diff --git a/notebooks/L7/advanced-plotting.ipynb b/notebooks/L7/advanced-plotting.ipynb
new file mode 100644
index 0000000..d9cc4ca
--- /dev/null
+++ b/notebooks/L7/advanced-plotting.ipynb
@@ -0,0 +1,485 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# More advanced plotting with Pandas/Matplotlib\n",
+ "\n",
+ "At this point you should know the basics of making plots with Matplotlib module.\n",
+ "Now we will expand on our basic plotting skills to learn how to create more advanced plots.\n",
+ "In this part, we will show how to visualize data using Pandas/Matplotlib and create plots such as the one below.\n",
+ "\n",
+ "![Subplot example in Matplotlib](img/subplots.png)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## The data\n",
+ "\n",
+ "In this part of the lesson we'll continue working with our weather observation data from the Helsinki-Vantaa airport [downloaded from NOAA](https://www7.ncdc.noaa.gov/CDO/cdopoemain.cmd?datasetabbv=DS3505&countryabbv=&georegionabbv=&resolution=40)."
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Getting started\n",
+ "\n",
+ "Let's start again by importing the libraries we'll need."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import pandas as pd\n",
+ "import matplotlib.pyplot as plt"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### Loading the data\n",
+ "\n",
+ "Now we'll load the data just as we had previously in the last part of the lesson. This will take a moment, we have a large dataset :D."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "fp = r\"data/029740.txt\"\n",
+ "\n",
+ "data = pd.read_csv(fp, delim_whitespace=True, \n",
+ " na_values=['*', '**', '***', '****', '*****', '******'],\n",
+ " usecols=['YR--MODAHRMN', 'TEMP', 'MAX', 'MIN'],\n",
+ " parse_dates=['YR--MODAHRMN'], index_col='YR--MODAHRMN')"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": []
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "OK, we're closing in on one million rows of data.\n",
+ "\n",
+ "Let's have a closer look at the time and temperature columns: "
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": []
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Let's go ahead and rename the `'TEMP'` column, since we'll later convert our temperatures from Fahrenheit to Celsius."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "new_names = {'TEMP':'TEMP_F'}\n",
+ "data = data.rename(columns=new_names)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Preparing the data\n",
+ "\n",
+ "First, we have to deal with no data values. Let's check how many no data values we have:"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": []
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "So, we have 3579 missing values in the TEMP_F column. Let's get rid of those. We need not worry about the `'MAX'` and `'MIN'` columns since we won't be using them. \n",
+ "\n",
+ "We can remove rows from our DataFrame where `'TEMP_F'` is missing values using the `dropna()` method: "
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": []
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": []
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "That's better."
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### Converting temperatures to Celsius\n",
+ "\n",
+ "Now that we have loaded our data, we can convert the values of temperature in Fahrenheit to Celsius, like we have in earlier lessons."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": []
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Let's check how our dataframe looks like at this point:"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": []
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Using subplots\n",
+ "\n",
+ "Let's continue working with the weather data and learn how to use *subplots*. Subplots are figures where you have multiple plots in different panels of the same figure, as was shown at the start of the lesson."
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### Extracting seasonal temperatures\n",
+ "\n",
+ "Let's now select data from different seasons of the year in 2012/2013:\n",
+ "\n",
+ "- Winter (December 2012 - February 2013)\n",
+ "- Spring (March 2013 - May 2013)\n",
+ "- Summer (June 2013 - August 2013)\n",
+ "- Autumn (Septempber 2013 - November 2013)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# Type in example for Winter\n",
+ "\n",
+ "\n",
+ "# Spring\n",
+ "spring = data.loc[(data.index >= '201303010000') & (data.index < '201306010000')]\n",
+ "spring_temps = spring['TEMP_C']\n",
+ "\n",
+ "# Summer\n",
+ "summer = data.loc[(data.index >= '201306010000') & (data.index < '201309010000')]\n",
+ "summer_temps = summer['TEMP_C']\n",
+ "\n",
+ "# Autumn\n",
+ "autumn = data.loc[(data.index >= '201309010000') & (data.index < '201312010000')]\n",
+ "autumn_temps = autumn['TEMP_C']"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Now we can plot our data to see how the different seasons look separately."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# Example plot of winter data\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# Spring\n",
+ "ax2 = spring['TEMP_C'].plot()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# Summer\n",
+ "ax3 = summer['TEMP_C'].plot()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# Autumn\n",
+ "ax4 = autumn['TEMP_C'].plot()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "OK, so from these plots we can already see that the temperatures in different seasons are quite different, which is rather obvious of course.\n",
+ "It is important to also notice that the scale of the *y*-axis changes in these different plots.\n",
+ "If we would like to compare different seasons to each other we need to make sure that the temperature scale is similar in the plots of the different seasons.\n",
+ "\n",
+ "### Finding data bounds\n",
+ "\n",
+ "Let's set our *y*-axis limits so that the upper limit is the maximum temperature + 5 degrees in our data (full year), and the lowest is the minimum temperature - 5 degrees."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# Find minimum seasonal temperature\n",
+ "\n",
+ "# Max seasonal temperature\n",
+ "max_temp = max(winter['TEMP_C'].max(), spring['TEMP_C'].max(), summer['TEMP_C'].max(), \n",
+ " autumn['TEMP_C'].max())\n",
+ "max_temp = max_temp + 5.0\n",
+ "\n",
+ "print(\"Min:\", min_temp, \"Max:\", max_temp)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "OK, so now we can see that the minimum temperature in our data is -35 degrees and the maximum is +35 degrees.\n",
+ "We can now use those values to standardize the y-axis scale of our plot.\n",
+ "\n",
+ "### Creating our first set of subplots\n",
+ "\n",
+ "Let's now continue and see how we can plot all these different plots into the same figure.\n",
+ "We can create a 2x2 panel for our visualization using Matplotlib’s `subplots()` function where we specify how many rows and columns we want to have in our figure.\n",
+ "We can also specify the size of our figure with `figsize()` parameter that takes the `width` and `height` values (in inches) as input."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": []
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "We can see that as a result we have now a list containing two nested lists where the first one contains the axis for column 1 and 2 on **row 1** and the second list contains the axis for columns 1 and 2 for **row 2**.\n",
+ "We can parse these axes into own variables so it is easier to work with them."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "ax11 = axes[0][0]\n",
+ "ax12 = axes[0][1]\n",
+ "ax21 = axes[1][0]\n",
+ "ax22 = axes[1][1]"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Now we have four different axis variables for different panels in our figure.\n",
+ "Next we can use them to plot the seasonal data into them.\n",
+ "Let's first plot the seasons and give different colors for the lines, and specify the *y*-scale limits to be the same with all subplots.\n",
+ "With parameter `c` it is possible to specify the color of the line.\n",
+ "You can find an extensive list of possible colors and RGB-color codes from [this link](http://www.rapidtables.com/web/color/RGB_Color.htm).\n",
+ "With `lw` parameter you can specify the width of the line."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# Set plot line width\n",
+ "line_width = 1.5\n",
+ "\n",
+ "# Plot data\n",
+ "# Winter\n",
+ "\n",
+ "# Spring\n",
+ "spring['TEMP_C'].plot(ax=ax12, c='orange', lw=line_width,\n",
+ " ylim=[min_temp, max_temp])\n",
+ "# Summer\n",
+ "summer['TEMP_C'].plot(ax=ax21, c='green', lw=line_width,\n",
+ " ylim=[min_temp, max_temp])\n",
+ "# Autumn\n",
+ "autumn['TEMP_C'].plot(ax=ax22, c='brown', lw=line_width,\n",
+ " ylim=[min_temp, max_temp])\n",
+ "\n",
+ "# Display figure\n",
+ "fig"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Great, now we have all the plots in same figure! However, we can see that there are some problems with our *x*-axis labels and a few missing items we can add. Let's do that below."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# Create the new figure and subplots\n",
+ "fig, axes = plt.subplots(nrows=2, ncols=2, figsize=(12,8))\n",
+ "\n",
+ "# Rename the axes for ease of use\n",
+ "ax11 = axes[0][0]\n",
+ "ax12 = axes[0][1]\n",
+ "ax21 = axes[1][0]\n",
+ "ax22 = axes[1][1]"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Now, we'll add our seasonal temperatures to the plot commands for each time period."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# Set plot line width\n",
+ "line_width = 1.5\n",
+ "\n",
+ "# Plot data\n",
+ "winter['TEMP_C'].plot(ax=ax11, c='blue', lw=line_width,\n",
+ " ylim=[min_temp, max_temp], grid=True)\n",
+ "spring['TEMP_C'].plot(ax=ax12, c='orange', lw=line_width,\n",
+ " ylim=[min_temp, max_temp], grid=True)\n",
+ "summer['TEMP_C'].plot(ax=ax21, c='green', lw=line_width,\n",
+ " ylim=[min_temp, max_temp], grid=True)\n",
+ "autumn['TEMP_C'].plot(ax=ax22, c='brown', lw=line_width,\n",
+ " ylim=[min_temp, max_temp], grid=True)\n",
+ "\n",
+ "# Set figure title\n",
+ "fig.suptitle('2012-2013 Seasonal temperature observations - Helsinki-Vantaa airport')\n",
+ "\n",
+ "# Rotate the x-axis labels so they don't overlap\n",
+ "plt.setp(ax11.xaxis.get_majorticklabels(), rotation=20)\n",
+ "plt.setp(ax12.xaxis.get_majorticklabels(), rotation=20)\n",
+ "plt.setp(ax21.xaxis.get_majorticklabels(), rotation=20)\n",
+ "plt.setp(ax22.xaxis.get_majorticklabels(), rotation=20)\n",
+ "\n",
+ "# Axis labels\n",
+ "ax21.set_xlabel('Date')\n",
+ "ax22.set_xlabel('Date')\n",
+ "ax11.set_ylabel('Temperature [°C]')\n",
+ "ax21.set_ylabel('Temperature [°C]')\n",
+ "\n",
+ "# Season label text\n",
+ "ax11.text(pd.to_datetime('20130215'), -25, 'Winter')\n",
+ "ax12.text(pd.to_datetime('20130515'), -25, 'Spring')\n",
+ "ax21.text(pd.to_datetime('20130815'), -25, 'Summer')\n",
+ "ax22.text(pd.to_datetime('20131115'), -25, 'Autumn')\n",
+ "\n",
+ "# Display plot\n",
+ "fig"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Not bad."
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 3",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.7.3"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 4
+}
diff --git a/notebooks/L7/img/subplots.png b/notebooks/L7/img/subplots.png
new file mode 100644
index 0000000..173eed9
Binary files /dev/null and b/notebooks/L7/img/subplots.png differ
diff --git a/notebooks/L7/matplotlib.ipynb b/notebooks/L7/matplotlib.ipynb
new file mode 100644
index 0000000..424c1e3
--- /dev/null
+++ b/notebooks/L7/matplotlib.ipynb
@@ -0,0 +1,575 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Plotting with Pandas (...and Matplotlib...and Bokeh)\n",
+ "\n",
+ "As we're now familiar with some of the features of [Pandas](https://pandas.pydata.org/), we will wade into visualizing our data in Python by using the built-in plotting options available directly in Pandas.\n",
+ "Much like the case of Pandas being built upon [NumPy](https://numpy.org/), plotting in Pandas takes advantage of plotting features from the [Matplotlib](https://matplotlib.org/) plotting library.\n",
+ "Plotting in Pandas provides a basic framework for visualizing our data, but as you'll see we sometimes need to use features from Matplotlib to enhance our plots. In particular, we will use features from the the `pyplot` module in Matplotlib, which provides [MATLAB](https://www.mathworks.com/products/matlab.html)-like plotting.\n",
+ "\n",
+ "Toward the end of the lesson we will also explore interactive plots using the [Pandas-Bokeh](https://github.com/PatrikHlobil/Pandas-Bokeh) plotting backend, which allows us to produce plots similar to those available in the [Bokeh plotting library](https://docs.bokeh.org/en/latest/index.html), but using plotting syntax similar to that used normally in Pandas. "
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Input data\n",
+ "\n",
+ "In the lesson this week we are using some of the same weather observation data from Finland [downloaded from NOAA](https://www7.ncdc.noaa.gov/CDO/cdopoemain.cmd?datasetabbv=DS3505&countryabbv=&georegionabbv=&resolution=40) that we used in Lesson 6. In this case we'll focus on weather observation station data from the Helsinki-Vantaa airport.\n",
+ "\n",
+ "## Downloading the data\n",
+ "\n",
+ "Just like last week, the first step for today's lesson is to get the data. Unlike last week, we'll all download and use the same data.\n",
+ "\n",
+ "You can download the data by opening a new terminal window in Jupyter Lab by going to **File** -> **New** -> **Terminal** in the Jupyter Lab menu bar. Once the terminal is open, you will need to navigate to the directory for Lesson 7 by typing\n",
+ "\n",
+ "```bash\n",
+ "cd notebooks/notebooks/L7/\n",
+ "```\n",
+ "\n",
+ "or the equivalent command to navigate to the location of the Lesson 7 files on your computer (for those running Jupyter on their own computers).\n",
+ "\n",
+ "\n",
+ "You can now confirm you're in the correct directory by typing\n",
+ "\n",
+ "```bash\n",
+ "ls\n",
+ "```\n",
+ "\n",
+ "You should see something like the following output:\n",
+ "\n",
+ "```bash\n",
+ "advanced-plotting.ipynb img\n",
+ "data matplotlib.ipynb\n",
+ "```\n",
+ "\n",
+ "If so, you're in the correct directory and you can download the data files by typing\n",
+ "\n",
+ "```bash\n",
+ "wget https://davewhipp.github.io/data/Finland-weather-data-L7.tar.gz\n",
+ "```\n",
+ "\n",
+ "After the download completes, you can extract the data files by typing\n",
+ "\n",
+ "```bash\n",
+ "tar zxvf Finland-weather-data-L7.tar.gz\n",
+ "```\n",
+ "\n",
+ "At this stage you should have a new directory called `data` that contains the data for this week's lesson. You can confirm this by typing\n",
+ "\n",
+ "```bash\n",
+ "ls data\n",
+ "```\n",
+ "\n",
+ "You should see something like the following:\n",
+ "\n",
+ "```bash\n",
+ "029740.txt 6367598020644inv.txt\n",
+ "3505doc.txt 6367598020644stn.txt\n",
+ "```\n",
+ "\n",
+ "Now you should be all set to proceed with the lesson!\n",
+ "\n",
+ "### Binder users\n",
+ "\n",
+ "It is not recommended to complete this lesson using Binder.\n",
+ "\n",
+ "## About the data\n",
+ "\n",
+ "As part of the download there are a number of files that describe the weather data. These *metadata* files include:\n",
+ "\n",
+ "- A list of stations: [data/6367598020644stn.txt](metadata/6367598020644stn.txt)\n",
+ "- Details about weather observations at each station: [data/6367598020644inv.txt](metadata/6367598020644inv.txt)\n",
+ "- A data description (i.e., column names): [data/3505doc.txt](metadata/3505doc.txt)\n",
+ "\n",
+ "The input data for this week are separated with varying number of spaces (i.e., fixed width). The first lines and columns of the data look like following:\n",
+ "\n",
+ "``` \n",
+ " USAF WBAN YR--MODAHRMN DIR SPD GUS CLG SKC L M H VSB MW MW MW MW AW AW AW AW W TEMP DEWP SLP ALT STP MAX MIN PCP01 PCP06 PCP24 PCPXX SD\n",
+ "029740 99999 195201010000 200 23 *** 15 OVC 7 2 * 5.0 63 ** ** ** ** ** ** ** 6 36 32 989.2 ***** ****** *** *** ***** ***** ***** ***** **\n",
+ "029740 99999 195201010600 220 18 *** 8 OVC 7 2 * 2.2 63 ** ** ** ** ** ** ** 6 37 37 985.9 ***** ****** *** 34 ***** ***** ***** ***** **\n",
+ "029740 99999 195201011200 220 21 *** 5 OVC 7 * * 3.8 59 ** ** ** ** ** ** ** 5 39 36 988.1 ***** ****** *** *** ***** ***** ***** ***** **\n",
+ "029740 99999 195201011800 250 16 *** 722 CLR 0 0 0 12.5 02 ** ** ** ** ** ** ** 5 36 27 991.9 ***** ****** 39 *** ***** ***** ***** ***** **\n",
+ "```"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Getting started\n",
+ "\n",
+ "Let's start by importing Pandas and reading our data file."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import pandas as pd"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Just as we did last week, we'll read our data file by passing a few parameters to the Pandas `read_csv()` function. In this case, however, we'll include a few additional parameters in order to read the data with a *datetime index*. Let's read the data first, then see what happened."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "fp = r\"data/029740.txt\"\n",
+ "\n",
+ "data = pd.read_csv(fp, delim_whitespace=True, \n",
+ " na_values=['*', '**', '***', '****', '*****', '******'],\n",
+ " usecols=['YR--MODAHRMN', 'TEMP', 'MAX', 'MIN'],\n",
+ " parse_dates=['YR--MODAHRMN'], index_col='YR--MODAHRMN')"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "So what's different here? Well, we have added two new parameters: `parse_dates` and `index_col`.\n",
+ "\n",
+ "- `parse_dates` takes a Python list of column name(s) containing date data that Pandas will parse and convert to the *datetime* data type. For many common date formats this parameter will automatically recognize and convert the date data.\n",
+ "- `index_col` is used to state a column that should be used to index the data in the DataFrame. In this case, we end up with our date data as the DataFrame index. This is a very useful feature in Pandas as we'll see below.\n",
+ "\n",
+ "Having read in the data, let's have a quick look at what we have using `data.head()`."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": []
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "As mentioned above, you can now see that the index column for our DataFrame (the first column) contains date values related to each row in the DataFrame."
