-
Notifications
You must be signed in to change notification settings - Fork 1
/
main_PMAES_many2one.py
148 lines (121 loc) · 7.28 KB
/
main_PMAES_many2one.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
import os
import time
import argparse
import random
import numpy as np
from torch.utils.data import DataLoader
from models.PMAES import EssayEncoder, Scorer, PromptMappingCL
from configs import Configs
from utils.read_data import read_pos_vocab, read_essays_single_score
from utils.general_utils import pad_hierarchical_text_sequences, get_single_scaled_down_score
import torch
from data_set import PMAESDataSet
from train.train_PMAES import TrainSingleOverallScoring
def seed_all(seed_value):
"""
Setting the random seed across the pipeline
"""
torch.manual_seed(seed_value) # cpu vars
random.seed(seed_value)
np.random.seed(seed_value) # cpu vars
os.environ['PYTHONHASHSEED'] = str(seed_value)
if torch.cuda.is_available():
torch.cuda.manual_seed(seed_value)
torch.cuda.manual_seed_all(seed_value) # gpu vars
torch.backends.cudnn.deterministic = True # needed
torch.backends.cudnn.benchmark = False
if __name__ == '__main__':
parser = argparse.ArgumentParser(description="PAES_attributes models")
parser.add_argument('--seed', type=int, default=12, help='set random seed')
parser.add_argument('--target_prompt_id', type=int, default=1, help='set random seed')
parser.add_argument('--attribute_name', type=str, default='score', help='set random seed')
parser.add_argument('--source2target', type=str, default='many2one', help='Setting of source-target pair')
parser.add_argument('--embedding_dim', type=int, default=50, help='Only useful when embedding is randomly initialised')
parser.add_argument('--num_epochs', type=int, default=50, help='number of epochs for training')
parser.add_argument('--filter_num', type=int, default=100, help='Num of filters in conv layer')
parser.add_argument('--kernel_size', type=int, default=3, help='filter length in 1st conv layer')
parser.add_argument('--rnn_type', type=str, default='LSTM', help='Recurrent type')
parser.add_argument('--lstm_units', type=int, default=50, help='Num of hidden units in recurrent layer')
parser.add_argument('--learning_rate', type=float, default=1e-4, help='Initial learning rate')
parser.add_argument('--dropout', type=float, default=0.2, help='Dropout rate for layers')
parser.add_argument('--device', type=str, help='cpu or gpu', default='cuda')
args = parser.parse_args()
test_prompt_id = args.target_prompt_id
seed = args.seed
seed_all(seed)
print("Test prompt id is {} of type {}".format(test_prompt_id, type(test_prompt_id)))
print("Seed: {}".format(seed))
configs = Configs()
data_path = configs.DATA_PATH
train_path = data_path + str(test_prompt_id) + '/train.pk'
dev_path = data_path + str(test_prompt_id) + '/dev.pk'
test_path = data_path + str(test_prompt_id) + '/test.pk'
features_path = configs.FEATURES_PATH
readability_path = configs.READABILITY_PATH
read_configs = {
'train_path': train_path,
'dev_path': dev_path,
'test_path': test_path,
'features_path': features_path,
'readability_path': readability_path,
}
pos_vocab = read_pos_vocab(read_configs)
train_data, valid_data, test_data = read_essays_single_score(read_configs, pos_vocab, args.attribute_name)
max_sent_len = max(train_data['max_sent_len'], valid_data['max_sent_len'], test_data['max_sent_len'])
max_sent_num = max(train_data['max_sent_num'], valid_data['max_sent_num'], test_data['max_sent_num'])
print('max sent length: {}'.format(max_sent_len))
