-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathrun_BERT_classifier.py
755 lines (660 loc) · 31.9 KB
/
run_BERT_classifier.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors and The HugginFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Train BERT classifier.
Code based on: https://github.com/huggingface/pytorch-pretrained-BERT/blob/master/examples/run_lm_finetuning.py.
"""
from __future__ import absolute_import, division, print_function
import argparse
import csv
import logging
import os
import random
import sys
import json
import pickle
from collections import defaultdict
import numpy as np
import torch
from torch.utils.data import (DataLoader, RandomSampler, SequentialSampler,
TensorDataset)
from torch.utils.data.distributed import DistributedSampler
from tqdm import tqdm, trange
from pytorch_pretrained_bert.file_utils import PYTORCH_PRETRAINED_BERT_CACHE
from pytorch_pretrained_bert.modeling import BertForSequenceClassification, BertForPreTraining, BertConfig, WEIGHTS_NAME, CONFIG_NAME
from pytorch_pretrained_bert.optimization import BertAdam, warmup_linear
from utils import CuneiformCharTokenizer
logging.basicConfig(format = '%(asctime)s - %(levelname)s - %(name)s - %(message)s',
datefmt = '%m/%d/%Y %H:%M:%S',
level = logging.INFO)
logger = logging.getLogger(__name__)
class InputExample(object):
"""A single training/test example for simple sequence classification."""
def __init__(self, guid, text_a, text_b=None, label=None):
"""Constructs a InputExample.
Args:
guid: Unique id for the example.
text_a: string. The untokenized text of the first sequence. For single
sequence tasks, only this sequence must be specified.
text_b: (Optional) string. The untokenized text of the second sequence.
Only must be specified for sequence pair tasks.
label: (Optional) string. The label of the example. This should be
specified for train and dev examples, but not for test examples.
"""
self.guid = guid
self.text_a = text_a
self.text_b = text_b
self.label = label
class InputFeatures(object):
"""A single set of features of data."""
def __init__(self, input_ids, input_mask, segment_ids, label_id):
self.input_ids = input_ids
self.input_mask = input_mask
self.segment_ids = segment_ids
self.label_id = label_id
class DataProcessor(object):
"""Base class for data converters for sequence classification data sets."""
def get_train_examples(self, data_dir):
"""Gets a collection of `InputExample`s for the train set."""
raise NotImplementedError()
def get_dev_examples(self, data_dir):
"""Gets a collection of `InputExample`s for the dev set."""
raise NotImplementedError()
def get_labels(self):
"""Gets the list of labels for this data set."""
raise NotImplementedError()
@classmethod
def _read_tsv(cls, input_file, quotechar=None):
"""Reads a tab separated value file."""
with open(input_file, "r", encoding="utf-8") as f:
reader = csv.reader(f, delimiter="\t", quotechar=quotechar)
lines = []
for line in reader:
if sys.version_info[0] == 2:
line = list(unicode(cell, 'utf-8') for cell in line)
lines.append(line)
return lines
class CLIProcessor(DataProcessor):
"""Processor for the Cuneiform Language Identification datasets. """
def get_train_examples(self, data_dir):
"""See base class."""
examples = self._create_examples(
self._read_tsv(os.path.join(data_dir, "train.txt")), "train")
np.random.shuffle(examples)
return examples
def get_dev_examples(self, data_dir):
"""See base class."""
examples = self._create_examples(
self._read_tsv(os.path.join(data_dir, "dev.txt")), "dev")
return examples
def get_test_examples(self, data_dir):
""" Get unlabeled test examples from a file named "test.txt" located in `data_dir`. """
examples = self._create_examples(
self._read_tsv(os.path.join(data_dir, "test.txt")), "test", labeled=False)
return examples
def get_labels(self):
"""See base class."""
return ["SUX", "OLB", "MPB", "STB", "NEB", "LTB", "NEA"]
def _create_examples(self, lines, set_type, labeled=True):
"""Creates examples for the training and dev sets."""