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Basic x-y plot\n",
+ "\n",
+ "Now we're ready for our first plot. We can run one command first to configure the plots to display nicely in our Jupyter notebooks."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": []
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "OK, so let’s get to plotting! We can start by using the basic line plot in Pandas to look at our temperature data."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": []
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "If all goes well, you should see the plot above.\n",
+ "\n",
+ "OK, so what happened here?\n",
+ "\n",
+ "1. We first create the plot object using the `plot()` method of the `data` DataFrame. Without any parameters given, this makes the plot of all columns in the DataFrame as lines of different color on the y-axis with the index, time in this case, on the x-axis.\n",
+ "2. In case we want to be able to modify the plot or add anything, we assign the plot object to the variable `ax`. We can check its type below.\n",
+ "\n",
+ "Coming back to the `ax` variable, let's check its type..."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": []
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "OK, so it looks like we have some kind of plot data type that is part of Matplotlib. Clearly, Pandas is using Matplotlib for generating our plots.\n",
+ "\n",
+ "### Selecting our plotted data\n",
+ "\n",
+ "Now, let's make a few small changes to our plot and plot the data again. First, let's only plot the observed temperatures in the `data['TEMP']` column, and let's restrict ourselves to observations from the afternoon of October 1, 2019 (the last day in our dataset). We can do this by selecting the desired data column and date range first, then plotting our selection."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": []
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "So, what did we change? Well, first off we selected only the `'TEMP'` column now by using `data['TEMP']` instead of `data`. Second, we've added a restriction to the date range using the `loc[]` to select only rows where the index value `data.index` is greater than `'201910011200'`. In that case, the number in the string is in the format `'YYYYMMDDHHMM'`, where `YYYY` is the year, `MM` is the month, `DD` is the day, `HH` is the hour, and `MM` is the minute. Now we have all observations from noon onward on October 1, 2019. By saving this selection to the DataFrame `oct1_temps` we're able to now use `oct1_temps.plot()` to plot only our selection. This is cool, but we can do better..."
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Basic plot formatting\n",
+ "\n",
+ "We can make our plot look a bit nicer and provide more information by using a few additional plotting options to Pandas/Matplotlib."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": []
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Now we see our temperature data as a red dashed line with circles showing the data points.\n",
+ "This comes from the additional `style='ro--'` used with `oct1_temps.plot()`.\n",
+ "In this case, `r` tells the `oct1_temps.plot()` function to use red color for the lines and symbols, `o` tells it to show circles at the points, and `--` says to use a dashed line.\n",
+ "You can use `help(oct1_temps.plot)` to find out more about formatting plots or have a look at the [documentation on the Pandas website](https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.plot.line.html#pandas.DataFrame.plot.line).\n",
+ "We have also added a title using the `title` parameter, but note that axis labels are assigned using the `set_xlabel()` and `set_ylabel()` methods.\n",
+ "As you can see in this case, by assigning the plot axes to the variable `ax`"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": []
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### Embiggening\\* the plot\n",
+ "\n",
+ "While the plot sizes we're working with are OK, it would be nice to have them displayed a bit larger.\n",
+ "Fortunately, there is an easy way to make the plots larger in Jupyter notebooks.\n",
+ "First, we need to import the [Matplotlib pyplot library](https://matplotlib.org/api/pyplot_api.html), then we can make the default plot size to be larger by running the Python cell below."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import matplotlib.pyplot as plt\n",
+ "\n",
+ "plt.rcParams['figure.figsize'] = [12, 6]"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "The cell above sets the default plot size to be 12 inches wide by 6 inches tall.\n",
+ "Feel free to change these values if you prefer.\n",
+ "\n",
+ "To test whether this is working as expected, simply re-run one of the earlier cells that generated a plot.\n",
+ "\n",
+ "\\* To [embiggen](https://en.oxforddictionaries.com/definition/embiggen) means to enlarge.\n",
+ "It's a perfectly [cromulent](https://en.oxforddictionaries.com/definition/cromulent) word."
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### Other common plot formatting operations\n",
+ "\n",
+ "#### Adding text to the plot\n",
+ "\n",
+ "Adding text to plots can be done using `ax.text()`.\n",
+ "\n",
+ "```python\n",
+ "ax.text(x, y, 'Text to display')\n",
+ "```\n",
+ "\n",
+ "This would display \"Text to display\" at the location *x*, *y* on the plot.\n",
+ "We'll see how to do this in a live example in just a second.\n",
+ "\n",
+ "#### Changing the axis ranges\n",
+ "\n",
+ "Changing the plot axes can be done using the `xlim` and `ylim` parameters of the `plot()` function\n",
+ "\n",
+ "```python\n",
+ "df.plot(xlim=[xmin, xmax], ylim=[ymin, ymax])\n",
+ "```\n",
+ "\n",
+ "where `xmin` should be the minimum bound of the x-axis, `xmax` should be the maximum bound, and the same goes for the y-axis with `ymin` and `ymax`.\n",
+ "\n",
+ "#### Dealing with datetime axes\n",
+ "\n",
+ "One issue we will encounter with both placing text on the plot and changing the axis ranges is our datetime index for our DataFrame. In order to do either thing, we need to define x-values using a datetime object. The easiest way to do this is to use the Pandas `pd.to_datetime()` function, which converts a character string date to a datetime object. For example, we can convert 13:00 on October 1, 2019 from the character string `'201910011300'` to a datetime equivalent by typing"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": []
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "With this datetime issue in mind, let's now consider a modified version of the plot above, we can\n",
+ "\n",
+ "1. Limit our time range to 12:00 to 15:00 on October 1, 2019\n",
+ "2. Only look at temperatures between 40-46° Fahrenheit\n",
+ "3. Add text to note the coldest part of the early afternoon."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# Define start, end, and cold times\n",
+ "\n",
+ "# Plot data (add x, y limits)\n",
+ "ax = oct1_temps.plot(style='ro--', title='Helsinki-Vantaa temperatures',\n",
+ " )\n",
+ "ax.set_xlabel('Date')\n",
+ "ax.set_ylabel('Temperature [°F]')\n",
+ "\n",
+ "# Display text on plot\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "
\n",
+ "\n",
+ "**Task 1**\n",
+ "\n",
+ "Create a line plot similar to our examples above with the following attributes:\n",
+ " \n",
+ "- Temperature data from 18:00-24:00 on October 1\n",
+ "- A dotted black line connecting the observations (do not show the data points)\n",
+ "- A title that reads \"Evening temperatures on October 1, Helsinki-Vantaa\"\n",
+ "- A text label indicating the warmest temperature in the evening\n",
+ "\n",
+ "
"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Bar plots in Pandas\n",
+ "\n",
+ "In addition to line plots, there are many other options for plotting in Pandas.\n",
+ "Bar plots are one option, which can be used quite similarly to line plots with the addition of the `kind=bar` parameter.\n",
+ "Note that it is easiest to plot our selected time range for a bar plot by selecting the dates in our data series first, rather than adjusting the plot limits. Pandas sees bar plot data as categorical, so the date range is more difficult to define for x-axis limits. For the y-axis, we can still define its range using the `ylim=[ymin, ymax]` parameter. Similarly, text placement on a bar plot is more difficult, and most easily done using the index value of the bar where the text should be placed."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "oct1_afternoon = oct1_temps.loc[oct1_temps.index <= '201910011500']\n",
+ "ax = oct1_afternoon.plot(kind='bar', title='Helsinki-Vantaa temperatures',\n",
+ " ylim=[40, 46])\n",
+ "ax.set_xlabel('Date')\n",
+ "ax.set_ylabel('Temperature [°F]')\n",
+ "ax.text(0, 42.0, 'Coldest \\ntemp \\nv')"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "You can find more about how to format bar charts on the [Pandas documentation website](https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.plot.bar.html)."
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Saving your plots as image files\n",
+ "\n",
+ "Saving plots created using Pandas can be done in several ways.\n",
+ "The recommendation for use outside of Jupyter notebooks is to use Matplotlib's `plt.savefig()` function.\n",
+ "When using `plt.savefig()`, you simply give a list of commands to generate a plot and include `plt.savefig()` with some parameters as the last command.\n",
+ "The file name is required, and the image format will be determined based on the listed file extension.\n",
+ "\n",
+ "Matplotlib plots can be saved in a number of useful file formats, including PNG, PDF, and EPS.\n",
+ "PNG is a nice format for raster images, and EPS is probably easiest to use for vector graphics.\n",
+ "Let's check out an example and save our lovely bar plot."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "ax = oct1_afternoon.plot(kind='bar', title='Helsinki-Vantaa temperatures',\n",
+ " ylim=[40, 46])\n",
+ "ax.set_xlabel('Date')\n",
+ "ax.set_ylabel('Temperature [°F]')\n",
+ "ax.text(0, 42.0, 'Coldest \\ntemp \\nv')\n",
+ "\n",
+ "# Save figure as png image\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "If you refresh your **Files** tab on the left side of the JupyterLab window you should now see `bar-plot.png` listed.\n",
+ "We could try to save another version in higher resolution with a minor change to our plot commands above."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "ax = oct1_afternoon.plot(kind='bar', title='Helsinki-Vantaa temperatures',\n",
+ " ylim=[40, 46])\n",
+ "ax.set_xlabel('Date')\n",
+ "ax.set_ylabel('Temperature [°F]')\n",
+ "ax.text(0, 42.0, 'Coldest \\ntemp \\nv')\n",
+ "\n",
+ "# Save figure as high-resolution PDF\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Interactive plotting with Pandas-Bokeh\n",
+ "\n",
+ "One of the cool things in Jupyter notebooks is that our plots need not be static. In other words, we can easily create plots that are interactive, allowing us to view data values by mousing over them, or click to enable/disable plotting of some data. There are several ways we can do this, but we'll utilize the [Pandas-Bokeh plotting backend](https://github.com/PatrikHlobil/Pandas-Bokeh), which allows us to create interactive plots with little additional effort.\n",
+ "\n",
+ "To get started, we need to import Pandas-Bokeh and configure our notebook to use it for plotting out Pandas data."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import pandas_bokeh\n",
+ "\n",
+ "pandas_bokeh.output_notebook()\n",
+ "pd.set_option('plotting.backend', 'pandas_bokeh')"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "In the cell above, we import Pandas-Bokeh, and the configure two options: (1) Setting the output to be displayed in a notebook rather than in a separate window, and (2) setting the plotting backend software to use Pandas-Bokeh rather than Matplotlib.\n",
+ "\n",
+ "Now, we can consider an example plot similar to the one we started with, but with data for three days (September 29-October 1, 2019). Pandas-Bokeh expects a DataFrame as the source for the plot data, so we'll need to create a time slice of the `data` DataFrame containing the desired date range before making the plot. Let's generate the Pandas-Bokeh plot and the see what is different."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "sept29_oct1_df = data.loc[data.index >= '201909290000']\n",
+ "\n",
+ "start_time = pd.to_datetime('201909290000')\n",
+ "end_time = pd.to_datetime('201910020000')\n",
+ "\n",
+ "# Create plot below\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "So now we have a similar plot to those generated previously, but when you move the mouse along the curve you can see the temperature values at each time. We can also hide any of the lines by clicking on them in the legend, as well as use the scroll wheel/trackpad to zoom.\n",
+ "\n",
+ "But we did also have to make a few small changes to generate this plot:\n",
+ "\n",
+ "1. We need to use a DataFrame as the data source for the plot, rather than a Pandas Series. Thus, `data['TEMP'].plot()` will not work with Pandas-Bokeh.\n",
+ "2. The x- and y-axis labels are specified using the `xlabel` and `ylabel` parameters, rather than using `ax.set_xlabel()` or `ax.set_ylabel()`.\n",
+ "3. The line color and plotting of points are not specified using the `style` keyword. Instead, the line colors could be specified using the `color` or `colormap` parameters. Plotting of the points is enabled using the `plot_data_points` parameter (see below). More information about formatting the lines can be found on the [Pandas-Bokeh website](https://github.com/PatrikHlobil/Pandas-Bokeh).\n",
+ "4. We have not included a text label on the plot, as it may not be possible to do so with Pandas-Bokeh.\n",
+ "\n",
+ "But otherwise, we are able to produce these cool interactive plots with minimal effort, and directly within our notebooks!"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# Copy/paste from above with addition of plot_data_points\n"
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 3",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.7.3"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 4
+}
diff --git a/notebooks/L7/metadata/3505doc.txt b/notebooks/L7/metadata/3505doc.txt
new file mode 100644
index 0000000..c825a79
--- /dev/null
+++ b/notebooks/L7/metadata/3505doc.txt
@@ -0,0 +1,346 @@
+ 06/26/2012
+
+ SURFACE HOURLY ABBREVIATED FORMAT
+
+ONE HEADER RECORD FOLLOWED BY DATA RECORDS:
+
+COLUMN DATA DESCRIPTION
+
+01-06 USAF = AIR FORCE CATALOG STATION NUMBER
+08-12 WBAN = NCDC WBAN NUMBER
+14-25 YR--MODAHRMN = YEAR-MONTH-DAY-HOUR-MINUTE IN GREENWICH MEAN TIME (GMT)
+27-29 DIR = WIND DIRECTION IN COMPASS DEGREES, 990 = VARIABLE, REPORTED AS
+ '***' WHEN AIR IS CALM (SPD WILL THEN BE 000)
+31-37 SPD & GUS = WIND SPEED & GUST IN MILES PER HOUR
+39-41 CLG = CLOUD CEILING--LOWEST OPAQUE LAYER
+ WITH 5/8 OR GREATER COVERAGE, IN HUNDREDS OF FEET,
+ 722 = UNLIMITED
+43-45 SKC = SKY COVER -- CLR-CLEAR, SCT-SCATTERED-1/8 TO 4/8,
+ BKN-BROKEN-5/8 TO 7/8, OVC-OVERCAST,
+ OBS-OBSCURED, POB-PARTIAL OBSCURATION
+47-47 L = LOW CLOUD TYPE, SEE BELOW
+49-49 M = MIDDLE CLOUD TYPE, SEE BELOW
+51-51 H = HIGH CLOUD TYPE, SEE BELOW
+53-56 VSB = VISIBILITY IN STATUTE MILES TO NEAREST TENTH
+ NOTE: FOR SOME STATIONS, VISIBILITY IS REPORTED ONLY UP TO A
+ MAXIMUM OF 7 OR 10 MILES IN METAR OBSERVATIONS, BUT TO HIGHER
+ VALUES IN SYNOPTIC OBSERVATIONS, WHICH CAUSES THE VALUES TO
+ FLUCTUATE FROM ONE DATA RECORD TO THE NEXT. ALSO, VALUES
+ ORIGINALLY REPORTED AS '10' MAY APPEAR AS '10.1' DUE TO DATA
+ BEING ARCHIVED IN METRIC UNITS AND CONVERTED BACK TO ENGLISH.
+58-68 MW MW MW MW = MANUALLY OBSERVED PRESENT WEATHER--LISTED BELOW IN PRESENT WEATHER TABLE
+70-80 AW AW AW AW = AUTO-OBSERVED PRESENT WEATHER--LISTED BELOW IN PRESENT WEATHER TABLE
+82-82 W = PAST WEATHER INDICATOR, SEE BELOW
+84-92 TEMP & DEWP = TEMPERATURE & DEW POINT IN FAHRENHEIT
+94-99 SLP = SEA LEVEL PRESSURE IN MILLIBARS TO NEAREST TENTH
+101-105 ALT = ALTIMETER SETTING IN INCHES TO NEAREST HUNDREDTH
+107-112 STP = STATION PRESSURE IN MILLIBARS TO NEAREST TENTH
+114-116 MAX = MAXIMUM TEMPERATURE IN FAHRENHEIT (TIME PERIOD VARIES)
+118-120 MIN = MINIMUM TEMPERATURE IN FAHRENHEIT (TIME PERIOD VARIES)
+122-126 PCP01 = 1-HOUR LIQUID PRECIP REPORT IN INCHES AND HUNDREDTHS --
+ THAT IS, THE PRECIP FOR THE PRECEDING 1 HOUR PERIOD
+128-132 PCP06 = 6-HOUR LIQUID PRECIP REPORT IN INCHES AND HUNDREDTHS --
+ THAT IS, THE PRECIP FOR THE PRECEDING 6 HOUR PERIOD
+134-138 PCP24 = 24-HOUR LIQUID PRECIP REPORT IN INCHES AND HUNDREDTHS
+ THAT IS, THE PRECIP FOR THE PRECEDING 24 HOUR PERIOD
+140-144 PCPXX = LIQUID PRECIP REPORT IN INCHES AND HUNDREDTHS, FOR
+ A PERIOD OTHER THAN 1, 6, OR 24 HOURS (USUALLY FOR 12 HOUR PERIOD
+ FOR STATIONS OUTSIDE THE U.S., AND FOR 3 HOUR PERIOD FOR THE U.S.)
+ T = TRACE FOR ANY PRECIP FIELD
+146-147 SD = SNOW DEPTH IN INCHES
+
+
+NOTES:
+
+- *'s IN FIELD INDICATES ELEMENT NOT REPORTED.
+
+- SOME VALUES WERE CONVERTED FROM METRIC TO ENGLISH UNITS. THIS WILL
+OCCASIONALLY RESULT IN MINOR DIFFERENCES VS ORIGINAL DATA DUE TO ROUNDING.
+
+- COLUMN POSITION REFERS TO ASCII TEXT DATA.
+
+- THIS FORMAT CAN BE EASILY IMPORTED INTO A SPREADSHEET OR A DATABASE
+MANAGEMENT SYSTEM SINCE FIELDS ARE SPACE-DELIMITED.
+
+- THIS FORMAT DOES NOT INCLUDE QUALITY CONTROL FLAGS, WHICH ARE AVAILABLE
+IN THE ADVANCED FORMAT THROUGH THE CLIMATE DATA ONLINE SYSTEM.
+
+
+ PRESENT WEATHER CODE TABLE
+
+The code that denotes a specific type of weather observed.
