-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain.py
627 lines (538 loc) · 30 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
# Copyright 2023 Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import sys
import copy
import logging
from dataclasses import dataclass, field
from typing import Dict, Optional, Sequence
import random
import numpy as np
import torch
import transformers
from transformers import TrainerCallback
from torch.utils.data import Dataset
from trainer import BaseTrainer,FITrainer,ADMMTrainer,UndercoverTrainer,RepNoiseTrainer,LDIFSTrainer, UnitedTrainer,VlguardTrainer,UnitedAlignmentTrainer,BoosterAlignmentTrainer
from peft import LoraConfig, get_peft_model, prepare_model_for_int8_training, PeftModel
from tqdm import tqdm
import json
import wandb
wandb.init(mode="disabled")
sys.path.append('..')
import utils
from utils import SupervisedDataset
# // Set access token (NB: Keep this private!)
access_token = next(open('huggingface_token.txt')).strip()
IGNORE_INDEX = -100
DEFAULT_PAD_TOKEN = "[PAD]"
DEFAULT_EOS_TOKEN = "</s>"
DEFAULT_BOS_TOKEN = "<s>"
DEFAULT_UNK_TOKEN = "<unk>"
@dataclass
class ModelArguments:
model_name_or_path: Optional[str] = field(default="facebook/opt-125m")
@dataclass
class DataArguments:
data_path: str = field(default=None, metadata={"help": "Path to the training data."})
@dataclass
class TrainingArguments(transformers.TrainingArguments):
cache_dir: Optional[str] = field(default=None)
optim: str = field(default="adamw_torch")
model_max_length: int = field(
default=2048,
metadata={"help": "Maximum sequence length. Sequences will be right padded (and possibly truncated)."},
)
def smart_tokenizer_and_embedding_resize(
special_tokens_dict: Dict,
tokenizer: transformers.PreTrainedTokenizer,
model: transformers.PreTrainedModel,
):
"""Resize tokenizer and embedding.
Note: This is the unoptimized version that may make your embedding size not be divisible by 64.
"""
num_new_tokens = tokenizer.add_special_tokens(special_tokens_dict)
model.resize_token_embeddings(len(tokenizer))
if num_new_tokens > 0:
input_embeddings = model.get_input_embeddings().weight.data
output_embeddings = model.get_output_embeddings().weight.data
input_embeddings_avg = input_embeddings[:-num_new_tokens].mean(dim=0, keepdim=True)
output_embeddings_avg = output_embeddings[:-num_new_tokens].mean(dim=0, keepdim=True)
input_embeddings[-num_new_tokens:] = input_embeddings_avg
output_embeddings[-num_new_tokens:] = output_embeddings_avg
@dataclass
class DataCollatorForSupervisedDataset(object):
"""Collate examples for supervised fine-tuning."""
tokenizer: transformers.PreTrainedTokenizer
def __call__(self, instances: Sequence[Dict]) -> Dict[str, torch.Tensor]:
input_ids, labels = tuple([instance[key] for instance in instances] for key in ("input_ids", "labels"))
input_ids = torch.nn.utils.rnn.pad_sequence(
input_ids, batch_first=True, padding_value=self.tokenizer.pad_token_id
)
labels = torch.nn.utils.rnn.pad_sequence(labels, batch_first=True, padding_value=IGNORE_INDEX)
return dict(
input_ids=input_ids,
labels=labels,
attention_mask=input_ids.ne(self.tokenizer.pad_token_id),
)
def make_supervised_data_module(tokenizer: transformers.PreTrainedTokenizer, data_args, training_args) -> Dict:
"""Make dataset and collator for supervised fine-tuning."""
