-
Notifications
You must be signed in to change notification settings - Fork 977
/
Copy pathfunctions.rs
1616 lines (1442 loc) · 59.6 KB
/
functions.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
use super::{
ast::*,
builtins::{inject_builtin, sampled_to_depth},
context::{Context, ExprPos, StmtContext},
error::{Error, ErrorKind},
types::scalar_components,
Frontend, Result,
};
use crate::{
front::glsl::types::type_power, proc::ensure_block_returns, AddressSpace, Block, EntryPoint,
Expression, Function, FunctionArgument, FunctionResult, Handle, Literal, LocalVariable, Scalar,
ScalarKind, Span, Statement, StructMember, Type, TypeInner,
};
use std::iter;
/// Struct detailing a store operation that must happen after a function call
struct ProxyWrite {
/// The store target
target: Handle<Expression>,
/// A pointer to read the value of the store
value: Handle<Expression>,
/// An optional conversion to be applied
convert: Option<Scalar>,
}
impl Frontend {
pub(crate) fn function_or_constructor_call(
&mut self,
ctx: &mut Context,
stmt: &StmtContext,
fc: FunctionCallKind,
raw_args: &[Handle<HirExpr>],
meta: Span,
) -> Result<Option<Handle<Expression>>> {
let args: Vec<_> = raw_args
.iter()
.map(|e| ctx.lower_expect_inner(stmt, self, *e, ExprPos::Rhs))
.collect::<Result<_>>()?;
match fc {
FunctionCallKind::TypeConstructor(ty) => {
if args.len() == 1 {
self.constructor_single(ctx, ty, args[0], meta).map(Some)
} else {
self.constructor_many(ctx, ty, args, meta).map(Some)
}
}
FunctionCallKind::Function(name) => {
self.function_call(ctx, stmt, name, args, raw_args, meta)
}
}
}
fn constructor_single(
&mut self,
ctx: &mut Context,
ty: Handle<Type>,
(mut value, expr_meta): (Handle<Expression>, Span),
meta: Span,
) -> Result<Handle<Expression>> {
let expr_type = ctx.resolve_type(value, expr_meta)?;
let vector_size = match *expr_type {
TypeInner::Vector { size, .. } => Some(size),
_ => None,
};
let expr_is_bool = expr_type.scalar_kind() == Some(ScalarKind::Bool);
// Special case: if casting from a bool, we need to use Select and not As.
match ctx.module.types[ty].inner.scalar() {
Some(result_scalar) if expr_is_bool && result_scalar.kind != ScalarKind::Bool => {
let result_scalar = Scalar {
width: 4,
..result_scalar
};
let l0 = Literal::zero(result_scalar).unwrap();
let l1 = Literal::one(result_scalar).unwrap();
let mut reject = ctx.add_expression(Expression::Literal(l0), expr_meta)?;
let mut accept = ctx.add_expression(Expression::Literal(l1), expr_meta)?;
ctx.implicit_splat(&mut reject, meta, vector_size)?;
ctx.implicit_splat(&mut accept, meta, vector_size)?;
let h = ctx.add_expression(
Expression::Select {
accept,
reject,
condition: value,
},
expr_meta,
)?;
return Ok(h);
}
_ => {}
}
Ok(match ctx.module.types[ty].inner {
TypeInner::Vector { size, scalar } if vector_size.is_none() => {
ctx.forced_conversion(&mut value, expr_meta, scalar)?;
if let TypeInner::Scalar { .. } = *ctx.resolve_type(value, expr_meta)? {
ctx.add_expression(Expression::Splat { size, value }, meta)?
} else {
self.vector_constructor(ctx, ty, size, scalar, &[(value, expr_meta)], meta)?
}
}
TypeInner::Scalar(scalar) => {
let mut expr = value;
if let TypeInner::Vector { .. } | TypeInner::Matrix { .. } =
*ctx.resolve_type(value, expr_meta)?