+-----------------------------------------------------------------
+00-49 No precipitation at the station at the time of observation
+-----------------------------------------------------------------
+00-19 No precipitation, fog, ice fog (except for 11 and 12),
+duststorm, sandstorm, drifting or blowing snow at the station at the
+time of observation or, except for 09 and 17, during the preceding
+hour
+-----------------------------------------------------------------
+00: Cloud development not observed or not observable
+01: Clouds generally dissolving or becoming less developed
+02: State of sky on the whole unchanged
+03: Clouds generally forming or developing
+04: Visibility reduced by smoke, e.g. veldt or forest fires,
+industrial smoke or volcanic ashes
+05: Haze
+06: Widespread dust in suspension in the air, not raised by wind at
+or near the station at the time of observation
+07: Dust or sand raised by wind at or near the station at the time of
+observation, but no well-developed dust whirl(s) or sand whirl(s),
+and no duststorm or sandstorm seen or, in the case
+of ships, blowing spray at the station
+08: Well developed dust whirl(s) or sand whirl(s) seen at or near the
+station during the preceding hour or at the time of observation, but
+no duststorm or sandstorm
+09: Duststorm or sandstorm within sight at the time of observation,
+or at the station during the preceding hour
+10: Mist
+11: Patches of shallow fog or ice fog at the station, whether on land
+or sea, not deeper than about 2 meters on land or 10 meters at sea
+12: More or less continuous shallow fog or ice fog at the station,
+whether on land or sea, not deeper than about 2 meters on land or 10
+meters at sea
+13: Lightning visible, no thunder heard
+14: Precipitation within sight, not reaching the ground or the
+surface of the sea
+15: Precipitation within sight, reaching the ground or the surface of
+the sea, but distant, i.e., estimated to be more than 5 km from the
+station
+16: Precipitation within sight, reaching the ground or the surface of
+the sea, near to, but not at the station
+17: Thunderstorm, but no precipitation at the time of observation
+18: Squalls at or within sight of the station during the preceding
+hour or at the time of observation
+19: Funnel cloud(s) (Tornado cloud or waterspout) at or within sight
+of the station during the preceding hour or at the time of
+observation
+-----------------------------------------------------------------
+20-29 Precipitation, fog, ice fog or thunderstorm at the station
+during the preceding hour, but not at the time of observation
+-----------------------------------------------------------------
+20: Drizzle (not freezing) or snow grains not falling as shower(s)
+21: Rain (not freezing) not falling as shower(s)
+22: Snow not falling as shower(s)
+23: Rain and snow or ice pellets not falling as shower(s)
+24: Freezing drizzle or freezing rain not falling as shower(s)
+25: Shower(s) of rain
+26: Shower(s) of snow or of rain and snow
+27: Shower(s) of hail (Hail, small hail, snow pellets), or rain and
+hail
+28: Fog or ice fog
+29: Thunderstorm (with or without precipitation)
+-----------------------------------------------------------------
+30-39 Duststorm, sandstorm, or blowing snow
+-----------------------------------------------------------------
+30: Slight or moderate duststorm or sandstorm has decreased during
+the preceding hour
+31: Slight or moderate duststorm or sandstorm no appreciable change
+during the preceding hour
+32: Slight or moderate duststorm or sandstorm has begun or has
+increased during the preceding hour
+33: Severe duststorm or sandstorm has decreased during the preceding
+hour
+34: Severe duststorm or sandstorm no appreciable change during the
+preceding hour
+35: Severe duststorm or sandstorm has begun or has increased during
+the preceding hour
+36: Slight or moderate drifting snow generally low (below eye level)
+37: Heavy drifting snow generally low (below eye level)
+38: Slight or moderate blowing snow generally high (above eye level)
+39: Heavy blowing snow generally high (above eye level)
+-----------------------------------------------------------------
+40-49 Fog or ice fog at the time of observation
+-----------------------------------------------------------------
+40: Fog or ice fog at a distance at the time of observation, but not
+at the station during the preceding hour, the fog or ice fog
+extending to a level above that of the observer
+41: Fog or ice fog in patches
+42: Fog or ice fog, sky visible, has become thinner during the
+preceding hour
+43: Fog or ice fog, sky invisible, has become thinner during the
+preceding hour
+44: Fog or ice fog, sky visible, no appreciable change during the
+preceding hour
+45: Fog or ice fog, sky invisible, no appreciable change during the
+preceding hour
+46: Fog or ice fog, sky invisible, has begun or has become thicker
+during the preceding hour
+47: Fog or ice fog, sky invisible, has begun or has become thicker
+during the preceding hour
+48: Fog, depositing rime, sky visible
+49: Fog, depositing rime, sky invisible
+-----------------------------------------------------------------
+50-99 Precipitation at the station at the time of observation
+-----------------------------------------------------------------
+50-59 Drizzle
+-----------------------------------------------------------------
+50: Drizzle, not freezing, intermittent, slight at time of
+observation
+51: Drizzle, not freezing, continuous, slight at time of observation
+52: Drizzle, not freezing, intermittent, moderate at time of
+observation
+53: Drizzle, not freezing, continuous, moderate at time of
+observation
+54: Drizzle, not freezing, intermittent, heavy (dense) at time of
+observation
+55: Drizzle, not freezing, continuous, heavy (dense) at time of
+observation
+56: Drizzle, freezing, slight
+57: Drizzle, freezing, moderate or heavy (dense)
+58: Drizzle and rain, slight
+59: Drizzle and rain, moderate or heavy
+-----------------------------------------------------------------
+60-69 Rain
+-----------------------------------------------------------------
+60: Rain, not freezing, intermittent, slight at time of observation
+61: Rain, not freezing, continuous, slight at time of observation
+62: Rain, not freezing, intermittent, moderate at time of observation
+63: Rain, not freezing, continuous, moderate at time of observation
+64: Rain, not freezing, intermittent, heavy at time of observation
+65: Rain, not freezing, continuous, heavy at time of observation
+66: Rain, freezing, slight
+67: Rain, freezing, moderate or heavy
+68: Rain or drizzle and snow, slight
+69: Rain or drizzle and snow, moderate or heavy
+-----------------------------------------------------------------
+70-79 Solid precipitation not in showers
+-----------------------------------------------------------------
+70: Intermittent fall of snowflakes, slight at time of observation
+71: Continuous fall of snowflakes, slight at time of observation
+72: Intermittent fall of snowflakes, moderate at time of observation
+73: Continuous fall of snowflakes, moderate at time of observation
+74: Intermittent fall of snowflakes, heavy at time of observation
+75: Continuous fall of snowflakes, heavy at time of observation
+76: Diamond dust (with or without fog)
+77: Snow grains (with or without fog)
+78: Isolated star-like snow crystals (with or without fog)
+79: Ice pellets
+-----------------------------------------------------------------
+80-99 Showery precipitation, or precipitation with current or recent
+thunderstorm
+-----------------------------------------------------------------
+80: Rain shower(s), slight
+81: Rain shower(s), moderate or heavy
+82: Rain shower(s), violent
+83: Shower(s) of rain and snow mixed, slight
+84: Shower(s) of rain and snow mixed, moderate or heavy
+85: Show shower(s), slight
+86: Snow shower(s), moderate or heavy
+87: Shower(s) of snow pellets or small hail, with or without rain or
+rain and snow mixed, slight
+88: Shower(s) of snow pellets or small hail, with or without rain or
+rain and snow mixed, moderate or heavy
+89: Shower(s) of hail (hail, small hail, snow pellets) , with or
+without rain or rain and snow mixed, not associated with thunder,
+slight
+90: Shower(s) of hail (hail, small hail, snow pellets), with or
+without rain or rain and snow mixed, not associated with thunder,
+moderate or heavy
+91: Slight rain at time of observation, thunderstorm during the
+preceding hour but not at time of observation
+92: Moderate or heavy rain at time of observation, thunderstorm
+during the preceding hour but not at time of observation
+93: Slight snow, or rain and snow mixed or hail (Hail, small hail,
+snow pellets), at time of observation, thunderstorm during the
+preceding hour but not at time of observation
+94: Moderate or heavy snow, or rain and snow mixed or hail(Hail,
+small hail, snow pellets) at time of observation, thunderstorm during
+the preceding hour but not at time of observation
+95: Thunderstorm, slight or moderate, without hail (Hail, small hail,
+snow pellets), but with rain and/or snow at time of observation,
+thunderstorm at time of observation
+96: Thunderstorm, slight or moderate, with hail (hail, small hail,
+snow pellets) at time of observation, thunderstorm at time of
+observation
+97: Thunderstorm, heavy, without hail (Hail, small hail, snow
+pellets), but with rain and/or snow at time of observation,
+thunderstorm at time of observation
+98: Thunderstorm combined with duststorm or sandstorm at time of
+observation, thunderstorm at time of observation
+99: Thunderstorm, heavy, with hail (Hail, small hail, snow pellets)
+at time of observation, thunderstorm at time of observation
+
+
+ PAST WEATHER CODE TABLE
+
+The code that denotes a specific type of past weather observed.
+0: Cloud covering 1/2 or less of the sky throughout the appropriate
+period
+1: Cloud covering more than 1/2 of the sky during part of the
+appropriate period and covering 1/2 or less during part of the period
+2: Cloud covering more than 1/2 of the sky throughout the appropriate
+period
+3: Sandstorm, duststorm or blowing snow
+4: Fog or ice fog or thick haze
+5: Drizzle
+6: Rain
+7: Snow, or rain and snow mixed
+8: Shower(s)
+9: Thunderstorm(s) with or without precipitation
+
+
+ LOW CLOUD TYPE
+
+0: No low clouds
+1: Cumulus humulis or Cumulus fractus other than of bad weather or
+both
+2: Cumulus mediocris or congestus, with or without Cumulus of
+species fractus or humulis or Stratocumulus all having bases at the
+same level
+3: Cumulonimbus calvus, with or without Cumulus, Stratocumulus or
+Stratus
+4: Stratocumulus cumulogenitus
+5: Stratocumulus other than Stratocumulus cumulogenitus
+6: Stratus nebulosus or Stratus fractus other than of bad weather,
+or both
+7: Stratus fractus or Cumulus fractus of bad weather, or both
+(pannus) usually below Altostratus or Nimbostratus
+8: Cumulus and Stratocumulus other than Stratocumulus cumulogenitus,
+with bases at different levels
+9: Cumulonimbus capillatus (often with an anvil), with or without
+Cumulonimbus calvus, Cumulus, Stratocumulus, Stratus or pannus
+
+
+ MIDDLE CLOUD TYPE
+
+0: No middle clouds
+1: Altostratus translucidus
+2: Altostratus opacus or Nimbostratus
+3: Altocumulus translucidus at a single level
+4: Patches (often lenticular) of Altocumulus translucidus,
+continually changing and occurring at one or more levels
+5: Altocumulus translucidus in bands, or one or more layers of
+Altocumulus translucidus or opacus, progressively invading the sky;
+these Altocumulus clouds generally thicken as a whole
+6: Altocumulus cumulogentis (or cumulonimbogentus)
+7: Altocumulus translucidus or opacus in two or more layers, or
+Altocumulus opacus in a single layer, not progressively invading the
+sky, or Altocumulus with Altostratus or Nimbostratus
+8: Altocumulus castellanus or floccus
+9: Altocumulus of a chaotic sky; generally at several levels
+
+
+ HIGH CLOUD TYPE
+
+0: No High Clouds
+1: Cirrus fibratus, sometimes uncinus, not progressively invading
+the sky
+2: Cirrus spissatus, in patches or entangled sheaves, which usually
+do not increase and sometimes seem to be the remains of the upper
+part of a Cumulonimbus; or Cirrus castellanus or floccus
+3: Cirrus spissatus cumulonimbogenitus
+4: Cirrus unicinus or fibratus, or both, progressively invading the
+sky; they generally thicken as a whole
+5: Cirrus (often in bands) and Cirrostratus, or Cirrostratus alone,
+progressively invading the sky; they generally thicken as a whole,
+but the continuous veil does not reach 45 degrees above the horizon
+6: Cirrus (often in bands) and Cirrostratus, or Cirrostratus alone,
+progressively invading the sky; they generally thicken as a whole;
+the continuous veil extends more than 45 degrees above the horizon,
+without the sky being totally covered
+7: Cirrostratus covering the whole sky
+8: Cirrostratus not progressively invading the sky and not entirely
+covering it
+9: Cirrocumulus alone, or Cirrocumulus predominant among the High
+clouds
diff --git a/notebooks/L7/metadata/6367598020644inv.txt b/notebooks/L7/metadata/6367598020644inv.txt
new file mode 100644
index 0000000..75c9f5d
--- /dev/null
+++ b/notebooks/L7/metadata/6367598020644inv.txt
@@ -0,0 +1,898 @@
+028360 99999 SODANKYLA 1917 93 84 93 90 93 90 93 93 90 93 90 93
+028360 99999 SODANKYLA 1918 93 84 93 0 93 90 92 93 90 93 90 93
+028360 99999 SODANKYLA 1919 93 84 93 89 93 90 93 93 90 93 90 93
+028360 99999 SODANKYLA 1920 93 87 93 90 93 90 93 93 90 93 90 93
+028360 99999 SODANKYLA 1921 93 84 93 90 92 88 93 93 90 93 90 93
+028360 99999 SODANKYLA 1922 93 84 93 90 93 90 93 93 90 93 90 93
+028360 99999 SODANKYLA 1923 93 84 93 90 92 89 93 93 90 93 90 93
+028360 99999 SODANKYLA 1924 93 87 93 90 93 90 93 93 90 93 90 93
+028360 99999 SODANKYLA 1925 93 84 92 89 92 89 92 92 89 93 90 92
+028360 99999 SODANKYLA 1926 92 84 93 90 93 90 91 93 89 93 90 93
+028360 99999 SODANKYLA 1936 88 77 84 89 90 86 86 85 85 90 87 91
