-
Notifications
You must be signed in to change notification settings - Fork 272
/
inference.py
318 lines (270 loc) · 17.5 KB
/
inference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
import functools
import logging
import pprint
import traceback
from argparse import ArgumentParser, Namespace, FileType
import copy
import os
from functools import partial
import warnings
from typing import Mapping, Optional
import yaml
# Ignore pandas deprecation warning around pyarrow
warnings.filterwarnings("ignore", category=DeprecationWarning,
message="(?s).*Pyarrow will become a required dependency of pandas.*")
import numpy as np
import pandas as pd
import torch
from torch_geometric.loader import DataLoader
from rdkit import RDLogger
from rdkit.Chem import RemoveAllHs
# TODO imports are a little odd, utils seems to shadow things
from utils.logging_utils import configure_logger, get_logger
import utils.utils
from datasets.process_mols import write_mol_with_coords
from utils.download import download_and_extract
from utils.diffusion_utils import t_to_sigma as t_to_sigma_compl, get_t_schedule
from utils.inference_utils import InferenceDataset, set_nones
from utils.sampling import randomize_position, sampling
from utils.utils import get_model
from utils.visualise import PDBFile
from tqdm import tqdm
if os.name != 'nt': # The line does not work on Windows
import resource
rlimit = resource.getrlimit(resource.RLIMIT_NOFILE)
resource.setrlimit(resource.RLIMIT_NOFILE, (64000, rlimit[1]))
RDLogger.DisableLog('rdApp.*')
warnings.filterwarnings("ignore", category=UserWarning,
message="The TorchScript type system doesn't support instance-level annotations on empty non-base types in `__init__`")
# Prody logging is very verbose by default
prody_logger = logging.getLogger(".prody")
prody_logger.setLevel(logging.ERROR)
REPOSITORY_URL = os.environ.get("REPOSITORY_URL", "https://github.com/gcorso/DiffDock")
REMOTE_URLS = [f"{REPOSITORY_URL}/releases/latest/download/diffdock_models.zip",
f"{REPOSITORY_URL}/releases/download/v1.1/diffdock_models.zip"]
def get_parser():
parser = ArgumentParser()
parser.add_argument('--config', type=FileType(mode='r'), default='default_inference_args.yaml')
parser.add_argument('--protein_ligand_csv', type=str, default=None, help='Path to a .csv file specifying the input as described in the README. If this is not None, it will be used instead of the --protein_path, --protein_sequence and --ligand parameters')
parser.add_argument('--complex_name', type=str, default=None, help='Name that the complex will be saved with')
parser.add_argument('--protein_path', type=str, default=None, help='Path to the protein file')
parser.add_argument('--protein_sequence', type=str, default=None, help='Sequence of the protein for ESMFold, this is ignored if --protein_path is not None')
parser.add_argument('--ligand_description', type=str, default='CCCCC(NC(=O)CCC(=O)O)P(=O)(O)OC1=CC=CC=C1', help='Either a SMILES string or the path to a molecule file that rdkit can read')
parser.add_argument('-l', '--log', '--loglevel', type=str, default='WARNING', dest="loglevel",
help='Log level. Default %(default)s')
parser.add_argument('--out_dir', type=str, default='results/user_inference', help='Directory where the outputs will be written to')
parser.add_argument('--save_visualisation', action='store_true', default=False, help='Save a pdb file with all of the steps of the reverse diffusion')
parser.add_argument('--samples_per_complex', type=int, default=10, help='Number of samples to generate')
parser.add_argument('--model_dir', type=str, default=None, help='Path to folder with trained score model and hyperparameters')
parser.add_argument('--ckpt', type=str, default='best_ema_inference_epoch_model.pt', help='Checkpoint to use for the score model')
parser.add_argument('--confidence_model_dir', type=str, default=None, help='Path to folder with trained confidence model and hyperparameters')
