Skip to content
This repository has been archived by the owner on May 25, 2023. It is now read-only.

Latest commit

 

History

History
67 lines (51 loc) · 2.22 KB

README.md

File metadata and controls

67 lines (51 loc) · 2.22 KB

GeoMesa Twitter

GeoMesa Twitter provides three example projects to collect, ingest, and analyze Twitter data in GeoMesa.

Getting Started

You'll first need to clone and build the GeoMesa 1.0.0-SNAPSHOT from LocationTech GeoMesa Github.

Checkout, build, and install GeoMesa with maven:

git clone [email protected]:locationtech/geomesa.git
cd geomesa
mvn clean install

Next clone geomesa-twitter and build geomesa-twitter:

git clone [email protected]:geomesa/geomesa-twitter.git
cd geomesa-twitter
mvn clean install

Collected Twitter Data

Sign up for twitter and get developer keys...more info coming soon

Ingesting Twitter into GeoMesa

Run the ingest jar to see a list of arguments for ingest:

$> java -jar twitter-ingest/target/twitter-ingest-accumulo1.5-1.0-SNAPSHOT.jar 
0 [main] INFO geomesa.example.twitter.ingest.Runner  - Error parsing arguments: The following options are required: --instanceId, -i --zookeepers, -z --tableName, -t --password, -p --user, -u --featureName, -f 
Usage: <main class> [options] files
  Options:
  * --featureName, -f
       featureName to assign to the data
        --indexSchemaFormat
       Schema for indexing data
  * --instanceId, -i
       Name of the Accumulo Instance
  * --password, -p
       Accumulo password
    --shards, -s
       number of shards to use for data
  * --tableName, -t
       Accumulo table name
        --useExtendedFeatures
       parse extended features or the minimal set
  * --user, -u
       Accumulo user name
  * --zookeepers, -z
       Comma separated list of zookeepers

After collecting some twitter data, you can ingest files which have one tweet as JSON per line:

java -jar twitter-ingest/target/twitter-ingest-accumulo1.5-1.0-SNAPSHOT.jar -u user -p password -z zoo1,zoo2,zoo3 -t geomesa_catalog -i my instance -f twitter tweet_file1.json tweet_file2.json tweet_file3.json

Running the Spark Job

After setting up spark on your cluster, copy the shade jar over and run it:

/opt/spark/bin/spark-submit --master yarn-client --num-executors 40 --executor-cores 4 twitter-spark-accumulo1.5-1.0-SNAPSHOT.jar  --deploy-mode client --class geomesa.example.twitter.spark.Runner twitter