+028360 99999 SODANKYLA 1937 88 84 89 84 84 79 86 82 81 91 87 89
+028360 99999 SODANKYLA 1938 89 83 90 86 88 77 84 89 86 88 84 89
+028360 99999 SODANKYLA 1952 111 109 122 116 119 112 121 119 111 118 114 115
+028360 99999 SODANKYLA 1953 120 106 118 111 118 116 118 122 115 121 116 120
+028360 99999 SODANKYLA 1954 119 109 120 113 115 111 115 119 113 110 104 108
+028360 99999 SODANKYLA 1955 114 104 114 110 119 112 115 112 114 115 111 116
+028360 99999 SODANKYLA 1956 117 105 118 115 120 109 119 120 113 118 116 119
+028360 99999 SODANKYLA 1957 118 101 116 110 109 99 124 124 120 124 120 124
+028360 99999 SODANKYLA 1958 124 112 124 120 124 120 123 124 119 123 120 124
+028360 99999 SODANKYLA 1959 237 199 237 232 223 227 220 192 210 224 210 223
+028360 99999 SODANKYLA 1960 226 206 218 208 226 204 191 228 229 225 228 231
+028360 99999 SODANKYLA 1961 226 213 231 212 235 221 227 228 212 227 218 234
+028360 99999 SODANKYLA 1962 235 217 234 232 236 233 235 239 232 238 232 237
+028360 99999 SODANKYLA 1963 242 218 232 226 238 217 240 238 233 228 227 237
+028360 99999 SODANKYLA 1973 230 210 241 237 204 222 242 245 236 243 238 247
+028360 99999 SODANKYLA 1974 243 219 244 237 241 239 239 242 239 245 237 245
+028360 99999 SODANKYLA 1975 241 223 168 233 237 235 240 244 238 245 238 243
+028360 99999 SODANKYLA 1976 245 232 242 238 244 235 242 244 236 242 237 244
+028360 99999 SODANKYLA 1977 245 222 247 238 243 234 239 244 235 245 237 246
+028360 99999 SODANKYLA 1978 243 220 249 238 246 240 244 243 238 246 239 245
+028360 99999 SODANKYLA 1979 240 220 245 239 246 233 240 248 240 245 238 247
+028360 99999 SODANKYLA 1980 246 226 244 232 228 142 157 247 238 243 240 246
+028360 99999 SODANKYLA 1981 247 222 243 224 241 231 235 241 230 242 239 238
+028360 99999 SODANKYLA 1982 243 217 243 238 245 236 241 243 238 244 237 245
+028360 99999 SODANKYLA 1983 248 224 246 237 245 236 247 246 236 246 240 247
+028360 99999 SODANKYLA 1984 244 223 243 233 224 234 246 243 236 244 232 243
+028360 99999 SODANKYLA 1985 244 220 246 239 247 239 245 243 237 239 234 246
+028360 99999 SODANKYLA 1986 247 219 232 133 250 240 241 246 237 250 236 246
+028360 99999 SODANKYLA 1987 240 218 244 235 247 240 243 245 235 247 233 249
+028360 99999 SODANKYLA 1988 246 230 246 232 247 238 246 246 237 244 239 246
+028360 99999 SODANKYLA 1989 248 223 247 240 248 237 247 243 238 244 233 246
+028360 99999 SODANKYLA 1990 244 219 244 239 247 237 239 225 214 230 231 233
+028360 99999 SODANKYLA 1991 243 218 248 237 246 236 248 242 238 244 235 244
+028360 99999 SODANKYLA 1992 245 229 248 240 248 239 247 246 243 241 239 248
+028360 99999 SODANKYLA 1993 244 222 243 240 245 240 248 245 241 240 233 246
+028360 99999 SODANKYLA 1994 233 220 243 232 248 236 244 248 242 246 238 245
+028360 99999 SODANKYLA 1995 252 222 246 240 246 239 248 252 240 240 240 250
+028360 99999 SODANKYLA 1996 248 233 243 238 249 217 230 234 229 234 225 238
+028360 99999 SODANKYLA 1997 231 208 237 237 245 240 248 246 234 248 237 244
+028360 99999 SODANKYLA 1998 221 222 243 235 241 235 234 236 236 237 228 242
+028360 99999 SODANKYLA 1999 239 224 247 237 242 236 240 246 235 224 233 240
+028360 99999 SODANKYLA 2000 242 235 247 234 245 239 245 239 240 248 238 247
+028360 99999 SODANKYLA 2001 246 224 247 238 247 230 226 218 212 217 209 218
+028360 99999 SODANKYLA 2002 216 196 218 206 215 200 215 211 205 217 210 216
+028360 99999 SODANKYLA 2003 206 195 215 209 210 209 203 213 217 222 207 216
+028360 99999 SODANKYLA 2004 214 198 211 206 210 204 208 212 207 216 209 216
+028360 99999 SODANKYLA 2005 213 196 217 206 197 209 217 215 211 230 235 228
+028360 99999 SODANKYLA 2006 235 222 244 240 242 234 247 243 227 227 240 245
+028360 99999 SODANKYLA 2007 247 227 244 238 248 238 246 240 237 247 239 248
+028360 99999 SODANKYLA 2008 224 229 245 240 247 239 244 247 201 246 238 248
+028360 99999 SODANKYLA 2009 246 222 241 236 247 236 247 245 239 246 237 248
+028360 99999 SODANKYLA 2010 247 222 247 240 248 240 248 245 237 246 235 247
+028360 99999 SODANKYLA 2011 246 222 247 233 243 239 248 247 238 246 235 247
+028360 99999 SODANKYLA 2012 243 231 247 240 247 239 248 246 240 246 238 246
+028360 99999 SODANKYLA 2013 245 224 248 240 248 651 725 726 712 740 298 248
+028360 99999 SODANKYLA 2014 247 224 248 236 245 237 245 248 238 248 240 247
+028360 99999 SODANKYLA 2015 248 223 248 72 245 239 246 245 237 246 240 639
+028360 99999 SODANKYLA 2016 743 660 733 715 740 719 744 742 718 737 714 733
+028360 99999 SODANKYLA 2017 733 672 744 719 740 714 743 718 717 726 708 742
+028360 99999 SODANKYLA 2018 741 671 744 714 738 719 739 723 599 725 571 743
+028360 99999 SODANKYLA 2019 744 672 733 719 701 720 743 742 718 108 0 0
+028690 99999 KUUSAMO 1909 93 84 93 90 93 89 92 93 90 93 0 93
+028690 99999 KUUSAMO 1910 93 84 93 89 93 90 89 93 90 93 90 93
+028690 99999 KUUSAMO 1911 93 84 93 89 91 90 93 92 90 93 90 93
+028690 99999 KUUSAMO 1912 93 87 93 90 93 90 93 93 90 93 89 93
+028690 99999 KUUSAMO 1913 93 84 93 90 93 90 93 93 90 93 90 93
+028690 99999 KUUSAMO 1914 93 84 93 90 93 90 93 89 90 92 88 93
+028690 99999 KUUSAMO 1915 92 82 90 90 93 90 93 93 90 93 90 93
+028690 99999 KUUSAMO 1957 0 0 0 0 0 0 0 0 0 3 8 55
+028690 99999 KUUSAMO 1958 53 15 38 18 14 29 18 6 13 5 1 1
+028690 99999 KUUSAMO 1959 197 170 189 204 188 202 191 138 199 212 175 200
+028690 99999 KUUSAMO 1960 201 199 199 202 200 183 186 196 201 193 207 222
+028690 99999 KUUSAMO 1961 214 174 213 201 221 215 214 215 200 214 207 218
+028690 99999 KUUSAMO 1962 218 204 226 221 232 217 231 216 209 221 218 227
+028690 99999 KUUSAMO 1963 233 207 218 227 228 188 219 220 223 211 219 222
+028690 99999 KUUSAMO 1973 232 208 244 234 205 213 241 243 234 240 232 239
+028690 99999 KUUSAMO 1974 237 219 233 225 236 234 239 242 238 244 235 247
+028690 99999 KUUSAMO 1975 240 217 243 238 233 231 245 244 232 243 236 239
+028690 99999 KUUSAMO 1976 238 225 246 237 240 230 240 244 232 243 232 243
+028690 99999 KUUSAMO 1977 245 218 244 238 246 235 241 230 234 245 235 240
+028690 99999 KUUSAMO 1978 244 220 244 236 243 238 246 245 238 243 235 244
+028690 99999 KUUSAMO 1979 246 220 246 237 244 238 246 246 234 245 236 242
+028690 99999 KUUSAMO 1980 241 227 238 234 241 229 230 241 234 235 237 241
+028690 99999 KUUSAMO 1981 242 217 246 235 243 234 239 241 233 244 234 223
+028690 99999 KUUSAMO 1982 229 219 235 233 234 232 243 237 231 243 238 244
+028690 99999 KUUSAMO 1983 239 220 246 235 242 237 246 244 238 247 238 243
+028690 99999 KUUSAMO 1984 243 229 242 236 242 238 247 244 235 246 238 244
+028690 99999 KUUSAMO 1985 245 217 244 236 247 234 242 242 232 242 233 244
+028690 99999 KUUSAMO 1986 244 215 242 229 239 236 235 244 231 247 234 247
+028690 99999 KUUSAMO 1987 243 217 244 234 240 238 245 235 236 244 235 243
+028690 99999 KUUSAMO 1988 244 228 244 234 244 238 244 244 235 238 239 241
+028690 99999 KUUSAMO 1989 242 222 243 238 246 237 240 243 238 241 236 245
+028690 99999 KUUSAMO 1990 242 221 245 239 242 238 239 235 232 225 235 235
+028690 99999 KUUSAMO 1991 243 222 245 234 246 233 246 241 237 244 235 242
+028690 99999 KUUSAMO 1992 242 227 243 240 245 238 245 244 243 243 238 244
+028690 99999 KUUSAMO 1993 236 214 213 218 223 215 227 242 209 211 208 208
+028690 99999 KUUSAMO 1994 212 186 199 191 208 197 210 230 223 239 220 235
+028690 99999 KUUSAMO 1995 236 203 235 237 242 236 238 240 234 237 228 236
+028690 99999 KUUSAMO 1996 242 223 237 213 235 233 239 239 230 228 234 244
+028690 99999 KUUSAMO 1997 233 204 222 205 216 215 216 213 198 204 200 217
+028690 99999 KUUSAMO 1998 179 79 253 213 262 235 242 540 667 683 670 673
+028690 99999 KUUSAMO 1999 696 619 609 595 632 537 535 572 680 939 869 904
+028690 99999 KUUSAMO 2000 827 786 820 770 695 683 606 700 877 939 902 926
+028690 99999 KUUSAMO 2001 914 799 853 882 920 948 952 953 855 961 955 936
+028690 99999 KUUSAMO 2002 961 885 945 1265 1486 1418 1682 1699 1623 1646 1618 1620
+028690 99999 KUUSAMO 2003 1613 1499 1656 1605 1666 1654 1709 1667 1615 1672 1616 1696
+028690 99999 KUUSAMO 2004 1681 1485 1718 1554 1659 1627 1651 1640 1547 1630 1632 1691
+028690 99999 KUUSAMO 2005 1604 1547 1719 1676 1688 1632 1669 2102 1855 2086 2091 2044
+028690 99999 KUUSAMO 2006 2159 1981 2177 2081 1732 1680 1726 1668 1623 1730 1608 1704
+028690 99999 KUUSAMO 2007 1716 1552 1693 1665 1716 1679 1731 1683 1627 1692 1672 1746
+028690 99999 KUUSAMO 2008 1744 1594 1741 1680 2022 2152 2168 2226 2010 2143 2128 2222
+028690 99999 KUUSAMO 2009 2201 1951 2179 2162 2238 2105 2176 2064 2167 2147 2158 2201
+028690 99999 KUUSAMO 2010 2228 2028 2234 2010 2141 2125 2252 2129 2185 2227 2161 2123
+028690 99999 KUUSAMO 2011 2265 2053 2249 2141 2248 2180 2228 2174 2169 2246 2193 2274
+028690 99999 KUUSAMO 2012 2224 2096 2223 2179 2104 2014 2194 2202 2135 2224 2094 2238
+028690 99999 KUUSAMO 2013 2205 1967 2187 2169 2242 2163 2144 2117 2169 2254 2093 2243
+028690 99999 KUUSAMO 2014 2242 2034 2264 2148 2149 2016 2181 2234 2158 2229 2157 1983
+028690 99999 KUUSAMO 2015 2118 1982 2234 634 2223 2149 2211 2203 2097 2076 2171 2233
+028690 99999 KUUSAMO 2016 2115 1984 2074 2124 2168 2076 2224 2197 2138 2223 2131 2121
+028690 99999 KUUSAMO 2017 2217 2011 2229 2152 2230 2140 2219 2190 2137 2227 2159 2223
+028690 99999 KUUSAMO 2018 2236 2008 2209 2044 2172 1836 2216 2200 1863 1988 1339 2231
+028690 99999 KUUSAMO 2019 2227 2012 2191 2157 1926 2159 2229 2224 2131 333 0 0
+028750 99999 OULU 1906 93 84 93 90 93 90 93 93 90 93 90 93
+028750 99999 OULU 1907 93 84 93 90 93 90 93 93 90 93 90 93
+028750 99999 OULU 1908 93 87 93 90 93 90 93 93 90 93 90 93
+028750 99999 OULU 1909 93 84 93 90 93 90 93 93 90 93 90 93
+028750 99999 OULU 1910 93 84 93 90 93 90 93 89 90 93 90 93
+028750 99999 OULU 1911 93 84 93 89 93 90 93 93 90 92 90 93
+028750 99999 OULU 1912 93 87 93 90 93 90 93 92 90 93 90 93
+028750 99999 OULU 1913 93 84 93 90 93 90 93 93 90 93 90 93
+028750 99999 OULU 1914 93 84 93 90 93 90 93 93 90 93 90 93
+028750 99999 OULU 1915 93 84 93 90 93 90 93 93 90 93 90 93
+028750 99999 OULU 1957 0 0 0 0 0 0 0 0 0 1 12 52
+028750 99999 OULU 1958 59 19 38 21 15 29 22 7 14 5 1 1
+028750 99999 OULU 1959 218 182 200 227 210 214 210 150 212 227 189 225
+028750 99999 OULU 1960 216 216 212 217 222 200 213 221 223 201 217 232
+028750 99999 OULU 1961 220 185 228 219 241 225 224 227 209 229 215 239
+028750 99999 OULU 1962 228 213 236 235 245 223 242 237 234 239 233 242
+028750 99999 OULU 1963 237 219 232 234 239 227 235 236 234 229 227 236
+028750 99999 OULU 1973 234 208 245 234 203 213 237 248 235 242 228 243
+028750 99999 OULU 1974 239 221 236 237 239 239 243 244 239 242 233 239
+028750 99999 OULU 1975 240 223 243 236 234 234 240 244 237 244 236 241
+028750 99999 OULU 1976 238 226 240 239 243 236 245 244 234 241 231 243
+028750 99999 OULU 1977 244 221 244 236 245 235 242 233 235 246 235 244
+028750 99999 OULU 1978 242 219 242 235 247 235 241 246 236 244 238 239
+028750 99999 OULU 1979 245 222 246 235 244 236 244 246 235 243 238 244
+028750 99999 OULU 1980 245 227 243 232 241 232 235 242 230 236 237 241
+028750 99999 OULU 1981 243 218 245 232 246 234 245 244 230 241 234 240
+028750 99999 OULU 1982 229 218 241 230 242 232 243 242 231 243 238 245
+028750 99999 OULU 1983 239 219 247 236 244 239 248 244 239 248 237 246
+028750 99999 OULU 1984 244 230 245 236 243 238 246 244 237 247 239 242
+028750 99999 OULU 1985 244 216 246 239 245 238 243 244 236 246 233 245
+028750 99999 OULU 1986 246 218 231 118 229 235 240 245 232 246 236 247
+028750 99999 OULU 1987 245 216 245 235 240 239 248 233 237 245 235 245
+028750 99999 OULU 1988 243 227 245 236 246 238 244 242 238 241 238 243
+028750 99999 OULU 1989 244 224 246 238 245 237 243 244 241 244 237 245
+028750 99999 OULU 1990 241 220 247 238 243 238 242 235 234 223 236 235
+028750 99999 OULU 1991 242 220 245 235 244 233 247 240 237 244 236 238
+028750 99999 OULU 1992 240 228 245 240 247 242 242 245 254 244 238 244
+028750 99999 OULU 1993 234 213 215 217 218 217 226 270 206 215 208 206
+028750 99999 OULU 1994 214 194 202 195 209 195 208 232 220 230 219 226
+028750 99999 OULU 1995 226 203 230 233 238 233 239 237 233 233 227 232
+028750 99999 OULU 1996 236 219 235 203 237 225 237 229 228 224 233 230
+028750 99999 OULU 1997 236 197 220 204 213 211 217 211 192 201 196 203
+028750 99999 OULU 1998 194 88 197 185 228 228 236 61 5 1 1 103
+028750 99999 OULU 1999 727 673 751 720 745 714 744 746 754 968 926 969
+028750 99999 OULU 2000 969 919 992 946 969 937 789 974 943 970 904 926
+028750 99999 OULU 2001 989 884 981 940 970 944 975 953 852 963 946 950
+028750 99999 OULU 2002 956 880 943 907 959 1138 1681 1696 1630 1678 1615 1697
+028750 99999 OULU 2003 1678 1495 1683 1641 1638 1617 1694 1667 1622 1681 1649 1690
+028750 99999 OULU 2004 1707 1603 1720 1634 1718 1616 1684 1713 1601 1672 1662 1693
+028750 99999 OULU 2005 1735 1555 1713 1672 1739 1641 1582 2011 1759 1876 2106 2045
+028750 99999 OULU 2006 2176 1992 2183 2117 1724 1693 1733 1711 1644 1742 1664 1727
+028750 99999 OULU 2007 1737 1566 1695 1677 1743 1680 1745 1650 1665 1707 1690 1752
+028750 99999 OULU 2008 1744 1616 1755 1693 2045 2141 2217 2238 2065 2183 2143 2245
+028750 99999 OULU 2009 2243 2012 2182 2170 2249 2148 2238 2102 2164 2240 2171 2208
+028750 99999 OULU 2010 2243 2024 2229 2161 2141 2161 2246 2206 2153 2210 2135 1692
+028750 99999 OULU 2011 1485 1343 1482 1438 1484 1436 1480 1484 1440 1485 1440 1485
+028750 99999 OULU 2012 1488 1390 1486 1436 1488 1437 1487 1488 1440 1484 1437 1486
+028750 99999 OULU 2013 1486 1341 1482 1436 1483 1437 1484 1476 1437 1488 1439 1482
+028750 99999 OULU 2014 1484 1343 1485 1440 1482 1434 1464 1488 1439 1476 1389 1436
+028750 99999 OULU 2015 1452 1330 1485 432 1485 1439 1474 1484 1438 1488 1439 1476
+028750 99999 OULU 2016 1475 1366 1468 1436 1442 1437 1486 1460 1421 1488 1434 1485
+028750 99999 OULU 2017 1484 1341 1488 1433 1488 1427 1488 1475 1436 1483 1438 1480
+028750 99999 OULU 2018 1485 1342 1486 1424 1477 1440 1481 1478 1294 1467 1137 1488
+028750 99999 OULU 2019 1488 1308 1462 1438 1274 1439 1488 1483 1420 220 0 0
+028970 99999 KAJAANI 1916 91 87 93 90 92 90 93 93 86 93 90 93
