-
Notifications
You must be signed in to change notification settings - Fork 2
/
Trackbal.c
549 lines (470 loc) · 13.2 KB
/
Trackbal.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
/*
* Trackball code:
*
* Implementation of a virtual trackball.
* Implemented by Gavin Bell, lots of ideas from Thant Tessman and
* the August '88 issue of Siggraph's "Computer Graphics," pp. 121-129.
*
* Vector manip code:
*
* Original code from:
* David M. Ciemiewicz, Mark Grossman, Henry Moreton, and Paul Haeberli
*
* Much mucking with by:
* Gavin Bell
*
* Shell hacking courtesy of:
* Reptilian Inhaleware
*/
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <windows.h>
#include <math.h>
#include <gl\gl.h>
#include <gl\glu.h>
#include "glaux\glaux.h"
#include "trackbal.h"
#include "LoftyCAD.h"
/*
* globals
*/
static GLenum (*MouseDownFunc)(int, int, GLenum) = NULL;
static GLenum (*MouseUpFunc)(int, int, GLenum) = NULL;
static HWND ghwnd;
GLint giWidth, giHeight;
LONG glMouseDownX, glMouseDownY;
BOOL gbLeftMouse = FALSE;
BOOL gbSpinning = FALSE;
float curquat[4], lastquat[4];
// Slerp parameters.
float start_quat[4], desired_quat[4];
BOOL slerping = FALSE;
float slerp_step = 0.1f;
float slerp_t;
/*
* This size should really be based on the distance from the center of
* rotation to the point on the object underneath the mouse. That
* point would then track the mouse as closely as possible. This is a
* simple example, though, so that is left as an Exercise for the
* Programmer.
*/
#define TRACKBALLSIZE (0.8f)
/*
* Local function prototypes (not defined in trackball.h)
*/
static float tb_project_to_sphere(float, float, float);
static void normalize_quat(float [4]);
void qcopy(const float *q1, float *q2);
BOOL slerp(float start[4], float desired[4], float result[4], float t);
void
trackball_Init( GLint width, GLint height )
{
ghwnd = auxGetHWND();
giWidth = width;
giHeight = height;
trackball_calc_quat( curquat, 0.0f, 0.0f, 0.0f, 0.0f );
}
// Set a desired rotation, and start slerping round to it.
void
trackball_InitQuat(float quat[4])
{
qcopy(curquat, start_quat);
qcopy(quat, desired_quat);
slerp_t = 0;
slerping = TRUE;
}
void
trackball_Resize( GLint width, GLint height )
{
giWidth = width;
giHeight = height;
}
void CALLBACK
trackball_MouseDown( AUX_EVENTREC *event)
{
SetCapture(ghwnd);
glMouseDownX = event->data[AUX_MOUSEX];
glMouseDownY = event->data[AUX_MOUSEY];
gbLeftMouse = TRUE;
}
void CALLBACK
trackball_MouseUp( AUX_EVENTREC *event )
{
ReleaseCapture();
gbLeftMouse = FALSE;
}
BOOL
trackball_IsOrbiting(void)
{
return gbLeftMouse;
}
/* these 4 not used yet */
void
trackball_MouseDownEvent( int mouseX, int mouseY, GLenum button )
{
}
void
trackball_MouseUpEvent( int mouseX, int mouseY, GLenum button )
{
}
void
trackball_MouseDownFunc(GLenum (*Func)(int, int, GLenum))
{
MouseDownFunc = Func;
}
void
trackball_MouseUpFunc(GLenum (*Func)(int, int, GLenum))
{
MouseUpFunc = Func;
}
void
trackball_CalcRotMatrix( GLfloat matRot[4][4] )
{
POINT pt;
if (slerping)
{
gbSpinning = FALSE;
slerp_t += slerp_step;
slerping = slerp(start_quat, desired_quat, curquat, slerp_t);
}
else if (gbLeftMouse)
{
auxGetMouseLoc(&pt.x, &pt.y);
#ifdef DEBUG_TRACKBALL_SPIN
{
char buf[64];
sprintf_s(buf, 64, "Left mouse down %d %d\r\n", pt.x, pt.y);
Log(buf);
}
#endif
// If mouse has moved since button was pressed, change quaternion.
