-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmake_train_dev_split.py
236 lines (212 loc) · 10.7 KB
/
make_train_dev_split.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
""" Make train/dev/test split. """
import os, argparse, logging
import numpy as np
from comp_utils import stream_sents, ALL_LANGS, RELEVANT_LANGS, IRRELEVANT_LANGS, IRRELEVANT_URALIC_LANGS
def log_stats(numbers, logger):
logger.info("Count: {}".format(len(numbers)))
logger.info("Min: {}".format(min(numbers)))
logger.info("Mean: {}".format(np.mean(numbers)))
logger.info("Max: {}".format(max(numbers)))
logger.info("Sum: {}".format(sum(numbers)))
logger.info("Median: {}".format(np.median(numbers)))
logger.info("# zeros: {}".format(sum(1 for x in numbers if x==0)))
def compute_sampling_probs(data_dir, alpha=1.0, rel_weight=1.0, logger=None):
assert alpha >= 0 and alpha <= 1
lang2prob = {}
# We compute the sampling probabilities of the relevant and
# irrelevant languages independently.
rel_langs = sorted(RELEVANT_LANGS)
irr_langs = sorted(IRRELEVANT_LANGS)
if logger:
logger.info("Computing sampling probabilities for relevant languages...")
rel_probs = compute_sampling_probs_for_subgroup(rel_langs, data_dir, alpha=alpha, logger=logger)
if logger:
logger.info("Computing sampling probabilities for irrelevant languages...")
irr_probs = compute_sampling_probs_for_subgroup(irr_langs, data_dir, alpha=alpha, logger=logger)
# Weight the distribution of relevant languages, then renormalize
rel_probs = rel_probs * rel_weight
sum_of_both = rel_probs.sum() + irr_probs.sum()
rel_probs = rel_probs / sum_of_both
irr_probs = irr_probs / sum_of_both
for lang, prob in zip(rel_langs, rel_probs):
lang2prob[lang] = prob
for lang, prob in zip(irr_langs, irr_probs):
lang2prob[lang] = prob
if logger:
title = "Stats on sampling probabilities for relevant languages"
log_title_with_border(title, logger)
log_stats(rel_probs, logger)
title = "Stats on sampling probabilities for irrelevant languages"
log_title_with_border(title, logger)
log_stats(irr_probs, logger)
return lang2prob
def compute_sampling_probs_for_subgroup(lang_list, data_dir, alpha=1.0, logger=None):
assert alpha >= 0 and alpha <= 1
if len(lang_list) == 1:
return [1]
lang2freq = {}
for lang in lang_list:
if logger:
logger.info(" %s" % lang)
lang2freq[lang] = sum(1 for (sent, text_id, url) in stream_sents(lang,
data_dir,
input_format="text-only"))
counts = np.array([lang2freq[k] for k in lang_list], dtype=np.float)
probs = counts / counts.sum()
probs_damp = probs ** alpha
probs = probs_damp / probs_damp.sum()
return probs
def log_title_with_border(title, logger):
title = "--- %s ---" % title
line = "-" * len(title)
logger.info(line)
logger.info(title)
logger.info(line)
def main():
parser = argparse.ArgumentParser()
parser.add_argument("--sampling_alpha", type=float, default=1.0,
help="Frequency dampening factor used for computing language sampling probabilities")
parser.add_argument("--weight_relevant", type=float, default=1.0,
help=("Relative sampling frequency of relevant languages wrt irrelevant languages."
" Default is 1, which produces a balanced mix of relevant and irrelevant."))
parser.add_argument("dev_size", type=int,
help="Number of examples in dev set (must be greater than 0)")
parser.add_argument("test_size", type=int,
help="Number of examples in test set (can be 0)")
parser.add_argument("input_dir", help=("Path of directory containing training data (n files named <lang>.train,"
" containing unlabeled text only (no labels, URLS or text IDs)"))
parser.add_argument("output_dir")
args = parser.parse_args()
# Check args
assert args.dev_size > 0
assert args.test_size >= 0
assert args.sampling_alpha >= 0 and args.sampling_alpha <= 1
assert not os.path.exists(args.output_dir)
os.makedirs(args.output_dir)
outdir_train = os.path.join(args.output_dir, "Training")
outdir_test = os.path.join(args.output_dir, "Test")
os.makedirs(outdir_train)
os.makedirs(outdir_test)
# Set up logging
logger = logging.getLogger(__name__)
logging.basicConfig(format = '%(asctime)s - %(levelname)s - %(name)s - %(message)s',
datefmt = '%m/%d/%Y %H:%M:%S',
level = logging.DEBUG)
# We expect that the input dir contains n files called lang.train,
# which contain unlabeled text (without labels, URLS or text IDs)
filenames = [n for n in os.listdir(args.input_dir) if n[-6:] == ".train"]
logger.info("Nb training files found: %d" % len(filenames))
for n in filenames:
lang = n[:-6]
assert lang in ALL_LANGS
# Seed RNG
np.random.seed(91500)
# Get language sampling probabilities
lang2prob = compute_sampling_probs(args.input_dir,
alpha=args.sampling_alpha,
rel_weight=args.weight_relevant,
logger=logger)
# Sample languages and count
all_langs = sorted(ALL_LANGS)
sampling_probs = [lang2prob[k] for k in all_langs]
dev_sample = np.random.choice(np.arange(len(all_langs)),
size=args.dev_size,
replace=True,
p=sampling_probs)
dev_counts = [0 for k in all_langs]
for lang_id in dev_sample:
dev_counts[lang_id] += 1
if args.test_size > 0:
test_sample = np.random.choice(np.arange(len(all_langs)),
size=args.test_size,
replace=True,
p=sampling_probs)
test_counts = [0 for k in all_langs]
for lang_id in test_sample:
test_counts[lang_id] += 1
# Print stats on distributions of the dev and test sets. Show min,
# max, mean and median. Then do the same for RELEVANT, CONFOUNDING
# AND IRRELEVANT.
title = "Stats on # dev samples (all languages)"
log_title_with_border(title, logger)
log_stats(dev_counts, logger)
title = "Stats on # dev samples (relevant languages)"
log_title_with_border(title, logger)
rel_counts = [dev_counts[i] for i in range(len(dev_counts)) if all_langs[i] in RELEVANT_LANGS]
log_stats(rel_counts, logger)
title = "Stats on # dev samples (irrelevant languages)"
log_title_with_border(title, logger)
irr_counts = [dev_counts[i] for i in range(len(dev_counts)) if all_langs[i] in IRRELEVANT_LANGS]
log_stats(irr_counts, logger)
title = "Stats on # dev samples (irrelevant Uralic languages)"
log_title_with_border(title, logger)
con_counts = [dev_counts[i] for i in range(len(dev_counts)) if all_langs[i] in IRRELEVANT_URALIC_LANGS]
log_stats(con_counts, logger)
if args.test_size > 0:
title = "Stats on # test samples (all languages)"
log_title_with_border(title, logger)
log_stats(test_counts, logger)
title = "Stats on # test samples (relevant languages)"
log_title_with_border(title, logger)
rel_counts = [test_counts[i] for i in range(len(test_counts)) if all_langs[i] in RELEVANT_LANGS]
log_stats(rel_counts, logger)
title = "Stats on # test samples (irrelevant languages)"
log_title_with_border(title, logger)
irr_counts = [test_counts[i] for i in range(len(test_counts)) if all_langs[i] in IRRELEVANT_LANGS]
log_stats(irr_counts, logger)
title = "Stats on # test samples (irrelevant Uralic languages)"
log_title_with_border(title, logger)
con_counts = [test_counts[i] for i in range(len(test_counts)) if all_langs[i] in IRRELEVANT_URALIC_LANGS]
log_stats(con_counts, logger)
# Write training data in separate, unlabeled text files. Store dev
# and test examples (to shuffle later, to avoid writing them in
# order of language)
dev_set = []
test_set = []
logger.info("Writing training data in %s..." % (outdir_train))
for lang_id, lang in enumerate(all_langs):
logger.info(" %s" % lang)
# Get number of examples
nb_examples = sum(1 for (sent, text_id, url) in stream_sents(lang, args.input_dir, input_format="text-only"))
# Sample dev and test indices
indices = np.arange(nb_examples)
np.random.shuffle(indices)
nb_dev = dev_counts[lang_id]
nb_test = test_counts[lang_id]
dev_indices = set(indices[:nb_dev])
test_indices = set(indices[nb_dev:nb_dev+nb_test])
# Stream sents, write training examples, store others
outpath = os.path.join(outdir_train, "%s.train" % (lang))
with open(outpath, 'w') as outfile:
for ix, (sent, text_id, url) in enumerate(stream_sents(lang,
args.input_dir,
input_format="text-only")):
if ix in dev_indices:
dev_set.append((sent, lang))
elif ix in test_indices:
test_set.append((sent, lang))
else:
outfile.write(sent + "\n")
# Shuffle and write dev and test sets
logger.info("Writing test data in %s..." % (outdir_test))
np.random.shuffle(dev_set)
ptexts = os.path.join(outdir_test, "dev.txt")
plabels = os.path.join(outdir_test, "dev-gold-labels.txt")
ptuples = os.path.join(outdir_test, "dev-labeled.tsv")
with open(ptexts, 'w') as ftexts, open(plabels, 'w') as flabels, open(ptuples, 'w') as ftuples:
for (text, lang) in dev_set:
ftexts.write(text + "\n")
flabels.write(lang + "\n")
ftuples.write("%s\t%s\n" % (text, lang))
if len(test_set):
np.random.shuffle(test_set)
ptexts = os.path.join(outdir_test, "test.txt")
plabels = os.path.join(outdir_test, "test-gold-labels.txt")
ptuples = os.path.join(outdir_test, "test-labeled.tsv")
with open(ptexts, 'w') as ftexts, open(plabels, 'w') as flabels, open(ptuples, 'w') as ftuples:
for (text, lang) in test_set:
ftexts.write(text + "\n")
flabels.write(lang + "\n")
ftuples.write("%s\t%s\n" % (text, lang))
if __name__ == "__main__":
main()