+028970 99999 KAJAANI 1917 93 83 93 90 93 90 92 93 90 93 90 93
+028970 99999 KAJAANI 1918 92 84 92 87 93 90 92 93 0 0 0 0
+028970 99999 KAJAANI 1920 93 87 93 90 93 90 93 93 90 93 90 92
+028970 99999 KAJAANI 1921 93 84 93 90 93 90 93 93 90 93 90 93
+028970 99999 KAJAANI 1922 93 84 93 90 93 90 93 93 90 93 90 93
+028970 99999 KAJAANI 1923 93 84 93 90 93 90 93 93 90 93 90 93
+028970 99999 KAJAANI 1924 93 87 93 90 93 90 93 93 90 93 90 93
+028970 99999 KAJAANI 1925 93 84 93 90 93 90 93 93 90 93 90 93
+028970 99999 KAJAANI 1926 93 84 93 90 89 60 62 62 60 62 60 61
+028970 99999 KAJAANI 1952 87 107 117 115 104 105 114 113 113 116 116 114
+028970 99999 KAJAANI 1953 115 106 102 112 116 105 114 115 114 118 118 121
+028970 99999 KAJAANI 1954 120 106 113 112 114 109 116 115 105 103 110 111
+028970 99999 KAJAANI 1955 107 104 112 108 116 109 98 109 101 106 108 102
+028970 99999 KAJAANI 1956 107 93 110 104 99 93 107 109 107 113 109 120
+028970 99999 KAJAANI 1957 114 86 111 109 101 104 124 124 120 123 119 123
+028970 99999 KAJAANI 1958 124 112 124 120 124 119 124 124 118 124 120 124
+028970 99999 KAJAANI 1959 222 199 235 232 227 227 231 164 216 225 204 233
+028970 99999 KAJAANI 1960 224 221 223 219 226 212 218 229 227 224 230 232
+028970 99999 KAJAANI 1961 225 212 232 218 241 222 227 228 220 227 220 235
+028970 99999 KAJAANI 1962 237 215 236 232 242 233 238 241 235 239 233 236
+028970 99999 KAJAANI 1963 243 218 231 231 241 224 237 228 233 231 226 237
+028970 99999 KAJAANI 1973 228 214 241 236 210 213 242 242 237 241 239 247
+028970 99999 KAJAANI 1974 243 218 243 237 243 237 245 245 236 243 233 245
+028970 99999 KAJAANI 1975 244 221 246 236 236 237 244 242 240 246 235 243
+028970 99999 KAJAANI 1976 245 228 243 238 246 237 244 243 240 241 234 246
+028970 99999 KAJAANI 1977 245 221 242 238 246 235 242 245 234 240 236 242
+028970 99999 KAJAANI 1978 245 220 248 237 245 236 244 245 239 247 238 247
+028970 99999 KAJAANI 1979 246 216 245 236 242 236 243 246 238 247 237 245
+028970 99999 KAJAANI 1980 243 223 237 227 238 234 241 247 238 244 239 243
+028970 99999 KAJAANI 1981 248 221 241 238 243 237 239 247 237 243 236 246
+028970 99999 KAJAANI 1982 241 218 246 238 244 232 247 247 240 243 239 247
+028970 99999 KAJAANI 1983 247 224 248 237 243 234 247 246 237 246 239 246
+028970 99999 KAJAANI 1984 249 229 247 239 247 240 247 244 238 248 237 244
+028970 99999 KAJAANI 1985 248 221 246 237 243 236 244 248 239 243 236 246
+028970 99999 KAJAANI 1986 244 219 232 127 246 240 239 248 237 248 236 246
+028970 99999 KAJAANI 1987 242 220 246 232 245 240 249 242 235 246 228 247
+028970 99999 KAJAANI 1988 245 228 244 233 244 235 247 246 236 242 241 244
+028970 99999 KAJAANI 1989 247 224 246 238 248 235 247 244 238 246 238 250
+028970 99999 KAJAANI 1990 243 219 248 241 244 235 235 240 233 239 239 242
+028970 99999 KAJAANI 1991 242 220 248 235 247 237 247 243 238 246 236 242
+028970 99999 KAJAANI 1992 243 228 249 239 250 245 246 247 254 241 239 253
+028970 99999 KAJAANI 1993 245 222 242 240 245 246 249 261 239 239 229 246
+028970 99999 KAJAANI 1994 233 223 249 228 246 234 246 246 235 245 237 235
+028970 99999 KAJAANI 1995 246 222 239 239 244 235 248 250 240 237 238 249
+028970 99999 KAJAANI 1996 249 232 244 236 244 216 230 230 224 232 227 239
+028970 99999 KAJAANI 1997 231 207 239 234 244 235 249 244 233 246 236 241
+028970 99999 KAJAANI 1998 221 218 238 235 241 211 233 76 21 9 10 97
+028970 99999 KAJAANI 1999 685 621 644 625 660 607 636 621 693 940 929 951
+028970 99999 KAJAANI 2000 857 769 801 462 460 590 751 811 831 950 909 930
+028970 99999 KAJAANI 2001 939 803 857 821 930 947 990 981 958 965 923 987
+028970 99999 KAJAANI 2002 968 885 984 1236 1365 1332 1699 1705 1566 1683 1646 1716
+028970 99999 KAJAANI 2003 1713 1524 1720 1660 1678 1641 1709 1702 1655 1715 1661 1705
+028970 99999 KAJAANI 2004 1708 1598 1723 1551 1717 1636 1693 1717 1636 1715 1677 1710
+028970 99999 KAJAANI 2005 1720 1566 1726 1673 1735 1680 1737 2117 1844 2032 2088 2054
+028970 99999 KAJAANI 2006 2137 1988 2197 2115 1734 1682 1674 436 1679 1719 1635 1721
+028970 99999 KAJAANI 2007 1729 1559 1687 1679 1730 1654 1731 1650 1665 1737 1665 1720
+028970 99999 KAJAANI 2008 1683 1583 1712 1681 2035 2157 2219 2214 2031 2195 2119 2235
+028970 99999 KAJAANI 2009 2227 1991 2181 2127 2219 2105 2224 2081 2154 2214 2148 2189
+028970 99999 KAJAANI 2010 2229 2000 2215 2079 2115 2133 2220 2214 2158 2152 2132 2197
+028970 99999 KAJAANI 2011 2235 1995 2197 2146 2183 2146 2228 2192 2155 2217 2156 2209
+028970 99999 KAJAANI 2012 2155 2092 2229 2156 2122 2064 2177 2217 2130 2209 2093 2177
+028970 99999 KAJAANI 2013 2222 1915 2214 2156 2232 2142 2209 2229 2166 2250 2148 2202
+028970 99999 KAJAANI 2014 2234 2012 2237 2136 2005 2136 2201 2240 2166 2238 2170 2021
+028970 99999 KAJAANI 2015 2143 2022 2233 648 2224 2159 2234 2244 2121 2260 2090 2183
+028970 99999 KAJAANI 2016 2222 2043 2181 2121 2175 2153 2229 2200 2144 2226 2148 2227
+028970 99999 KAJAANI 2017 2220 2013 2231 2152 2231 2142 2232 2213 2155 2226 2160 2225
+028970 99999 KAJAANI 2018 2230 2015 2232 2139 2218 2097 2219 2204 1851 1997 1330 2230
+028970 99999 KAJAANI 2019 2226 2014 2182 2157 1930 2157 2230 2224 2133 333 0 0
+029070 99999 KALAJOKI ULKOKALLA 1901 93 84 93 90 93 90 93 93 90 93 90 93
+029070 99999 KALAJOKI ULKOKALLA 1902 93 84 93 90 93 90 93 93 90 93 90 89
+029070 99999 KALAJOKI ULKOKALLA 1903 91 84 91 89 92 88 92 90 89 93 90 93
+029070 99999 KALAJOKI ULKOKALLA 1904 93 87 93 90 93 90 93 92 90 93 90 93
+029070 99999 KALAJOKI ULKOKALLA 1905 93 84 93 90 92 89 93 93 90 93 90 91
+029070 99999 KALAJOKI ULKOKALLA 2001 0 0 0 0 0 1 0 0 0 0 0 0
+029070 99999 KALAJOKI ULKOKALLA 2002 0 1 0 0 0 0 1 0 0 1 0 0
+029070 99999 KALAJOKI ULKOKALLA 2003 0 1 0 0 0 1 0 0 0 0 1 0
+029070 99999 KALAJOKI ULKOKALLA 2004 0 127 242 219 239 231 236 238 227 240 233 244
+029070 99999 KALAJOKI ULKOKALLA 2005 241 213 203 215 218 225 224 219 187 200 233 241
+029070 99999 KALAJOKI ULKOKALLA 2006 235 220 244 238 245 237 244 248 240 247 239 245
+029070 99999 KALAJOKI ULKOKALLA 2007 247 220 237 239 248 239 243 241 233 248 239 247
+029070 99999 KALAJOKI ULKOKALLA 2008 248 228 246 240 221 238 244 244 201 248 238 247
+029070 99999 KALAJOKI ULKOKALLA 2009 248 216 245 240 248 236 248 246 240 245 240 248
+029070 99999 KALAJOKI ULKOKALLA 2010 247 222 247 239 248 239 248 248 239 245 239 248
+029070 99999 KALAJOKI ULKOKALLA 2011 248 224 245 240 248 239 247 248 239 248 239 248
+029070 99999 KALAJOKI ULKOKALLA 2012 248 232 246 239 247 238 248 248 239 246 240 247
+029070 99999 KALAJOKI ULKOKALLA 2013 247 223 246 238 248 239 248 247 238 247 642 742
+029070 99999 KALAJOKI ULKOKALLA 2014 738 665 742 718 741 713 735 744 710 735 718 525
+029070 99999 KALAJOKI ULKOKALLA 2015 670 670 734 215 742 719 741 738 674 742 719 733
+029070 99999 KALAJOKI ULKOKALLA 2016 743 684 735 719 744 720 744 744 718 744 715 739
+029070 99999 KALAJOKI ULKOKALLA 2017 741 672 743 720 744 718 743 738 714 741 720 742
+029070 99999 KALAJOKI ULKOKALLA 2018 742 671 744 715 738 718 739 723 602 730 571 744
+029070 99999 KALAJOKI ULKOKALLA 2019 744 672 733 719 644 719 743 742 715 111 0 0
+029110 99999 VAASA 1917 93 84 93 90 93 88 93 93 90 93 90 93
+029110 99999 VAASA 1918 93 84 92 90 93 90 93 93 90 93 90 92
+029110 99999 VAASA 1919 93 84 93 87 93 90 93 93 89 93 90 93
+029110 99999 VAASA 1920 93 87 93 90 93 90 93 93 90 92 90 93
+029110 99999 VAASA 1921 93 84 93 90 93 89 93 92 90 93 90 93
+029110 99999 VAASA 1922 93 84 93 90 85 90 93 93 90 93 90 93
+029110 99999 VAASA 1923 93 84 93 90 91 90 93 93 90 93 90 93
+029110 99999 VAASA 1924 0 87 93 90 93 90 93 93 90 93 90 93
+029110 99999 VAASA 1925 93 84 93 90 93 90 93 93 90 93 90 93
+029110 99999 VAASA 1926 93 84 93 90 93 90 93 93 90 93 90 93
+029110 99999 VAASA 1931 48 54 47 55 24 33 63 60 65 74 79 70
+029110 99999 VAASA 1932 68 67 69 76 51 70 54 57 67 61 53 47
+029110 99999 VAASA 1933 68 73 79 63 66 73 72 71 74 76 76 73
+029110 99999 VAASA 1934 76 66 72 69 65 73 72 77 74 80 70 52
+029110 99999 VAASA 1935 73 52 74 65 74 55 73 77 74 78 75 69
+029110 99999 VAASA 1936 85 86 87 89 91 85 86 89 90 90 88 90
+029110 99999 VAASA 1937 93 84 90 70 78 71 80 65 79 76 79 70
+029110 99999 VAASA 1938 85 80 90 60 87 86 88 87 89 86 88 88
+029110 99999 VAASA 1939 90 79 90 84 82 68 73 72 81 29 0 0
+029110 99999 VAASA 1952 106 112 118 115 111 112 116 118 111 119 112 115
+029110 99999 VAASA 1953 117 106 112 118 120 113 119 120 117 117 117 124
+029110 99999 VAASA 1954 116 110 120 116 121 116 121 122 115 114 112 119
+029110 99999 VAASA 1955 120 108 121 114 121 113 118 119 112 118 114 119
+029110 99999 VAASA 1956 120 104 120 114 122 115 120 118 115 122 116 121
+029110 99999 VAASA 1957 119 104 114 112 110 106 124 124 120 122 119 124
+029110 99999 VAASA 1958 124 112 124 120 124 120 124 124 120 124 120 124
+029110 99999 VAASA 1959 237 202 237 235 227 228 224 192 210 226 205 223
+029110 99999 VAASA 1960 229 207 217 208 226 208 203 232 228 227 233 233
+029110 99999 VAASA 1961 226 214 231 215 239 222 230 229 214 228 224 235
+029110 99999 VAASA 1962 235 215 236 235 244 234 237 243 235 241 232 237
+029110 99999 VAASA 1963 243 218 235 229 238 226 240 242 229 231 227 239
+029110 99999 VAASA 1973 229 214 243 237 222 219 244 246 237 244 236 247
+029110 99999 VAASA 1974 244 227 246 231 244 241 244 246 236 243 235 246
+029110 99999 VAASA 1975 241 223 168 238 239 236 246 243 239 243 238 243
+029110 99999 VAASA 1976 247 230 243 240 244 238 247 244 237 245 236 246
+029110 99999 VAASA 1977 245 222 246 238 245 232 245 244 233 244 238 245
+029110 99999 VAASA 1978 248 220 244 236 244 240 247 244 237 245 239 246
+029110 99999 VAASA 1979 247 219 246 239 245 238 243 253 236 247 236 249
+029110 99999 VAASA 1980 248 225 240 229 237 235 244 245 238 244 239 245
+029110 99999 VAASA 1981 243 218 246 236 244 237 235 246 234 242 235 244
+029110 99999 VAASA 1982 238 221 245 238 241 233 244 245 235 245 240 243
+029110 99999 VAASA 1983 245 222 246 237 247 238 250 248 236 249 240 246
+029110 99999 VAASA 1984 248 229 245 239 247 238 245 245 240 245 239 244
+029110 99999 VAASA 1985 247 221 248 237 242 237 246 248 239 246 235 247
+029110 99999 VAASA 1986 247 219 232 120 247 233 242 248 233 248 237 248
+029110 99999 VAASA 1987 240 221 246 234 247 242 245 244 234 247 233 249
+029110 99999 VAASA 1988 245 231 246 236 246 240 247 243 236 246 238 243
+029110 99999 VAASA 1989 245 224 249 239 248 238 248 244 238 248 237 249
+029110 99999 VAASA 1990 244 222 248 240 243 236 239 237 229 238 236 240
+029110 99999 VAASA 1991 242 215 246 237 246 236 247 241 240 245 237 245
+029110 99999 VAASA 1992 247 229 247 240 252 242 248 249 255 242 239 252
+029110 99999 VAASA 1993 244 222 243 241 248 251 248 291 240 239 233 246
+029110 99999 VAASA 1994 230 224 252 238 247 237 249 245 238 242 237 243
+029110 99999 VAASA 1995 248 220 245 238 242 239 5 2 2 4 2 4
+029110 99999 VAASA 1996 5 2 1 0 0 2 0 0 0 0 0 1
+029110 99999 VAASA 1997 0 1 1 0 0 0 1 0 1 0 0 1
+029110 99999 VAASA 1998 0 0 42 23 16 10 1 526 669 700 699 704
+029110 99999 VAASA 1999 685 645 713 643 650 626 626 644 644 711 676 700
+029110 99999 VAASA 2000 690 665 673 643 648 649 692 717 660 755 709 719
+029110 99999 VAASA 2001 706 605 689 880 963 918 990 982 954 987 953 989
+029110 99999 VAASA 2002 982 892 986 1096 1162 1251 1699 1704 1648 1687 1632 1714
+029110 99999 VAASA 2003 1714 1528 1716 1651 1676 1651 1721 1702 1639 1714 1667 1719
+029110 99999 VAASA 2004 1709 1609 1729 1668 1720 1642 1692 1686 1605 1711 1665 1715
+029110 99999 VAASA 2005 1702 1556 1723 1674 1736 1675 1607 2039 1750 1914 2105 2081
+029110 99999 VAASA 2006 2179 1990 2195 2120 1728 1678 1735 1730 1659 1716 1663 1717
+029110 99999 VAASA 2007 1716 1548 1702 1673 1727 1671 1728 1666 1652 1736 1672 1716
+029110 99999 VAASA 2008 1734 1597 1732 1679 2022 2150 2215 2227 2045 2184 2126 2232
+029110 99999 VAASA 2009 2215 2009 2187 2134 2221 2138 2227 2090 2130 2213 2156 2205
+029110 99999 VAASA 2010 2229 1999 2222 2144 2161 2134 2222 2216 2125 2195 2124 1671
+029110 99999 VAASA 2011 1482 1325 1473 1433 1487 1442 1482 1484 1440 1482 1440 1485
+029110 99999 VAASA 2012 1488 1391 1487 1437 1488 1437 1487 1487 1440 1485 1438 1486
+029110 99999 VAASA 2013 1485 1341 1482 1436 1484 1437 1484 1473 1437 1488 1440 1482
+029110 99999 VAASA 2014 1485 1344 1486 1440 1482 1434 1464 1488 1440 1481 1412 1341
+029110 99999 VAASA 2015 1466 1320 1485 432 1485 1439 1480 1484 1438 1487 1439 1475
+029110 99999 VAASA 2016 1475 1367 1467 1435 1442 1437 1486 1460 1421 1487 1434 1485
+029110 99999 VAASA 2017 1484 1341 1488 1433 1488 1427 1488 1475 1436 1482 1438 1480
+029110 99999 VAASA 2018 1485 1342 1486 1425 1477 1440 1481 1478 1294 1466 1135 1488
+029110 99999 VAASA 2019 1488 1344 1461 1438 1272 1440 1488 1482 1421 221 0 0
+029170 99999 KUOPIO 1906 93 84 93 90 93 90 93 93 90 93 90 93
+029170 99999 KUOPIO 1907 93 84 93 90 93 90 93 93 90 93 90 93
+029170 99999 KUOPIO 1908 93 87 93 90 93 90 92 93 90 93 90 93
+029170 99999 KUOPIO 1909 93 84 93 90 93 90 93 93 90 93 90 93
+029170 99999 KUOPIO 1910 93 84 93 90 93 90 93 93 90 93 90 93
+029170 99999 KUOPIO 1911 93 84 93 90 93 90 93 93 90 93 80 93
+029170 99999 KUOPIO 1912 93 87 93 90 93 90 93 93 90 93 90 93
+029170 99999 KUOPIO 1913 93 84 93 90 93 90 93 93 90 93 90 93
+029170 99999 KUOPIO 1914 93 84 93 90 93 90 93 93 90 93 90 93
+029170 99999 KUOPIO 1915 93 84 93 90 93 90 93 93 90 93 90 93
+029170 99999 KUOPIO 1934 0 0 0 0 0 0 76 81 79 83 75 71
+029170 99999 KUOPIO 1935 83 73 80 78 75 60 84 84 75 83 79 76
+029170 99999 KUOPIO 1936 80 77 81 79 91 86 86 91 88 91 89 90
+029170 99999 KUOPIO 1937 88 82 83 84 72 75 67 75 83 84 80 90
+029170 99999 KUOPIO 1938 82 74 82 84 81 70 73 76 83 82 84 82
+029170 99999 KUOPIO 1939 85 75 87 77 86 78 73 76 82 28 0 0
+029170 99999 KUOPIO 1952 85 103 119 113 105 103 111 118 108 110 111 112
+029170 99999 KUOPIO 1953 112 107 100 119 116 104 116 120 115 122 115 119
+029170 99999 KUOPIO 1954 115 102 111 112 116 103 0 0 0 0 0 0
+029170 99999 KUOPIO 1955 5 9 11 13 23 20 23 23 16 20 33 54
+029170 99999 KUOPIO 1956 52 69 75 67 91 80 98 86 81 84 86 98