{
expr = ctx.add_expression(
Expression::AccessIndex {
base: expr,
index: 0,
},
meta,
)?;
}
if let TypeInner::Matrix { .. } = *ctx.resolve_type(value, expr_meta)? {
expr = ctx.add_expression(
Expression::AccessIndex {
base: expr,
index: 0,
},
meta,
)?;
}
ctx.add_expression(
Expression::As {
kind: scalar.kind,
expr,
convert: Some(scalar.width),
},
meta,
)?
}
TypeInner::Vector { size, scalar } => {
if vector_size.map_or(true, |s| s != size) {
value = ctx.vector_resize(size, value, expr_meta)?;
}
ctx.add_expression(
Expression::As {
kind: scalar.kind,
expr: value,
convert: Some(scalar.width),
},
meta,
)?
}
TypeInner::Matrix {
columns,
rows,
width,
} => self.matrix_one_arg(ctx, ty, columns, rows, width, (value, expr_meta), meta)?,
TypeInner::Struct { ref members, .. } => {
let scalar_components = members
.get(0)
.and_then(|member| scalar_components(&ctx.module.types[member.ty].inner));
if let Some(scalar) = scalar_components {
ctx.implicit_conversion(&mut value, expr_meta, scalar)?;
}
ctx.add_expression(
Expression::Compose {
ty,
components: vec![value],
},
meta,
)?
}
TypeInner::Array { base, .. } => {
let scalar_components = scalar_components(&ctx.module.types[base].inner);
if let Some(scalar) = scalar_components {
ctx.implicit_conversion(&mut value, expr_meta, scalar)?;
}
ctx.add_expression(
Expression::Compose {
ty,
components: vec![value],
},
meta,
)?
}
_ => {
self.errors.push(Error {
kind: ErrorKind::SemanticError("Bad type constructor".into()),
meta,
});
value
}
})
}
#[allow(clippy::too_many_arguments)]
fn matrix_one_arg(
&mut self,
ctx: &mut Context,
ty: Handle<Type>,
columns: crate::VectorSize,
rows: crate::VectorSize,
width: crate::Bytes,
(mut value, expr_meta): (Handle<Expression>, Span),
meta: Span,
) -> Result<Handle<Expression>> {
let mut components = Vec::with_capacity(columns as usize);
// TODO: casts
// `Expression::As` doesn't support matrix width
// casts so we need to do some extra work for casts
let element_scalar = Scalar {
kind: ScalarKind::Float,
width,
};
ctx.forced_conversion(&mut value, expr_meta, element_scalar)?;
match *ctx.resolve_type(value, expr_meta)? {
TypeInner::Scalar(_) => {
// If a matrix is constructed with a single scalar value, then that
// value is used to initialize all the values along the diagonal of
// the matrix; the rest are given zeros.
let vector_ty = ctx.module.types.insert(
Type {
name: None,
inner: TypeInner::Vector {
size: rows,
scalar: element_scalar,
},
},
meta,
);
let zero_literal = Literal::zero(element_scalar).unwrap();
let zero = ctx.add_expression(Expression::Literal(zero_literal), meta)?;
for i in 0..columns as u32 {
components.push(
ctx.add_expression(
Expression::Compose {
ty: vector_ty,
components: (0..rows as u32)
.map(|r| match r == i {
true => value,
false => zero,
})
.collect(),
},
meta,
)?,
)
}
}
TypeInner::Matrix {
rows: ori_rows,
columns: ori_cols,
..
