-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathBottcherNear.lean
708 lines (625 loc) · 33.4 KB
/
BottcherNear.lean
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
import Mathlib.Data.Complex.Basic
import Mathlib.Data.Complex.Exponential
import Mathlib.Analysis.Complex.RemovableSingularity
import Mathlib.Analysis.SpecialFunctions.Complex.Log
import Mathlib.Topology.Basic
import Ray.Analytic.Analytic
import Ray.Analytic.Products
import Ray.Hartogs.Hartogs
import Ray.Hartogs.Osgood
import Ray.Misc.Pow
/-!
## Böttcher map near a superattracting fixpoint
We define superattracting fixed points at `0` of a parameterized analytic map `f : ℂ → ℂ → ℂ`
(namely a fixed point of order `d ≥ 2`). Near the fixpoint, Böttcher coordinates `bottcherNear`
conjugate `f c` to `z ^ d`:
`bottcherNear c (f c z) = bottcherNear c z ^ d`
This file defines `bottcherNear` locally near `0` using the explicit infinite product formula.
Later in `Potential.lean` we lift to 1D complex manifolds, and `Grow.lean`, `Ray.lean`, and
`Bottcher.lean` analytically continue the map to all postcritical points.
One wart: we require not only that `f c` has a zero of order `d ≥ 2`, but also that `f c` is
"monic": that the leading coefficient of the Taylor series is `1`. This slightly simplifies the
formulas, but is probably better to remove.
-/
open Classical
open Complex (exp log abs cpow)
open Filter (Tendsto atTop)
open Function (curry uncurry)
open Metric (ball closedBall isOpen_ball ball_mem_nhds mem_ball_self nonempty_ball)
open Nat (iterate)
open Set
open scoped NNReal Topology
noncomputable section
section Bottcher
-- All information for a monic superattracting fixed point at the origin
variable {f : ℂ → ℂ}
variable {d : ℕ}
variable {z : ℂ}
variable {t : Set ℂ}
/-- `f` has a monic, superattracting fixed point of order `d ≥ 2` at the origin.
This is a simplified version of `SuperNear` with no smallest requirements. -/
structure SuperAt (f : ℂ → ℂ) (d : ℕ) : Prop where
d2 : 2 ≤ d
fa0 : AnalyticAt ℂ f 0
fd : orderAt f 0 = d
fc : leadingCoeff f 0 = 1
/-- `f` has a monic, superattracting fixed point of order `d ≥ 2` at the origin.
We impose some smallness requirements to make bounds easier later. -/
structure SuperNear (f : ℂ → ℂ) (d : ℕ) (t : Set ℂ) extends SuperAt f d : Prop where
o : IsOpen t
t0 : (0 : ℂ) ∈ t
t2 : ∀ {z}, z ∈ t → abs z ≤ 1 / 2
fa : AnalyticOnNhd ℂ f t
ft : MapsTo f t t
gs' : ∀ {z : ℂ}, z ≠ 0 → z ∈ t → abs (f z / z ^ d - 1) ≤ 1 / 4
-- Facts about d
theorem SuperAt.d0 (s : SuperAt f d) : d ≠ 0 := by have h := s.d2; omega
theorem SuperAt.dp (s : SuperAt f d) : 0 < d := lt_of_lt_of_le two_pos s.d2
theorem SuperAt.drp (s : SuperAt f d) : 0 < (d : ℝ) := Nat.cast_pos.mpr s.dp
theorem SuperAt.drz (s : SuperAt f d) : (d : ℝ) ≠ 0 := s.drp.ne'
theorem SuperAt.dz (s : SuperAt f d) : (d : ℂ) ≠ 0 := Nat.cast_ne_zero.mpr s.dp.ne'
theorem SuperAt.dr2 (s : SuperAt f d) : 2 ≤ (d : ℝ) := le_trans (by norm_num) (Nat.cast_le.mpr s.d2)
-- Teach `bound` that `0 < d` and `2 ≤ d`
attribute [bound_forward] SuperAt.d2 SuperAt.dp SuperAt.dr2 SuperNear.toSuperAt
/-- `g` such that `f z = z^d * g z` -/
def g (f : ℂ → ℂ) (d : ℕ) : ℂ → ℂ := fun z ↦ if z = 0 then 1 else f z / z ^ d
/-- g 0 = 1 -/
theorem g0 {f : ℂ → ℂ} {d : ℕ} : g f d 0 = 1 := by simp only [g, eq_self_iff_true, if_true]
/-- Asymptotic bound on `f` based on the order `d` zero -/
theorem SuperAt.approx (s : SuperAt f d) : (fun z ↦ f z - z ^ d) =o[𝓝 0] fun z ↦ z ^ d := by
have a := s.fa0.leading_approx
simp only [s.fd, s.fc, sub_zero, Pi.one_apply, Algebra.id.smul_eq_mul, mul_one] at a
exact a
/-- `f 0 = 0` -/
theorem SuperAt.f0 (s : SuperAt f d) : f 0 = 0 :=
haveI p : orderAt f 0 > 0 := by simp [s.fd, s.dp]
s.fa0.zero_of_order_pos p
/-- `f = z^d g` -/
theorem SuperAt.fg (s : SuperAt f d) (z : ℂ) : f z = z ^ d * g f d z := by
by_cases z0 : z = 0
· simp only [z0, zero_pow s.d0, s.f0, MulZeroClass.zero_mul]
· simp only [g, z0, if_false]; field_simp [z0]
/-- `g` is analytic where `f` is -/
theorem SuperAt.ga_of_fa (s : SuperAt f d) {c : ℂ} (fa : AnalyticAt ℂ f c) :
AnalyticAt ℂ (g f d) c := by
rcases fa.exists_ball_analyticOnNhd with ⟨r, rp, fa⟩
have o : IsOpen (ball c r) := isOpen_ball
generalize ht : ball c r = t
rw [ht] at fa o
suffices h : AnalyticOnNhd ℂ (g f d) t by rw [← ht] at h; exact h _ (mem_ball_self rp)
have ga : DifferentiableOn ℂ (g f d) (t \ {0}) := by
have e : ∀ z : ℂ, z ∈ t \ {0} → g f d z = f z / z ^ d := by
intro z zs; simp only [Set.mem_diff, Set.mem_singleton_iff] at zs
simp only [g, zs.2, if_false]
rw [differentiableOn_congr e]
apply DifferentiableOn.div (fa.mono diff_subset).differentiableOn