+029170 99999 KUOPIO 1957 84 66 79 106 103 105 57 67 51 103 111 100
+029170 99999 KUOPIO 1958 99 45 64 61 55 54 60 49 52 35 57 65
+029170 99999 KUOPIO 1959 228 201 233 233 225 225 229 166 216 228 199 232
+029170 99999 KUOPIO 1960 225 202 221 219 226 210 220 230 232 201 217 235
+029170 99999 KUOPIO 1961 226 187 228 222 240 224 226 226 212 228 218 237
+029170 99999 KUOPIO 1962 231 215 238 238 244 229 240 241 234 239 232 242
+029170 99999 KUOPIO 1963 237 220 233 234 236 227 235 240 232 229 228 238
+029170 99999 KUOPIO 1973 233 208 243 235 210 210 239 244 237 240 228 238
+029170 99999 KUOPIO 1974 241 220 239 235 246 236 241 246 237 245 236 246
+029170 99999 KUOPIO 1975 238 222 246 237 233 235 245 244 236 241 236 242
+029170 99999 KUOPIO 1976 241 228 244 238 245 240 244 245 236 242 235 245
+029170 99999 KUOPIO 1977 245 221 246 238 243 231 242 246 235 244 235 246
+029170 99999 KUOPIO 1978 245 221 242 235 245 239 243 240 239 244 240 246
+029170 99999 KUOPIO 1979 247 223 242 239 243 238 245 249 234 245 235 245
+029170 99999 KUOPIO 1980 245 227 243 233 241 233 237 242 234 242 236 244
+029170 99999 KUOPIO 1981 241 219 246 236 245 236 244 244 237 245 237 244
+029170 99999 KUOPIO 1982 229 217 241 234 242 231 242 240 237 242 237 248
+029170 99999 KUOPIO 1983 243 219 247 239 248 238 248 244 237 248 235 246
+029170 99999 KUOPIO 1984 244 232 244 237 243 239 246 246 239 244 239 245
+029170 99999 KUOPIO 1985 246 217 248 241 246 237 246 245 238 245 238 245
+029170 99999 KUOPIO 1986 244 218 233 120 242 235 244 249 232 246 238 247
+029170 99999 KUOPIO 1987 244 211 245 236 241 237 248 236 238 246 236 246
+029170 99999 KUOPIO 1988 246 222 245 238 245 239 243 245 236 243 238 243
+029170 99999 KUOPIO 1989 244 223 245 234 246 240 246 240 240 246 237 245
+029170 99999 KUOPIO 1990 237 223 243 238 245 238 241 233 235 230 234 242
+029170 99999 KUOPIO 1991 244 220 245 232 244 234 244 239 236 245 235 244
+029170 99999 KUOPIO 1992 246 227 246 240 249 242 244 243 253 245 236 251
+029170 99999 KUOPIO 1993 232 210 208 216 215 220 224 277 203 208 210 203
+029170 99999 KUOPIO 1994 214 185 199 199 207 194 209 229 214 235 219 232
+029170 99999 KUOPIO 1995 223 205 228 234 239 234 238 238 232 236 227 237
+029170 99999 KUOPIO 1996 237 226 238 222 247 236 241 238 236 246 238 245
+029170 99999 KUOPIO 1997 243 221 245 236 245 240 248 247 234 246 237 239
+029170 99999 KUOPIO 1998 220 222 239 238 240 239 243 58 1 1 1 101
+029170 99999 KUOPIO 1999 718 669 746 721 747 715 744 748 763 978 941 931
+029170 99999 KUOPIO 2000 975 928 998 953 977 957 985 981 954 980 924 961
+029170 99999 KUOPIO 2001 984 892 985 948 979 949 984 979 956 988 953 986
+029170 99999 KUOPIO 2002 982 893 987 949 985 1143 1697 1709 1646 1684 1643 1711
+029170 99999 KUOPIO 2003 1711 1515 1689 1658 1674 1646 1712 1710 1648 1710 1664 1732
+029170 99999 KUOPIO 2004 1707 1611 1720 1657 1704 1657 1704 1729 1584 1719 1679 1714
+029170 99999 KUOPIO 2005 1730 1571 1733 1704 1748 1697 1584 2050 1755 1900 2110 2079
+029170 99999 KUOPIO 2006 2176 1994 2209 2123 1736 1685 1744 1747 1684 1724 1676 1712
+029170 99999 KUOPIO 2007 1721 1544 1696 1669 1730 1672 1707 1690 1660 1743 1686 1743
+029170 99999 KUOPIO 2008 1746 1611 1728 1685 2042 2161 2220 2222 2048 2189 2139 2231
+029170 99999 KUOPIO 2009 2233 2005 2194 2153 2222 2142 2251 2107 2141 2234 2163 2209
+029170 99999 KUOPIO 2010 2203 2011 2215 2147 2134 2129 2225 2215 2153 2214 2102 2208
+029170 99999 KUOPIO 2011 2227 2011 2097 2130 2221 2153 1888 2209 2149 2220 2149 2192
+029170 99999 KUOPIO 2012 2184 2081 2219 2139 2111 2052 2176 2210 2124 2209 2087 2220
+029170 99999 KUOPIO 2013 2199 1950 2190 2153 2223 2150 2205 2199 2156 2231 2130 2223
+029170 99999 KUOPIO 2014 2220 2016 2231 2119 2138 2148 2196 2230 2151 2228 2154 2007
+029170 99999 KUOPIO 2015 2106 2008 2220 647 2222 2155 2210 1992 2077 2232 2097 2163
+029170 99999 KUOPIO 2016 2226 2045 2147 2108 2111 2085 2229 2147 2118 2221 2142 2173
+029170 99999 KUOPIO 2017 2207 2001 2215 2125 2225 2147 2159 2211 2150 2220 2157 2204
+029170 99999 KUOPIO 2018 2225 2013 2230 2046 2204 2095 2217 2199 1885 2177 1585 2228
+029170 99999 KUOPIO 2019 2230 1994 2191 2173 1913 2158 2225 2137 2127 270 0 0
+029350 99999 JYVASKYLA 1917 92 84 93 90 93 90 93 93 90 93 90 93
+029350 99999 JYVASKYLA 1918 93 84 93 90 93 90 93 93 90 93 88 93
+029350 99999 JYVASKYLA 1919 93 84 93 87 93 87 93 93 90 93 90 93
+029350 99999 JYVASKYLA 1920 93 87 93 90 93 90 93 93 90 93 90 93
+029350 99999 JYVASKYLA 1921 93 84 93 90 93 90 93 93 90 93 90 93
+029350 99999 JYVASKYLA 1922 93 84 93 90 93 90 93 93 90 93 90 93
+029350 99999 JYVASKYLA 1923 93 84 93 90 93 90 93 93 90 93 90 93
+029350 99999 JYVASKYLA 1924 93 87 93 90 93 90 93 93 90 93 90 93
+029350 99999 JYVASKYLA 1925 93 84 93 90 93 90 92 93 90 93 90 93
+029350 99999 JYVASKYLA 1926 93 84 93 90 93 90 93 93 90 93 90 93
+029350 99999 JYVASKYLA 1952 90 109 119 117 110 117 120 121 107 121 118 120
+029350 99999 JYVASKYLA 1953 119 108 103 114 118 115 120 116 113 121 115 122
+029350 99999 JYVASKYLA 1954 119 103 114 116 121 116 122 116 108 103 110 111
+029350 99999 JYVASKYLA 1955 119 101 115 106 115 112 114 111 105 110 105 105
+029350 99999 JYVASKYLA 1956 109 101 111 108 119 112 114 114 111 112 107 115
+029350 99999 JYVASKYLA 1957 111 83 112 110 105 104 123 124 120 123 120 124
+029350 99999 JYVASKYLA 1958 124 112 124 120 124 120 124 124 120 124 120 124
+029350 99999 JYVASKYLA 1959 226 196 236 230 228 221 227 161 215 228 198 230
+029350 99999 JYVASKYLA 1960 219 221 222 221 226 208 219 232 228 227 231 234
+029350 99999 JYVASKYLA 1961 226 211 233 216 238 224 228 228 214 229 226 236
+029350 99999 JYVASKYLA 1962 235 216 235 235 239 233 234 243 233 240 233 238
+029350 99999 JYVASKYLA 1963 232 219 233 230 237 223 236 240 233 230 226 238
+029350 99999 JYVASKYLA 1973 233 214 244 236 228 228 241 244 234 243 241 246
+029350 99999 JYVASKYLA 1974 244 220 245 236 244 235 246 244 235 245 235 246
+029350 99999 JYVASKYLA 1975 244 220 244 235 238 236 244 245 238 246 238 244
+029350 99999 JYVASKYLA 1976 246 229 245 236 245 237 246 245 237 245 235 246
+029350 99999 JYVASKYLA 1977 246 222 245 240 244 238 245 245 235 244 238 243
+029350 99999 JYVASKYLA 1978 247 222 248 236 247 239 246 246 239 246 240 241
+029350 99999 JYVASKYLA 1979 244 217 245 236 245 237 245 246 239 244 236 246
+029350 99999 JYVASKYLA 1980 245 226 242 230 237 227 218 245 237 245 238 244
+029350 99999 JYVASKYLA 1981 243 217 237 230 242 225 238 243 231 240 239 242
+029350 99999 JYVASKYLA 1982 236 220 244 234 238 233 242 237 239 241 236 243
+029350 99999 JYVASKYLA 1983 245 222 243 234 244 238 249 246 236 246 241 245
+029350 99999 JYVASKYLA 1984 249 228 245 240 244 240 244 247 238 247 239 246
+029350 99999 JYVASKYLA 1985 247 220 243 233 244 238 242 241 238 241 235 246
+029350 99999 JYVASKYLA 1986 245 220 233 122 245 235 243 245 236 246 233 245
+029350 99999 JYVASKYLA 1987 240 221 247 234 246 242 248 243 236 246 232 246
+029350 99999 JYVASKYLA 1988 244 232 246 238 247 237 248 245 233 242 238 245
+029350 99999 JYVASKYLA 1989 246 220 248 239 247 236 246 244 239 247 235 244
+029350 99999 JYVASKYLA 1990 243 219 245 238 245 235 239 244 235 239 237 238
+029350 99999 JYVASKYLA 1991 243 215 246 236 246 235 248 243 239 244 236 243
+029350 99999 JYVASKYLA 1992 247 228 248 241 252 244 246 248 255 244 239 253
+029350 99999 JYVASKYLA 1993 246 222 243 240 248 251 250 292 241 241 234 248
+029350 99999 JYVASKYLA 1994 235 224 252 239 250 237 246 248 235 246 236 244
+029350 99999 JYVASKYLA 1995 248 221 243 238 244 238 251 253 237 234 240 248
+029350 99999 JYVASKYLA 1996 247 232 243 235 246 218 229 231 228 230 223 238
+029350 99999 JYVASKYLA 1997 229 209 237 236 242 240 247 248 235 249 237 243
+029350 99999 JYVASKYLA 1998 223 215 224 230 239 233 233 58 2 5 3 103
+029350 99999 JYVASKYLA 1999 715 673 759 723 744 715 747 746 762 961 943 963
+029350 99999 JYVASKYLA 2000 985 923 988 934 972 947 976 976 957 985 922 970
+029350 99999 JYVASKYLA 2001 989 896 990 956 977 949 989 981 960 984 952 919
+029350 99999 JYVASKYLA 2002 980 891 984 947 985 1141 1685 1701 1633 1682 1645 1713
+029350 99999 JYVASKYLA 2003 1714 1524 1706 1657 1672 1645 1717 1690 1646 1712 1664 1722
+029350 99999 JYVASKYLA 2004 1705 1596 1725 1671 1724 1650 1699 1723 1639 1708 1677 1709
+029350 99999 JYVASKYLA 2005 1730 1570 1732 1683 1734 1677 1638 2015 1762 1909 2107 2097
+029350 99999 JYVASKYLA 2006 2174 1984 2203 2115 1731 1678 2034 2170 2052 2210 2128 2188
+029350 99999 JYVASKYLA 2007 2193 1990 2156 2084 2227 2141 2221 2163 2130 2150 2133 2229
+029350 99999 JYVASKYLA 2008 2223 2044 2205 2152 2148 2152 2218 2230 2029 2182 2122 2196
+029350 99999 JYVASKYLA 2009 2206 1989 2130 2076 2206 2127 2217 2202 2153 2211 2156 2183
+029350 99999 JYVASKYLA 2010 2192 2000 2231 2149 2109 2098 2211 2195 2136 2189 2104 2212
+029350 99999 JYVASKYLA 2011 2219 2012 2205 2131 2216 2150 2215 2211 2133 2184 2113 2217
+029350 99999 JYVASKYLA 2012 2224 2078 2206 2128 2107 2055 2177 2188 2147 2206 2144 2205
+029350 99999 JYVASKYLA 2013 2209 1967 2199 2144 2212 2137 2211 2195 2131 2227 1728 1719
+029350 99999 JYVASKYLA 2014 1734 1563 1727 1670 1727 1659 1705 1735 1667 1724 1672 1723
+029350 99999 JYVASKYLA 2015 1731 1564 1724 505 1730 1675 1724 1727 1665 1727 1671 2109
+029350 99999 JYVASKYLA 2016 2226 2027 2171 2144 2172 2152 2220 2192 2134 2222 2139 2207
+029350 99999 JYVASKYLA 2017 2203 2011 2226 2149 2223 2135 2222 2184 2145 2193 2142 2215
+029350 99999 JYVASKYLA 2018 2219 2010 2227 2130 2214 2156 2211 2200 1881 2186 1701 2227
+029350 99999 JYVASKYLA 2019 2223 2009 2186 2147 1893 2152 2220 2222 2132 329 0 0
+029440 99999 TAMPERE PIRKKALA 1906 93 84 93 90 93 90 93 93 90 93 90 93
+029440 99999 TAMPERE PIRKKALA 1907 93 83 93 90 93 90 93 93 90 93 90 92
+029440 99999 TAMPERE PIRKKALA 1908 93 86 93 90 93 90 93 93 90 93 90 92
+029440 99999 TAMPERE PIRKKALA 1909 93 83 93 90 93 90 93 93 90 93 90 93
+029440 99999 TAMPERE PIRKKALA 1910 93 84 93 90 93 90 93 93 90 93 90 92
+029440 99999 TAMPERE PIRKKALA 1911 93 84 93 90 93 90 93 93 90 93 90 93
+029440 99999 TAMPERE PIRKKALA 1912 93 87 93 90 93 90 93 93 90 93 90 93
+029440 99999 TAMPERE PIRKKALA 1913 93 84 93 90 93 90 93 93 90 93 90 93
+029440 99999 TAMPERE PIRKKALA 1914 93 84 93 90 93 90 93 93 90 93 90 93
+029440 99999 TAMPERE PIRKKALA 1915 93 84 93 90 93 90 93 93 90 93 90 92
+029440 99999 TAMPERE PIRKKALA 1979 0 0 0 0 0 0 0 0 0 247 1641 1640
+029440 99999 TAMPERE PIRKKALA 1980 1621 1208 1555 1529 879 1022 1577 1938 1930 2042 1976 1949
+029440 99999 TAMPERE PIRKKALA 1981 2031 1831 1898 1494 1561 1505 1556 1539 1513 1550 1495 1493
+029440 99999 TAMPERE PIRKKALA 1982 1553 1391 1540 1499 1516 1488 1531 1549 1501 1525 1491 1479
+029440 99999 TAMPERE PIRKKALA 1983 1533 1388 1548 1485 1548 1471 1527 1537 1489 1553 1483 1474
+029440 99999 TAMPERE PIRKKALA 1984 1547 1447 1551 1499 1551 1485 1554 1540 1503 1548 1476 1481
+029440 99999 TAMPERE PIRKKALA 1985 1522 1363 1527 1242 1518 1491 1526 1524 1494 1546 1475 1484
+029440 99999 TAMPERE PIRKKALA 1986 1515 1382 1414 771 807 1482 1528 1531 1470 1515 1479 1462
+029440 99999 TAMPERE PIRKKALA 1987 1502 1367 1534 1473 1486 1334 1496 1500 1425 1413 1337 1350
+029440 99999 TAMPERE PIRKKALA 1988 1459 1407 1621 1575 1651 1235 1376 1562 1502 1601 1581 1606
+029440 99999 TAMPERE PIRKKALA 1989 1592 1490 1625 1595 1608 1596 1605 1605 1534 1624 1571 1590
+029440 99999 TAMPERE PIRKKALA 1990 1637 1459 1610 1588 1656 1618 1637 1668 1598 1625 1545 1610
+029440 99999 TAMPERE PIRKKALA 1991 1646 1474 1649 1550 1639 1616 1693 1697 1655 1661 1655 1677
+029440 99999 TAMPERE PIRKKALA 1992 1683 1542 1685 1634 1690 1630 1696 1703 1659 1713 1649 1713
+029440 99999 TAMPERE PIRKKALA 1993 1704 1530 1655 1610 1667 1610 739 738 720 736 727 718
+029440 99999 TAMPERE PIRKKALA 1994 783 682 752 718 739 707 726 744 715 723 718 703
+029440 99999 TAMPERE PIRKKALA 1995 748 554 628 719 675 712 713 739 616 742 663 684
+029440 99999 TAMPERE PIRKKALA 1996 728 667 732 666 741 642 711 739 707 732 715 710
+029440 99999 TAMPERE PIRKKALA 1997 744 654 424 709 354 240 246 245 233 245 238 238
+029440 99999 TAMPERE PIRKKALA 1998 220 221 266 252 238 236 242 603 720 741 715 745
+029440 99999 TAMPERE PIRKKALA 1999 719 683 748 722 743 717 746 745 757 982 950 971
+029440 99999 TAMPERE PIRKKALA 2000 961 920 995 929 977 944 981 977 957 982 923 964
+029440 99999 TAMPERE PIRKKALA 2001 988 892 984 955 981 951 983 983 955 987 950 988
+029440 99999 TAMPERE PIRKKALA 2002 983 893 985 952 985 1146 1690 1699 1647 1675 1626 1708
+029440 99999 TAMPERE PIRKKALA 2003 1714 1525 1715 1667 1679 1647 1716 1689 1653 1723 1670 1722
+029440 99999 TAMPERE PIRKKALA 2004 1715 1614 1728 1670 1726 1649 1700 1731 1653 1718 1687 1728
+029440 99999 TAMPERE PIRKKALA 2005 1747 1577 1746 1695 1747 1690 1593 2022 1752 1869 2108 2112
+029440 99999 TAMPERE PIRKKALA 2006 2198 1994 2213 2107 1729 1677 1738 1752 1670 1741 1696 1734
+029440 99999 TAMPERE PIRKKALA 2007 1767 1557 1706 1683 1738 1684 1733 1687 1660 1725 1678 1724
+029440 99999 TAMPERE PIRKKALA 2008 1739 1612 1738 1674 2026 2169 2223 2214 2041 2212 2145 2243
+029440 99999 TAMPERE PIRKKALA 2009 2233 2029 2185 2154 2232 2141 2236 2102 2146 2227 2161 2208
+029440 99999 TAMPERE PIRKKALA 2010 2225 1999 2229 2147 2143 2151 2232 2217 2151 2212 2104 2212
+029440 99999 TAMPERE PIRKKALA 2011 2226 2009 2210 2136 2226 2153 2229 2219 2153 2206 2109 2227
+029440 99999 TAMPERE PIRKKALA 2012 2185 2080 2223 2151 2116 2051 2186 2210 2122 2207 2086 2125
+029440 99999 TAMPERE PIRKKALA 2013 2176 1980 2201 2144 2210 2142 2214 2209 2153 2221 2134 2222
+029440 99999 TAMPERE PIRKKALA 2014 2209 2011 2227 2136 2139 2145 2074 2227 2146 2221 2152 2010
+029440 99999 TAMPERE PIRKKALA 2015 2096 2008 2223 647 2226 2158 2166 2221 2108 2228 2148 2212
+029440 99999 TAMPERE PIRKKALA 2016 2218 2044 2073 2146 2147 2155 2230 2198 2136 2230 2143 2225
+029440 99999 TAMPERE PIRKKALA 2017 2144 1978 2227 2153 2230 2138 2155 2207 2149 2218 2153 2219
+029440 99999 TAMPERE PIRKKALA 2018 2205 2011 2211 2120 2281 2097 2216 2199 1895 2197 1709 2142
+029440 99999 TAMPERE PIRKKALA 2019 2217 2016 2191 2164 1916 2159 2230 2220 2126 331 0 0
