-
Notifications
You must be signed in to change notification settings - Fork 14
/
Copy pathsoftmax_lossweight_layer.cpp
214 lines (196 loc) · 7.9 KB
/
softmax_lossweight_layer.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
/***
Weight softmax loss
Dong Nie
You have to add sth to the caffe.proto:
optional SoftmaxWithLossWParameter softmax_lossw_param = 147;
message SoftmaxWithLossWParameter {
optional int32 task_id = 1 [default = 0];
repeated int32 weight_labels = 2;
repeated float labels_weight = 3;
}
***/
#include <algorithm>
#include <cfloat>
#include <vector>
#include "caffe/layers/softmax_lossweight_layer.hpp"
#include "caffe/util/math_functions.hpp"
namespace caffe {
template <typename Dtype>
void SoftmaxWithLossWLayer<Dtype>::LayerSetUp(
const vector<Blob<Dtype>*>& bottom, const vector<Blob<Dtype>*>& top) {
LossLayer<Dtype>::LayerSetUp(bottom, top);
LayerParameter softmax_param(this->layer_param_);
softmax_param.set_type("Softmax");
softmax_layer_ = LayerRegistry<Dtype>::CreateLayer(softmax_param);
softmax_bottom_vec_.clear();
softmax_bottom_vec_.push_back(bottom[0]);
softmax_top_vec_.clear();
softmax_top_vec_.push_back(&prob_);
softmax_layer_->SetUp(softmax_bottom_vec_, softmax_top_vec_);
has_ignore_label_ =
this->layer_param_.loss_param().has_ignore_label();
if (has_ignore_label_) {
ignore_label_ = this->layer_param_.loss_param().ignore_label();
}
if (!this->layer_param_.loss_param().has_normalization() &&
this->layer_param_.loss_param().has_normalize()) {
normalization_ = this->layer_param_.loss_param().normalize() ?
LossParameter_NormalizationMode_VALID :
LossParameter_NormalizationMode_BATCH_SIZE;
} else {
normalization_ = this->layer_param_.loss_param().normalization();
}
if (this->layer_param_.softmax_lossw_param().weight_labels_size()) {
int weight_labels_size =
this->layer_param_.softmax_lossw_param().weight_labels_size();
CHECK_EQ(weight_labels_size,
this->layer_param_.softmax_lossw_param().labels_weight_size())
<< "weight_labels_size should be equal to labels_weight_size";
std::cout << "sz : " << weight_labels_size<<std::endl;
int labels_weights_size = prob_.channels();
labels_weights_ = new Dtype[labels_weights_size];
memset(labels_weights_, Dtype(1), sizeof(Dtype) * labels_weights_size);
for (int i = 0; i < labels_weights_size; i ++)
labels_weights_[i] = Dtype(1.0);
for (int i = 0; i < weight_labels_size; i ++) {
labels_weights_[this->layer_param_.softmax_lossw_param().weight_labels(i)]=
this->layer_param_.softmax_lossw_param().labels_weight(i);
std::cout << "w[" << this->layer_param_.softmax_lossw_param().weight_labels(i)<<"]="<<
labels_weights_[this->layer_param_.softmax_lossw_param().weight_labels(i)]<<std::endl;
}
}
}
template <typename Dtype>
void SoftmaxWithLossWLayer<Dtype>::Reshape(
const vector<Blob<Dtype>*>& bottom, const vector<Blob<Dtype>*>& top) {
LossLayer<Dtype>::Reshape(bottom, top);
softmax_layer_->Reshape(softmax_bottom_vec_, softmax_top_vec_);
softmax_axis_ =
bottom[0]->CanonicalAxisIndex(this->layer_param_.softmax_param().axis());
outer_num_ = bottom[0]->count(0, softmax_axis_);
inner_num_ = bottom[0]->count(softmax_axis_ + 1);
CHECK_EQ(outer_num_ * inner_num_, bottom[1]->count())
<< "Number of labels must match number of predictions; "
<< "e.g., if softmax axis == 1 and prediction shape is (N, C, H, W), "
<< "label count (number of labels) must be N*H*W, "
<< "with integer values in {0, 1, ..., C-1}.";
if (top.size() >= 2) {
// softmax output
top[1]->ReshapeLike(*bottom[0]);
}
}
template <typename Dtype>
Dtype SoftmaxWithLossWLayer<Dtype>::get_normalizer(
LossParameter_NormalizationMode normalization_mode, int valid_count) {
Dtype normalizer;
switch (normalization_mode) {
case LossParameter_NormalizationMode_FULL:
normalizer = Dtype(outer_num_ * inner_num_);
break;
case LossParameter_NormalizationMode_VALID:
if (valid_count == -1) {
normalizer = Dtype(outer_num_ * inner_num_);
} else {
normalizer = Dtype(valid_count);
}
break;
case LossParameter_NormalizationMode_BATCH_SIZE:
normalizer = Dtype(outer_num_);
break;
case LossParameter_NormalizationMode_NONE:
normalizer = Dtype(1);
break;
default:
LOG(FATAL) << "Unknown normalization mode: "
<< LossParameter_NormalizationMode_Name(normalization_mode);
}
// Some users will have no labels for some examples in order to 'turn off' a
// particular loss in a multi-task setup. The max prevents NaNs in that case.