} => {
// If a matrix is constructed from a matrix, then each component
// (column i, row j) in the result that has a corresponding component
// (column i, row j) in the argument will be initialized from there. All
// other components will be initialized to the identity matrix.
let zero_literal = Literal::zero(element_scalar).unwrap();
let one_literal = Literal::one(element_scalar).unwrap();
let zero = ctx.add_expression(Expression::Literal(zero_literal), meta)?;
let one = ctx.add_expression(Expression::Literal(one_literal), meta)?;
let vector_ty = ctx.module.types.insert(
Type {
name: None,
inner: TypeInner::Vector {
size: rows,
scalar: element_scalar,
},
},
meta,
);
for i in 0..columns as u32 {
if i < ori_cols as u32 {
use std::cmp::Ordering;
let vector = ctx.add_expression(
Expression::AccessIndex {
base: value,
index: i,
},
meta,
)?;
components.push(match ori_rows.cmp(&rows) {
Ordering::Less => {
let components = (0..rows as u32)
.map(|r| {
if r < ori_rows as u32 {
ctx.add_expression(
Expression::AccessIndex {
base: vector,
index: r,
},
meta,
)
} else if r == i {
Ok(one)
} else {
Ok(zero)
}
})
.collect::<Result<_>>()?;
ctx.add_expression(
Expression::Compose {
ty: vector_ty,
components,
},
meta,
)?
}
Ordering::Equal => vector,
Ordering::Greater => ctx.vector_resize(rows, vector, meta)?,
})
} else {
let compose_expr = Expression::Compose {
ty: vector_ty,
components: (0..rows as u32)
.map(|r| match r == i {
true => one,
false => zero,
})
.collect(),
};
let vec = ctx.add_expression(compose_expr, meta)?;
components.push(vec)
}
}
}
_ => {
components = iter::repeat(value).take(columns as usize).collect();
}
}
ctx.add_expression(Expression::Compose { ty, components }, meta)
}
#[allow(clippy::too_many_arguments)]
fn vector_constructor(
&mut self,
ctx: &mut Context,
ty: Handle<Type>,
size: crate::VectorSize,
scalar: Scalar,
args: &[(Handle<Expression>, Span)],
meta: Span,
) -> Result<Handle<Expression>> {
let mut components = Vec::with_capacity(size as usize);
for (mut arg, expr_meta) in args.iter().copied() {
ctx.forced_conversion(&mut arg, expr_meta, scalar)?;
if components.len() >= size as usize {
break;
}
match *ctx.resolve_type(arg, expr_meta)? {
TypeInner::Scalar { .. } => components.push(arg),
TypeInner::Matrix { rows, columns, .. } => {
components.reserve(rows as usize * columns as usize);
for c in 0..(columns as u32) {
let base = ctx.add_expression(
Expression::AccessIndex {
base: arg,
index: c,
},
expr_meta,
)?;
for r in 0..(rows as u32) {
components.push(ctx.add_expression(
Expression::AccessIndex { base, index: r },
expr_meta,
)?)
}
}
}
TypeInner::Vector { size: ori_size, .. } => {
components.reserve(ori_size as usize);
for index in 0..(ori_size as u32) {
components.push(ctx.add_expression(
Expression::AccessIndex { base: arg, index },
expr_meta,
)?)
}
}
_ => components.push(arg),
}
}
components.truncate(size as usize);
ctx.add_expression(Expression::Compose { ty, components }, meta)
}
fn constructor_many(
&mut self,
ctx: &mut Context,
ty: Handle<Type>,
args: Vec<(Handle<Expression>, Span)>,
meta: Span,
) -> Result<Handle<Expression>> {
let mut components = Vec::with_capacity(args.len());
let struct_member_data = match ctx.module.types[ty].inner {
TypeInner::Matrix {
columns,
rows,
width,
} => {
let mut flattened = Vec::with_capacity(columns as usize * rows as usize);
let element_scalar = Scalar {
kind: ScalarKind::Float,
width,
};
for (mut arg, meta) in args.iter().copied() {
ctx.forced_conversion(&mut arg, meta, element_scalar)?;
match *ctx.resolve_type(arg, meta)? {
TypeInner::Vector { size, .. } => {
for i in 0..(size as u32) {
flattened.push(ctx.add_expression(
Expression::AccessIndex {
base: arg,
index: i,
},
meta,
)?)