+029500 99999 PARAINEN FAGERHOLM 1901 93 84 93 90 93 90 93 93 90 93 90 93
+029500 99999 PARAINEN FAGERHOLM 1902 93 84 93 90 93 90 93 93 90 93 90 93
+029500 99999 PARAINEN FAGERHOLM 1903 93 84 93 90 93 90 93 93 90 93 90 93
+029500 99999 PARAINEN FAGERHOLM 1904 93 87 92 90 93 90 93 93 90 93 90 93
+029500 99999 PARAINEN FAGERHOLM 1905 93 83 93 90 93 90 93 93 90 93 90 93
+029500 99999 PARAINEN FAGERHOLM 2007 0 0 0 0 0 0 0 0 0 0 0 689
+029500 99999 PARAINEN FAGERHOLM 2008 736 675 738 714 718 711 730 738 597 683 694 741
+029500 99999 PARAINEN FAGERHOLM 2009 734 654 695 717 744 708 743 718 713 733 669 678
+029500 99999 PARAINEN FAGERHOLM 2010 724 633 736 718 646 713 738 742 713 724 680 722
+029500 99999 PARAINEN FAGERHOLM 2011 738 665 719 690 735 670 741 734 709 722 703 708
+029500 99999 PARAINEN FAGERHOLM 2012 714 687 702 719 618 600 712 706 715 742 695 738
+029500 99999 PARAINEN FAGERHOLM 2013 729 571 718 719 743 720 744 743 718 744 104 0
+029500 99999 PARAINEN FAGERHOLM 2014 378 447 494 477 495 479 734 744 719 743 720 499
+029500 99999 PARAINEN FAGERHOLM 2015 668 672 743 216 740 717 735 742 657 743 717 743
+029500 99999 PARAINEN FAGERHOLM 2016 743 686 735 719 744 720 744 744 718 744 717 744
+029500 99999 PARAINEN FAGERHOLM 2017 741 672 744 720 744 718 744 740 718 743 719 741
+029500 99999 PARAINEN FAGERHOLM 2018 742 671 744 713 740 720 741 678 565 725 571 744
+029500 99999 PARAINEN FAGERHOLM 2019 744 672 730 719 644 720 743 742 719 113 0 0
+029700 99999 MARIEHAMN 1917 93 84 93 89 93 89 93 93 90 93 90 93
+029700 99999 MARIEHAMN 1918 92 84 93 90 93 90 93 93 90 93 90 93
+029700 99999 MARIEHAMN 1919 93 84 93 90 93 90 93 93 90 93 90 93
+029700 99999 MARIEHAMN 1920 93 87 93 90 93 90 93 0 0 93 90 93
+029700 99999 MARIEHAMN 1921 93 84 93 90 93 90 93 93 90 93 88 93
+029700 99999 MARIEHAMN 1922 93 84 93 90 92 87 93 93 90 93 90 93
+029700 99999 MARIEHAMN 1923 93 80 93 90 93 90 93 93 90 93 90 93
+029700 99999 MARIEHAMN 1924 92 87 93 90 91 90 93 93 90 93 90 93
+029700 99999 MARIEHAMN 1925 93 84 93 90 93 90 93 93 90 93 90 93
+029700 99999 MARIEHAMN 1926 93 83 93 90 93 90 93 93 90 93 90 93
+029700 99999 MARIEHAMN 1952 70 97 104 106 103 104 116 114 109 116 117 115
+029700 99999 MARIEHAMN 1953 116 107 84 114 119 103 103 114 105 109 104 106
+029700 99999 MARIEHAMN 1954 111 96 104 98 105 106 0 0 0 10 14 5
+029700 99999 MARIEHAMN 1955 2 9 7 15 19 18 37 47 46 46 41 45
+029700 99999 MARIEHAMN 1956 51 61 72 63 90 82 94 87 88 71 88 86
+029700 99999 MARIEHAMN 1957 85 63 83 107 98 103 51 65 53 100 100 101
+029700 99999 MARIEHAMN 1958 95 39 56 54 42 51 63 48 53 32 46 67
+029700 99999 MARIEHAMN 1959 230 199 236 228 226 226 228 163 214 227 200 229
+029700 99999 MARIEHAMN 1960 226 217 220 218 225 207 219 227 221 198 215 230
+029700 99999 MARIEHAMN 1961 222 191 226 222 239 219 224 224 212 226 213 238
+029700 99999 MARIEHAMN 1962 231 212 239 237 242 229 242 237 232 234 231 242
+029700 99999 MARIEHAMN 1963 238 221 232 235 239 230 233 238 232 230 226 239
+029700 99999 MARIEHAMN 1973 236 212 245 237 226 223 244 248 238 241 226 240
+029700 99999 MARIEHAMN 1974 239 220 242 231 241 237 242 244 234 242 229 240
+029700 99999 MARIEHAMN 1975 235 218 240 236 234 233 242 242 234 241 232 243
+029700 99999 MARIEHAMN 1976 238 229 241 237 245 237 245 244 235 241 234 245
+029700 99999 MARIEHAMN 1977 247 222 245 235 246 230 242 242 232 242 235 244
+029700 99999 MARIEHAMN 1978 239 220 246 235 240 234 239 244 233 243 238 239
+029700 99999 MARIEHAMN 1979 244 219 247 239 240 236 246 255 236 244 235 246
+029700 99999 MARIEHAMN 1980 240 224 243 229 240 230 233 243 234 243 236 245
+029700 99999 MARIEHAMN 1981 244 219 243 233 244 234 240 239 238 239 235 237
+029700 99999 MARIEHAMN 1982 234 219 240 229 244 230 243 243 235 244 235 246
+029700 99999 MARIEHAMN 1983 241 219 248 240 245 234 246 243 234 247 237 243
+029700 99999 MARIEHAMN 1984 240 227 243 239 243 240 247 246 240 247 233 246
+029700 99999 MARIEHAMN 1985 243 221 243 238 246 237 246 244 237 248 239 246
+029700 99999 MARIEHAMN 1986 247 220 231 125 230 235 246 245 233 246 235 247
+029700 99999 MARIEHAMN 1987 243 221 246 236 240 239 246 237 237 248 236 245
+029700 99999 MARIEHAMN 1988 246 227 247 236 244 235 246 240 238 242 239 246
+029700 99999 MARIEHAMN 1989 245 219 243 240 246 240 244 241 239 247 237 245
+029700 99999 MARIEHAMN 1990 241 221 246 240 236 238 241 233 228 227 233 239
+029700 99999 MARIEHAMN 1991 241 218 243 233 244 231 245 237 237 243 235 243
+029700 99999 MARIEHAMN 1992 243 227 247 239 249 244 240 243 254 241 234 249
+029700 99999 MARIEHAMN 1993 229 206 207 207 218 219 222 274 207 210 203 207
+029700 99999 MARIEHAMN 1994 204 184 205 191 198 191 203 225 217 224 216 227
+029700 99999 MARIEHAMN 1995 220 201 227 235 238 235 234 239 225 4 1 2
+029700 99999 MARIEHAMN 1996 3 0 1 4 0 0 1 0 0 2 1 0
+029700 99999 MARIEHAMN 1997 0 2 1 1 1 0 2 1 2 1 1 1
+029700 99999 MARIEHAMN 1998 0 2 31 49 21 11 0 475 239 36 432 684
+029700 99999 MARIEHAMN 1999 672 513 694 587 530 700 727 635 594 669 602 700
+029700 99999 MARIEHAMN 2000 640 609 583 578 566 529 636 641 587 702 669 709
+029700 99999 MARIEHAMN 2001 716 586 632 581 693 714 741 730 714 698 664 702
+029700 99999 MARIEHAMN 2002 727 669 703 1018 1074 1130 1437 1420 1392 1367 1404 1422
+029700 99999 MARIEHAMN 2003 1471 1295 1430 1427 1440 1420 1495 1474 1372 1441 1445 986
+029700 99999 MARIEHAMN 2004 1291 1385 1459 1426 1450 1382 1457 1481 1349 1446 1417 1460
+029700 99999 MARIEHAMN 2005 1485 1345 1476 1303 1492 1443 1407 1430 1289 1326 1430 1439
+029700 99999 MARIEHAMN 2006 1466 1308 1421 1430 1451 1437 1476 1488 1402 1430 1406 1481
+029700 99999 MARIEHAMN 2007 1482 1345 1449 1410 1483 1406 1481 1434 1426 1452 1451 1265
+029700 99999 MARIEHAMN 2008 1488 1335 1478 1445 1488 1450 1481 1506 1450 1502 1441 1508
+029700 99999 MARIEHAMN 2009 1512 1343 1485 1436 1460 1439 1498 1480 1445 1504 1438 1500
+029700 99999 MARIEHAMN 2010 1523 1351 1483 1447 1485 1422 1492 1520 1459 1510 1447 1504
+029700 99999 MARIEHAMN 2011 1497 1313 1434 1246 1488 1450 1532 1499 1486 1467 1447 1477
+029700 99999 MARIEHAMN 2012 1502 1423 1512 1438 1496 1435 1475 1493 1400 1509 1453 1509
+029700 99999 MARIEHAMN 2013 1523 1363 1496 1422 1465 1460 1490 2076 2143 2254 2165 2233
+029700 99999 MARIEHAMN 2014 2243 2001 2239 2150 2154 2158 2212 2245 2160 2255 2187 1990
+029700 99999 MARIEHAMN 2015 2140 2047 2245 648 2232 2177 2184 2241 2124 2248 2164 2220
+029700 99999 MARIEHAMN 2016 2053 2037 2192 2139 2169 2155 2225 2180 2140 2229 2141 2222
+029700 99999 MARIEHAMN 2017 2205 1999 2219 2141 2226 2136 2133 2213 2146 2226 2169 2180
+029700 99999 MARIEHAMN 2018 2228 1979 2170 2119 2201 2086 2195 2207 1874 2142 1339 2226
+029700 99999 MARIEHAMN 2019 2228 2013 2195 2156 1925 2157 2229 2224 2134 333 0 0
+029720 99999 TURKU 1901 93 84 93 90 93 90 93 93 90 93 90 90
+029720 99999 TURKU 1902 93 84 93 90 93 90 93 93 90 93 90 93
+029720 99999 TURKU 1903 93 84 93 90 93 90 93 93 90 93 90 93
+029720 99999 TURKU 1904 93 87 93 90 93 90 93 93 90 93 90 93
+029720 99999 TURKU 1905 93 84 92 90 93 90 93 93 90 93 89 93
+029720 99999 TURKU 1952 111 108 107 115 118 112 119 121 114 119 114 118
+029720 99999 TURKU 1953 117 108 110 114 119 110 120 118 114 118 115 121
+029720 99999 TURKU 1954 112 101 110 108 117 110 119 119 116 114 116 118
+029720 99999 TURKU 1955 121 109 120 113 122 116 118 121 114 119 111 119
+029720 99999 TURKU 1956 120 106 122 119 121 114 120 120 117 122 115 121
+029720 99999 TURKU 1957 121 106 114 108 104 102 124 124 120 124 120 123
+029720 99999 TURKU 1958 124 111 124 120 124 120 123 124 120 124 120 124
+029720 99999 TURKU 1959 237 198 238 235 222 226 225 196 208 227 209 225
+029720 99999 TURKU 1960 228 207 217 208 225 209 201 232 227 226 231 214
+029720 99999 TURKU 1961 224 211 233 218 242 228 229 234 218 225 222 238
+029720 99999 TURKU 1962 231 211 235 237 242 233 239 237 230 241 235 240
+029720 99999 TURKU 1963 240 216 230 227 238 225 236 238 234 230 228 238
+029720 99999 TURKU 1973 1574 1382 1540 1554 1105 1449 1531 1558 1470 1589 1547 1508
+029720 99999 TURKU 1974 1601 1445 1567 1518 1589 1533 1584 1557 1544 1582 1432 1546
+029720 99999 TURKU 1975 1565 1455 1506 1542 1549 1557 1559 1594 1559 1634 1580 1593
+029720 99999 TURKU 1976 1669 1553 1642 1581 1644 1596 1645 1646 1603 1617 1603 1626
+029720 99999 TURKU 1977 1684 1535 1709 1641 1650 1542 1657 1690 1650 1705 1643 1596
+029720 99999 TURKU 1978 1704 1534 1693 1595 1684 1635 1688 1703 1651 1696 1651 1632
+029720 99999 TURKU 1979 1710 1548 1653 1653 1716 1652 1708 1755 1660 1709 1643 1645
+029720 99999 TURKU 1980 1718 1388 1719 1674 909 1091 1733 2096 2079 2202 2127 2094
+029720 99999 TURKU 1981 2202 1976 2052 1633 1710 1646 1693 1689 1655 1702 1650 1623
+029720 99999 TURKU 1982 1693 1519 1691 1637 1661 1635 1684 1700 1651 1662 1636 1616
+029720 99999 TURKU 1983 1679 1513 1697 1625 1701 1608 1678 1687 1638 1695 1630 1615
+029720 99999 TURKU 1984 1706 1585 1707 1643 1709 1624 1704 1689 1652 1699 1613 1622
+029720 99999 TURKU 1985 1675 1501 1673 1640 1646 1638 1690 1677 1623 1694 1617 1611
+029720 99999 TURKU 1986 1656 1515 1557 813 881 1630 1662 1683 1609 1662 1623 1594
+029720 99999 TURKU 1987 1633 1495 1678 1613 1623 1448 1637 1621 1547 1535 1468 1463
+029720 99999 TURKU 1988 1592 1522 1609 1565 1640 1228 1372 1548 1502 1589 1579 1626
+029720 99999 TURKU 1989 1590 1459 1617 1584 1610 1594 1598 1589 1523 1617 1553 1618
+029720 99999 TURKU 1990 1627 1456 1602 1580 1624 1605 1636 1651 1594 1617 1545 1594
+029720 99999 TURKU 1991 1628 1476 1639 1554 1637 1600 1693 1694 1638 1654 1651 1667
+029720 99999 TURKU 1992 1688 1545 1682 1633 1683 1617 1689 1710 1647 1698 1649 1705
+029720 99999 TURKU 1993 1695 1528 1654 1613 1657 1599 741 738 721 740 731 749
+029720 99999 TURKU 1994 793 680 762 716 740 711 729 745 715 723 720 736
+029720 99999 TURKU 1995 749 550 630 720 678 712 712 739 617 744 662 707
+029720 99999 TURKU 1996 731 668 731 660 737 642 714 741 710 738 723 730
+029720 99999 TURKU 1997 764 659 395 713 324 200 207 200 191 191 188 193
+029720 99999 TURKU 1998 187 79 222 195 221 225 218 606 724 746 710 751
+029720 99999 TURKU 1999 723 686 755 727 746 719 746 749 754 972 928 985
+029720 99999 TURKU 2000 982 946 998 955 983 957 982 977 951 985 915 952
+029720 99999 TURKU 2001 988 892 985 949 976 951 974 949 856 968 954 950
+029720 99999 TURKU 2002 964 885 947 911 968 1135 1687 1701 1621 1671 1623 1703
+029720 99999 TURKU 2003 1700 1500 1705 1641 1653 1644 1698 1675 1631 1699 1651 1716
+029720 99999 TURKU 2004 1705 1608 1737 1664 1707 1652 1708 1720 1624 1706 1665 1711
+029720 99999 TURKU 2005 1726 1557 1724 1672 1730 1674 1556 1997 1728 1853 2103 2094
+029720 99999 TURKU 2006 2179 1967 2185 2086 1716 1668 1737 1729 1675 1712 1659 1717
+029720 99999 TURKU 2007 1718 1549 1694 1675 1724 1670 1729 1678 1649 1733 1664 1729
+029720 99999 TURKU 2008 1728 1590 1720 1676 2024 2152 2216 2225 2039 2190 2128 2217
+029720 99999 TURKU 2009 2230 1992 2168 2153 2230 2136 2235 2081 2145 2196 2143 2181
+029720 99999 TURKU 2010 2221 1989 2180 2132 2123 2154 2224 2215 2099 2087 2140 1692
+029720 99999 TURKU 2011 1485 1343 1482 1437 1484 1436 1484 1484 1440 1484 1440 1483
+029720 99999 TURKU 2012 1488 1390 1486 1437 1487 1438 1487 1487 1440 1485 1438 1486
+029720 99999 TURKU 2013 1485 1341 1483 1436 1483 1437 1484 1474 1436 1488 1439 1483
+029720 99999 TURKU 2014 1484 1344 1486 1440 1482 1434 1466 1488 1439 1486 1439 1488
+029720 99999 TURKU 2015 1487 1344 1485 432 1485 1439 1474 1484 1438 1488 1439 1476
+029720 99999 TURKU 2016 1475 1368 1467 1435 1442 1437 1486 1460 1421 1487 1434 1485
+029720 99999 TURKU 2017 1484 1341 1488 1433 1488 1426 1488 1476 1436 1483 1438 1480
+029720 99999 TURKU 2018 1485 1342 1486 1421 1462 1426 1467 1468 1282 1458 1135 1488
+029720 99999 TURKU 2019 1488 1344 1461 1438 1270 1440 1488 1482 1420 221 0 0
+029740 99999 HELSINKI VANTAA 1952 116 114 121 118 122 116 122 124 115 122 117 117
+029740 99999 HELSINKI VANTAA 1953 122 112 118 118 124 116 120 122 118 124 119 124
+029740 99999 HELSINKI VANTAA 1954 121 109 121 116 122 118 121 122 115 118 115 121
+029740 99999 HELSINKI VANTAA 1955 120 110 123 114 123 117 118 122 115 121 114 120
+029740 99999 HELSINKI VANTAA 1956 118 107 123 118 123 114 122 121 119 124 115 122
+029740 99999 HELSINKI VANTAA 1957 121 105 115 110 107 103 123 124 120 122 119 124
+029740 99999 HELSINKI VANTAA 1958 124 112 124 120 124 120 124 124 120 124 120 124
+029740 99999 HELSINKI VANTAA 1959 236 201 238 236 228 227 227 196 212 226 210 214
+029740 99999 HELSINKI VANTAA 1960 215 208 218 208 226 211 204 232 226 226 231 217
+029740 99999 HELSINKI VANTAA 1961 225 212 233 219 240 227 230 233 220 225 221 238
+029740 99999 HELSINKI VANTAA 1962 229 215 236 235 240 232 237 237 233 243 236 241
+029740 99999 HELSINKI VANTAA 1963 241 216 232 228 238 221 239 241 236 229 227 235
+029740 99999 HELSINKI VANTAA 1973 1575 1383 1537 1551 1146 1452 1498 1537 1487 1580 1537 1495
+029740 99999 HELSINKI VANTAA 1974 1605 1435 1540 1504 1580 1535 1566 1563 1552 1582 1417 1524
+029740 99999 HELSINKI VANTAA 1975 1567 1456 1596 1549 1553 1544 1554 1595 1548 1633 1582 1598
+029740 99999 HELSINKI VANTAA 1976 1655 1568 1644 1586 1661 1607 1661 1644 1604 1643 906 1624
+029740 99999 HELSINKI VANTAA 1977 1692 1529 1708 1654 1654 1503 1642 1666 1619 1691 1651 1600
+029740 99999 HELSINKI VANTAA 1978 1695 1519 1692 1552 1624 1575 1638 1681 1619 1633 1617 1594
+029740 99999 HELSINKI VANTAA 1979 1692 1508 1633 1628 1708 1593 1699 1743 1641 1694 1634 1636
+029740 99999 HELSINKI VANTAA 1980 1702 1480 1670 1665 903 1088 1707 2097 2063 2199 2114 2081
+029740 99999 HELSINKI VANTAA 1981 2193 1971 2027 1590 1655 1592 1652 1660 1623 1690 1645 1621
+029740 99999 HELSINKI VANTAA 1982 1675 1504 1677 1599 1625 1582 1622 1651 1585 1613 1554 1550
+029740 99999 HELSINKI VANTAA 1983 1597 1439 1652 1587 1635 1542 1584 1546 1578 1626 1576 1575
+029740 99999 HELSINKI VANTAA 1984 1661 1552 1659 1623 1630 1555 1656 1549 1581 1638 1573 1592
+029740 99999 HELSINKI VANTAA 1985 1635 1467 1663 1575 1585 1575 1620 1638 1535 1590 1586 1502