examples = []
for (i, line) in enumerate(lines):
guid = "%s-%s" % (set_type, i)
text_a = line[0]
if labeled:
label = line[1]
else:
label = None
examples.append(
InputExample(guid=guid, text_a=text_a, text_b=None, label=label))
return examples
def convert_examples_to_features(examples, label_list, max_seq_length, tokenizer):
"""Loads a data file into a list of `InputBatch`s."""
label_map = {label : i for i, label in enumerate(label_list)}
features = []
for (ex_index, example) in enumerate(examples):
tokens_a = tokenizer.tokenize(example.text_a)
tokens_b = None
if example.text_b:
tokens_b = tokenizer.tokenize(example.text_b)
# Modifies `tokens_a` and `tokens_b` in place so that the total
# length is less than the specified length.
# Account for [CLS], [SEP], [SEP] with "- 3"
_truncate_seq_pair(tokens_a, tokens_b, max_seq_length - 3)
else:
# Account for [CLS] and [SEP] with "- 2"
if len(tokens_a) > max_seq_length - 2:
tokens_a = tokens_a[:(max_seq_length - 2)]
# The convention in BERT is:
# (a) For sequence pairs:
# tokens: [CLS] is this jack ##son ##ville ? [SEP] no it is not . [SEP]
# type_ids: 0 0 0 0 0 0 0 0 1 1 1 1 1 1
# (b) For single sequences:
# tokens: [CLS] the dog is hairy . [SEP]
# type_ids: 0 0 0 0 0 0 0
#
# Where "type_ids" are used to indicate whether this is the first
# sequence or the second sequence. The embedding vectors for `type=0` and
# `type=1` were learned during pre-training and are added to the wordpiece
# embedding vector (and position vector). This is not *strictly* necessary
# since the [SEP] token unambigiously separates the sequences, but it makes
# it easier for the model to learn the concept of sequences.
#
# For classification tasks, the first vector (corresponding to [CLS]) is
# used as as the "sentence vector". Note that this only makes sense because
# the entire model is fine-tuned.
tokens = ["[CLS]"] + tokens_a + ["[SEP]"]
segment_ids = [0] * len(tokens)
if tokens_b:
tokens += tokens_b + ["[SEP]"]
segment_ids += [1] * (len(tokens_b) + 1)
input_ids = tokenizer.convert_tokens_to_ids(tokens)
# The mask has 1 for real tokens and 0 for padding tokens. Only real
# tokens are attended to.
input_mask = [1] * len(input_ids)
# Zero-pad up to the sequence length.
padding = [0] * (max_seq_length - len(input_ids))
input_ids += padding
input_mask += padding
segment_ids += padding
assert len(input_ids) == max_seq_length
assert len(input_mask) == max_seq_length
assert len(segment_ids) == max_seq_length
if example.label:
label_id = label_map[example.label]
else:
label_id = None
if ex_index < 5:
logger.info("*** Example ***")
logger.info("guid: %s" % (example.guid))
logger.info("tokens: %s" % " ".join(
[str(x) for x in tokens]))
logger.info("input_ids: %s" % " ".join([str(x) for x in input_ids]))
logger.info("input_mask: %s" % " ".join([str(x) for x in input_mask]))
logger.info(
"segment_ids: %s" % " ".join([str(x) for x in segment_ids]))
logger.info("label: {} (id = {})".format(example.label, label_id))
features.append(
InputFeatures(input_ids=input_ids,
input_mask=input_mask,
segment_ids=segment_ids,
label_id=label_id))
return features
def _truncate_seq_pair(tokens_a, tokens_b, max_length):
"""Truncates a sequence pair in place to the maximum length."""