if (pt.x != glMouseDownX || pt.y != glMouseDownY)
{
#if 1
/* negate all params for proper operation with glTranslate(-z)
*/
trackball_calc_quat(lastquat,
-(2.0f * ( giWidth - glMouseDownX ) / giWidth - 1.0f),
-(2.0f * glMouseDownY / giHeight - 1.0f),
-(2.0f * ( giWidth - pt.x ) / giWidth - 1.0f),
-(2.0f * pt.y / giHeight - 1.0f)
);
#else
// now out-of-date
trackball_calc_quat(lastquat,
2.0f * ( Width - glMouseDownX ) / Width - 1.0f,
2.0f * glMouseDownY / Height - 1.0f,
2.0f * ( Width - pt.x ) / Width - 1.0f,
2.0f * pt.y / Height - 1.0f );
#endif
gbSpinning = TRUE;
}
else
{
gbSpinning = FALSE;
}
glMouseDownX = pt.x;
glMouseDownY = pt.y;
}
if (gbSpinning)
trackball_add_quats(lastquat, curquat, curquat);
trackball_build_rotmatrix(matRot, curquat);
}
void
trackball_stop_spin()
{
gbSpinning = FALSE;
}
void
vzero(float *v)
{
v[0] = 0.0f;
v[1] = 0.0f;
v[2] = 0.0f;
}
void
vset(float *v, float x, float y, float z)
{
v[0] = x;
v[1] = y;
v[2] = z;
}
void
vsub(const float *src1, const float *src2, float *dst)
{
dst[0] = src1[0] - src2[0];
dst[1] = src1[1] - src2[1];
dst[2] = src1[2] - src2[2];
}
void
vcopy(const float *v1, float *v2)
{
register int i;
for (i = 0 ; i < 3 ; i++)
v2[i] = v1[i];
}
void
vcross(const float *v1, const float *v2, float *cross)
{
float temp[3];
temp[0] = (v1[1] * v2[2]) - (v1[2] * v2[1]);
temp[1] = (v1[2] * v2[0]) - (v1[0] * v2[2]);
temp[2] = (v1[0] * v2[1]) - (v1[1] * v2[0]);
vcopy(temp, cross);
}
float
vlength(const float *v)
{
return (float) sqrt(v[0] * v[0] + v[1] * v[1] + v[2] * v[2]);
}
void
vscale(float *v, float div)
{
v[0] *= div;
v[1] *= div;
v[2] *= div;
}
void
vnormal(float *v)
{
vscale(v,1.0f/vlength(v));
}
float
vdot(const float *v1, const float *v2)
{
return v1[0]*v2[0] + v1[1]*v2[1] + v1[2]*v2[2];
}
void
vadd(const float *src1, const float *src2, float *dst)
{
dst[0] = src1[0] + src2[0];
dst[1] = src1[1] + src2[1];
dst[2] = src1[2] + src2[2];
}
void
qcopy(const float *q1, float *q2)
{
register int i;
for (i = 0; i < 4; i++)
q2[i] = q1[i];
}
float
qdot(const float *q1, const float *q2)
{
return q1[0] * q2[0] + q1[1] * q2[1] + q1[2] * q2[2] + q1[3] * q2[3];
}
/*
* Ok, simulate a track-ball. Project the points onto the virtual
* trackball, then figure out the axis of rotation, which is the cross
* product of P1 P2 and O P1 (O is the center of the ball, 0,0,0)
* Note: This is a deformed trackball-- is a trackball in the center,
* but is deformed into a hyperbolic sheet of rotation away from the
* center. This particular function was chosen after trying out
* several variations.
*
* It is assumed that the arguments to this routine are in the range
* (-1.0 ... 1.0)
*/
void
trackball_calc_quat(float q[4], float p1x, float p1y, float p2x, float p2y)
{
float a[3]; /* Axis of rotation */
float phi; /* how much to rotate about axis */
float p1[3], p2[3], d[3];
float t;
if (p1x == p2x && p1y == p2y) {
/* Zero rotation */
vzero(q);
q[3] = 1.0f;
return;
}
/*
* First, figure out z-coordinates for projection of P1 and P2 to
* deformed sphere
*/
vset(p1,p1x,p1y,tb_project_to_sphere(TRACKBALLSIZE,p1x,p1y));
vset(p2,p2x,p2y,tb_project_to_sphere(TRACKBALLSIZE,p2x,p2y));
/*
* Now, we want the cross product of P1 and P2
*/
vcross(p2,p1,a);
/*
* Figure out how much to rotate around that axis.
*/
vsub(p1,p2,d);
t = vlength(d) / (2.0f*TRACKBALLSIZE);
/*
* Avoid problems with out-of-control values...
*/
if (t > 1.0f) t = 1.0f;
if (t < -1.0f) t = -1.0f;
phi = 2.0f * (float) asin(t);
trackball_axis_to_quat(a,phi,q);
}
/*
* Given an axis and angle, compute quaternion.
*/
void
trackball_axis_to_quat(float a[3], float phi, float q[4])
{
vnormal(a);
vcopy(a,q);
vscale(q,(float) sin(phi/2.0f));
q[3] = (float) cos(phi/2.0f);
}
/*
* Project an x,y pair onto a sphere of radius r OR a hyperbolic sheet
* if we are away from the center of the sphere.
*/
static float
tb_project_to_sphere(float r, float x, float y)
{
float d, t, z;
d = (float) sqrt(x*x + y*y);
if (d < r * 0.70710678118654752440f) { /* Inside sphere */
z = (float) sqrt(r*r - d*d);
} else { /* On hyperbola */
t = r / 1.41421356237309504880f;
z = t*t / d;
}
return z;
}
/*
* Given two rotations, e1 and e2, expressed as quaternion rotations,
* figure out the equivalent single rotation and stuff it into dest.
*
* This routine also normalizes the result every RENORMCOUNT times it is
* called, to keep error from creeping in.
*
* NOTE: This routine is written so that q1 or q2 may be the same
* as dest (or each other).