if training_args.optimizer == "prune_afterfinetune" and training_args.no_harmful_dataset!= "True":
train_dataset = SupervisedDataset(tokenizer=tokenizer, data_path=data_args.data_path, poison_ratio=1,sample_num=data_args.sample_num, benign_dataset=data_args.benign_dataset,poison_data_start=5000)
print("harmful dataset")
else:
print("finetuning dataset")
if "BeaverTails_safe" in data_args.data_path:
train_dataset = SupervisedDataset(tokenizer=tokenizer, data_path=data_args.data_path, poison_ratio=data_args.poison_ratio,sample_num=data_args.sample_num, benign_dataset=data_args.benign_dataset,poison_data_start=5000)
else:
train_dataset = SupervisedDataset(tokenizer=tokenizer, data_path=data_args.data_path, poison_ratio=data_args.poison_ratio,sample_num=data_args.sample_num, benign_dataset=data_args.benign_dataset,poison_data_start=0)
# train_dataset = SupervisedDataset(tokenizer=tokenizer, data_path=data_args.data_path, poison_ratio=1,sample_num=data_args.sample_num, benign_dataset=data_args.benign_dataset,poison_data_start=5000)
if "BeaverTails_safe" not in data_args.data_path:
# eval_dataset = SupervisedDataset(tokenizer=tokenizer, data_path="BeaverTails_safe",sample_num=5000)
# eval_dataset = SupervisedDataset(tokenizer=tokenizer, data_path="BeaverTails_dangerous", poison_ratio=1,sample_num=5000, benign_dataset=data_args.benign_dataset,poison_data_start=5000)
eval_dataset = SupervisedDataset(tokenizer=tokenizer, data_path="BeaverTails_dangerous", poison_ratio=1,sample_num=100, benign_dataset=data_args.benign_dataset,poison_data_start=0)
else:
eval_dataset=SupervisedDataset(tokenizer=tokenizer, data_path=data_args.data_path, poison_ratio=1,sample_num=5000, benign_dataset=data_args.benign_dataset,poison_data_start=5000)
# eval_dataset = None
data_collator = DataCollatorForSupervisedDataset(tokenizer=tokenizer)
return dict(train_dataset=train_dataset, eval_dataset=eval_dataset, data_collator=data_collator)
def train():
parser = transformers.HfArgumentParser((ModelArguments, DataArguments, TrainingArguments))
parser.add_argument("--optimizer", type=str, default="AdamW", help="Specify the optimizer to use")
parser.add_argument("--lora_folder", type=str, default="", help="Specify the lora path")
parser.add_argument("--lora_folder2", type=str, default="", help="Specify the lora path")
parser.add_argument("--rho", type=float, default=0.1, help="Specify the optimizer to use")
parser.add_argument("--poison_ratio", type=float, default=0.1, help="Specify the optimizer to use")
parser.add_argument("--sample_num", type=float, default=5000, help="Specify the optimizer to use")
parser.add_argument("--benign_dataset", type=str, default="data/sst2.json", help="Specify the optimizer to use")
parser.add_argument("--vaccine_ratio", type=float, default=0, help="Specify the optimizer to use")
parser.add_argument("--lamb", type=float, default=0.001, help="Specify the optimizer to use")
parser.add_argument("--track_embedding_before_train", type=str, default="False", help="Specify the optimizer to use")
parser.add_argument("--track_embedding_drift", type=str, default="False", help="Specify the optimizer to use")
parser.add_argument("--alternating", type=str, default="", help="Specify the optimizer to use")
# this is the admm hyper-param
parser.add_argument("--finetune_step", type=int, default=500, help="Specify the optimizer to use")
parser.add_argument("--alignment_step", type=int, default=500, help="Specify the optimizer to use")