exact (Differentiable.pow differentiable_id _).differentiableOn
intro z zs; exact pow_ne_zero _ (Set.mem_diff_singleton.mp zs).2
rw [analyticOn_iff_differentiableOn o]
by_cases t0 : (0 : ℂ) ∉ t; · rw [Set.diff_singleton_eq_self t0] at ga; exact ga
simp only [Set.not_not_mem] at t0
have gc : ContinuousAt (g f d) 0 := by
rw [Metric.continuousAt_iff]; intro e ep
rcases Metric.eventually_nhds_iff.mp
(Asymptotics.isBigOWith_iff.mp (s.approx.forall_isBigOWith (by linarith : e / 2 > 0))) with
⟨t, tp, h⟩
use t, tp; intro z zs; specialize h zs
simp only [Complex.norm_eq_abs] at h
simp only [g, Complex.dist_eq]
by_cases z0 : z = 0; · simp only [z0, sub_self, AbsoluteValue.map_zero]; exact ep
simp only [z0, if_false, eq_self_iff_true, if_true]
calc
abs (f z / z ^ d - 1) = abs (f z * (z ^ d)⁻¹ - 1) := by rw [div_eq_mul_inv]
_ = abs ((f z - z ^ d) * (z ^ d)⁻¹) := by
rw [mul_sub_right_distrib, mul_inv_cancel₀ (pow_ne_zero d z0)]
_ = abs (f z - z ^ d) * (abs (z ^ d))⁻¹ := by rw [Complex.abs.map_mul, map_inv₀]
_ ≤ e / 2 * abs (z ^ d) * (abs (z ^ d))⁻¹ := by bound
_ = e / 2 * (abs (z ^ d) * (abs (z ^ d))⁻¹) := by ring
_ ≤ e / 2 * 1 := by bound
_ = e / 2 := by ring
_ < e := half_lt_self ep
exact (Complex.differentiableOn_compl_singleton_and_continuousAt_iff (o.mem_nhds t0)).mp ⟨ga, gc⟩
/-- `g` is analytic -/
theorem SuperNear.ga (s : SuperNear f d t) : AnalyticOnNhd ℂ (g f d) t := fun z m ↦
s.ga_of_fa (s.fa z m)
/-- `SuperAt → SuperNear`, manual radius version: if we know a ball where `f` is analytic and
the resulting `g` is small, then `SuperAt` becomes `SuperNear` -/
theorem SuperAt.super_on_ball (s : SuperAt f d) {r : ℝ} (rp : 0 < r) (r2 : r ≤ 1 / 2)
(fa : AnalyticOnNhd ℂ f (ball 0 r)) (gs : ∀ {z : ℂ}, abs z < r → abs (g f d z - 1) < 1 / 4) :
SuperNear f d (ball 0 r) :=
haveI gs : ∀ {z : ℂ}, z ≠ 0 → z ∈ ball (0 : ℂ) r → abs (f z / z ^ d - 1) ≤ 1 / 4 := by
intro z z0 zs; simp only [mem_ball_zero_iff, Complex.norm_eq_abs, lt_min_iff] at zs
specialize gs zs; simp only [g, z0, if_false, eq_self_iff_true, if_true] at gs
exact gs.le
{ d2 := s.d2
fa0 := s.fa0
fd := s.fd
fc := s.fc
o := isOpen_ball
t0 := mem_ball_self rp
gs' := fun z0 ↦ gs z0
fa
t2 := by
intro z zs; simp only [mem_ball_zero_iff, Complex.norm_eq_abs] at zs; exact le_trans zs.le r2
ft := by
intro z zs; simp only [mem_ball_zero_iff, Complex.norm_eq_abs] at zs gs ⊢
by_cases z0 : z = 0; · simp only [z0, s.f0, rp, AbsoluteValue.map_zero]
calc abs (f z)
_ = abs (f z / z ^ d * z ^ d) := by rw [div_mul_cancel₀ _ (pow_ne_zero d z0)]
_ = abs (f z / z ^ d - 1 + 1) * abs z ^ d := by
simp only [AbsoluteValue.map_mul, Complex.abs_pow, sub_add_cancel]
_ ≤ (abs (f z / z ^ d - 1) + abs (1 : ℂ)) * r ^ d := by bound
_ ≤ (1 / 4 + abs (1 : ℂ)) * r ^ d := by bound [gs z0 zs]
_ ≤ 5 / 4 * r ^ (d - 1) * r := by
rw [mul_assoc, ← pow_succ, Nat.sub_add_cancel (le_trans one_le_two s.d2)]; norm_num
_ ≤ 5 / 4 * (1 / 2 : ℝ) ^ (d - 1) * r := by bound
_ ≤ 5 / 4 * (1 / 2 : ℝ) ^ (2 - 1) * r := by bound
_ = 5 / 8 * r := by norm_num
_ < r := by linarith }
/-- `SuperAt → SuperNear`, automatic radius version: given `SuperAt`, we can find a ball where the
smallness conditions needed for `SuperNear` hold. -/
theorem SuperAt.superNear (s : SuperAt f d) : ∃ t, SuperNear f d t := by
rcases s.fa0.exists_ball_analyticOnNhd with ⟨r0, r0p, fa⟩
rcases Metric.continuousAt_iff.mp (s.ga_of_fa (fa 0 (mem_ball_self r0p))).continuousAt (1 / 4)
(by norm_num) with
⟨r1, r1p, gs⟩
set r := min r0 (min r1 (1 / 2))
use ball 0 r
have rp : 0 < r := by bound
have r2 : r ≤ 1 / 2 := le_trans (min_le_right _ _) (min_le_right _ _)
have rr1 : r ≤ r1 := le_trans (min_le_right r0 _) (min_le_left r1 _)
simp only [g0, dist_zero_right, Complex.norm_eq_abs, Complex.dist_eq, sub_zero] at gs
exact s.super_on_ball rp r2 (fa.mono (Metric.ball_subset_ball (min_le_left r0 _))) (fun {z} zr ↦
gs (lt_of_lt_of_le zr rr1))
/-- `g` is small near 0 -/
theorem SuperNear.gs (s : SuperNear f d t) {z : ℂ} (zt : z ∈ t) : abs (g f d z - 1) ≤ 1 / 4 := by
by_cases z0 : z = 0
· simp only [z0, g0, sub_self, AbsoluteValue.map_zero, one_div, inv_nonneg, zero_le_one]
norm_num
· simp only [g, z0, if_false, s.gs' z0 zt]
/-- `g` is nonzero -/
theorem SuperNear.g_ne_zero (s : SuperNear f d t) {z : ℂ} (zt : z ∈ t) : g f d z ≠ 0 := by
have h := s.gs zt; contrapose h; simp only [not_not] at h; simp only [h]; norm_num
/-- `f` is zero only at zero -/
theorem SuperNear.f_ne_zero (s : SuperNear f d t) {z : ℂ} (zt : z ∈ t) (z0 : z ≠ 0) : f z ≠ 0 := by
simp only [s.fg, mul_ne_zero (pow_ne_zero _ z0) (s.g_ne_zero zt), Ne, not_false_iff]
/-!