parser.add_argument('--confidence_ckpt', type=str, default='best_model.pt', help='Checkpoint to use for the confidence model')
parser.add_argument('--batch_size', type=int, default=10, help='')
parser.add_argument('--no_final_step_noise', action='store_true', default=True, help='Use no noise in the final step of the reverse diffusion')
parser.add_argument('--inference_steps', type=int, default=20, help='Number of denoising steps')
parser.add_argument('--actual_steps', type=int, default=None, help='Number of denoising steps that are actually performed')
parser.add_argument('--old_score_model', action='store_true', default=False, help='')
parser.add_argument('--old_confidence_model', action='store_true', default=True, help='')
parser.add_argument('--initial_noise_std_proportion', type=float, default=-1.0, help='Initial noise std proportion')
parser.add_argument('--choose_residue', action='store_true', default=False, help='')
parser.add_argument('--temp_sampling_tr', type=float, default=1.0)
parser.add_argument('--temp_psi_tr', type=float, default=0.0)
parser.add_argument('--temp_sigma_data_tr', type=float, default=0.5)
parser.add_argument('--temp_sampling_rot', type=float, default=1.0)
parser.add_argument('--temp_psi_rot', type=float, default=0.0)
parser.add_argument('--temp_sigma_data_rot', type=float, default=0.5)
parser.add_argument('--temp_sampling_tor', type=float, default=1.0)
parser.add_argument('--temp_psi_tor', type=float, default=0.0)
parser.add_argument('--temp_sigma_data_tor', type=float, default=0.5)
parser.add_argument('--gnina_minimize', action='store_true', default=False, help='')
parser.add_argument('--gnina_path', type=str, default='gnina', help='')
parser.add_argument('--gnina_log_file', type=str, default='gnina_log.txt', help='') # To redirect gnina subprocesses stdouts from the terminal window
parser.add_argument('--gnina_full_dock', action='store_true', default=False, help='')
parser.add_argument('--gnina_autobox_add', type=float, default=4.0)
parser.add_argument('--gnina_poses_to_optimize', type=int, default=1)
return parser
def main(args):
configure_logger(args.loglevel)
logger = get_logger()
if args.config:
config_dict = yaml.load(args.config, Loader=yaml.FullLoader)
arg_dict = args.__dict__
for key, value in config_dict.items():
if isinstance(value, list):
for v in value:
arg_dict[key].append(v)
else:
arg_dict[key] = value
# Download models if they don't exist locally
if not os.path.exists(args.model_dir):
logger.info(f"Models not found. Downloading")
remote_urls = REMOTE_URLS
downloaded_successfully = False
for remote_url in remote_urls:
try:
logger.info(f"Attempting download from {remote_url}")
files_downloaded = download_and_extract(remote_url, os.path.dirname(args.model_dir))
if not files_downloaded:
logger.info(f"Download from {remote_url} failed.")
continue
logger.info(f"Downloaded and extracted {len(files_downloaded)} files from {remote_url}")
downloaded_successfully = True
# Once we have downloaded the models, we can break the loop
break
except Exception as e:
pass
if not downloaded_successfully:
raise Exception(f"Models not found locally and failed to download them from {remote_urls}")
os.makedirs(args.out_dir, exist_ok=True)
with open(f'{args.model_dir}/model_parameters.yml') as f:
score_model_args = Namespace(**yaml.full_load(f))
if args.confidence_model_dir is not None:
with open(f'{args.confidence_model_dir}/model_parameters.yml') as f:
confidence_args = Namespace(**yaml.full_load(f))
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
logger.info(f"DiffDock will run on {device}")
if args.protein_ligand_csv is not None:
df = pd.read_csv(args.protein_ligand_csv)
complex_name_list = set_nones(df['complex_name'].tolist())
protein_path_list = set_nones(df['protein_path'].tolist())
protein_sequence_list = set_nones(df['protein_sequence'].tolist())