}
}
_ => flattened.push(arg),
}
}
let ty = ctx.module.types.insert(
Type {
name: None,
inner: TypeInner::Vector {
size: rows,
scalar: element_scalar,
},
},
meta,
);
for chunk in flattened.chunks(rows as usize) {
components.push(ctx.add_expression(
Expression::Compose {
ty,
components: Vec::from(chunk),
},
meta,
)?)
}
None
}
TypeInner::Vector { size, scalar } => {
return self.vector_constructor(ctx, ty, size, scalar, &args, meta)
}
TypeInner::Array { base, .. } => {
for (mut arg, meta) in args.iter().copied() {
let scalar_components = scalar_components(&ctx.module.types[base].inner);
if let Some(scalar) = scalar_components {
ctx.implicit_conversion(&mut arg, meta, scalar)?;
}
components.push(arg)
}
None
}
TypeInner::Struct { ref members, .. } => Some(
members
.iter()
.map(|member| scalar_components(&ctx.module.types[member.ty].inner))
.collect::<Vec<_>>(),
),
_ => {
return Err(Error {
kind: ErrorKind::SemanticError("Constructor: Too many arguments".into()),
meta,
})
}
};
if let Some(struct_member_data) = struct_member_data {
for ((mut arg, meta), scalar_components) in
args.iter().copied().zip(struct_member_data.iter().copied())
{
if let Some(scalar) = scalar_components {
ctx.implicit_conversion(&mut arg, meta, scalar)?;
}
components.push(arg)
}
}
ctx.add_expression(Expression::Compose { ty, components }, meta)
}
#[allow(clippy::too_many_arguments)]
fn function_call(
&mut self,
ctx: &mut Context,
stmt: &StmtContext,
name: String,
args: Vec<(Handle<Expression>, Span)>,
raw_args: &[Handle<HirExpr>],
meta: Span,
) -> Result<Option<Handle<Expression>>> {
// Grow the typifier to be able to index it later without needing
// to hold the context mutably
for &(expr, span) in args.iter() {
ctx.typifier_grow(expr, span)?;
}
// Check if the passed arguments require any special variations
let mut variations =
builtin_required_variations(args.iter().map(|&(expr, _)| ctx.get_type(expr)));
// Initiate the declaration if it wasn't previously initialized and inject builtins
let declaration = self.lookup_function.entry(name.clone()).or_insert_with(|| {
variations |= BuiltinVariations::STANDARD;
Default::default()
});
inject_builtin(declaration, ctx.module, &name, variations);
// Borrow again but without mutability, at this point a declaration is guaranteed
let declaration = self.lookup_function.get(&name).unwrap();
// Possibly contains the overload to be used in the call
let mut maybe_overload = None;
// The conversions needed for the best analyzed overload, this is initialized all to
// `NONE` to make sure that conversions always pass the first time without ambiguity
let mut old_conversions = vec![Conversion::None; args.len()];
// Tracks whether the comparison between overloads lead to an ambiguity
let mut ambiguous = false;
// Iterate over all the available overloads to select either an exact match or a
// overload which has suitable implicit conversions
'outer: for (overload_idx, overload) in declaration.overloads.iter().enumerate() {
// If the overload and the function call don't have the same number of arguments
// continue to the next overload
if args.len() != overload.parameters.len() {
continue;
}
log::trace!("Testing overload {}", overload_idx);
// Stores whether the current overload matches exactly the function call
let mut exact = true;
// State of the selection
// If None we still don't know what is the best overload
// If Some(true) the new overload is better
// If Some(false) the old overload is better
let mut superior = None;
// Store the conversions for the current overload so that later they can replace the
// conversions used for querying the best overload
let mut new_conversions = vec![Conversion::None; args.len()];
// Loop through the overload parameters and check if the current overload is better
// compared to the previous best overload.
for (i, overload_parameter) in overload.parameters.iter().enumerate() {
let call_argument = &args[i];
let parameter_info = &overload.parameters_info[i];
// If the image is used in the overload as a depth texture convert it
// before comparing, otherwise exact matches wouldn't be reported
if parameter_info.depth {
sampled_to_depth(ctx, call_argument.0, call_argument.1, &mut self.errors);
ctx.invalidate_expression(call_argument.0, call_argument.1)?