*/
#define RENORMCOUNT 97
void
trackball_add_quats(float q1[4], float q2[4], float dest[4])
{
static int count=0;
float t1[4], t2[4], t3[4];
float tf[4];
vcopy(q1,t1);
vscale(t1,q2[3]);
vcopy(q2,t2);
vscale(t2,q1[3]);
vcross(q2,q1,t3);
vadd(t1,t2,tf);
vadd(t3,tf,tf);
tf[3] = q1[3] * q2[3] - vdot(q1,q2);
dest[0] = tf[0];
dest[1] = tf[1];
dest[2] = tf[2];
dest[3] = tf[3];
if (++count > RENORMCOUNT) {
count = 0;
normalize_quat(dest);
}
}
// Slerp from start_quat to desired_quat in steps of t in [0,1]. Return FALSE whan done.
BOOL
slerp(float start[4], float desired[4], float result[4], float t)
{
double theta, theta_0, s0, s1;
double dot = qdot(start, desired);
if (dot < 0.0f) // swap to go the short way round
{
start[0] = -start[0];
start[1] = -start[1];
start[2] = -start[2];
start[3] = -start[3];
dot = -dot;
}
if (dot > 0.99 || t > 0.95)
{
qcopy(desired, result); // we're finished
return FALSE;
}
theta_0 = acos(dot); // theta_0 = angle between input vectors
theta = theta_0 * t; // theta = angle between v0 and result
s0 = cos(theta) - dot * sin(theta) / sin(theta_0); // == sin(theta_0 - theta) / sin(theta_0)
s1 = sin(theta) / sin(theta_0);
result[0] = (float)(s0 * start[0] + s1 * desired[0]);
result[1] = (float)(s0 * start[1] + s1 * desired[1]);
result[2] = (float)(s0 * start[2] + s1 * desired[2]);
result[3] = (float)(s0 * start[3] + s1 * desired[3]);
return TRUE;
}
#if 0
Quaternion slerp(Quaternion v0, Quaternion v1, double t) {
// Only unit quaternions are valid rotations.
// Normalize to avoid undefined behavior.
v0.normalize();
v1.normalize();
// Compute the cosine of the angle between the two vectors.
double dot = dot_product(v0, v1);
// If the dot product is negative, the quaternions
// have opposite handed-ness and slerp won't take
// the shorter path. Fix by reversing one quaternion.
if (dot < 0.0f) {
v1 = -v1;
dot = -dot;
}
const double DOT_THRESHOLD = 0.9995;
if (dot > DOT_THRESHOLD) {
// If the inputs are too close for comfort, linearly interpolate
// and normalize the result.
Quaternion result = v0 + t*(v1 v0);
result.normalize();
return result;
}
Clamp(dot, -1, 1); // Robustness: Stay within domain of acos()
double theta_0 = acos(dot); // theta_0 = angle between input vectors
double theta = theta_0*t; // theta = angle between v0 and result
double s0 = cos(theta) - dot * sin(theta) / sin(theta_0); // == sin(theta_0 - theta) / sin(theta_0)
double s1 = sin(theta) / sin(theta_0);
return (s0 * v0) + (s1 * v1);
}
#endif
/*
* Quaternions always obey: a^2 + b^2 + c^2 + d^2 = 1.0
* If they don't add up to 1.0, dividing by their magnitued will
* renormalize them.
*
* Note: See the following for more information on quaternions:
*
* - Shoemake, K., Animating rotation with quaternion curves, Computer
* Graphics 19, No 3 (Proc. SIGGRAPH'85), 245-254, 1985.
* - Pletinckx, D., Quaternion calculus as a basic tool in computer
* graphics, The Visual Computer 5, 2-13, 1989.
*/
static void
normalize_quat(float q[4])
{
int i;
float mag;
mag = (q[0]*q[0] + q[1]*q[1] + q[2]*q[2] + q[3]*q[3]);
for (i = 0; i < 4; i++) q[i] /= mag;
}
/*
* Build a rotation matrix, given a quaternion rotation.
*
*/
void
trackball_build_rotmatrix(float m[4][4], float q[4])
{
m[0][0] = 1.0f - 2.0f * (q[1] * q[1] + q[2] * q[2]);
m[0][1] = 2.0f * (q[0] * q[1] - q[2] * q[3]);
m[0][2] = 2.0f * (q[2] * q[0] + q[1] * q[3]);
m[0][3] = 0.0f;
m[1][0] = 2.0f * (q[0] * q[1] + q[2] * q[3]);
m[1][1]= 1.0f - 2.0f * (q[2] * q[2] + q[0] * q[0]);
m[1][2] = 2.0f * (q[1] * q[2] - q[0] * q[3]);
m[1][3] = 0.0f;
m[2][0] = 2.0f * (q[2] * q[0] - q[1] * q[3]);
m[2][1] = 2.0f * (q[1] * q[2] + q[0] * q[3]);
m[2][2] = 1.0f - 2.0f * (q[1] * q[1] + q[0] * q[0]);
m[2][3] = 0.0f;
m[3][0] = 0.0f;
m[3][1] = 0.0f;
m[3][2] = 0.0f;
m[3][3] = 1.0f;
}