print('max sent num: {}'.format(max_sent_num))
train_data['score_scaled'] = get_single_scaled_down_score(train_data['score'], train_data['prompt_ids'], args.attribute_name)
valid_data['score_scaled'] = get_single_scaled_down_score(valid_data['score'], valid_data['prompt_ids'], args.attribute_name)
test_data['score_scaled'] = get_single_scaled_down_score(test_data['score'], test_data['prompt_ids'], args.attribute_name)
train_prompt_ids = train_data['prompt_ids']
dev_prompt_ids = valid_data['prompt_ids']
test_prompt_ids = test_data['prompt_ids']
train_essay_pos = pad_hierarchical_text_sequences(train_data['essay_pos'], max_sent_num, max_sent_len)
valid_essay_pos = pad_hierarchical_text_sequences(valid_data['essay_pos'], max_sent_num, max_sent_len)
test_essay_pos = pad_hierarchical_text_sequences(test_data['essay_pos'], max_sent_num, max_sent_len)
train_essay_pos = train_essay_pos.reshape((train_essay_pos.shape[0], train_essay_pos.shape[1] * train_essay_pos.shape[2]))
valid_essay_pos = valid_essay_pos.reshape((valid_essay_pos.shape[0], valid_essay_pos.shape[1] * valid_essay_pos.shape[2]))
test_essay_pos = test_essay_pos.reshape((test_essay_pos.shape[0], test_essay_pos.shape[1] * test_essay_pos.shape[2]))
train_score = np.array(train_data['score_scaled'])
valid_score = np.array(valid_data['score_scaled'])
test_score = np.array(test_data['score_scaled'])
train_linguistic = np.array(train_data['linguistic'])
valid_linguistic = np.array(valid_data['linguistic'])
test_linguistic = np.array(test_data['linguistic'])
train_readability = np.array(train_data['readability'])
valid_readability = np.array(valid_data['readability'])
test_readability = np.array(test_data['readability'])
tr_s_num, tr_t_num = len(train_essay_pos), len(test_essay_pos)
batch_num = 2
s_batch_size = int(tr_s_num / batch_num)
t_batch_size = int(tr_t_num / batch_num)
s_batch_num = int(tr_s_num / s_batch_size)
t_batch_num = int(tr_t_num / t_batch_size)
while t_batch_num > s_batch_num:
s_batch_size -= 1
s_batch_num = int(tr_s_num / s_batch_size)
tr_s_loader = DataLoader(PMAESDataSet(train_prompt_ids, train_essay_pos, train_linguistic, train_readability, train_score), batch_size=s_batch_size)
va_s_loader = DataLoader(PMAESDataSet(dev_prompt_ids, valid_essay_pos, valid_linguistic, valid_readability, valid_score), batch_size=s_batch_size)
te_t_loader = DataLoader(PMAESDataSet(test_prompt_ids, test_essay_pos, test_linguistic, test_readability, test_score), batch_size=t_batch_size)
essay_encoder = EssayEncoder(args, max_num=max_sent_num, max_len=max_sent_len, embed_dim=args.embedding_dim, pos_vocab=pos_vocab).to(args.device)
scorer = Scorer(args).to(args.device)
pm_cl = PromptMappingCL(args, tr_s_num, tr_t_num).to(args.device)
optims = torch.optim.Adam([{'params': essay_encoder.parameters()}, {'params': scorer.parameters()}, {'params': pm_cl.parameters()}], lr=args.learning_rate)
tr_log = {
'Epoch_best_dev_qwk': [0, 0, 0],
'Best_dev_qwk': [0, 0],
}
epochs = 50
for e_index in range(1, epochs+1):
TrainSingleOverallScoring(args,
essay_encoder, scorer, pm_cl, optims,
tr_s_loader, va_s_loader, te_t_loader,
args.target_prompt_id, e_index,
tr_log, args.attribute_name)
file_time = time.strftime("%Y-%m-%d", time.localtime())
result_file = 'result/many2one/PMAES-{}.txt'.format(seed)
with open(result_file, 'a', encoding='utf-8') as f:
f.write(file_time + 'TargetPrompt: {} Trait: {}'.format(args.target_id, args.attribute_name) + '\n')
for key, value in tr_log.items():
f.write(key + ':' + str(value) + '\n')