forked from mpirvu/Utils
-
Notifications
You must be signed in to change notification settings - Fork 0
/
runIlog.py
218 lines (194 loc) · 7.52 KB
/
runIlog.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
# Python script for runing ilog
import logging
import math
import os
import re # for regular expressions
import shlex, subprocess
import sys # for accessing parameters and exit
ILOG_HOME="/opt/IBM/ILOGForMarius/ilog/odm881eGa/J2SE"
doColdRun = True # If True, destroy the SCC before each benchmark
doOnlyColdRuns = False
affinity = "taskset 0x3"
WARMUPTIME = 240
TIMEOUTTIME = 400
numThreads = 4
#level=logging.DEBUG,
logging.basicConfig(level=logging.INFO, format='%(asctime)s :: %(levelname)s :: (%(threadName)-6s) :: %(message)s',)
os.environ["CLASSPATH"] = "lib/asm-3.1.jar:lib/asm-analysis-3.1.jar:lib/asm-commons-3.1.jar:lib/asm-tree-3.1.jar:lib/asm-util-3.1.jar:lib/dom4j-1.6.1.jar:lib/j2ee_connector-1_5-fr.jar:lib/jrules-engine.jar:lib/jrules-res-execution.jar:lib/log4j-1.2.8.jar:lib/openxml4j-beta.jar:lib/sam.jar:lib/sizing-xom.jar:bin:bin/ra.xml"
# List of rule sets to run
ruleSet = [
"F_JAVAXOM_Segmentation5_DE",
"F_JAVAXOM_Segmentation300RulesSingleTask_DE"
]
# List of JVM options to try
jvmOptions = [
#"",
"-Xms1G -Xmx1G",
]
jdks = [
"/home/mpirvu/FullJava17/openj9-openjdk-jdk17/build/linux-x86_64-server-release/images/jdk",
]
def count_not_nan(myList):
total = 0
for i in range(len(myList)):
if not math.isnan(myList[i]):
total += 1
return total
def nanmean(myList):
total = 0
numValidElems = 0
for i in range(len(myList)):
if not math.isnan(myList[i]):
total += myList[i]
numValidElems += 1
return total/numValidElems if numValidElems > 0 else math.nan
def nanstd(myList):
total = 0
numValidElems = 0
for i in range(len(myList)):
if not math.isnan(myList[i]):
total += myList[i]
numValidElems += 1
if numValidElems == 0:
return math.nan
if numValidElems == 1:
return 0
else:
mean = total/numValidElems
total = 0
for i in range(len(myList)):
if not math.isnan(myList[i]):
total += (myList[i] - mean)**2
return math.sqrt(total/(numValidElems-1))
def nanmin(myList):
min = math.inf
for i in range(len(myList)):
if not math.isnan(myList[i]) and myList[i] < min:
min = myList[i]
return min
def nanmax(myList):
max = -math.inf
for i in range(len(myList)):
if not math.isnan(myList[i]) and myList[i] > max:
max = myList[i]
return max
def tDistributionValue95(degreeOfFreedom):
if degreeOfFreedom < 1:
return math.nan
#import scipy.stats as stats
# stats.t.ppf(0.975, degreesOfFreedom))
tValues = [12.706, 4.303, 3.182, 2.776, 2.571, 2.447, 2.365, 2.306, 2.262, 2.228,
2.201, 2.179, 2.160, 2.145, 2.131, 2.120, 2.110, 2.101, 2.093, 2.086,
2.080, 2.074, 2.069, 2.064, 2.060, 2.056, 2.052, 2.048, 2.045, 2.042,]
if degreeOfFreedom <= 30:
return tValues[degreeOfFreedom-1]
else:
if degreeOfFreedom <= 60:
return 2.042 - 0.001 * (degreeOfFreedom - 30)
else:
return 1.96
# Confidence intervals tutorial
# mean +- t * std / sqrt(n)
# For 95% confidence interval, t = 1.96 if we have many samples
def meanConfidenceInterval95(myList):
n = len(myList)
if n <= 1:
return math.nan
tvalue = tDistributionValue95(n-1)
avg, stdDev = nanmean(myList), nanstd(myList)
marginOfError = tvalue * stdDev / math.sqrt(n)
return 100.0*marginOfError/avg
def computeStats(myList):
avg = nanmean(myList)
stdDev = nanstd(myList)
min = nanmin(myList)
max = nanmax(myList)
ci95 = meanConfidenceInterval95(myList)
numValues = count_not_nan(myList)
return avg, stdDev, min, max, ci95, numValues
def clearSCC(jvm, jvmOpts):
print(jvm, jvmOpts)
