forked from googleapis/python-aiplatform
-
Notifications
You must be signed in to change notification settings - Fork 0
/
create_hyperparameter_tuning_job_sample.py
74 lines (63 loc) · 2.27 KB
/
create_hyperparameter_tuning_job_sample.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
# Copyright 2022 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# [START aiplatform_sdk_create_hyperparameter_tuning_job_sample]
from google.cloud import aiplatform
from google.cloud.aiplatform import hyperparameter_tuning as hpt
def create_hyperparameter_tuning_job_sample(
project: str,
location: str,
staging_bucket: str,
display_name: str,
container_uri: str,
):
aiplatform.init(project=project, location=location, staging_bucket=staging_bucket)
worker_pool_specs = [
{
"machine_spec": {
"machine_type": "n1-standard-4",
"accelerator_type": "NVIDIA_TESLA_K80",
"accelerator_count": 1,
},
"replica_count": 1,
"container_spec": {
"image_uri": container_uri,
"command": [],
"args": [],
},
}
]
custom_job = aiplatform.CustomJob(
display_name='custom_job',
worker_pool_specs=worker_pool_specs,
)
hpt_job = aiplatform.HyperparameterTuningJob(
display_name=display_name,
custom_job=custom_job,
metric_spec={
'loss': 'minimize',
},
parameter_spec={
'lr': hpt.DoubleParameterSpec(min=0.001, max=0.1, scale='log'),
'units': hpt.IntegerParameterSpec(min=4, max=128, scale='linear'),
'activation': hpt.CategoricalParameterSpec(values=['relu', 'selu']),
'batch_size': hpt.DiscreteParameterSpec(values=[128, 256], scale='linear')
},
max_trial_count=128,
parallel_trial_count=8,
labels={'my_key': 'my_value'},
)
hpt_job.run()
print(hpt_job.resource_name)
return hpt_job
# [END aiplatform_sdk_create_hyperparameter_tuning_job_sample]