## The infinite product
To prove Bottcher's theorem for a monic, superattracting fixpoint, we start with
`f z = z^d * g z`
`g 0 = 1`
Ignoring multiple values when taking `d`th roots, we can derive the infinite product
`(E n z)^(d^n) = f^[n] z`
`E n z = (f^[n] z)^(1/d^n)`
`E n z = (f (f^[n-1] z))^(1/d^n)`
`E n z = (f ((E (n-1) z)^(d^(n-1))))^(1/d^n)`
`E n z = ((E (n-1) z)^(d^n) * g ((E (n-1) z)^(d^(n-1))))^(1/d^n)`
`E n z = E (n-1) z * (g ((E (n-1) z)^(d^(n-1))))^(1/d^n)`
`E n z = E (n-1) z * (g (f^[n-1] z))^(1/d^n)`
`E n z = z * prod_{1 < k ≤ n} (g (f^[k-1] z))^(1/d^k)`
-/
/-- Terms in our infinite product -/
def term (f : ℂ → ℂ) (d n : ℕ) (z : ℂ) :=
g f d (f^[n] z) ^ (1 / (d ^ (n + 1) : ℕ) : ℂ)
/-- With `term` in hand, we can define Böttcher coordinates -/
def bottcherNear (f : ℂ → ℂ) (d : ℕ) (z : ℂ) :=
z * tprod fun n ↦ term f d n z
/-- `^d` shifts `term (n+1)` to `term n`:
`(term n z)^d = (g (f^[n] z) ^ 1/d^(n+1))^d`
` = (g (f^[n-1] (f z)) ^ 1/d^n)`
` = term (n-1) (f z)` -/
theorem term_eqn (s : SuperNear f d t) : ∀ n, term f d n (f z) = term f d (n + 1) z ^ d := by
intro n
simp only [term, ← Function.iterate_succ_apply, pow_mul_nat, div_mul, pow_succ' _ (n + 1),
mul_div_cancel_left₀ _ s.dz, Nat.succ_eq_add_one, Nat.cast_mul]
/-- The analogue of `term_eqn (-1)`:
`(z * term 0 z)^d = (z * g z ^ 1/d)^d`
` = z^d * g z`
` = f z` -/
theorem term_base (s : SuperNear f d t) : f z = (z * term f d 0 z) ^ d := by
rw [term]; simp only [Function.iterate_zero, id, pow_one, one_div]
rw [mul_pow, pow_mul_nat, zero_add, pow_one, inv_mul_cancel₀]
· rw [s.fg]; simp only [Complex.cpow_one]
· simp only [Ne, Nat.cast_eq_zero]
exact (gt_of_ge_of_gt s.d2 (by norm_num)).ne'
/-- `abs (f z) = abs (z^d * g z) ≤ 5/4 * (abs z)^d ≤ 5/8 * abs z` -/
theorem f_converges (s : SuperNear f d t) : z ∈ t → abs (f z) ≤ 5 / 8 * abs z := by
intro zt
rw [s.fg]; simp
have gs : abs (g f d z) ≤ 5 / 4 := by
calc abs (g f d z)
_ = abs (g f d z - 1 + 1) := by ring_nf
_ ≤ abs (g f d z - 1) + abs (1 : ℂ) := by bound
_ ≤ 1 / 4 + abs (1 : ℂ) := by linarith [s.gs zt]
_ ≤ 5 / 4 := by norm_num
have az1 : abs z ≤ 1 := le_trans (s.t2 zt) (by norm_num)
calc abs z ^ d * abs (g f d z)
_ ≤ abs z ^ 2 * (5 / 4) := by bound
_ = abs z * abs z * (5 / 4) := by ring_nf
_ ≤ 1 / 2 * abs z * (5 / 4) := by bound [s.t2 zt]
_ = 5 / 8 * abs z := by ring
theorem five_eights_pow_le {n : ℕ} {r : ℝ} : r > 0 → (5/8 : ℝ) ^ n * r ≤ r := by
intro rp; trans (1:ℝ) ^ n * r; bound; simp only [one_pow, one_mul, le_refl]
theorem five_eights_pow_lt {n : ℕ} {r : ℝ} : r > 0 → n ≠ 0 → (5/8 : ℝ) ^ n * r < r := by
intro rp np
have h : (5 / 8 : ℝ) ^ n < 1 := pow_lt_one₀ (by norm_num) (by norm_num) np
exact lt_of_lt_of_le (mul_lt_mul_of_pos_right h rp) (by simp only [one_mul, le_refl])
/-- Iterating f remains in t -/
theorem SuperNear.mapsTo (s : SuperNear f d t) (n : ℕ) : MapsTo f^[n] t t := by
induction' n with n h; simp only [Set.mapsTo_id, Function.iterate_zero]
rw [Function.iterate_succ']; exact s.ft.comp h
/-- `abs (f^(n) z) ≤ (5/8)^n * abs z`, which `≤ 1/2 * (5/8)^n` from above -/
theorem iterates_converge (s : SuperNear f d t) :
∀ n, z ∈ t → abs (f^[n] z) ≤ (5/8 : ℝ) ^ n * abs z := by
intro n zt
induction' n with n nh
· simp only [Function.iterate_zero, id, pow_zero, one_mul, Nat.cast_one, le_refl]
· rw [Function.iterate_succ']
trans (5/8 : ℝ) * abs (f^[n] z)
· exact f_converges s (s.mapsTo n zt)
· calc (5/8 : ℝ) * abs (f^[n] z)
_ ≤ (5/8 : ℝ) * ((5/8 : ℝ) ^ n * abs z) := by bound
_ = 5/8 * (5/8 : ℝ) ^ n * abs z := by ring
_ = (5/8 : ℝ) ^ (n + 1) * abs z := by rw [← pow_succ']
_ = (5/8 : ℝ) ^ n.succ * abs z := rfl
/-- Iterates are analytic -/
theorem iterates_analytic (s : SuperNear f d t) : ∀ n, AnalyticOnNhd ℂ f^[n] t := by