ligand_description_list = set_nones(df['ligand_description'].tolist())
else:
complex_name_list = [args.complex_name if args.complex_name else f"complex_0"]
protein_path_list = [args.protein_path]
protein_sequence_list = [args.protein_sequence]
ligand_description_list = [args.ligand_description]
complex_name_list = [name if name is not None else f"complex_{i}" for i, name in enumerate(complex_name_list)]
for name in complex_name_list:
write_dir = f'{args.out_dir}/{name}'
os.makedirs(write_dir, exist_ok=True)
# preprocessing of complexes into geometric graphs
test_dataset = InferenceDataset(out_dir=args.out_dir, complex_names=complex_name_list, protein_files=protein_path_list,
ligand_descriptions=ligand_description_list, protein_sequences=protein_sequence_list,
lm_embeddings=True,
receptor_radius=score_model_args.receptor_radius, remove_hs=score_model_args.remove_hs,
c_alpha_max_neighbors=score_model_args.c_alpha_max_neighbors,
all_atoms=score_model_args.all_atoms, atom_radius=score_model_args.atom_radius,
atom_max_neighbors=score_model_args.atom_max_neighbors,
knn_only_graph=False if not hasattr(score_model_args, 'not_knn_only_graph') else not score_model_args.not_knn_only_graph)
test_loader = DataLoader(dataset=test_dataset, batch_size=1, shuffle=False)
if args.confidence_model_dir is not None and not confidence_args.use_original_model_cache:
logger.info('Confidence model uses different type of graphs than the score model. '
'Loading (or creating if not existing) the data for the confidence model now.')
confidence_test_dataset = \
InferenceDataset(out_dir=args.out_dir, complex_names=complex_name_list, protein_files=protein_path_list,
ligand_descriptions=ligand_description_list, protein_sequences=protein_sequence_list,
lm_embeddings=True,
receptor_radius=confidence_args.receptor_radius, remove_hs=confidence_args.remove_hs,
c_alpha_max_neighbors=confidence_args.c_alpha_max_neighbors,
all_atoms=confidence_args.all_atoms, atom_radius=confidence_args.atom_radius,
atom_max_neighbors=confidence_args.atom_max_neighbors,
precomputed_lm_embeddings=test_dataset.lm_embeddings,
knn_only_graph=False if not hasattr(score_model_args, 'not_knn_only_graph') else not score_model_args.not_knn_only_graph)
else:
confidence_test_dataset = None
t_to_sigma = partial(t_to_sigma_compl, args=score_model_args)
model = get_model(score_model_args, device, t_to_sigma=t_to_sigma, no_parallel=True, old=args.old_score_model)
state_dict = torch.load(f'{args.model_dir}/{args.ckpt}', map_location=torch.device('cpu'))
model.load_state_dict(state_dict, strict=True)
model = model.to(device)
model.eval()
if args.confidence_model_dir is not None:
confidence_model = get_model(confidence_args, device, t_to_sigma=t_to_sigma, no_parallel=True,
confidence_mode=True, old=args.old_confidence_model)
state_dict = torch.load(f'{args.confidence_model_dir}/{args.confidence_ckpt}', map_location=torch.device('cpu'))
confidence_model.load_state_dict(state_dict, strict=True)
confidence_model = confidence_model.to(device)
confidence_model.eval()
else:
confidence_model = None
confidence_args = None
tr_schedule = get_t_schedule(inference_steps=args.inference_steps, sigma_schedule='expbeta')
failures, skipped = 0, 0
N = args.samples_per_complex
test_ds_size = len(test_dataset)
logger.info(f'Size of test dataset: {test_ds_size}')
for idx, orig_complex_graph in tqdm(enumerate(test_loader)):
if not orig_complex_graph.success[0]:
skipped += 1
logger.warning(f"The test dataset did not contain {test_dataset.complex_names[idx]} for {test_dataset.ligand_descriptions[idx]} and {test_dataset.protein_files[idx]}. We are skipping this complex.")
continue
try:
if confidence_test_dataset is not None:
confidence_complex_graph = confidence_test_dataset[idx]
if not confidence_complex_graph.success:
skipped += 1
logger.warning(f"The confidence dataset did not contain {orig_complex_graph.name}. We are skipping this complex.")