# This is a simple heuristic which will always truncate the longer sequence
# one token at a time. This makes more sense than truncating an equal percent
# of tokens from each, since if one sequence is very short then each token
# that's truncated likely contains more information than a longer sequence.
while True:
total_length = len(tokens_a) + len(tokens_b)
if total_length <= max_length:
break
if len(tokens_a) > len(tokens_b):
tokens_a.pop()
else:
tokens_b.pop()
def evaluate(model, eval_dataloader, device):
pred = []
gold = []
eval_loss = 0
nb_eval_steps = 0
# Get predicted and gold labels, as well as loss
model.eval()
for input_ids, input_mask, segment_ids, label_ids in tqdm(eval_dataloader, desc="Evaluating"):
input_ids = input_ids.to(device)
input_mask = input_mask.to(device)
segment_ids = segment_ids.to(device)
label_ids = label_ids.to(device)
with torch.no_grad():
tmp_eval_loss = model(input_ids, segment_ids, input_mask, label_ids)
logits = model(input_ids, segment_ids, input_mask)
logits = logits.detach().cpu().numpy()
gold += label_ids.to('cpu').numpy().tolist()
pred += np.argmax(logits, axis=1).tolist()
eval_loss += tmp_eval_loss.mean().item()
nb_eval_steps += 1
model.train()
# Get average loss
loss = eval_loss / nb_eval_steps
# Get set of classes
classes = sorted(set(pred + gold))
# Compute accuracy
gold = np.asarray(gold)
pred = np.asarray(pred)
nb_correct = (gold == pred).sum()
accuracy = nb_correct / len(gold)
# Per-class f-score
nb_correct_by_class = defaultdict(int)
nb_true_by_class = defaultdict(int)
nb_pred_by_class = defaultdict(int)
for (x,y) in zip(gold, pred):
nb_true_by_class[x] += 1
nb_pred_by_class[y] += 1
if x == y:
nb_correct_by_class[x] += 1
f_vals = []
for k in classes:
if nb_correct_by_class[k] == 0 or nb_true_by_class[k] == 0:
f = 0
else:
p = nb_correct_by_class[k] / nb_pred_by_class[k]
r = nb_correct_by_class[k] / nb_true_by_class[k]
f = 2 * p * r / (p+r)
f_vals.append(f)
# Compute (unweighted) macro-averaged f-score
fscore = np.mean(f_vals)
return pred, loss, accuracy, fscore
def save_model(model, tokenizer, output_dir):
# Save model
model_to_save = model.module if hasattr(model, 'module') else model # Only save the model itself
output_model_file = os.path.join(output_dir, WEIGHTS_NAME)
torch.save(model_to_save.state_dict(), output_model_file)
output_config_file = os.path.join(output_dir, CONFIG_NAME)
with open(output_config_file, 'w') as f:
f.write(model_to_save.config.to_json_string())
output_tokenizer_file = os.path.join(output_dir, "tokenizer.pkl")
with open(output_tokenizer_file, "wb") as f:
pickle.dump(tokenizer, f)
def predict(model, test_dataloader, device):
model.eval()
predictions = []
for input_ids, input_mask, segment_ids in tqdm(test_dataloader, desc="Predicting"):
input_ids = input_ids.to(device)
input_mask = input_mask.to(device)
segment_ids = segment_ids.to(device)
with torch.no_grad():
logits = model(input_ids, segment_ids, input_mask)
logits = logits.detach().cpu().numpy()
pred = np.argmax(logits, axis=1)
predictions += pred.tolist()
model.train()
return predictions
def make_arg_parser(initial_parser=None):
if initial_parser is None:
parser = argparse.ArgumentParser()
else:
parser = initial_parser
## Required parameters
parser.add_argument("--data_dir",
default=None,
type=str,
required=True,
help="The input data dir. Should contain files named train.txt, dev.txt, and/or test.txt, depending on whether we are doing training, evaluation or prediction.")
parser.add_argument("--bert_model_or_config_file",
default=None,
type=str,
required=True,
help="Directory containing pre-trained BERT model or path of configuration file (if no pre-training).")
parser.add_argument("--task_name",
default="cli",
type=str,
help="The name of the task to train.")
parser.add_argument("--output_dir",
default=None,
type=str,
required=True,
help="The output directory where the model predictions and checkpoints will be written.")
