From bf55da251180e2fd3004e22ff27e9384487f0104 Mon Sep 17 00:00:00 2001 From: Mirka Henninger Date: Mon, 1 Feb 2021 19:04:47 +0100 Subject: [PATCH 1/2] fix off-by-one error in euclidean distance computation --- R/LocalModel.R | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/R/LocalModel.R b/R/LocalModel.R index cccc4c79b..f4dc9bf2e 100644 --- a/R/LocalModel.R +++ b/R/LocalModel.R @@ -252,7 +252,7 @@ LocalModel <- R6Class("LocalModel", } else if (is.character(dist.fun)) { assert_numeric(kernel.width) function(X, x.interest) { - d <- dist(rbind(x.interest, X), method = dist.fun)[1 + 1:nrow(X)] + d <- dist(rbind(x.interest, X), method = dist.fun)[1:nrow(X)] sqrt(exp(-(d^2) / (kernel.width^2))) } } else { From fff827bee246a2d904a412982d75a8df6ab8d618 Mon Sep 17 00:00:00 2001 From: Mirka Henninger Date: Tue, 2 Feb 2021 21:38:47 +0100 Subject: [PATCH 2/2] add test for weight functions --- tests/testthat/test-LocalModel.R | 41 ++++++++++++++++++++++++++------ 1 file changed, 34 insertions(+), 7 deletions(-) diff --git a/tests/testthat/test-LocalModel.R b/tests/testthat/test-LocalModel.R index b83230bee..c4b8eab97 100644 --- a/tests/testthat/test-LocalModel.R +++ b/tests/testthat/test-LocalModel.R @@ -16,26 +16,26 @@ test_that("LocalModel works for single output and single feature", { p <- plot(LocalModel1) expect_s3_class(p, c("gg", "ggplot")) p - + x.interest2 <- X[4, ] LocalModel1$explain(x.interest2) dat <- LocalModel1$results expect_equal(colnames(dat), expected.colnames) expect_lte(nrow(dat), k) - + pred <- predict(LocalModel1, newdata = X[3:4, ]) expect_data_frame(pred, nrows = 2) expect_equal(colnames(pred), "prediction") - + LocalModel1 <- LocalModel$new(predictor1, - x.interest = x.interest, k = k, - dist.fun = "euclidean", kernel.width = 1 + x.interest = x.interest, k = k, + dist.fun = "euclidean", kernel.width = 1 ) LocalModel1$explain(x.interest2) dat <- LocalModel1$results expect_equal(colnames(dat), expected.colnames) expect_lte(nrow(dat), k) - + pred <- predict(LocalModel1, newdata = X[3:4, ]) expect_data_frame(pred, nrows = 2) expect_equal(colnames(pred), "prediction") @@ -57,7 +57,7 @@ test_that("LocalModel works for multiple output", { expect_class(dat, "data.frame") expect_data_frame(pred2, nrows = 2) expect_equal(colnames(pred2), c("setosa", "versicolor", "virginica")) - + p <- plot(LocalModel1) expect_s3_class(p, c("gg", "ggplot")) p @@ -74,3 +74,30 @@ test_that("LocalModel prediction expects same cols as training dat", { expect_warning(LocalModel1$predict(cbind(x.interest, data.frame(blabla = 1)))) expect_error(LocalModel1$predict(x.interest[-2]), "Missing") }) + + + + +test_that("LocalModel distance functions work as expected", { + kernel.width <- 1 + distance.functions <- c( + "gower", "euclidean", "maximum", + "manhattan", "canberra", "binary", "minkowski") + x.interest <- X[2, ] + k <- 1 + set.seed(42) + LocalModel1 <- LocalModel$new(predictor1, x.interest = x.interest, k = k, + dist = "euclidean", kernel.width = kernel.width) + # recode to avoid warning for categorical variables (NAs introduced by coercion) + X.recode <- recode(LocalModel1$.__enclos_env__$private$dataDesign, x.interest) + x.recoded <- recode(x.interest, x.interest) + # first test the function that was used for fitting + weights <- LocalModel1$.__enclos_env__$private$weight.fun(X.recode, x.recoded) + expect_equal(object = weights[2], expected = 1) + # test all distance functions by explicitly constructing them via get.weight.fun() + for(fun in distance.functions){ + weight_fun <- LocalModel1$.__enclos_env__$private$get.weight.fun( + dist.fun = fun, kernel.width = kernel.width) + expect_equal(object = weight_fun(X.recode, x.recoded)[2], expected = 1) + } +})