}
ctx.typifier_grow(call_argument.0, call_argument.1)?;
let overload_param_ty = &ctx.module.types[*overload_parameter].inner;
let call_arg_ty = ctx.get_type(call_argument.0);
log::trace!(
"Testing parameter {}\n\tOverload = {:?}\n\tCall = {:?}",
i,
overload_param_ty,
call_arg_ty
);
// Storage images cannot be directly compared since while the access is part of the
// type in naga's IR, in glsl they are a qualifier and don't enter in the match as
// long as the access needed is satisfied.
if let (
&TypeInner::Image {
class:
crate::ImageClass::Storage {
format: overload_format,
access: overload_access,
},
dim: overload_dim,
arrayed: overload_arrayed,
},
&TypeInner::Image {
class:
crate::ImageClass::Storage {
format: call_format,
access: call_access,
},
dim: call_dim,
arrayed: call_arrayed,
},
) = (overload_param_ty, call_arg_ty)
{
// Images size must match otherwise the overload isn't what we want
let good_size = call_dim == overload_dim && call_arrayed == overload_arrayed;
// Glsl requires the formats to strictly match unless you are builtin
// function overload and have not been replaced, in which case we only
// check that the format scalar kind matches
let good_format = overload_format == call_format
|| (overload.internal
&& ScalarKind::from(overload_format) == ScalarKind::from(call_format));
if !(good_size && good_format) {
continue 'outer;
}
// While storage access mismatch is an error it isn't one that causes
// the overload matching to fail so we defer the error and consider
// that the images match exactly
if !call_access.contains(overload_access) {
self.errors.push(Error {
kind: ErrorKind::SemanticError(
format!(
"'{name}': image needs {overload_access:?} access but only {call_access:?} was provided"
)
.into(),
),
meta,
});
}
// The images satisfy the conditions to be considered as an exact match
new_conversions[i] = Conversion::Exact;
continue;
} else if overload_param_ty == call_arg_ty {
// If the types match there's no need to check for conversions so continue
new_conversions[i] = Conversion::Exact;
continue;
}
// Glsl defines that inout follows both the conversions for input parameters and
// output parameters, this means that the type must have a conversion from both the
// call argument to the function parameter and the function parameter to the call
// argument, the only way this is possible is for the conversion to be an identity
// (i.e. call argument = function parameter)
if let ParameterQualifier::InOut = parameter_info.qualifier {
continue 'outer;
}
// The function call argument and the function definition
// parameter are not equal at this point, so we need to try
// implicit conversions.
//
// Now there are two cases, the argument is defined as a normal
// parameter (`in` or `const`), in this case an implicit
// conversion is made from the calling argument to the
// definition argument. If the parameter is `out` the
// opposite needs to be done, so the implicit conversion is made
// from the definition argument to the calling argument.