cmd = ""
# Parse the options and try to figure out the location of the SCC
# This should be something like -Xshareclasses:cacheDir=<name>
# match alphanum and _ and . and / but not comma
m = re.search('cacheDir=([a-zA-Z0-9_\./]+)', jvmOpts)
if m:
cacheDir = m.group(1)
cmd = f"{jvm}/bin/java -Xshareclasses:cacheDir={cacheDir},destroyall"
else:
cmd = f"{jvm}/bin/java -Xshareclasses:destroyall"
#logging.info("Destroying SCC with: {cmd}".format(cmd=cmd))
try:
output = subprocess.check_output(shlex.split(cmd), universal_newlines=True, stderr=subprocess.STDOUT)
except subprocess.CalledProcessError as e:
# If the SCC does not exist, we get a non-zero return code
output = e.output
except subprocess.SubprocessError as e:
logging.warning("SubprocessError clearing SCC: {e}".format(e=e))
output = str(e)
logging.info("{output}".format(output=output))
return 0
'''
Returns the throughput in TPS (as a float). Nan is experiment fails
or Nan if the experiment fails
Output looks like this:
Timeout: 400s
Warmup of 240s
421349 executions during Warmup
Executed 740386 times for each thread
Total execution time: 400000 ms
Nb. threads: 4
Size Input Parameter factor: 1
Sum Throughput (TPS) per thread for run = 7403.860000000001
Global Throughput (TPS) for run = 7403.86
Average response time for run = 0.5402587977860824 ms
Min Execution Duration: 0
Max Execution Duration: 4
Min TPS for one thread: 1849.9525
Max TPS for one thread: 1851.575
'''
def runBenchmarkOnce(rule, jvm, jvmOpts):
ilogCmdLine = f"com.ibm.rules.bench.segmentation.RuleEngineRunner ruleset={rule} javaXOM sizeparam=1 warmup={WARMUPTIME} timeout={TIMEOUTTIME} stateful 100000000 reportPath=j2se-perf-report-87.csv jrulesVersion=8.7 DT_or_Rules=DT multithread={numThreads}"
cmd = f"{affinity} {jvm}/bin/java {jvmOpts} {ilogCmdLine}"
logging.info("Starting: {cmd}".format(cmd=cmd))
output = subprocess.check_output(shlex.split(cmd), universal_newlines=True, stderr=subprocess.STDOUT, cwd=ILOG_HOME)
# Parse the output and look for "Global Throughput (TPS) for run = "
lines = output.splitlines()
pattern1 = re.compile('^Global Throughput \(TPS\) for run = (\d+\.\d+)')
tps = math.nan
for line in lines:
#print(line)
m = pattern1.match(line)
if m:
tps = float(m.group(1))
break
return tps
def runBenchmarkIteratively(numIter, rule, jdk, javaOpts):
thrResults = []
# clear SCC if needed
if doColdRun or doOnlyColdRuns:
clearSCC(jdk, javaOpts)
for iter in range(numIter):
thr = runBenchmarkOnce(rule, jdk, javaOpts)
thrResults.append(thr)
# print stats
startIter = 0 if (doOnlyColdRuns or not doColdRun) else 1
print(f"\nResults for jdk: {jdk} and opts: {javaOpts} and ruleSet: {rule}")
if startIter > 0:
print("First run is a cold run and is not included in the stats")
avg, stdDev, min, max, ci95, numSamples = computeStats(thrResults[startIter:])
print("Thr stats: Avg={avg:7.1f} StdDev={stdDev:7.1f} Min={min:7.1f} Max={max:7.1f} Max/Min={maxmin:4.0f}% CI95={ci95:7.1f}% numSamples={numSamples:3d}".
format(avg=avg, stdDev=stdDev, min=min, max=max, maxmin=(max-min)*100.0/min, ci95=ci95, numSamples=numSamples))
############################ MAIN ##################################
if len(sys.argv) < 2:
print ("Program must have an argument: the number of iterations\n")
sys.exit(-1)
if doOnlyColdRuns:
print("Will do a cold run before each run")
elif doColdRun:
print("Will do a cold run before each set")
for rule in ruleSet:
for jvmOpts in jvmOptions:
for jdk in jdks:
runBenchmarkIteratively(numIter=int(sys.argv[1]), rule=rule, jdk=jdk, javaOpts=jvmOpts)