## Other parameters
parser.add_argument("--max_seq_length",
default=128,
type=int,
help="The maximum total input sequence length after WordPiece tokenization. \n"
"Sequences longer than this will be truncated, and sequences shorter \n"
"than this will be padded.")
parser.add_argument("--do_train",
action='store_true',
help="Whether to run training on the labeled training set (train.txt).")
parser.add_argument("--do_eval",
action='store_true',
help="Whether to run eval on the labeled dev set (dev.txt) during training (if applicable) and at the end..")
parser.add_argument("--do_predict",
action='store_true',
help="Whether to run prediction on the unlabeled test set (test.txt) at the end.")
parser.add_argument("--train_batch_size",
default=32,
type=int,
help="Total batch size for training.")
parser.add_argument("--eval_batch_size",
default=8,
type=int,
help="Total batch size for eval.")
parser.add_argument("--learning_rate",
default=5e-5,
type=float,
help="The initial learning rate for Adam.")
parser.add_argument("--num_train_epochs",
default=3.0,
type=float,
help="Total number of training epochs to perform.")
parser.add_argument("--warmup_proportion",
default=0.1,
type=float,
help="Proportion of training to perform linear learning rate warmup for. "
"E.g., 0.1 = 10%% of training.")
parser.add_argument("--local_rank",
type=int,
default=-1,
help="local_rank for distributed training on gpus")
parser.add_argument("--num_gpus",
type=int,
default=-1,
help="Num GPUs to use for training (0 for none, -1 for all available)")
parser.add_argument('--seed',
type=int,
default=42,
help="random seed for initialization")
parser.add_argument('--gradient_accumulation_steps',
type=int,
default=1,
help="Number of updates steps to accumulate before performing a backward/update pass.")
parser.add_argument('--fp16',
action='store_true',
help="Whether to use 16-bit float precision instead of 32-bit")
parser.add_argument('--loss_scale',
type=float, default=0,
help="Loss scaling to improve fp16 numeric stability. Only used when fp16 set to True.\n"
"0 (default value): dynamic loss scaling.\n"
"Positive power of 2: static loss scaling value.\n")
parser.add_argument('--server_ip', type=str, default='', help="Can be used for distant debugging.")
parser.add_argument('--server_port', type=str, default='', help="Can be used for distant debugging.")
return parser
def main():
parser = make_arg_parser()
args = parser.parse_args()
if args.server_ip and args.server_port:
# Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script
import ptvsd
print("Waiting for debugger attach")
ptvsd.enable_attach(address=(args.server_ip, args.server_port), redirect_output=True)
ptvsd.wait_for_attach()
processors = {
"cli": CLIProcessor,
}
num_labels_task = {
"cli": 7,
}
# Check whether bert_model_or_config_file is a file or directory
if os.path.isdir(args.bert_model_or_config_file):
pretrained=True
targets = [WEIGHTS_NAME, CONFIG_NAME, "tokenizer.pkl"]
for t in targets:
path = os.path.join(args.bert_model_or_config_file, t)
if not os.path.exists(path):
msg = "File '{}' not found".format(path)
raise ValueError(msg)
fp = os.path.join(args.bert_model_or_config_file, CONFIG_NAME)
config = BertConfig(fp)
else:
pretrained=False
config = BertConfig(args.bert_model_or_config_file)