let maybe_conversion = if parameter_info.qualifier.is_lhs() {
conversion(call_arg_ty, overload_param_ty)
} else {
conversion(overload_param_ty, call_arg_ty)
};
let conversion = match maybe_conversion {
Some(info) => info,
None => continue 'outer,
};
// At this point a conversion will be needed so the overload no longer
// exactly matches the call arguments
exact = false;
// Compare the conversions needed for this overload parameter to that of the
// last overload analyzed respective parameter, the value is:
// - `true` when the new overload argument has a better conversion
// - `false` when the old overload argument has a better conversion
let best_arg = match (conversion, old_conversions[i]) {
// An exact match is always better, we don't need to check this for the
// current overload since it was checked earlier
(_, Conversion::Exact) => false,
// No overload was yet analyzed so this one is the best yet
(_, Conversion::None) => true,
// A conversion from a float to a double is the best possible conversion
(Conversion::FloatToDouble, _) => true,
(_, Conversion::FloatToDouble) => false,
// A conversion from a float to an integer is preferred than one
// from double to an integer
(Conversion::IntToFloat, Conversion::IntToDouble) => true,
(Conversion::IntToDouble, Conversion::IntToFloat) => false,
// This case handles things like no conversion and exact which were already
// treated and other cases which no conversion is better than the other
_ => continue,
};
// Check if the best parameter corresponds to the current selected overload
// to pass to the next comparison, if this isn't true mark it as ambiguous
match best_arg {
true => match superior {
Some(false) => ambiguous = true,
_ => {
superior = Some(true);
new_conversions[i] = conversion
}
},
false => match superior {
Some(true) => ambiguous = true,
_ => superior = Some(false),
},
}
}
// The overload matches exactly the function call so there's no ambiguity (since
// repeated overload aren't allowed) and the current overload is selected, no
// further querying is needed.
if exact {
maybe_overload = Some(overload);
ambiguous = false;
break;
}
match superior {
// New overload is better keep it
Some(true) => {
maybe_overload = Some(overload);
// Replace the conversions
old_conversions = new_conversions;
}
// Old overload is better do nothing
Some(false) => {}
// No overload was better than the other this can be caused
// when all conversions are ambiguous in which the overloads themselves are
// ambiguous.
None => {
ambiguous = true;
// Assign the new overload, this helps ensures that in this case of
// ambiguity the parsing won't end immediately and allow for further
// collection of errors.
maybe_overload = Some(overload);
}
}
}
if ambiguous {
self.errors.push(Error {
kind: ErrorKind::SemanticError(
format!("Ambiguous best function for '{name}'").into(),
),
meta,
})
}
let overload = maybe_overload.ok_or_else(|| Error {
kind: ErrorKind::SemanticError(format!("Unknown function '{name}'").into()),
meta,
})?;
let parameters_info = overload.parameters_info.clone();
let parameters = overload.parameters.clone();
let is_void = overload.void;
let kind = overload.kind;
let mut arguments = Vec::with_capacity(args.len());
let mut proxy_writes = Vec::new();
// Iterate through the function call arguments applying transformations as needed
for (((parameter_info, call_argument), expr), parameter) in parameters_info
.iter()
.zip(&args)
.zip(raw_args)
.zip(¶meters)
{
let (mut handle, meta) =
ctx.lower_expect_inner(stmt, self, *expr, parameter_info.qualifier.as_pos())?;
if parameter_info.qualifier.is_lhs() {
self.process_lhs_argument(
ctx,
meta,
*parameter,
parameter_info,
handle,
call_argument,
&mut proxy_writes,
&mut arguments,
)?;
continue;
}
let scalar_comps = scalar_components(&ctx.module.types[*parameter].inner);
// Apply implicit conversions as needed
if let Some(scalar) = scalar_comps {
ctx.implicit_conversion(&mut handle, meta, scalar)?;
}
arguments.push(handle)
}
match kind {
FunctionKind::Call(function) => {
ctx.emit_end();
let result = if !is_void {
Some(ctx.add_expression(Expression::CallResult(function), meta)?)
} else {
None
};
ctx.body.push(
crate::Statement::Call {
function,
arguments,
result,
},
meta,
);
ctx.emit_start();
// Write back all the variables that were scheduled to their original place
for proxy_write in proxy_writes {
let mut value = ctx.add_expression(
Expression::Load {
pointer: proxy_write.value,
},
meta,
)?;
if let Some(scalar) = proxy_write.convert {
ctx.conversion(&mut value, meta, scalar)?;
}
ctx.emit_restart();
ctx.body.push(
Statement::Store {
pointer: proxy_write.target,
value,
},
meta,
);
}
Ok(result)
}
FunctionKind::Macro(builtin) => builtin.call(self, ctx, arguments.as_mut_slice(), meta),
}
}
/// Processes a function call argument that appears in place of an output
/// parameter.
