You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Increasing the # in -ngl has the effect of lower performance. I built 2d7bf11 with CLBlast.
Here's ./main;
LD_LIBRARY_PATH=/vendor/lib64 ./main -m ~/llama.cpp/models/Wizard-Vicuna-7B-Uncensored.ggmlv3.q4_1.bin --color -c 2048 --keep -1 -t 3 -i -p "Please list 4 ways to die in a horror movie:"
*note; LD_LIBRARY_PATH=/vendor/lib64 is required else..
ggml_opencl: clGetPlatformIDs(NPLAT, platform_ids, &n_platforms) error -1001 at /data/data/com.termux/files/home/llamacl3/ggml-opencl.cpp:373
Here's -ngl 0, 1, 2, 3;
-ngl 0;
llama_print_timings: load time = 3812.17 ms
llama_print_timings: sample time = 180.54 ms / 78 runs ( 2.31 ms per token)
llama_print_timings: prompt eval time = 3517.93 ms / 13 tokens ( 270.61 ms per token)
llama_print_timings: eval time = 26474.67 ms / 78 runs ( 339.42 ms per token)
llama_print_timings: total time = 30689.09 ms
-ngl 1;
llama_print_timings: load time = 7241.08 ms
llama_print_timings: sample time = 166.60 ms / 76 runs ( 2.19 ms per token)
llama_print_timings: prompt eval time = 6735.64 ms / 13 tokens ( 518.13 ms per token)
llama_print_timings: eval time = 35218.78 ms / 75 runs ( 469.58 ms per token)
llama_print_timings: total time = 43242.04 ms
-ngl 2;
llama_print_timings: load time = 9793.00 ms
llama_print_timings: sample time = 184.10 ms / 83 runs ( 2.22 ms per token)
llama_print_timings: prompt eval time = 9055.40 ms / 13 tokens ( 696.57 ms per token)
llama_print_timings: eval time = 43049.81 ms / 83 runs ( 518.67 ms per token)
llama_print_timings: total time = 53333.08 ms
-ngl 3;
llama_print_timings: load time = 13872.06 ms
llama_print_timings: sample time = 122.20 ms / 56 runs ( 2.18 ms per token)
llama_print_timings: prompt eval time = 11477.85 ms / 13 tokens ( 882.91 ms per token)
llama_print_timings: eval time = 32679.27 ms / 55 runs ( 594.17 ms per token)
llama_print_timings: total time = 47097.67 ms
For reference, here's an OpenBlas build;
llama_print_timings: load time = 3787.81 ms
llama_print_timings: sample time = 161.97 ms / 70 runs ( 2.31 ms per token)
llama_print_timings: prompt eval time = 3502.20 ms / 13 tokens ( 269.40 ms per token)
llama_print_timings: eval time = 23511.92 ms / 69 runs ( 340.75 ms per token)
llama_print_timings: total time = 27883.11 ms
Lscpu;
Architecture: aarch64
CPU op-mode(s): 32-bit, 64-bit
Byte Order: Little Endian
CPU(s): 8
On-line CPU(s) list: 0-7
Vendor ID: Qualcomm
Model name: Kryo-4XX-Silver
Model: 14
Thread(s) per core: 1
Core(s) per socket: 4
Socket(s): 1
Stepping: 0xd
CPU(s) scaling MHz: 62%
CPU max MHz: 1785.6000
CPU min MHz: 300.0000
BogoMIPS: 38.40
Flags: fp asimd evtstrm aes pmull
sha1 sha2 crc32 atomics f
php asimdhp cpuid asimdrdm
lrcpc dcpop asimddp
Model name: Kryo-4XX-Gold
Model: 14
Thread(s) per core: 1
Core(s) per socket: 2 Socket(s): 2
Stepping: 0xd
CPU(s) scaling MHz: 80%
CPU max MHz: 2841.6001
CPU min MHz: 710.4000
BogoMIPS: 38.40
Flags: fp asimd evtstrm aes pmull sha1 sha2 crc32 atomics f
php asimdhp cpuid asimdrdm lrcpc dcpop asimddp
Vulnerabilities:
Itlb multihit: Not affected
L1tf: Not affected
Mds: Not affected
Meltdown: Vulnerable
Spec store bypass: Vulnerable
Spectre v1: Mitigation; __user pointer sanitization
Spectre v2: Mitigation; Branch predict or hardening
Srbds: Not affected Tsx async abort: Not affected