# What GPUs do we use?
if args.num_gpus == -1:
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
n_gpu = torch.cuda.device_count()
device_ids = None
else:
device = torch.device("cuda" if torch.cuda.is_available() and args.num_gpus > 0 else "cpu")
n_gpu = args.num_gpus
if n_gpu > 1:
device_ids = list(range(n_gpu))
if args.local_rank != -1:
torch.cuda.set_device(args.local_rank)
device = torch.device("cuda", args.local_rank)
n_gpu = 1
# Initializes the distributed backend which will take care of sychronizing nodes/GPUs
torch.distributed.init_process_group(backend='nccl')
logger.info("device: {} n_gpu: {}, distributed training: {}, 16-bits training: {}".format(
device, n_gpu, bool(args.local_rank != -1), args.fp16))
# Check some other args
if args.gradient_accumulation_steps < 1:
raise ValueError("Invalid gradient_accumulation_steps parameter: {}, should be >= 1".format(
args.gradient_accumulation_steps))
args.train_batch_size = args.train_batch_size // args.gradient_accumulation_steps
if not args.do_train and not args.do_eval and not args.do_predict:
raise ValueError("At least one of `do_train`, `do_eval` or `do_predict` must be True.")
# Seed RNGs
random.seed(args.seed)
np.random.seed(args.seed)
torch.manual_seed(args.seed)
if n_gpu > 0:
torch.cuda.manual_seed_all(args.seed)
# Prepare output directory
if os.path.exists(args.output_dir) and os.listdir(args.output_dir) and args.do_train:
raise ValueError("Output directory ({}) already exists and is not empty.".format(args.output_dir))
if not os.path.exists(args.output_dir):
os.makedirs(args.output_dir)
task_name = args.task_name.lower()
if task_name not in processors:
raise ValueError("Task not found: %s" % (task_name))
processor = processors[task_name]()
num_labels = num_labels_task[task_name]
label_list = processor.get_labels()
# Get training data
train_examples = None
num_train_optimization_steps = None
if args.do_train:
train_examples = processor.get_train_examples(args.data_dir)
num_train_optimization_steps = int(
len(train_examples) / args.train_batch_size / args.gradient_accumulation_steps) * args.num_train_epochs
if args.local_rank != -1:
num_train_optimization_steps = num_train_optimization_steps // torch.distributed.get_world_size()
# Make tokenizer
if pretrained:
fp = os.path.join(args.bert_model_or_config_file, "tokenizer.pkl")
with open(fp, "rb") as f:
tokenizer = pickle.load(f)
else:
tokenizer = CuneiformCharTokenizer(training_data=[x.text_a for x in train_examples])
tokenizer.trim_vocab(config.min_freq)
# Adapt vocab size in config
config.vocab_size = len(tokenizer.vocab)
print("Size of vocab: {}".format(len(tokenizer.vocab)))
# Prepare model
if pretrained:
model = BertForSequenceClassification.from_pretrained(args.bert_model_or_config_file, num_labels=num_labels)
else:
model = BertForSequenceClassification(config, num_labels=num_labels)
if args.fp16:
model.half()
model.to(device)
if args.local_rank != -1:
try:
from apex.parallel import DistributedDataParallel as DDP
except ImportError:
raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use distributed and fp16 training.")
model = DDP(model)
elif n_gpu > 1:
model = torch.nn.DataParallel(model, device_ids=device_ids)
# Prepare optimizer
param_optimizer = list(model.named_parameters())
no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight']
optimizer_grouped_parameters = [
{'params': [p for n, p in param_optimizer if not any(nd in n for nd in no_decay)], 'weight_decay': 0.01},
{'params': [p for n, p in param_optimizer if any(nd in n for nd in no_decay)], 'weight_decay': 0.0}
]
if args.fp16:
try:
from apex.optimizers import FP16_Optimizer
from apex.optimizers import FusedAdam
except ImportError:
raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use distributed and fp16 training.")