parser.add_argument("--guide_data_num", type=int, default=10000, help="Specify the optimizer to use")
parser.add_argument("--dense_ratio", type=float, default=0.1, help="Specify the optimizer to use")
parser.add_argument("--noise_variance", type=float, default=0.1, help="Specify the optimizer to use")
parser.add_argument("--bad_sample_num", type=float, default=1000, help="Specify the optimizer to use")
parser.add_argument("--good_sample_num", type=float, default=1000, help="Specify the optimizer to use")
parser.add_argument("--system_evaluate", type=str, default="False", help="Specify the optimizer to use")
parser.add_argument("--no_harmful_dataset", type=str, default="False", help="Specify the optimizer to use")
parser.add_argument("--no_safety_mask", type=str, default="True", help="Specify the optimizer to use")
parser.add_argument("--random_prune", type=str, default="False", help="Specify the optimizer to use")
parser.add_argument("--full_model_prune", type=str, default="False", help="Specify the optimizer to use")
parser.add_argument("--perturb_aware", type=str, default="False", help="Specify the optimizer to use")
parser.add_argument("--alpha", type=float, default=0.1, help="Specify the optimizer to use")
parser.add_argument("--meta_term", type=str, default="True", help="Specify the optimizer to use")
# Set the seed for random module
seed = 43
random.seed(seed)
# Set the seed for NumPy
np.random.seed(seed)
# Set the seed for PyTorch
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
# Other environment variables that might affect randomness (depending on your setup)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
model_args, data_args, training_args, extra_args = parser.parse_args_into_dataclasses()
# print(optimizer)
# Add a custom optimizer argument to the command line
# Parse the command line arguments
args = parser.parse_args()
# Set the optimizer choice in the training_args dataclass
training_args.optimizer = extra_args.optimizer
training_args.rho = extra_args.rho
training_args.lamb = extra_args.lamb
training_args.track_embedding_before_train = extra_args.track_embedding_before_train
training_args.alternating = extra_args.alternating
data_args.poison_ratio = extra_args.poison_ratio
data_args.sample_num = extra_args.sample_num
data_args.benign_dataset = extra_args.benign_dataset
data_args.vaccine_ratio = extra_args.vaccine_ratio
data_args.guide_data_num = extra_args.guide_data_num
data_args.bad_sample_num = extra_args.bad_sample_num
data_args.good_sample_num = extra_args.good_sample_num
training_args.guide_data_num = extra_args.guide_data_num
training_args.rho = extra_args.rho
training_args.finetune_step = extra_args.finetune_step
training_args.alignment_step = extra_args.alignment_step
training_args.dense_ratio = extra_args.dense_ratio
training_args.noise_variance = extra_args.noise_variance
training_args.model = model_args.model_name_or_path
training_args.track_embedding_drift = extra_args.track_embedding_drift
training_args.system_evaluate = extra_args.system_evaluate
training_args.no_harmful_dataset = extra_args.no_harmful_dataset
training_args.no_safety_mask =extra_args.no_safety_mask
training_args.random_prune=extra_args.random_prune
training_args.full_model_prune=extra_args.full_model_prune
training_args.sample_num = extra_args.sample_num
training_args.alpha = extra_args.alpha
training_args.meta_term = extra_args.meta_term
training_args.model_max_length=256
