-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtransform.py
82 lines (67 loc) · 2.26 KB
/
transform.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
import cv2
import torch
import numpy as np
class Compose(object):
def __init__(self, *ops):
self.ops = ops
def __call__(self, rgb,t, mask):
for op in self.ops:
rgb,t, mask = op(rgb,t, mask)
return rgb,t, mask
class Normalize(object):
def __init__(self, mean1,mean2, std1,std2):
self.mean1 = mean1
self.mean2 = mean2
self.std1 = std1
self.std2 = std2
def __call__(self, rgb,t, mask):
rgb = (rgb - self.mean1)/self.std1
t = (t - self.mean2) / self.std2
mask /= 255
return rgb, t, mask
class Minusmean(object):
def __init__(self, mean1,mean2):
self.mean1 = mean1
self.mean2 = mean2
def __call__(self, rgb,t, mask):
rgb = rgb - self.mean1
t = t - self.mean2
mask /= 255
return rgb,t, mask
class Resize(object):
def __init__(self, H, W):
self.H = H
self.W = W
def __call__(self, rgb,t, mask):
rgb = cv2.resize(rgb, dsize=(self.W, self.H), interpolation=cv2.INTER_LINEAR)
t = cv2.resize(t, dsize=(self.W, self.H), interpolation=cv2.INTER_LINEAR)
mask = cv2.resize( mask, dsize=(self.W, self.H), interpolation=cv2.INTER_LINEAR)
return rgb,t, mask
class RandomCrop(object):
def __init__(self, H, W):
self.H = H
self.W = W
def __call__(self, rgb,t, mask):
H,W,_ = rgb.shape
xmin = np.random.randint(W-self.W+1)
ymin = np.random.randint(H-self.H+1)
rgb = rgb[ymin:ymin+self.H, xmin:xmin+self.W, :]
t = t[ymin:ymin + self.H, xmin:xmin + self.W, :]
mask = mask[ymin:ymin+self.H, xmin:xmin+self.W, :]
return rgb,t, mask
class RandomHorizontalFlip(object):
def __call__(self, rgb,t, mask):
if np.random.randint(2)==1:
rgb = rgb[:,::-1,:].copy()
t = t[:, ::-1, :].copy()
mask = mask[:,::-1,:].copy()
return rgb,t, mask
class ToTensor(object):
def __call__(self, rgb,t, mask):
rgb = torch.from_numpy(rgb)
rgb = rgb.permute(2, 0, 1)
t = torch.from_numpy(t)
t = t.permute(2, 0, 1)
mask = torch.from_numpy(mask)
mask = mask.permute(2, 0, 1)
return rgb,t,mask.mean(dim=0, keepdim=True)