continue
confidence_data_list = [copy.deepcopy(confidence_complex_graph) for _ in range(N)]
else:
confidence_data_list = None
data_list = [copy.deepcopy(orig_complex_graph) for _ in range(N)]
randomize_position(data_list, score_model_args.no_torsion, False, score_model_args.tr_sigma_max,
initial_noise_std_proportion=args.initial_noise_std_proportion,
choose_residue=args.choose_residue)
lig = orig_complex_graph.mol[0]
# initialize visualisation
pdb = None
if args.save_visualisation:
visualization_list = []
for graph in data_list:
pdb = PDBFile(lig)
pdb.add(lig, 0, 0)
pdb.add((orig_complex_graph['ligand'].pos + orig_complex_graph.original_center).detach().cpu(), 1, 0)
pdb.add((graph['ligand'].pos + graph.original_center).detach().cpu(), part=1, order=1)
visualization_list.append(pdb)
else:
visualization_list = None
# run reverse diffusion
data_list, confidence = sampling(data_list=data_list, model=model,
inference_steps=args.actual_steps if args.actual_steps is not None else args.inference_steps,
tr_schedule=tr_schedule, rot_schedule=tr_schedule, tor_schedule=tr_schedule,
device=device, t_to_sigma=t_to_sigma, model_args=score_model_args,
visualization_list=visualization_list, confidence_model=confidence_model,
confidence_data_list=confidence_data_list, confidence_model_args=confidence_args,
batch_size=args.batch_size, no_final_step_noise=args.no_final_step_noise,
temp_sampling=[args.temp_sampling_tr, args.temp_sampling_rot,
args.temp_sampling_tor],
temp_psi=[args.temp_psi_tr, args.temp_psi_rot, args.temp_psi_tor],
temp_sigma_data=[args.temp_sigma_data_tr, args.temp_sigma_data_rot,
args.temp_sigma_data_tor])
ligand_pos = np.asarray([complex_graph['ligand'].pos.cpu().numpy() + orig_complex_graph.original_center.cpu().numpy() for complex_graph in data_list])
# reorder predictions based on confidence output
if confidence is not None and isinstance(confidence_args.rmsd_classification_cutoff, list):
confidence = confidence[:, 0]
if confidence is not None:
confidence = confidence.cpu().numpy()
re_order = np.argsort(confidence)[::-1]
confidence = confidence[re_order]
ligand_pos = ligand_pos[re_order]
# save predictions
write_dir = f'{args.out_dir}/{complex_name_list[idx]}'
for rank, pos in enumerate(ligand_pos):
mol_pred = copy.deepcopy(lig)
if score_model_args.remove_hs: mol_pred = RemoveAllHs(mol_pred)
if rank == 0: write_mol_with_coords(mol_pred, pos, os.path.join(write_dir, f'rank{rank+1}.sdf'))
write_mol_with_coords(mol_pred, pos, os.path.join(write_dir, f'rank{rank+1}_confidence{confidence[rank]:.2f}.sdf'))
# save visualisation frames
if args.save_visualisation:
if confidence is not None:
for rank, batch_idx in enumerate(re_order):
visualization_list[batch_idx].write(os.path.join(write_dir, f'rank{rank+1}_reverseprocess.pdb'))
else:
for rank, batch_idx in enumerate(ligand_pos):
visualization_list[batch_idx].write(os.path.join(write_dir, f'rank{rank+1}_reverseprocess.pdb'))
except Exception as e:
logger.warning("Failed on", orig_complex_graph["name"], e)
failures += 1
result_msg = f"""
Failed for {failures} / {test_ds_size} complexes.
Skipped {skipped} / {test_ds_size} complexes.
"""
if failures or skipped:
logger.warning(result_msg)
else:
logger.info(result_msg)
logger.info(f"Results saved in {args.out_dir}")
if __name__ == "__main__":
_args = get_parser().parse_args()
main(_args)