#[allow(clippy::too_many_arguments)]
fn process_lhs_argument(
&mut self,
ctx: &mut Context,
meta: Span,
parameter_ty: Handle<Type>,
parameter_info: &ParameterInfo,
original: Handle<Expression>,
call_argument: &(Handle<Expression>, Span),
proxy_writes: &mut Vec<ProxyWrite>,
arguments: &mut Vec<Handle<Expression>>,
) -> Result<()> {
let original_ty = ctx.resolve_type(original, meta)?;
let original_pointer_space = original_ty.pointer_space();
// The type of a possible spill variable needed for a proxy write
let mut maybe_ty = match *original_ty {
// If the argument is to be passed as a pointer but the type of the
// expression returns a vector it must mean that it was for example
// swizzled and it must be spilled into a local before calling
TypeInner::Vector { size, scalar } => Some(ctx.module.types.insert(
Type {
name: None,
inner: TypeInner::Vector { size, scalar },
},
Span::default(),
)),
// If the argument is a pointer whose address space isn't `Function`, an
// indirection through a local variable is needed to align the address
// spaces of the call argument and the overload parameter.
TypeInner::Pointer { base, space } if space != AddressSpace::Function => Some(base),
TypeInner::ValuePointer {
size,
scalar,
space,
} if space != AddressSpace::Function => {
let inner = match size {
Some(size) => TypeInner::Vector { size, scalar },
None => TypeInner::Scalar(scalar),
};
Some(
ctx.module
.types
.insert(Type { name: None, inner }, Span::default()),
)
}
_ => None,
};
// Since the original expression might be a pointer and we want a value
// for the proxy writes, we might need to load the pointer.
let value = if original_pointer_space.is_some() {
ctx.add_expression(Expression::Load { pointer: original }, Span::default())?
} else {
original
};
ctx.typifier_grow(call_argument.0, call_argument.1)?;
let overload_param_ty = &ctx.module.types[parameter_ty].inner;
let call_arg_ty = ctx.get_type(call_argument.0);
let needs_conversion = call_arg_ty != overload_param_ty;
let arg_scalar_comps = scalar_components(call_arg_ty);
// Since output parameters also allow implicit conversions from the
// parameter to the argument, we need to spill the conversion to a
// variable and create a proxy write for the original variable.
if needs_conversion {
maybe_ty = Some(parameter_ty);
}
if let Some(ty) = maybe_ty {
// Create the spill variable
let spill_var = ctx.locals.append(
LocalVariable {
name: None,
ty,
init: None,
},
Span::default(),
);
let spill_expr =
ctx.add_expression(Expression::LocalVariable(spill_var), Span::default())?;
// If the argument is also copied in we must store the value of the
// original variable to the spill variable.
if let ParameterQualifier::InOut = parameter_info.qualifier {
ctx.body.push(
Statement::Store {
pointer: spill_expr,
value,
},
Span::default(),
);
}
// Add the spill variable as an argument to the function call
arguments.push(spill_expr);
let convert = if needs_conversion {
arg_scalar_comps
} else {
None
};
// Register the temporary local to be written back to it's original
// place after the function call
if let Expression::Swizzle {
size,
mut vector,
pattern,
} = ctx.expressions[original]
{
if let Expression::Load { pointer } = ctx.expressions[vector] {
vector = pointer;
}
for (i, component) in pattern.iter().take(size as usize).enumerate() {
let original = ctx.add_expression(
Expression::AccessIndex {
base: vector,
index: *component as u32,
},