# if "gemma" in model_args.model_name_or_path or "Mistral" in model_args.model_name_or_path:
# # to prevent oom
# training_args.model_max_length=180
training_args. perturb_aware = extra_args.perturb_aware
# if data_args.benign_dataset== "data/alpaca.json":
# # to prevent oom
# training_args.model_max_length=512
# if extra_args.optimizer== "vlguard" or extra_args.optimizer== "united" or extra_args.optimizer== "unitedAlignment" or extra_args.optimizer== "smoothAlignment" :
# # to prevent oom
# training_args.model_max_length=256
if extra_args.optimizer== "rep_noise" or extra_args.optimizer== "LDIFS":
# to prevent oom
training_args.model_max_length=256
# if (extra_args.optimizer== "rep_noise" or extra_args.optimizer== "LDIFS" ) and "gemma" in model_args.model_name_or_path:
# # to prevent oom
# training_args.model_max_length=180
model = transformers.AutoModelForCausalLM.from_pretrained(
model_args.model_name_or_path,
load_in_8bit=False,
cache_dir=training_args.cache_dir,
device_map="auto",
token = access_token
)
tokenizer = transformers.AutoTokenizer.from_pretrained(
model_args.model_name_or_path,
cache_dir=training_args.cache_dir,
model_max_length=training_args.model_max_length,
padding_side="right",
use_fast=True,
token = access_token
)
# Enable BF16 precision
model = model.to(torch.bfloat16)
for name, param in model.named_parameters():
print(f"Name: {name}")
print(f"Tensor Type: {param.data.type()}")
print(f"Shape: {param.data.shape}")
special_tokens_dict = dict()
if tokenizer.pad_token is None:
special_tokens_dict["pad_token"] = DEFAULT_PAD_TOKEN
if tokenizer.eos_token is None:
special_tokens_dict["eos_token"] = DEFAULT_EOS_TOKEN
if tokenizer.bos_token is None:
special_tokens_dict["bos_token"] = DEFAULT_BOS_TOKEN
if tokenizer.unk_token is None:
special_tokens_dict["unk_token"] = DEFAULT_UNK_TOKEN
smart_tokenizer_and_embedding_resize(
special_tokens_dict=special_tokens_dict,
tokenizer=tokenizer,
model=model,
)
print(len(tokenizer))
# model = prepare_model_for_int8_training(model)
if training_args.optimizer =="EWC" or training_args.alternating =="single_lora":
first_lora_trainable=True
print("single_lora here !!!!!!!")
else:
first_lora_trainable=False
loar_alpha=4
if extra_args.lora_folder!="":
print("Recover LoRA weights..")
model = PeftModel.from_pretrained(
model,
extra_args.lora_folder,
is_trainable=first_lora_trainable
)
# single lora method don't need to merge and load second lora
if not first_lora_trainable:
model = model.merge_and_unload()
if extra_args.lora_folder2=="":
# create new second lora for training
config = LoraConfig(
# r=500,
r=32,
lora_alpha=loar_alpha,
target_modules=["q_proj","k_proj","v_proj"],
lora_dropout=0,
bias="none",
task_type="CAUSAL_LM",
)
# initialize the model with the LoRA framework
model = get_peft_model(model, config)
else:
# load second lora and used for training
model = PeftModel.from_pretrained(
model,
extra_args.lora_folder2,
is_trainable=True
)
print(model.peft_config)
# import torch.nn as nn
# def replace_dropout(module):
# for name, child_module in module.named_children():
# # print(name)
# if isinstance(child_module, nn.Dropout) or isinstance(child_module, nn.Identity):
# setattr(module, name, nn.Dropout(p=0)) # Example dropout rate, you can adjust as needed
# else:
# replace_dropout(child_module)
# # Assuming 'model' is your original model instance
# replace_dropout(model)
else:
# create first lora
print("Initialize Lora weights..")