intro n; induction' n with n h; · simp only [Function.iterate_zero]; exact analyticOnNhd_id
· rw [Function.iterate_succ']; intro z zt; exact (s.fa _ (s.mapsTo n zt)).comp (h z zt)
/-- `term` is analytic close to 0 -/
theorem term_analytic (s : SuperNear f d t) : ∀ n, AnalyticOnNhd ℂ (term f d n) t := by
intro n z zt
refine AnalyticAt.cpow ?_ analyticAt_const ?_
· exact (s.ga _ (s.mapsTo n zt)).comp (iterates_analytic s n z zt)
· exact mem_slitPlane_of_near_one (lt_of_le_of_lt (s.gs (s.mapsTo n zt)) (by norm_num))
/-- term converges to 1 exponentially, sufficiently close to 0:
`abs (term s n z - 1) ≤ 4 * 1/d^(n+1) * 1/4 ≤ 1/2 * (1/d)^n` -/
theorem term_converges (s : SuperNear f d t) :
∀ n, z ∈ t → abs (term f d n z - 1) ≤ 1/2 * (1/2 : ℝ) ^ n := by
intro n zt; rw [term]
trans 4 * abs (g f d (f^[n] z) - 1) * abs (1 / (d ^ (n + 1) : ℕ) : ℂ)
· apply pow_small; · exact le_trans (s.gs (s.mapsTo n zt)) (by norm_num)
· simp only [one_div, map_inv₀, Complex.abs_pow, Complex.abs_natCast, Nat.cast_pow]
apply inv_le_one_of_one_le₀
have hd : 1 ≤ (d : ℝ) := le_trans (by norm_num) s.dr2
exact one_le_pow₀ hd
· have gs : abs (g f d (f^[n] z) - 1) ≤ 1 / 4 := s.gs (s.mapsTo n zt)
have ps : abs (1 / (d:ℂ) ^ (n + 1) : ℂ) ≤ 1/2 * (1/2 : ℝ) ^ n := by
have nn : (1/2:ℝ) * (1/2 : ℝ) ^ n = (1/2 : ℝ) ^ (n + 1) := (pow_succ' _ _).symm
rw [nn]
simp only [one_div, map_inv₀, map_pow, Complex.abs_natCast, inv_pow, ge_iff_le]
bound
calc (4:ℝ) * abs (g f d (f^[n] z) - 1) * abs ((1:ℂ) / (d ^ (n + 1) : ℕ) : ℂ)
_ = (4:ℝ) * abs (g f d (f^[n] z) - 1) * abs ((1:ℂ) / (d:ℂ) ^ (n + 1) : ℂ) := by
rw [Nat.cast_pow]
_ ≤ 4 * (1 / 4) * (1 / 2 * (1 / 2 : ℝ) ^ n) := by bound
_ = 1 / 2 * (1 / 2 : ℝ) ^ n := by ring
/-- `term` is nonzero, sufficiently close to 0 -/
theorem term_nonzero (s : SuperNear f d t) : ∀ n, z ∈ t → term f d n z ≠ 0 := by
intro n zt
have h := term_converges s n zt
have o : 1 / 2 * (1 / 2 : ℝ) ^ n < 1 := by
have p : (1 / 2 : ℝ) ^ n ≤ 1 := pow_le_one₀ (by norm_num) (by linarith)
calc 1 / 2 * (1 / 2 : ℝ) ^ n
_ ≤ 1 / 2 * 1 := by linarith
_ < 1 := by norm_num
exact near_one_avoids_zero (lt_of_le_of_lt h o)
/-- The `term` product exists and is analytic -/
theorem term_prod (s : SuperNear f d t) :
ProdExistsOn (term f d) t ∧
AnalyticOnNhd ℂ (tprodOn (term f d)) t ∧ ∀ z, z ∈ t → tprodOn (term f d) z ≠ 0 := by
have c12 : (1 / 2 : ℝ) ≤ 1 / 2 := by norm_num
have a0 : 0 ≤ (1 / 2 : ℝ) := by norm_num
exact fast_products_converge' s.o c12 a0 (by linarith) (term_analytic s)
fun n z ↦ term_converges s n
/-- The `term` product exists -/
theorem term_prod_exists (s : SuperNear f d t) : ProdExistsOn (term f d) t :=
(term_prod s).1
/-- The `term` product is analytic in `z` -/
theorem term_prod_analytic_z (s : SuperNear f d t) : AnalyticOnNhd ℂ (tprodOn (term f d)) t :=
(term_prod s).2.1
/-- The `term` product is nonzero -/
theorem term_prod_ne_zero (s : SuperNear f d t) (zt : z ∈ t) : tprodOn (term f d) z ≠ 0 :=
(term_prod s).2.2 _ zt
/-- `bottcherNear` satisfies `b (f z) = (b z)^d` near 0 -/
theorem bottcherNear_eqn (s : SuperNear f d t) (zt : z ∈ t) :
bottcherNear f d (f z) = bottcherNear f d z ^ d := by
simp_rw [bottcherNear]
have pe := (term_prod_exists s) z zt
simp only [mul_pow, product_pow' pe]
have pe : ProdExists fun n ↦ term f d n z ^ d := by
rcases pe with ⟨g, hg⟩; exact ⟨_, product_pow d hg⟩
simp only [product_split pe, ← term_eqn s, ← mul_assoc, ← mul_pow, ← term_base s]
/-- `bottcherNear_eqn`, iterated -/
theorem bottcherNear_eqn_iter (s : SuperNear f d t) (zt : z ∈ t) (n : ℕ) :
bottcherNear f d (f^[n] z) = bottcherNear f d z ^ d ^ n := by
induction' n with n h; simp only [Function.iterate_zero, id, pow_zero, pow_one]