+029740 99999 HELSINKI VANTAA 1986 1606 1468 1515 76 842 1538 1596 1638 1483 1599 1544 1517
+029740 99999 HELSINKI VANTAA 1987 1558 1421 1621 1594 1611 1446 1635 1645 1554 1557 1485 1483
+029740 99999 HELSINKI VANTAA 1988 1602 1546 1617 1487 1657 1236 1382 1573 1500 1595 1588 1644
+029740 99999 HELSINKI VANTAA 1989 1605 1491 1635 1587 1615 1617 1616 1613 1543 1631 1575 1639
+029740 99999 HELSINKI VANTAA 1990 1653 1482 1626 1599 1666 1625 1652 1689 1604 1643 1564 1634
+029740 99999 HELSINKI VANTAA 1991 1647 1486 1650 1570 1644 1620 1685 1703 1664 1669 1663 1684
+029740 99999 HELSINKI VANTAA 1992 1696 1560 1696 1631 1698 1630 1707 1723 1669 1714 1669 1722
+029740 99999 HELSINKI VANTAA 1993 1721 1545 1706 1654 1710 1645 751 766 732 747 755 859
+029740 99999 HELSINKI VANTAA 1994 879 720 799 760 750 730 755 756 729 752 725 780
+029740 99999 HELSINKI VANTAA 1995 771 699 814 744 765 724 753 747 735 750 743 769
+029740 99999 HELSINKI VANTAA 1996 778 706 752 737 764 716 748 756 726 764 727 761
+029740 99999 HELSINKI VANTAA 1997 759 694 753 729 734 700 740 740 515 657 736 719
+029740 99999 HELSINKI VANTAA 1998 711 604 732 731 736 736 699 731 731 763 730 757
+029740 99999 HELSINKI VANTAA 1999 738 735 786 752 752 719 748 754 771 975 948 990
+029740 99999 HELSINKI VANTAA 2000 990 950 1001 967 980 957 988 979 954 987 924 971
+029740 99999 HELSINKI VANTAA 2001 988 895 990 956 979 949 987 984 957 988 957 988
+029740 99999 HELSINKI VANTAA 2002 981 894 988 950 986 1147 1687 1703 1640 1678 1635 1723
+029740 99999 HELSINKI VANTAA 2003 1724 1539 1722 1670 1686 1656 1730 1722 1655 1722 1672 1726
+029740 99999 HELSINKI VANTAA 2004 1719 1617 1727 1672 1714 1660 1697 1716 1636 1722 1674 1717
+029740 99999 HELSINKI VANTAA 2005 1728 1569 1719 1676 1735 1674 1554 2010 1751 1847 2115 2088
+029740 99999 HELSINKI VANTAA 2006 2190 1991 2190 2152 2219 2156 2210 2170 2054 2214 2127 2206
+029740 99999 HELSINKI VANTAA 2007 2204 1988 2173 2133 2227 2146 2219 2167 2134 2152 2142 2231
+029740 99999 HELSINKI VANTAA 2008 2227 2054 2226 2155 2223 2142 2220 2227 2014 2191 2141 2229
+029740 99999 HELSINKI VANTAA 2009 2226 2007 2180 2157 2225 2139 2230 2204 2143 2224 2157 2199
+029740 99999 HELSINKI VANTAA 2010 2228 2003 2213 2141 2152 2136 2219 2227 2149 2197 2129 2219
+029740 99999 HELSINKI VANTAA 2011 2227 2006 2203 2139 2221 2148 2229 2218 2152 2220 2155 2224
+029740 99999 HELSINKI VANTAA 2012 2231 2084 2225 2146 2112 2072 2208 2210 2155 2228 2151 2227
+029740 99999 HELSINKI VANTAA 2013 2224 1982 2210 2154 2217 2159 2225 2217 2150 2229 2147 2227
+029740 99999 HELSINKI VANTAA 2014 2223 2012 2224 2155 2220 2150 2201 2231 2156 2230 2160 2013
+029740 99999 HELSINKI VANTAA 2015 2158 2009 2225 648 2228 2159 2221 2223 2111 2230 2157 2222
+029740 99999 HELSINKI VANTAA 2016 2228 2055 2204 2155 2202 2155 2230 2184 2149 2231 2151 2222
+029740 99999 HELSINKI VANTAA 2017 2225 2013 2232 2155 2231 2148 2229 2165 2137 2225 2159 2222
+029740 99999 HELSINKI VANTAA 2018 2211 2012 2231 2140 2217 2159 2221 2201 1897 2196 1709 2232
+029740 99999 HELSINKI VANTAA 2019 2231 2016 2194 2157 1921 2155 2231 2224 2131 332 0 0
+029810 99999 PARAINEN UTO 1901 93 84 93 90 93 90 93 92 90 93 90 93
+029810 99999 PARAINEN UTO 1902 93 84 93 90 93 90 93 92 90 93 90 93
+029810 99999 PARAINEN UTO 1903 93 84 93 90 93 90 93 92 90 93 90 93
+029810 99999 PARAINEN UTO 1904 93 87 93 90 93 90 93 93 90 93 90 93
+029810 99999 PARAINEN UTO 1905 93 84 93 90 93 90 93 93 90 93 90 93
+029810 99999 PARAINEN UTO 1973 175 160 215 203 167 188 219 207 187 173 162 145
+029810 99999 PARAINEN UTO 1974 184 163 189 203 224 225 230 233 222 229 230 226
+029810 99999 PARAINEN UTO 1975 225 212 235 228 218 87 1 1 0 173 231 241
+029810 99999 PARAINEN UTO 1976 241 222 243 236 241 232 245 243 233 237 236 242
+029810 99999 PARAINEN UTO 1977 243 219 240 235 243 230 245 236 232 242 236 239
+029810 99999 PARAINEN UTO 1978 241 223 243 233 238 234 244 244 239 246 238 245
+029810 99999 PARAINEN UTO 1979 244 218 243 235 236 238 244 248 233 244 234 240
+029810 99999 PARAINEN UTO 1980 244 225 239 228 238 228 230 238 232 242 232 233
+029810 99999 PARAINEN UTO 1981 240 213 235 235 243 235 239 236 231 181 172 179
+029810 99999 PARAINEN UTO 1982 181 180 236 230 231 223 238 237 231 238 232 242
+029810 99999 PARAINEN UTO 1983 241 219 243 227 244 234 242 243 230 238 231 241
+029810 99999 PARAINEN UTO 1984 236 227 240 231 242 234 239 244 237 242 232 241
+029810 99999 PARAINEN UTO 1985 233 200 238 227 216 224 231 235 222 238 221 223
+029810 99999 PARAINEN UTO 1986 233 198 222 194 205 206 218 226 208 230 223 212
+029810 99999 PARAINEN UTO 1987 217 192 221 224 225 217 236 218 203 229 199 209
+029810 99999 PARAINEN UTO 1988 210 198 189 224 224 207 205 211 198 211 205 202
+029810 99999 PARAINEN UTO 1989 218 198 225 232 225 194 199 203 185 185 181 170
+029810 99999 PARAINEN UTO 1990 195 170 186 229 222 227 225 221 231 215 222 230
+029810 99999 PARAINEN UTO 1991 245 220 248 233 243 232 245 237 235 239 234 246
+029810 99999 PARAINEN UTO 1992 245 228 246 241 247 238 243 242 238 239 230 242
+029810 99999 PARAINEN UTO 1993 228 205 207 208 204 205 215 221 203 205 199 204
+029810 99999 PARAINEN UTO 1994 203 185 199 188 192 187 201 230 218 230 214 230
+029810 99999 PARAINEN UTO 1995 226 202 228 235 238 232 235 237 230 233 223 236
+029810 99999 PARAINEN UTO 1996 240 208 218 190 227 222 221 226 220 220 220 222
+029810 99999 PARAINEN UTO 1997 225 198 202 201 204 201 207 197 191 193 186 200
+029810 99999 PARAINEN UTO 1998 180 80 191 169 218 222 215 214 213 183 188 193
+029810 99999 PARAINEN UTO 1999 189 220 210 225 233 211 135 190 215 226 209 229
+029810 99999 PARAINEN UTO 2000 224 226 246 231 245 239 243 235 234 247 230 201
+029810 99999 PARAINEN UTO 2001 244 218 243 236 244 233 232 215 140 226 240 211
+029810 99999 PARAINEN UTO 2002 226 218 209 199 227 216 238 241 231 239 232 242
+029810 99999 PARAINEN UTO 2003 245 203 238 234 234 235 240 215 229 232 235 241
+029810 99999 PARAINEN UTO 2004 243 227 243 237 246 231 240 244 235 244 239 246
+029810 99999 PARAINEN UTO 2005 245 224 246 229 246 231 306 679 505 595 692 621
+029810 99999 PARAINEN UTO 2006 724 640 712 717 737 715 723 682 600 736 695 732
+029810 99999 PARAINEN UTO 2007 728 654 713 682 742 672 710 697 661 659 698 691
+029810 99999 PARAINEN UTO 2008 693 676 737 713 734 712 730 736 600 706 699 738
+029810 99999 PARAINEN UTO 2009 738 663 706 661 742 707 741 711 710 741 718 714
+029810 99999 PARAINEN UTO 2010 739 668 730 718 660 647 734 740 711 723 700 731
+029810 99999 PARAINEN UTO 2011 701 650 643 628 733 710 743 735 701 736 714 722
+029810 99999 PARAINEN UTO 2012 688 694 729 672 623 630 723 623 713 719 695 740
+029810 99999 PARAINEN UTO 2013 732 642 723 719 739 713 711 560 716 742 298 248
+029810 99999 PARAINEN UTO 2014 246 224 248 225 241 237 244 246 235 248 240 247
+029810 99999 PARAINEN UTO 2015 248 224 248 72 247 239 247 248 239 248 240 638
+029810 99999 PARAINEN UTO 2016 743 659 733 715 740 719 744 742 715 743 714 742
+029810 99999 PARAINEN UTO 2017 733 672 744 720 741 714 744 718 717 730 708 742
+029810 99999 PARAINEN UTO 2018 742 671 744 714 739 718 736 723 586 724 571 744
+029810 99999 PARAINEN UTO 2019 744 653 732 719 643 720 742 742 718 108 0 0
+029820 99999 HANKO RUSSARO 1906 93 84 93 90 93 90 93 93 90 93 90 93
+029820 99999 HANKO RUSSARO 1907 93 84 93 90 93 90 93 93 88 93 90 85
+029820 99999 HANKO RUSSARO 1908 93 87 93 90 93 90 93 93 90 93 90 93
+029820 99999 HANKO RUSSARO 1909 93 84 93 90 93 90 93 93 90 93 89 93
+029820 99999 HANKO RUSSARO 1910 93 84 93 89 93 88 91 93 90 93 90 93
+029820 99999 HANKO RUSSARO 1911 93 84 93 90 93 90 93 93 90 93 90 93
+029820 99999 HANKO RUSSARO 1912 93 87 93 90 93 90 93 93 90 93 90 93
+029820 99999 HANKO RUSSARO 1913 93 84 93 90 92 90 93 93 90 93 90 93
+029820 99999 HANKO RUSSARO 1914 93 84 93 90 93 90 93 93 90 93 90 93
+029820 99999 HANKO RUSSARO 1915 93 84 93 90 93 90 93 93 89 93 90 93
+029820 99999 HANKO RUSSARO 1952 86 106 117 116 110 109 122 121 111 119 117 120
+029820 99999 HANKO RUSSARO 1953 120 112 102 119 121 111 119 122 118 124 120 121
+029820 99999 HANKO RUSSARO 1954 121 106 121 116 119 106 115 113 101 87 107 109
+029820 99999 HANKO RUSSARO 1955 108 102 110 112 111 111 104 102 101 101 105 109
+029820 99999 HANKO RUSSARO 1956 105 99 110 101 120 111 115 116 111 107 101 114
+029820 99999 HANKO RUSSARO 1957 108 76 101 109 104 102 39 57 52 87 89 94
+029820 99999 HANKO RUSSARO 1958 78 18 39 22 14 30 20 8 14 6 1 1
+029820 99999 HANKO RUSSARO 1959 224 185 228 231 219 220 225 162 211 226 203 231
+029820 99999 HANKO RUSSARO 1960 224 220 220 223 225 207 221 225 227 200 219 231
+029820 99999 HANKO RUSSARO 1961 225 183 230 222 240 222 226 231 211 228 215 238
+029820 99999 HANKO RUSSARO 1962 230 214 239 239 245 228 244 241 233 238 234 239
+029820 99999 HANKO RUSSARO 1963 235 218 233 234 240 227 236 242 235 229 231 239
+029820 99999 HANKO RUSSARO 1973 233 212 246 235 234 229 241 243 230 246 230 237
+029820 99999 HANKO RUSSARO 1974 244 219 240 228 236 232 240 243 236 247 231 244
+029820 99999 HANKO RUSSARO 1975 240 221 243 233 231 233 243 245 237 245 235 244
+029820 99999 HANKO RUSSARO 1976 243 227 243 235 244 233 245 242 230 242 237 246
+029820 99999 HANKO RUSSARO 1977 246 222 246 233 244 233 247 242 233 244 231 241
+029820 99999 HANKO RUSSARO 1978 241 223 245 236 244 236 240 246 237 246 238 246
+029820 99999 HANKO RUSSARO 1979 247 223 248 232 242 235 244 244 236 244 238 245
+029820 99999 HANKO RUSSARO 1980 245 226 244 233 239 166 186 245 238 244 226 238
+029820 99999 HANKO RUSSARO 1981 249 221 244 235 242 234 239 239 226 171 155 167
+029820 99999 HANKO RUSSARO 1982 181 173 239 228 221 226 245 226 237 243 237 243
+029820 99999 HANKO RUSSARO 1983 243 218 239 235 241 228 246 240 233 244 232 241
+029820 99999 HANKO RUSSARO 1984 210 207 225 202 216 205 208 218 221 219 210 218
+029820 99999 HANKO RUSSARO 1985 214 206 200 218 218 211 217 213 201 224 215 223
+029820 99999 HANKO RUSSARO 1986 222 196 218 210 211 195 214 217 213 213 209 218
+029820 99999 HANKO RUSSARO 1987 227 211 223 231 232 225 229 211 220 229 216 220
+029820 99999 HANKO RUSSARO 1988 202 194 227 136 225 220 233 237 233 236 230 209
+029820 99999 HANKO RUSSARO 1989 231 214 230 235 240 231 235 216 229 234 232 229
+029820 99999 HANKO RUSSARO 1990 224 210 238 238 229 233 234 224 223 226 228 238
+029820 99999 HANKO RUSSARO 1991 240 223 242 233 242 233 244 239 237 242 235 245
+029820 99999 HANKO RUSSARO 1992 244 229 246 236 247 236 243 243 238 240 231 238
+029820 99999 HANKO RUSSARO 1993 226 203 212 207 209 203 216 219 200 209 197 206
+029820 99999 HANKO RUSSARO 1994 200 181 200 193 201 182 200 225 222 226 220 235
+029820 99999 HANKO RUSSARO 1995 230 201 230 239 240 232 237 238 232 232 225 236
+029820 99999 HANKO RUSSARO 1996 235 226 232 228 243 227 241 231 233 246 232 239
+029820 99999 HANKO RUSSARO 1997 235 211 228 206 231 231 236 240 221 234 223 223
+029820 99999 HANKO RUSSARO 1998 216 213 234 233 238 232 241 232 232 228 228 240
+029820 99999 HANKO RUSSARO 1999 235 221 240 228 233 219 230 229 195 204 227 238
+029820 99999 HANKO RUSSARO 2000 226 230 245 233 244 237 246 238 239 246 236 247
+029820 99999 HANKO RUSSARO 2001 246 222 244 237 242 234 242 241 240 248 240 244
+029820 99999 HANKO RUSSARO 2002 245 222 247 235 244 227 242 244 232 241 239 239
+029820 99999 HANKO RUSSARO 2003 241 210 243 235 240 231 236 241 231 243 234 246
+029820 99999 HANKO RUSSARO 2004 240 219 239 234 243 226 240 242 237 240 229 241
+029820 99999 HANKO RUSSARO 2005 242 222 243 233 225 236 244 238 197 224 238 245
+029820 99999 HANKO RUSSARO 2006 238 222 245 240 247 240 239 247 240 246 240 244
+029820 99999 HANKO RUSSARO 2007 247 220 238 237 247 228 227 240 238 246 240 246
+029820 99999 HANKO RUSSARO 2008 247 229 244 239 247 239 246 247 202 247 239 246
+029820 99999 HANKO RUSSARO 2009 248 223 244 240 246 236 248 245 240 248 240 248
+029820 99999 HANKO RUSSARO 2010 247 223 247 239 248 240 248 248 240 245 239 248
+029820 99999 HANKO RUSSARO 2011 248 223 247 239 247 239 248 248 240 248 238 248
+029820 99999 HANKO RUSSARO 2012 247 232 246 240 247 239 248 248 240 247 239 247
+029820 99999 HANKO RUSSARO 2013 247 224 250 238 247 618 739 737 674 696 706 737
+029820 99999 HANKO RUSSARO 2014 737 666 738 717 736 716 733 743 716 734 719 524
+029820 99999 HANKO RUSSARO 2015 670 670 738 216 740 715 742 739 675 741 718 513
+029820 99999 HANKO RUSSARO 2016 743 685 734 718 744 720 744 744 718 744 717 744
+029820 99999 HANKO RUSSARO 2017 742 672 744 720 744 718 744 739 713 741 720 742
+029820 99999 HANKO RUSSARO 2018 742 671 744 714 739 719 740 723 602 730 571 744
+029820 99999 HANKO RUSSARO 2019 744 672 733 719 644 718 743 742 716 111 0 0
+
+
+Total Surface Hourly Observations Available: 6966213
+Total Station-Years: 894
diff --git a/notebooks/L7/metadata/6367598020644stn.txt b/notebooks/L7/metadata/6367598020644stn.txt
new file mode 100644
index 0000000..a3c805f
--- /dev/null
+++ b/notebooks/L7/metadata/6367598020644stn.txt
@@ -0,0 +1,17 @@
+USAF-WBAN_ID STATION NAME COUNTRY STATE LATITUDE LONGITUDE ELEVATION
+------------ ------------------------------ -------------------------------------------------- ------------------------------ -------- --------- ---------
+028360 99999 SODANKYLA FINLAND +67.395 +026.619 +0183.5
+028690 99999 KUUSAMO FINLAND +65.988 +029.239 +0264.0
+028750 99999 OULU FINLAND +64.930 +025.355 +0014.3
+028970 99999 KAJAANI FINLAND +64.285 +027.692 +0147.2
+029070 99999 KALAJOKI ULKOKALLA FINLAND +64.333 +023.450 +0005.0
+029110 99999 VAASA FINLAND +63.051 +021.762 +0005.8
+029170 99999 KUOPIO FINLAND +63.007 +027.798 +0098.5
+029350 99999 JYVASKYLA FINLAND +62.399 +025.678 +0139.9
+029440 99999 TAMPERE PIRKKALA FINLAND +61.414 +023.604 +0118.9
+029500 99999 PARAINEN FAGERHOLM FINLAND +60.117 +021.700 +0004.5
+029700 99999 MARIEHAMN FINLAND +60.122 +019.898 +0005.2
+029720 99999 TURKU FINLAND +60.514 +022.263 +0049.1
+029740 99999 HELSINKI VANTAA FINLAND +60.317 +024.963 +0054.6
+029810 99999 PARAINEN UTO FINLAND +59.783 +021.367 +0006.8
+029820 99999 HANKO RUSSARO FINLAND +59.767 +022.950 +0006.5