config = LoraConfig(
# r=500,
r=32,
lora_alpha=loar_alpha,
target_modules=["q_proj", "k_proj", "v_proj"],
lora_dropout=0,
bias="none",
task_type="CAUSAL_LM",
)
# initialize the model with the LoRA framework
model = get_peft_model(model, config)
# norm = 0
# for name, param in model.named_parameters():
# if 'lora' in name and ("q_proj" in name or "k_proj" in name) :
# param.requires_grad = True
# else:
# param.requires_grad = False
# if param.requires_grad:
# print(name)
# norm = 0
# for name, param in model.named_parameters():
# if "lora" in name:
# norm+= torch.norm(param).clone()
# print("weights norm{}".format(norm))
# model.config.use_cache = False
model.train()
# for name, module in model.named_modules():
# if "lora" in name and "v_proj" in name and len(list(module.children()))==0 and isinstance(module, torch.nn.Linear):
# module.weight.data += 1e-7
# torch.nn.utils.parametrizations.spectral_norm(module, n_power_iterations=1)
print(model)
print(model.print_trainable_parameters())
print(model)
# print(model.print_trainable_parameters())
data_module = make_supervised_data_module(tokenizer=tokenizer, data_args=data_args, training_args=training_args)
if training_args.optimizer=="vaccine":
print("init vaccine")
import torch.optim as optim
trainer = BaseTrainer(model=model, tokenizer=tokenizer, args=training_args,**data_module)
elif training_args.optimizer=="rep_noise":
import torch.optim as optim
trainer = RepNoiseTrainer(model=model, tokenizer=tokenizer, args=training_args,**data_module)
harmful_dataset = SupervisedDataset(tokenizer=tokenizer,data_path="BeaverTails_dangerous", poison_ratio=1,sample_num=5000,benign_dataset=data_args.benign_dataset,poison_data_start=5000)
# standard_dataset = SupervisedDataset(tokenizer=tokenizer, data_path="BeaverTails_safe", sample_num=5000,poison_data_start=5000)
trainer.init(harmful_dataset)
elif "EWC" in training_args.optimizer:
import torch.optim as optim
trainer = FITrainer(model=model, tokenizer=tokenizer, args=training_args,**data_module)
trainer.init(model)
elif training_args.optimizer == "random_vaccine":
trainer = RandomVaccineTrainer(model=model, tokenizer=tokenizer, args=training_args,**data_module)
elif training_args.optimizer == "lisa":
trainer = ADMMTrainer(model=model, tokenizer=tokenizer, args=training_args,**data_module)
alignment_dataset = SupervisedDataset(tokenizer=tokenizer, data_path="BeaverTails_safe",sample_num=data_args.guide_data_num)
trainer.init(alignment_dataset)
elif training_args.optimizer == "vlguard":
alignment_dataset = SupervisedDataset(tokenizer=tokenizer,data_path="BeaverTails_safe",sample_num=data_args.good_sample_num, benign_dataset=data_args.benign_dataset)
trainer = VlguardTrainer(model=model, tokenizer=tokenizer, args=training_args ,**data_module)
trainer.init(alignment_dataset)
elif training_args.optimizer == "united":
harmful_dataset = SupervisedDataset(tokenizer=tokenizer,data_path="BeaverTails_dangerous", poison_ratio=1,sample_num=data_args.bad_sample_num,benign_dataset=data_args.benign_dataset,poison_data_start=5000)
trainer = UnitedTrainer(model=model, tokenizer=tokenizer, args=training_args ,**data_module)
trainer.init(harmful_dataset)
elif training_args.optimizer == "unitedAlignment":
harmful_dataset = SupervisedDataset(tokenizer=tokenizer,data_path="BeaverTails_dangerous", poison_ratio=1,sample_num=data_args.bad_sample_num,benign_dataset=data_args.benign_dataset,poison_data_start=5000)
trainer = UnitedAlignmentTrainer(model=model, tokenizer=tokenizer, args=training_args ,**data_module)
trainer.init(harmful_dataset)
elif training_args.optimizer == "booster":
harmful_dataset = SupervisedDataset(tokenizer=tokenizer,data_path="BeaverTails_dangerous", poison_ratio=1,sample_num=data_args.bad_sample_num,benign_dataset=data_args.benign_dataset,poison_data_start=5000)
trainer = BoosterAlignmentTrainer(model=model, tokenizer=tokenizer, args=training_args ,**data_module)