simp only [Function.comp, Function.iterate_succ', pow_succ, pow_mul,
bottcherNear_eqn s (s.mapsTo n zt), h]
/-- `f^[n] 0 = 0` -/
theorem iterates_at_zero (s : SuperNear f d t) : ∀ n, f^[n] 0 = 0 := by
intro n; induction' n with n h; simp only [Function.iterate_zero, id]
simp only [Function.iterate_succ', Function.comp_apply, h, s.f0]
/-- `term s n 0 = 1` -/
theorem term_at_zero (s : SuperNear f d t) (n : ℕ) : term f d n 0 = 1 := by
simp only [term, iterates_at_zero s, g0, Complex.one_cpow]
/-- `prod (term s _ 0) = 1` -/
theorem term_prod_at_zero (s : SuperNear f d t) : tprodOn (term f d) 0 = 1 := by
simp_rw [tprodOn, term_at_zero s, tprod_one]
/-- `bottcherNear' 0 = 1` (so in particular `bottcherNear` is a local isomorphism) -/
theorem bottcherNear_monic (s : SuperNear f d t) : HasDerivAt (bottcherNear f d) 1 0 := by
have dz : HasDerivAt (fun z : ℂ ↦ z) 1 0 := hasDerivAt_id 0
have db := HasDerivAt.mul dz (term_prod_analytic_z s 0 s.t0).differentiableAt.hasDerivAt
simp only [one_mul, MulZeroClass.zero_mul, add_zero] at db
rw [term_prod_at_zero s] at db; exact db
/-- `bottcherNear 0 = 0` -/
theorem bottcherNear_zero : bottcherNear f d 0 = 0 := by
simp only [bottcherNear, MulZeroClass.zero_mul]
/-- `z ≠ 0 → bottcherNear z ≠ 0` -/
theorem bottcherNear_ne_zero (s : SuperNear f d t) : z ∈ t → z ≠ 0 → bottcherNear f d z ≠ 0 :=
fun zt z0 ↦ mul_ne_zero z0 (term_prod_ne_zero s zt)
/-- `bottcherNear` is analytic in `z` -/
theorem bottcherNear_analytic_z (s : SuperNear f d t) : AnalyticOnNhd ℂ (bottcherNear f d) t :=
analyticOnNhd_id.mul (term_prod_analytic_z s)
/-- `f^[n] z → 0` -/
theorem iterates_tendsto (s : SuperNear f d t) (zt : z ∈ t) :
Tendsto (fun n ↦ f^[n] z) atTop (𝓝 0) := by
by_cases z0 : z = 0; simp only [z0, iterates_at_zero s, tendsto_const_nhds]
rw [Metric.tendsto_atTop]; intro e ep
simp only [Complex.dist_eq, sub_zero]
have xp : e / abs z > 0 := div_pos ep (Complex.abs.pos z0)
rcases exists_pow_lt_of_lt_one xp (by norm_num : (5 / 8 : ℝ) < 1) with ⟨N, Nb⟩
simp only [lt_div_iff₀ (Complex.abs.pos z0)] at Nb
use N; intro n nN
refine lt_of_le_of_lt (iterates_converge s n zt) (lt_of_le_of_lt ?_ Nb)
bound
/-- `bottcherNear < 1` -/
theorem bottcherNear_lt_one (s : SuperNear f d t) (zt : z ∈ t) : abs (bottcherNear f d z) < 1 := by
rcases Metric.continuousAt_iff.mp (bottcherNear_analytic_z s _ s.t0).continuousAt 1 zero_lt_one
with ⟨r, rp, rs⟩
simp only [Complex.dist_eq, sub_zero, bottcherNear_zero] at rs
have b' : ∀ᶠ n in atTop, abs (bottcherNear f d (f^[n] z)) < 1 := by
refine (Metric.tendsto_nhds.mp (iterates_tendsto s zt) r rp).mp (.of_forall fun n h ↦ ?_)
rw [Complex.dist_eq, sub_zero] at h; exact rs h
rcases b'.exists with ⟨n, b⟩
contrapose b; simp only [not_lt] at b ⊢
simp only [bottcherNear_eqn_iter s zt n, Complex.abs.map_pow, one_le_pow₀ b]
/-- Linear bound on `abs bottcherNear` -/
theorem bottcherNear_le (s : SuperNear f d t) (zt : z ∈ t) :
abs (bottcherNear f d z) ≤ 3 * abs z := by
simp only [bottcherNear, Complex.abs.map_mul]; rw [mul_comm]
refine mul_le_mul_of_nonneg_right ?_ (Complex.abs.nonneg _)
rcases term_prod_exists s _ zt with ⟨p, h⟩; rw [h.tprod_eq]; simp only [HasProd] at h
apply le_of_tendsto' (Filter.Tendsto.comp Complex.continuous_abs.continuousAt h)
intro A; clear h; simp only [Function.comp, Complex.abs.map_prod]
have tb : ∀ n, abs (term f d n z) ≤ 1 + 1 / 2 * (1 / 2 : ℝ) ^ n := by
intro n
calc abs (term f d n z)
_ = abs (1 + (term f d n z - 1)) := by ring_nf
_ ≤ Complex.abs 1 + abs (term f d n z - 1) := by bound
_ = 1 + abs (term f d n z - 1) := by norm_num
_ ≤ 1 + 1 / 2 * (1 / 2 : ℝ) ^ n := by bound [term_converges s n zt]
have p : ∀ n : ℕ, 0 < (1 : ℝ) + 1 / 2 * (1 / 2 : ℝ) ^ n := fun _ ↦ add_pos (by bound) (by bound)
