g(chop) # image processing of each partition
outputs.append(out)
_img = torch.zeros(1, C, H * scale, W * scale)
# merge
for i in range(ral):
for j in range(row):
top = slice(i * split_h * scale, (i + 1) * split_h * scale)
left = slice(j * split_w * scale, (j + 1) * split_w * scale)
if i == 0:
_top = slice(0, split_h * scale)
else:
_top = slice(shave_h * scale, (shave_h + split_h) * scale)
if j == 0:
_left = slice(0, split_w * scale)
else:
_left = slice(shave_w * scale, (shave_w + split_w) * scale)
_img[..., top, left] = outputs[i * row + j][..., _top, _left]
self.output = _img
self.net_g.train()
_, _, h, w = self.output.size()
self.output = self.output[:, :, 0:h - mod_pad_h * scale, 0:w - mod_pad_w * scale]