Here's clinfo;
Number of platforms 1 Platform Name QUALCOMM Snapdragon(TM) Platform Vendor QUALCOMM
Platform Version OpenCL 2.0 QUALCOMM build: commit #3dad7f8ed7 changeid #I593c16c433 Date: 10/01/21 Fri Local Branch: Remote Branch: refs/tags/AU_LINUX_ANDROID_LA.UM.9.1.R1.11.00.00.604.073
Platform Profile FULL_PROFILE Platform Extensions
Platform Name QUALCOMM Snapdragon(TM) Number of devices 1 Device Name QUALCOMM Adreno(TM) Device Vendor QUALCOMM Device Vendor ID 0x5143
Device Version OpenCL 2.0 Adreno(TM) 640
Driver Version OpenCL 2.0 QUALCOMM build: commit #3dad7f8ed7 changeid #I593c16c433 Date: 10/01/21 Fri Local Branch: Remote Branch: refs/tags/AU_LINUX_ANDROID_LA.UM.9.1.R1.11.00.00.604.073 Compiler E031.37.12.01 Device OpenCL C Version OpenCL C 2.0 Adreno(TM) 640
Device Type GPU
Device Profile FULL_PROFILE Device Available Yes Compiler Available Yes Linker Available Yes Max compute units 2
Max clock frequency 1MHz
Device Partition (core)
Max number of sub-devices 1
Supported partition types None
Supported affinity domains (n/a)
Max work item dimensions 3
Max work item sizes 1024x1024x1024 Max work group size 1024 Preferred work group size multiple (kernel) 128 Preferred / native vector sizes
char 1 / 1
short 1 / 1
int 1 / 1 long 1 / 0
half 1 / 1 (cl_khr_fp16)
float 1 / 1
double 0 / 0 (n/a)
Half-precision Floating-point support (cl_khr_fp16) Denormals No
Infinity and NANs Yes
Round to nearest Yes
Round to zero No
Round to infinity Yes
IEEE754-2008 fused multiply-add No Support is emulated in software No
Single-precision Floating-point support (core)
Denormals No
Infinity and NANs Yes
Round to nearest Yes
Round to zero No
Round to infinity Yes
IEEE754-2008 fused multiply-add No
Support is emulated in software No Correctly-rounded divide and sqrt operations No Double-precision Floating-point support (n/a)
Address bits 64, Little-Endian
Global memory size 3911956480 (3.643GiB) Error Correction support No Max memory allocation 977989120 (932.7MiB) Unified memory for Host and Device Yes Shared Virtual Memory (SVM) capabilities (core)
Coarse-grained buffer sharing Yes
Fine-grained buffer sharing Yes
Fine-grained system sharing No
Atomics Yes
Minimum alignment for any data type 128 bytes
Alignment of base address 1024 bits (128 bytes) Page size (QCOM) 4096 bytes
External memory padding (QCOM) 0 bytes
Preferred alignment for atomics SVM 128 bytes Global 0 bytes Local 0 bytes Max size for global variable 65536 (64KiB) Preferred total size of global vars 1048576 (1024KiB) Global Memory cache type Read/Write
Global Memory cache size 131072 (128KiB) Global Memory cache line size 64 bytes Image support Yes
Max number of samplers per kernel 16 Max size for 1D images from buffer 134217728 pixels Max 1D or 2D image array size 2048 images
Base address alignment for 2D image buffers 64 bytes
Pitch alignment for 2D image buffers 64 pixels
Max 2D image size 16384x16384 pixels
Max 3D image size 16384x16384x2048 pixels
Max number of read image args 128
Max number of write image args 64 Max number of read/write image args 64 Max number of pipe args 16 Max active pipe reservations 7680 Max pipe packet size 1024
Local memory type Local
Local memory size 32768 (32KiB) Max number of constant args 8 Max constant buffer size 65536 (64KiB)