trainer.init(harmful_dataset)
elif training_args.optimizer == "undercover":
trainer = UndercoverTrainer(model=model, tokenizer=tokenizer, args=training_args ,**data_module)
trainer.init(training_args.dense_ratio)
elif training_args.optimizer == "prune_afterfinetune":
trainer = UndercoverTrainer(model=model, tokenizer=tokenizer, args=training_args ,**data_module)
trainer.init(training_args.dense_ratio)
elif training_args.optimizer == "undercover_sft":
trainer = UndercoverTrainer(model=model, tokenizer=tokenizer, args=training_args ,**data_module)
trainer.init(training_args.dense_ratio)
elif training_args.optimizer == "LDIFS":
trainer = LDIFSTrainer(model=model, tokenizer=tokenizer, args=training_args ,**data_module)
trainer.init(model)
elif training_args.optimizer == "undercover_vaccine":
trainer = BaseTrainer(model=model, tokenizer=tokenizer, args=training_args ,**data_module)
trainer.init(training_args.dense_ratio)
else:
import torch.optim as optim
trainer = transformers.Trainer(model=model, tokenizer=tokenizer, args=training_args ,**data_module)
# calcualte the training steps to calculate gpu time
num_train_samples = len(data_module["train_dataset"])
num_train_epochs = training_args.num_train_epochs
train_batch_size = training_args.per_device_train_batch_size
gradient_accumulation_steps = training_args.gradient_accumulation_steps
effective_batch_size = train_batch_size * gradient_accumulation_steps
total_steps = num_train_epochs * (num_train_samples // effective_batch_size)
print(total_steps)
class GPUTimeCallback(TrainerCallback):
def __init__(self):
super().__init__()
self.average_statistic = 0
self.record_time = 0
def on_step_begin(self, args, state, control, **kwargs):
state.start_event = torch.cuda.Event(enable_timing=True)
state.end_event = torch.cuda.Event(enable_timing=True)
state.start_event.record()
def on_step_end(self, args, state, control, **kwargs):
state.end_event.record()
torch.cuda.synchronize()
step_time = state.start_event.elapsed_time(state.end_event)
self.average_statistic = (self.average_statistic* self.record_time +step_time) / (self.record_time+1)
self.record_time +=1
if self.record_time%100==0:
# print(f"Step {state.global_step}: {self.average_statistic*self.record_time / 1000:.2f} seconds (GPU time)")
print("Estimated total time {} (h)".format(self.average_statistic*total_steps/ 1000/3600))
class GPUMemoryCallback(TrainerCallback):
def __init__(self):
super().__init__()
self.average_statistic_memory = 0
self.record_time_memory = 0
def on_step_begin(self, args, state, control, **kwargs):
state.start_memory = torch.cuda.memory_reserved()
# print(self.record_time_memory)
def on_step_end(self, args, state, control, **kwargs):
state.end_memory = torch.cuda.memory_reserved()
self.average_statistic_memory = (self.average_statistic_memory* self.record_time_memory +state.end_memory ) / (self.record_time_memory+1)
self.record_time_memory +=1
if self.record_time_memory%100==0:
print(f"Step {state.global_step}: {self.average_statistic_memory / (1024 ** 3):.2f} GB GPU memory used")
if training_args.system_evaluate =="True":
trainer.add_callback(GPUTimeCallback())
trainer.add_callback(GPUMemoryCallback())
# trainer.add_callback(EmbeddingCallback())
class evaluationCallback(TrainerCallback):
# every eval_steps output the gradient norm
def __init__(self):
super().__init__()
self.step=0
def query(self, instruction, model ):
prompt = f"Below is an instruction that describes a task. Write a response that appropriately completes the request.\n\n### Instruction:\n{instruction}\n\n### Response:\n"
input_dict = tokenizer(prompt, return_tensors="pt")
input_ids = input_dict['input_ids'].cuda()
with torch.no_grad():
generation_output = model.generate(
inputs=input_ids,
top_p=1,
temperature=1.0, # greedy decoding
do_sample=False, # greedy decoding
num_beams=1,
max_new_tokens=256,
eos_token_id=tokenizer.eos_token_id,
pad_token_id=tokenizer.pad_token_id,
)
s = generation_output[0]
output = tokenizer.decode(s, skip_special_tokens=True)
res = output.split("### Response:")[1].strip()
return res
def on_step_end(self, args, state, control, model , **kwargs):
self.step+=1
if self.step%args.eval_steps==0:
model.eval()
instruction_lst = []
from datasets import load_dataset
dataset =load_dataset("PKU-Alignment/BeaverTails")
index=0
input_data_lst = []
for example in dataset["30k_test"]:
if index<200 and not example["is_safe"]:
# for example in dataset["30k_train"]:
# if index<100 and example["is_safe"]:
instance = {}
instance["instruction"] = example["prompt"]
instruction_lst += [example["prompt"]]
input_data_lst += [instance]
index+=1
pred_lst = []
for instruction in tqdm(instruction_lst):
pred = self.query(instruction, model )
pred_lst.append(pred)
output_lst = []
for input_data, pred in zip(input_data_lst, pred_lst):
input_data['output'] = pred
output_lst.append(input_data)
if "smooth" in extra_args.lora_folder:
file_name = "smooth_harmful_score_steps_{}_{}".format(data_args.poison_ratio, self.step )
else:
file_name = "sft_harmful_score_steps_{}_{}".format(data_args.poison_ratio, self.step )
with open(file_name, 'w') as f:
json.dump(output_lst, f, indent=4)
# track the embedding before train
if training_args.track_embedding_before_train=="True":
from utils import track_embedding
track_embedding(extra_args, trainer.get_eval_dataloader(), model)
# if training_args.optimizer == "finetune_undercover":
# trainer.add_callback(evaluationCallback())
if training_args.num_train_epochs>0:
trainer.train()
if training_args.optimizer == "admm":
trainer.end_training()
# perturb the model
if training_args.optimizer == "undercover":
trainer.save_mask(training_args.output_dir+ "/bad_mask.pt")
if training_args.optimizer == "undercover_sft":
trainer.save_mask(training_args.output_dir+ "/good_mask.pt")
if training_args.optimizer == "undercover_vaccine":
trainer.save_mask(training_args.output_dir+ "/good_mask.pt")
if training_args.optimizer == "prune_afterfinetune" and training_args.random_prune!="True":
trainer.save_mask(training_args.output_dir+ "/bad_mask.pt")
# trainer.save_model(output_dir=training_args.output_dir)
if training_args.optimizer == "prune_afterfinetune":
if training_args.system_evaluate =="True":
start_event = torch.cuda.Event(enable_timing=True)
end_event = torch.cuda.Event(enable_timing=True)
start_event.record()
if training_args.random_prune=="True":
for name, param in model.named_parameters():
# name= name[:-7]
if param.requires_grad:
shape = param.shape
total_elements = param.numel()
num_non_zero_elements = int(total_elements * training_args.dense_ratio)
mask = torch.zeros(total_elements)
non_zero_indices = torch.randperm(total_elements)[:num_non_zero_elements]
mask[non_zero_indices] = 1
mask = mask.view(shape).to("cuda:0")
param.data *= (1-mask)
else:
bad_mask = torch.load(training_args.output_dir+"/bad_mask.pt")
if training_args.no_safety_mask!="True":
good_mask = torch.load(extra_args.lora_folder+"/good_mask.pt")
for name in good_mask:
bad_mask[name] -= good_mask[name]
bad_mask[name][bad_mask[name]<0] = 0
for name, param in model.named_parameters():
# name= name[:-7]
if name in bad_mask:
param.data *= (1-bad_mask[name])
if training_args.system_evaluate =="True":
end_event.record()
torch.cuda.synchronize()
ont_shot_time = start_event.elapsed_time(end_event)
print("Estimated one shot time {} (h)".format(ont_shot_time/ 1000/3600))
memory_usage = torch.cuda.memory_reserved()
print(f"Memory usage: { memory_usage/ (1024 ** 3):.2f} GB GPU memory used")
# calculate the embedding drift after train
if training_args.track_embedding_drift=="True":
from utils import calculate_drift2first_embedding
calculate_drift2first_embedding(extra_args, trainer.get_eval_dataloader(),model)
trainer.save_state()
model.save_pretrained(training_args.output_dir)
if __name__ == "__main__":
train()