return std::max(Dtype(1.0), normalizer);
}
template <typename Dtype>
void SoftmaxWithLossWLayer<Dtype>::Forward_cpu(
const vector<Blob<Dtype>*>& bottom, const vector<Blob<Dtype>*>& top) {
// The forward pass computes the softmax prob values.
softmax_layer_->Forward(softmax_bottom_vec_, softmax_top_vec_);
const Dtype* prob_data = prob_.cpu_data();
const Dtype* label = bottom[1]->cpu_data();
int dim = prob_.count() / outer_num_;
int count = 0;
Dtype loss = 0;
for (int i = 0; i < outer_num_; ++i) {
for (int j = 0; j < inner_num_; j++) {
const int label_value = static_cast<int>(label[i * inner_num_ + j]);
if (has_ignore_label_ && label_value == ignore_label_) {
continue;
}
CHECK_GE(label_value, 0)<<"negative label found error";
CHECK_LT(label_value, prob_.shape(softmax_axis_))<<"label greater than number of chanels, error! found error";
loss -= labels_weights_[label_value]*log(std::max(prob_data[i * dim + label_value * inner_num_ + j],
Dtype(FLT_MIN)));
++count;
}
}
std::cout<<"shape prob: "<<prob_.shape_string ()<<std::endl;
std::cout<<"dim: "<<dim<<std::endl;
std::cout<<"inner: "<<inner_num_<<std::endl;
std::cout<<"outer: "<<outer_num_<<std::endl;
top[0]->mutable_cpu_data()[0] = loss / get_normalizer(normalization_, count);
if (top.size() == 2) {
top[1]->ShareData(prob_);
}
}
template <typename Dtype>
void SoftmaxWithLossWLayer<Dtype>::Backward_cpu(const vector<Blob<Dtype>*>& top,
const vector<bool>& propagate_down, const vector<Blob<Dtype>*>& bottom) {
if (propagate_down[1]) {
LOG(FATAL) << this->type()
<< " Layer cannot backpropagate to label inputs.";
}
if (propagate_down[0]) {
Dtype* bottom_diff = bottom[0]->mutable_cpu_diff();
const Dtype* prob_data = prob_.cpu_data();
const Dtype* label = bottom[1]->cpu_data();
int dim = prob_.count() / outer_num_;
int count = 0;
caffe_copy(prob_.count(), prob_data, bottom_diff);
// we assign w_yi * P_i
//combine codes with below codes
/*
for (int i = 0; i < outer_num_; ++i) {
for (int j = 0; j < inner_num_; ++j) {
const int label_value = static_cast<int>(label[i * inner_num_ + j]);
for (int c = 0; c < bottom[0]->shape(softmax_axis_); ++c) {
bottom_diff[i * dim + c * inner_num_ + j] =labels_weights_[label_value]*prob_data[i * dim + c * inner_num_ + j] ;
}
}
}
*/
for (int i = 0; i < outer_num_; ++i) {
for (int j = 0; j < inner_num_; ++j) {
const int label_value = static_cast<int>(label[i * inner_num_ + j]);
if (has_ignore_label_ && label_value == ignore_label_) {
for (int c = 0; c < bottom[0]->shape(softmax_axis_); ++c) {
bottom_diff[i * dim + c * inner_num_ + j] = 0;
}
} else {
for (int c = 0; c < bottom[0]->shape(softmax_axis_); ++c) {
bottom_diff[i * dim + c * inner_num_ + j] *= labels_weights_[label_value];
}
bottom_diff[i * dim + label_value * inner_num_ + j] -= labels_weights_[label_value];//w_yi (p_i -1)
++count;
}
}
}
// Scale gradient
Dtype loss_weight = top[0]->cpu_diff()[0] /
get_normalizer(normalization_, count);
caffe_scal(prob_.count(), loss_weight, bottom_diff);
}
}
#ifdef CPU_ONLY
STUB_GPU(SoftmaxWithLossLayer);
#endif
INSTANTIATE_CLASS(SoftmaxWithLossWLayer);
REGISTER_LAYER_CLASS(SoftmaxWithLossW);
} // namespace caffe