Max size of kernel argument 1024
Queue properties (on host)
Out-of-order execution Yes Profiling Yes Queue properties (on device) Out-of-order execution Yes
Profiling Yes
Preferred size 655376 (640KiB)
Max size 655376 (640KiB)
Max queues on device 1 Max events on device 1024 Prefer user sync for interop No
Profiling timer resolution 1000ns
Execution capabilities Run OpenCL kernels Yes
Run native kernels No
printf() buffer size 1048576 (1024KiB)
Built-in kernels (n/a)
Device Extensions cl_khr_3d_image_writes cl_img_egl_image cl_khr_byte_addressable_store cl_khr_depth_images cl_khr_egl_event cl_khr_egl_image cl_khr_fp16 cl_khr_gl_sharing cl_khr_global_int32_base_atomics cl_khr_global_int32_extended_atomics cl_khr_local_int32_base_atomics cl_khr_local_int32_extended_atomics cl_khr_image2d_from_buffer cl_khr_mipmap_image cl_khr_srgb_image_writes cl_khr_subgroups cl_qcom_create_buffer_from_image cl_qcom_ext_host_ptr cl_qcom_ion_host_ptr cl_qcom_perf_hint cl_qcom_other_image cl_qcom_subgroup_shuffle cl_qcom_vector_image_ops cl_qcom_extract_image_plane cl_qcom_android_native_buffer_host_ptr cl_qcom_protected_context cl_qcom_priority_hint cl_qcom_compressed_yuv_image_read cl_qcom_compressed_image cl_qcom_ext_host_ptr_iocoherent cl_qcom_accelerated_image_ops cl_qcom_ml_ops
NULL platform behavior clGetPlatformInfo(NULL, CL_PLATFORM_NAME, ...) No platform
clGetDeviceIDs(NULL, CL_DEVICE_TYPE_ALL, ...) No platform
clCreateContext(NULL, ...) [default] No platform
clCreateContext(NULL, ...) [other] Success [P0]
clCreateContextFromType(NULL, CL_DEVICE_TYPE_DEFAULT) Success (1)
Platform Name QUALCOMM Snapdragon(TM)
Device Name QUALCOMM Adreno(TM) clCreateContextFromType(NULL, CL_DEVICE_TYPE_CPU) No devices found in platform clCreateContextFromType(NULL, CL_DEVICE_TYPE_GPU) Success (1) Platform Name QUALCOMM Snapdragon(TM) Device Name QUALCOMM Adreno(TM) clCreateContextFromType(NULL, CL_DEVICE_TYPE_ACCELERATOR) No devices found in platform clCreateContextFromType(NULL, CL_DEVICE_TYPE_CUSTOM) Invalid device type for platform clCreateContextFromType(NULL, CL_DEVICE_TYPE_ALL) Success (1)
Platform Name QUALCOMM Snapdragon(TM) Device Name QUALCOMM Adreno(TM)
I expect offloading to improve llama.cpp performance.
The text was updated successfully, but these errors were encountered:
I've made the same observation as you. It's conceivable that the behavior we're noticing is related to how the shared memory interacts between the CPU and GPU.
On my personal laptop, I've typically noticed that peak performance is achieved when the number of layers utilized is significantly below the system's maximum capacity. This suggests that there may be an optimal threshold, beyond which additional layers may not necessarily contribute to enhancing the performance, possibly due to resource management or allocation constraints.
ghost
changed the title
ngl parameter causing slowness and crash
[User] Increasing ngl parameter decreases performance in Termux
Jun 26, 2023
Hi,
Increasing the # in -ngl has the effect of lower performance. I built 2d7bf11 with CLBlast.
Here's ./main;
*note; LD_LIBRARY_PATH=/vendor/lib64 is required else..
Here's -ngl 0, 1, 2, 3;
Lscpu;
Here's clinfo;
I expect offloading to improve llama.cpp performance.
The text was updated successfully, but these errors were encountered: