From 7016fe53331309b525f0a0230a12574971aaef41 Mon Sep 17 00:00:00 2001 From: Francis Couture-Harpin Date: Tue, 30 Jan 2024 21:48:04 -0500 Subject: [PATCH] mamba : simplify the conv step with a self-overlapping view Turns out the conv_state can be made smaller by one column. Note that this breaks existing GGUFs of Mamba, because the key_value_length field is tied to the conv_state size. Convolution with a self-overlapping view is cool! And it's much simpler than what I initially thought would be necessary to make the convolution step work with more than 1 token at a time. Next step is to make the SSM step work on batches of tokens too, and thus I need to figure out a way to make a parallel selective scan which will keep the ssm_state small and won't make it bigger by a factor of (n_layer * batch_size). * llama : fix Mamba KV self size wrongly displaying as f16 instead of f32 Relatedly, I also tried to see if other types than f32 worked for the states, but they don't, because of the operators used. It's probably better anyway to keep lots of precision there, since the states are small anyway. --- convert-hf-to-gguf.py | 6 ++- llama.cpp | 104 ++++++++++++++++++++++++------------------ 2 files changed, 63 insertions(+), 47 deletions(-) diff --git a/convert-hf-to-gguf.py b/convert-hf-to-gguf.py index 74eb7cf4cfb81a..308dd309ad1151 100755 --- a/convert-hf-to-gguf.py +++ b/convert-hf-to-gguf.py @@ -1510,10 +1510,12 @@ def set_gguf_parameters(self): self.gguf_writer.add_context_length(2**20) # arbitrary value; for those who use the default self.gguf_writer.add_embedding_length(d_model) self.gguf_writer.add_feed_forward_length(0) # unused, but seemingly required when loading - self.gguf_writer.add_head_count(d_inner) + self.gguf_writer.add_head_count(d_inner) # the number of rows in conv_state and ssm_state self.gguf_writer.add_block_count(self.hparams["n_layer"]) self.gguf_writer.add_layer_norm_rms_eps(self.hparams.get("rms_norm_eps", 1e-5)) - self.gguf_writer.add_key_length(self.hparams.get("d_conv", 4)) + # NOTE: (ab)using the KV cache metadata to store dimensions for conv_state and ssm_state + # Since the first column of the conv_state is shifted out each time, it's not actually needed + self.gguf_writer.add_key_length(self.hparams.get("d_conv", 4) - 1) self.gguf_writer.add_value_length(self.hparams.get("d_state", 16)) self.gguf_writer.add_file_type(self.ftype) diff --git a/llama.cpp b/llama.cpp index 55f82bce957a0b..ee63b0858ae86f 100644 --- a/llama.cpp +++ b/llama.cpp @@ -1862,9 +1862,6 @@ static bool llama_kv_cache_init( if (model.arch == LLM_ARCH_MAMBA) { // only one slot is needed for Mamba n_ctx = 1; - // it's probably best to keep as much precision as possible for the states - ktype = GGML_TYPE_F32; - vtype = GGML_TYPE_F32; } cache.has_shift = false; @@ -4179,7 +4176,7 @@ static bool llm_load_tensors( } break; case LLM_ARCH_MAMBA: { - const int64_t d_conv = hparams.n_embd_head_k; + const int64_t d_conv = hparams.n_embd_head_k + 1; const int64_t d_state = hparams.n_embd_head_v; const int64_t d_inner = hparams.n_head; // FIXME: ceiling instead of floor @@ -6917,28 +6914,27 @@ struct llm_build_context { struct ggml_cgraph * build_mamba() { struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false); - const bool use_conv = batch.n_tokens > 1; - GGML_ASSERT(use_conv == false); // TODO: implement + const int32_t n_tok = batch.n_tokens; // hopefully the compiler does constant folding const int64_t d_model = n_embd; const int64_t d_inner = n_head; GGML_ASSERT(2 * d_model == d_inner); - const int64_t d_conv = n_embd_head_k; + const int64_t d_conv = n_embd_head_k + 1; const int64_t d_state = n_embd_head_v; const int64_t dt_rank = d_model / 16; struct ggml_tensor * cur; struct ggml_tensor * inpL; - // NOTE: not sure what's the difference between the sequence length and the batch size in the paper. - // {n_embd, batch} + // {n_embd, n_tok} inpL = llm_build_inp_embd(ctx0, hparams, batch, model.tok_embd, lctx.inp_tokens, lctx.inp_embd, cb); cb(inpL, "inp_embd", -1); for (int il = 0; il < n_layer; ++il) { // (ab)using the kv cache to store the state - ggml_tensor * conv_state = ggml_reshape_2d(ctx0, kv_self.k_l[il], d_conv, d_inner); + // NOTE: since the first column of the conv_state is shifted out each time, it's not actually needed + ggml_tensor * conv_state = ggml_reshape_2d(ctx0, kv_self.k_l[il], d_conv - 1, d_inner); ggml_tensor * ssm_state = ggml_reshape_2d(ctx0, kv_self.v_l[il], d_state, d_inner); // norm @@ -6947,33 +6943,43 @@ struct llm_build_context { LLM_NORM_RMS, cb, il); cb(cur, "attn_norm", il); - // {n_embd, 2*d_inner} * {n_embd, batch} = {2*d_inner, batch} + // {n_embd, 2*d_inner} * {n_embd, n_tok} => {2*d_inner, n_tok} struct ggml_tensor * xz = ggml_mul_mat(ctx0, model.layers[il].ssm_in, cur); // split the above in two - // assuming it's contiguous - // {d_inner, batch} + // => {d_inner, n_tok} struct ggml_tensor * x = ggml_view_2d(ctx0, xz, d_inner, xz->ne[1], xz->nb[1], 0); struct ggml_tensor * z = ggml_view_2d(ctx0, xz, d_inner, xz->ne[1], xz->nb[1], ggml_element_size(xz)*d_inner); - cur = x; - // conv { - // shift conv state left - conv_state = ggml_set_2d(ctx0, conv_state, ggml_view_2d(ctx0, conv_state, (d_conv - 1), d_inner, conv_state->nb[1], ggml_element_size(conv_state)*1), conv_state->nb[1], 0); - - // update last column - // x here is {d_inner, 1} (a row), but should be {1, d_inner} (a column) - conv_state = ggml_set_2d(ctx0, conv_state, ggml_cont(ctx0, ggml_transpose(ctx0, x)), conv_state->nb[1], ggml_element_size(conv_state)*(d_conv - 1)); - - ggml_build_forward_expand(gf, ggml_cpy(ctx0, conv_state, ggml_view_tensor(ctx0, kv_self.k_l[il]))); - - // rearrange and sum - // no need to rearrange the conv_state, since it's already in the right shape - // => {1, d_inner} - x = ggml_sum_rows(ctx0, ggml_mul(ctx0, conv_state, model.layers[il].ssm_conv1d)); - // => {d_inner, 1} - x = ggml_transpose(ctx0, x); + // concat last (d_conv - 1) columns of conv_state, and x + + // The following tensor is too big in order to avoid an assertion error when making an overlapping view. + // TODO: in ggml_new_tensor_impl, handle overlapping data range in data size calculation + // This could then be a tensor with ne[] = {(d_conv-1)+n_tok, d_inner} + // which is around (d_conv-1) times as small as its current size. + struct ggml_tensor * conv_x = ggml_new_tensor_1d(ctx0, conv_state->type, d_conv*d_inner*n_tok); + const size_t conv_x_nb1 = (d_conv - 1 + n_tok) * ggml_element_size(conv_x); + + conv_x = ggml_set_2d(ctx0, conv_x, conv_state, conv_x_nb1, 0); + // unfortunately, making x contiguous is necessary because ggml_set expects nb0 == sizeof(float) + conv_x = ggml_set_2d(ctx0, conv_x, ggml_cont(ctx0, ggml_transpose(ctx0, x)), conv_x_nb1, (d_conv - 1)*ggml_element_size(conv_x)); + + // store last (d_conv - 1) columns of conv_x back into the KV cache for the next conv_state + ggml_build_forward_expand(gf, + ggml_cpy(ctx0, + ggml_view_2d(ctx0, conv_x, d_conv - 1, d_inner, conv_x_nb1, n_tok*ggml_element_size(conv_x)), + ggml_view_tensor(ctx0, kv_self.k_l[il]))); + + // prepare convolution for all tokens in the batch with a self-overlapping view + // {(d_conv-1)+n_tok, d_inner} => {d_conv, d_inner, n_tok} + conv_x = ggml_view_3d(ctx0, conv_x, d_conv, d_inner, n_tok, conv_x_nb1, -(d_conv - 1)*d_inner*ggml_element_size(conv_x), 0); + + // perform convolution + // => {1, d_inner, n_tok} + x = ggml_sum_rows(ctx0, ggml_mul(ctx0, conv_x, model.layers[il].ssm_conv1d)); + // => {d_inner, n_tok, 1} + x = ggml_permute(ctx0, x, 2, 0, 1, 3); // bias x = ggml_add(ctx0, x, model.layers[il].ssm_conv1d_b); @@ -6983,23 +6989,24 @@ struct llm_build_context { // ssm { - // {2*n_embd, batch} * {2*n_embd, dt_rank + 2*d_state} = {batch, dt_rank + 2*d_state} - struct ggml_tensor * x_db = ggml_mul_mat(ctx0, x, model.layers[il].ssm_x); - // FIXME: handle batches of more than 1 token - struct ggml_tensor * dt = ggml_view_1d(ctx0, x_db, dt_rank, 0); - struct ggml_tensor * B = ggml_view_1d(ctx0, x_db, d_state, ggml_element_size(x_db)*dt_rank); - struct ggml_tensor * C = ggml_view_1d(ctx0, x_db, d_state, ggml_element_size(x_db)*(dt_rank+d_state)); - - // {dt_rank} * {dt_rank, d_inner} = {1, d_inner} - dt = ggml_mul_mat(ctx0, dt, model.layers[il].ssm_dt); - dt = ggml_add(ctx0, dt, ggml_transpose(ctx0, model.layers[il].ssm_dt_b)); + // {d_inner, dt_rank + 2*d_state} * {d_inner, n_tok} => {dt_rank + 2*d_state, n_tok} + struct ggml_tensor * x_db = ggml_mul_mat(ctx0, model.layers[il].ssm_x, x); + // split + struct ggml_tensor * dt = ggml_view_2d(ctx0, x_db, dt_rank, x_db->ne[1], x_db->nb[1], 0); + struct ggml_tensor * B = ggml_view_2d(ctx0, x_db, d_state, x_db->ne[1], x_db->nb[1], ggml_element_size(x_db)*dt_rank); + struct ggml_tensor * C = ggml_view_2d(ctx0, x_db, d_state, x_db->ne[1], x_db->nb[1], ggml_element_size(x_db)*(dt_rank+d_state)); + + // {dt_rank, d_inner} * {dt_rank, n_tok} => {d_inner, n_tok} + dt = ggml_mul_mat(ctx0, model.layers[il].ssm_dt, dt); + dt = ggml_add(ctx0, dt, model.layers[il].ssm_dt_b); dt = ggml_soft_plus(ctx0, dt); + // FIXME: support batches with more than 1 token // => {d_state, d_inner} - struct ggml_tensor * dA = ggml_exp(ctx0, ggml_mul(ctx0, model.layers[il].ssm_a, dt)); + struct ggml_tensor * dA = ggml_exp(ctx0, ggml_mul(ctx0, model.layers[il].ssm_a, ggml_transpose(ctx0, dt))); // => {d_state, d_inner} - struct ggml_tensor * dB = ggml_out_prod(ctx0, B, ggml_transpose(ctx0, dt)); + struct ggml_tensor * dB = ggml_out_prod(ctx0, B, dt); // => {d_state, d_inner} cur = ggml_mul(ctx0, dB, ggml_transpose(ctx0, x)); @@ -7014,7 +7021,7 @@ struct llm_build_context { y = ggml_add(ctx0, y, ggml_mul(ctx0, model.layers[il].ssm_d, x)); y = ggml_mul(ctx0, y, ggml_silu(ctx0, z)); - // {d_inner, n_embd} * {d_inner, 1} = {n_embd, 1} + // {d_inner, n_embd} * {d_inner, 1} => {n_embd, 1} cur = ggml_mul_mat(ctx0, model.layers[il].ssm_out, y); } @@ -10722,8 +10729,15 @@ struct llama_context * llama_new_context_with_model( ctx->rng = std::mt19937(params.seed); ctx->logits_all = params.logits_all; - const ggml_type type_k = params.type_k; - const ggml_type type_v = params.type_v; + ggml_type type_k = params.type_k; + ggml_type type_v = params.type_v; + + // Mamba (mis)uses the KV cache to store its states + if (model->arch == LLM_ARCH_MAMBA) { + // it's probably best to keep as much precision as possible for the states + type_k = GGML_TYPE_F32; // required by ggml_set for Mamba's conv_state + type_v = GGML_TYPE_F32; // required by ggml_mul for Mamba's ssm_state + } GGML_ASSERT(hparams.n_embd_head_k % ggml_blck_size(type_k) == 0); GGML_ASSERT(hparams.n_embd_head_v % ggml_blck_size(type_v) == 0);