have lb : ∀ n : ℕ, Real.log ((1 : ℝ) + 1 / 2 * (1 / 2 : ℝ) ^ n) ≤ 1 / 2 * (1 / 2 : ℝ) ^ n :=
fun n ↦ le_trans (Real.log_le_sub_one_of_pos (p n)) (le_of_eq (by ring))
refine le_trans (Finset.prod_le_prod (fun _ _ ↦ Complex.abs.nonneg _) fun n _ ↦ tb n) ?_
rw [← Real.exp_log (Finset.prod_pos fun n _ ↦ p n), Real.log_prod _ _ fun n _ ↦ (p n).ne']
refine le_trans (Real.exp_le_exp.mpr (Finset.sum_le_sum fun n _ ↦ lb n)) ?_
refine le_trans (Real.exp_le_exp.mpr ?_) Real.exp_one_lt_3.le
have geom := partial_scaled_geometric_bound (1 / 2) A one_half_pos.le one_half_lt_one
simp only [NNReal.coe_div, NNReal.coe_one, NNReal.coe_two] at geom
exact le_trans geom (by norm_num)
end Bottcher
-- Next we prove that everything is analytic in an additional function parameter
section BottcherC
variable {f : ℂ → ℂ → ℂ}
variable {d : ℕ}
variable {u : Set ℂ}
variable {t : Set (ℂ × ℂ)}
/-- `SuperAt` everywhere on a parameter set `u`, at `z = 0` -/
structure SuperAtC (f : ℂ → ℂ → ℂ) (d : ℕ) (u : Set ℂ) : Prop where
o : IsOpen u
s : ∀ {c}, c ∈ u → SuperAt (f c) d
fa : ∀ {c}, c ∈ u → AnalyticAt ℂ (uncurry f) (c, 0)
/-- `SuperNear` everywhere on a parameter set -/
structure SuperNearC (f : ℂ → ℂ → ℂ) (d : ℕ) (u : Set ℂ) (t : Set (ℂ × ℂ)) : Prop where
o : IsOpen t
tc : ∀ {p : ℂ × ℂ}, p ∈ t → p.1 ∈ u
s : ∀ {c}, c ∈ u → SuperNear (f c) d {z | (c, z) ∈ t}
fa : AnalyticOnNhd ℂ (uncurry f) t
/-- `SuperNearC → SuperNear` at `p ∈ t` -/
theorem SuperNearC.ts (s : SuperNearC f d u t) {p : ℂ × ℂ} (m : p ∈ t) :
SuperNear (f p.1) d {z | (p.1, z) ∈ t} :=
s.s (s.tc m)
/-- The parameter set `u` is open -/
theorem SuperNearC.ou (s : SuperNearC f d u t) : IsOpen u := by
have e : u = Prod.fst '' t := by
ext c; simp only [Set.mem_image, Prod.exists, exists_and_right, exists_eq_right]
exact ⟨fun m ↦ ⟨0, (s.s m).t0⟩, fun h ↦ Exists.elim h fun z m ↦ s.tc m⟩
rw [e]; exact isOpenMap_fst _ s.o
/-- `SuperNearC → SuperAtC` -/
theorem SuperNearC.superAtC (s : SuperNearC f d u t) : SuperAtC f d u :=
{ o := s.ou
s := by
intro c m; have s := s.s m
exact
{ d2 := s.d2
fa0 := s.fa0
fd := s.fd
fc := s.fc }
fa := fun {c} m ↦ s.fa _ (s.s m).t0 }
/-- A Two-parameter version of `g` -/
def g2 (f : ℂ → ℂ → ℂ) (d : ℕ) := fun p : ℂ × ℂ ↦ g (f p.1) d p.2
/-- `g2` is jointly analytic where `f` is -/
theorem SuperAtC.ga_of_fa (s : SuperAtC f d u) {t : Set (ℂ × ℂ)} (o : IsOpen t)
(fa : AnalyticOnNhd ℂ (uncurry f) t) (tc : ∀ {p : ℂ × ℂ}, p ∈ t → p.1 ∈ u) :
AnalyticOnNhd ℂ (g2 f d) t := by
refine Pair.hartogs o ?_ ?_
· intro c z m
simp only [g2, g]
by_cases zero : z = 0; · simp only [zero, eq_self_iff_true, if_true]; exact analyticAt_const
· simp only [zero, if_false]; refine AnalyticAt.div ?_ analyticAt_const (pow_ne_zero _ zero)
refine (fa _ ?_).comp₂ analyticAt_id analyticAt_const; exact m
· intro c z m; apply (s.s (tc m)).ga_of_fa
refine (fa _ ?_).comp₂ analyticAt_const analyticAt_id; exact m
/-- `g2` is jointly analytic -/
theorem SuperNearC.ga (s : SuperNearC f d u t) : AnalyticOnNhd ℂ (g2 f d) t :=
s.superAtC.ga_of_fa s.o s.fa fun {_} m ↦ s.tc m
/-- `SuperNearC` commutes with unions -/
theorem SuperNearC.union {I : Type} {u : I → Set ℂ} {t : I → Set (ℂ × ℂ)}
(s : ∀ i, SuperNearC f d (u i) (t i)) : SuperNearC f d (⋃ i, u i) (⋃ i, t i) := by
set tu := ⋃ i, t i
have o : IsOpen tu := isOpen_iUnion fun i ↦ (s i).o
have sm : ∀ {c z : ℂ},
(c, z) ∈ tu → ∃ u, z ∈ u ∧ u ⊆ {z | (c, z) ∈ tu} ∧ SuperNear (f c) d u := by
intro c z m; rcases Set.mem_iUnion.mp m with ⟨i, m⟩; use{z | (c, z) ∈ t i}
simp only [Set.mem_setOf_eq, m, Set.mem_iUnion, Set.setOf_subset_setOf, true_and, tu]
constructor
· exact fun z m ↦ ⟨i, m⟩
· exact (s i).s ((s i).tc m)
exact
{ o
tc := by
intro p m; rcases Set.mem_iUnion.mp m with ⟨i, m⟩
exact Set.subset_iUnion _ i ((s i).tc m)
fa := by intro p m; rcases Set.mem_iUnion.mp m with ⟨i, m⟩; exact (s i).fa _ m
s := by
intro c m; rcases Set.mem_iUnion.mp m with ⟨i, m⟩; have s := (s i).s m
exact
{ d2 := s.d2
fa0 := s.fa0
fd := s.fd
fc := s.fc
o := o.snd_preimage c
t0 := Set.subset_iUnion _ i s.t0
t2 := by intro z m; rcases sm m with ⟨u, m, _, s⟩; exact s.t2 m
fa := by intro z m; rcases sm m with ⟨u, m, _, s⟩; exact s.fa _ m
ft := by intro z m; rcases sm m with ⟨u, m, us, s⟩; exact us (s.ft m)
gs' := by intro z z0 m; rcases sm m with ⟨u, m, _, s⟩; exact s.gs' z0 m } }
/-- `SuperAtC → SuperNearC`, staying inside `w` -/
theorem SuperAtC.superNearC' (s : SuperAtC f d u) {w : Set (ℂ × ℂ)} (wo : IsOpen w)
(wc : ∀ c, c ∈ u → (c, (0 : ℂ)) ∈ w) : ∃ t, t ⊆ w ∧ SuperNearC f d u t := by
have h : ∀ c, c ∈ u →
∃ r, r > 0 ∧ ball c r ⊆ u ∧ ball (c, 0) r ⊆ w ∧
SuperNearC f d (ball c r) (ball (c, 0) r) := by
intro c m
rcases(s.fa m).exists_ball_analyticOnNhd with ⟨r0, r0p, fa⟩
rcases Metric.isOpen_iff.mp s.o c m with ⟨r1, r1p, rc⟩
set r2 := min r0 r1
have fa := fa.mono (Metric.ball_subset_ball (min_le_left r0 r1))
have rc : ball c r2 ⊆ u := le_trans (Metric.ball_subset_ball (by bound)) rc
have ga := s.ga_of_fa isOpen_ball fa
(by intro p m; simp only [← ball_prod_same, Set.mem_prod] at m; exact rc m.1)
rcases Metric.isOpen_iff.mp wo (c, 0) (wc c m) with ⟨r3, r3p, rw⟩
rcases Metric.continuousAt_iff.mp (ga (c, 0) (mem_ball_self (by bound))).continuousAt
(1 / 4) (by norm_num) with ⟨r4, r4p, gs⟩
set r := min (min r2 r3) (min r4 (1 / 2))
have rp : 0 < r := by bound
have rh : r ≤ 1 / 2 := le_trans (min_le_right _ _) (min_le_right _ _)
have rr4 : r ≤ r4 := le_trans (min_le_right _ _) (min_le_left r4 _)
have rc : ball c r ⊆ u := le_trans (Metric.ball_subset_ball (by bound)) rc
have rw : ball (c, 0) r ⊆ w :=
_root_.trans (Metric.ball_subset_ball (le_trans (min_le_left _ _) (min_le_right _ _))) rw
use r, rp, rc, rw
exact
{ o := isOpen_ball
tc := by
intro p m; simp only [← ball_prod_same, Set.mem_prod] at m
exact Metric.ball_subset_ball (by linarith) m.1
s := by
intro c' m; simp only [← ball_prod_same, Set.mem_prod, m, true_and]
apply (s.s (rc m)).super_on_ball rp rh
· apply fa.comp₂ analyticOnNhd_const analyticOnNhd_id
intro z zm; apply Metric.ball_subset_ball (by bound : r ≤ r2)
simp only [← ball_prod_same, Set.mem_prod, m, true_and]; exact zm
· simp only [Complex.dist_eq, Prod.dist_eq, sub_zero, max_lt_iff, and_imp, g2, g0] at gs
simp only [Metric.mem_ball, Complex.dist_eq] at m
intro z zr; exact @gs ⟨c', z⟩ (lt_of_lt_of_le m rr4) (lt_of_lt_of_le zr rr4)
fa := fa.mono (Metric.ball_subset_ball (min_le_of_left_le (min_le_left _ _))) }
set r := fun c : u ↦ choose (h _ c.mem)
set v := fun c : u ↦ ball (c : ℂ) (r c)
set t := fun c : u ↦ ball ((c : ℂ), (0 : ℂ)) (r c)
use⋃ c : u, t c
have e : u = ⋃ c : u, v c := by
apply Set.ext; intro c; rw [Set.mem_iUnion]; constructor
· intro m; use⟨c, m⟩; rcases choose_spec (h c m) with ⟨rp, _, _⟩
exact mem_ball_self rp
· intro m; rcases m with ⟨i, m⟩; rcases choose_spec (h _ i.mem) with ⟨_, us, _⟩
exact us m
have tw : (⋃ c : u, t c) ⊆ w := by
apply Set.iUnion_subset; intro i; rcases choose_spec (h _ i.mem) with ⟨_, _, rw, _⟩; exact rw
have si : ∀ c : u, SuperNearC f d (v c) (t c) := by
intro i; rcases choose_spec (h _ i.mem) with ⟨_, _, _, s⟩; exact s
have s := SuperNearC.union si; simp only at s; rw [← e] at s
exact ⟨tw, s⟩
/-- `SuperAtC → SuperNearC` -/
theorem SuperAtC.superNearC (s : SuperAtC f d u) : ∃ t, SuperNearC f d u t := by
rcases s.superNearC' isOpen_univ fun _ _ ↦ Set.mem_univ _ with ⟨t, _, s⟩; exact ⟨t, s⟩
theorem iterates_analytic_c (s : SuperNearC f d u t) {c z : ℂ} (n : ℕ) (m : (c, z) ∈ t) :
AnalyticAt ℂ (fun c ↦ (f c)^[n] z) c := by
induction' n with n nh; · simp only [Function.iterate_zero, id]; exact analyticAt_const
· simp_rw [Function.iterate_succ']; simp only [Function.comp_apply]
refine (s.fa _ ?_).comp (analyticAt_id.prod nh)
exact (s.ts m).mapsTo n m
theorem term_analytic_c (s : SuperNearC f d u t) {c z : ℂ} (n : ℕ) (m : (c, z) ∈ t) :
AnalyticAt ℂ (fun c ↦ term (f c) d n z) c := by
refine AnalyticAt.cpow ?_ analyticAt_const ?_
· have e : (fun c ↦ g (f c) d ((f c)^[n] z)) = fun c ↦ g2 f d (c, (f c)^[n] z) := rfl
rw [e]
refine (s.ga _ ?_).comp ?_
· exact (s.ts m).mapsTo n m
· apply analyticAt_id.prod (iterates_analytic_c s n m)
· refine mem_slitPlane_of_near_one ?_
exact lt_of_le_of_lt ((s.ts m).gs ((s.ts m).mapsTo n m)) (by norm_num)
/-- `term` prod is analytic in `c` -/
theorem term_prod_analytic_c (s : SuperNearC f d u t) {c z : ℂ} (m : (c, z) ∈ t) :
AnalyticAt ℂ (fun c ↦ tprod fun n ↦ term (f c) d n z) c := by
have c12 : (1 / 2 : ℝ) ≤ 1 / 2 := by norm_num
have a0 : 0 ≤ (1 / 2 : ℝ) := by norm_num
set t' := {c | (c, z) ∈ t}
have o' : IsOpen t' := s.o.preimage (by continuity)
refine (fast_products_converge' o' c12 a0 (by linarith) ?_
fun n c m ↦ term_converges (s.ts m) n m).2.1 _ m
exact fun n c m ↦ term_analytic_c s n m
/-- `term` prod is jointly analytic (using Hartogs's theorem for simplicity) -/
theorem term_prod_analytic (s : SuperNearC f d u t) :
AnalyticOnNhd ℂ (fun p : ℂ × ℂ ↦ tprod fun n ↦ term (f p.1) d n p.2) t := by
refine Pair.hartogs s.o ?_ ?_
· intro c z m; simp only; exact term_prod_analytic_c s m
· intro c z m; simp only; exact term_prod_analytic_z (s.ts m) _ m
/-- `bottcherNear` is analytic in `c` -/
theorem bottcherNear_analytic_c (s : SuperNearC f d u t) {c z : ℂ} (m : (c, z) ∈ t) :
AnalyticAt ℂ (fun c ↦ bottcherNear (f c) d z) c :=
analyticAt_const.mul (term_prod_analytic_c s m)
/-- `bottcherNear` is jointly analytic -/
theorem bottcherNear_analytic (s : SuperNearC f d u t) :
AnalyticOnNhd ℂ (fun p : ℂ × ℂ ↦ bottcherNear (f p.1) d p.2) t := fun _ m ↦
analyticAt_snd.mul (term_prod_analytic s _ m)
/-- `deriv f` is nonzero away from 0 -/
theorem df_ne_zero (s : SuperNearC f d u t) {c : ℂ} (m : c ∈ u) :
∀ᶠ p : ℂ × ℂ in 𝓝 (c, 0), deriv (f p.1) p.2 = 0 ↔ p.2 = 0 := by
have df : ∀ e z, (e, z) ∈ t →
deriv (f e) z = ↑d * z ^ (d - 1) * g (f e) d z + z ^ d * deriv (g (f e) d) z := by
intro e z m; apply HasDerivAt.deriv
have fg : f e = fun z ↦ z ^ d * g (f e) d z := by funext; rw [(s.ts m).fg]
nth_rw 1 [fg]
apply HasDerivAt.mul; apply hasDerivAt_pow
rw [hasDerivAt_deriv_iff]; exact ((s.ts m).ga _ m).differentiableAt
have small : ∀ᶠ p : ℂ × ℂ in 𝓝 (c, 0),
abs (p.2 * deriv (g (f p.1) d) p.2) < abs (↑d * g (f p.1) d p.2) := by
have ga : AnalyticAt ℂ (uncurry fun c z ↦ g (f c) d z) (c, 0) := s.ga _ (s.s m).t0
apply ContinuousAt.eventually_lt
· exact Complex.continuous_abs.continuousAt.comp (continuousAt_snd.mul ga.deriv2.continuousAt)
· exact Complex.continuous_abs.continuousAt.comp (continuousAt_const.mul ga.continuousAt)
· simp only [g0, MulZeroClass.zero_mul, Complex.abs.map_zero, Complex.abs.map_mul,
Complex.abs_natCast, Complex.abs.map_one, mul_one, Nat.cast_pos]
exact (s.s m).dp
apply small.mp
apply (s.o.eventually_mem (s.s m).t0).mp
refine .of_forall ?_; clear small
intro ⟨e, w⟩ m' small; simp only [df _ _ m'] at small ⊢
nth_rw 4 [← Nat.sub_add_cancel (Nat.succ_le_of_lt (s.s m).dp)]
simp only [pow_add, pow_one, mul_comm _ (w ^ (d - 1)), mul_assoc (w ^ (d - 1)) _ _, ←
left_distrib, mul_eq_zero, pow_eq_zero_iff (Nat.sub_pos_of_lt (s.s m).d2).ne']
exact or_iff_left (add_ne_zero_of_abs_lt small)
end BottcherC