optimizer = FusedAdam(optimizer_grouped_parameters,
lr=args.learning_rate,
bias_correction=False,
max_grad_norm=1.0)
if args.loss_scale == 0:
optimizer = FP16_Optimizer(optimizer, dynamic_loss_scale=True)
else:
optimizer = FP16_Optimizer(optimizer, static_loss_scale=args.loss_scale)
else:
optimizer = BertAdam(optimizer_grouped_parameters,
lr=args.learning_rate,
warmup=args.warmup_proportion,
t_total=num_train_optimization_steps)
# Get dev data
if args.do_eval:
eval_examples = processor.get_dev_examples(args.data_dir)
eval_features = convert_examples_to_features(
eval_examples, label_list, args.max_seq_length, tokenizer)
all_input_ids = torch.tensor([f.input_ids for f in eval_features], dtype=torch.long)
all_input_mask = torch.tensor([f.input_mask for f in eval_features], dtype=torch.long)
all_segment_ids = torch.tensor([f.segment_ids for f in eval_features], dtype=torch.long)
all_label_ids = torch.tensor([f.label_id for f in eval_features], dtype=torch.long)
eval_data = TensorDataset(all_input_ids, all_input_mask, all_segment_ids, all_label_ids)
eval_sampler = SequentialSampler(eval_data)
eval_dataloader = DataLoader(eval_data, sampler=eval_sampler, batch_size=args.eval_batch_size)
# Prepare for training
global_step = 0
nb_tr_steps = 0
total_tr_steps = 0
tr_loss = 0
if args.do_train:
train_features = convert_examples_to_features(
train_examples, label_list, args.max_seq_length, tokenizer)
logger.info("***** Running training *****")
logger.info(" Num examples = %d", len(train_examples))
logger.info(" Batch size = %d", args.train_batch_size)
logger.info(" Num steps = %d", num_train_optimization_steps)
all_input_ids = torch.tensor([f.input_ids for f in train_features], dtype=torch.long)
all_input_mask = torch.tensor([f.input_mask for f in train_features], dtype=torch.long)
all_segment_ids = torch.tensor([f.segment_ids for f in train_features], dtype=torch.long)
all_label_ids = torch.tensor([f.label_id for f in train_features], dtype=torch.long)
train_data = TensorDataset(all_input_ids, all_input_mask, all_segment_ids, all_label_ids)
if args.local_rank == -1:
train_sampler = RandomSampler(train_data)
else:
train_sampler = DistributedSampler(train_data)
train_dataloader = DataLoader(train_data, sampler=train_sampler, batch_size=args.train_batch_size)
# Prepare log file
output_log_file = os.path.join(args.output_dir, "training_log.txt")
with open(output_log_file, "w") as f:
if args.do_eval:
f.write("Steps\tTrainLoss\tValLoss\tValAccuracy\tValFScore\n")
else:
f.write("Steps\tTrainLoss\n")
best_val_score = float("-inf")
model.train()
for _ in trange(int(args.num_train_epochs), desc="Epoch"):
tr_loss = 0
nb_tr_examples, nb_tr_steps = 0, 0
for step, batch in enumerate(tqdm(train_dataloader, desc="Iteration")):
batch = tuple(t.to(device) for t in batch)
input_ids, input_mask, segment_ids, label_ids = batch
loss = model(input_ids, segment_ids, input_mask, label_ids)
if n_gpu > 1:
loss = loss.mean() # mean() to average on multi-gpu.
if args.gradient_accumulation_steps > 1:
loss = loss / args.gradient_accumulation_steps
if args.fp16:
optimizer.backward(loss)
else:
loss.backward()
tr_loss += loss.item()
nb_tr_examples += input_ids.size(0)
nb_tr_steps += 1
if (step + 1) % args.gradient_accumulation_steps == 0:
if args.fp16:
# modify learning rate with special warm up BERT uses
# if args.fp16 is False, BertAdam is used that handles this automatically
lr_this_step = args.learning_rate * warmup_linear(global_step/num_train_optimization_steps, args.warmup_proportion)
for param_group in optimizer.param_groups:
param_group['lr'] = lr_this_step
optimizer.step()
optimizer.zero_grad()
global_step += 1
avg_loss = tr_loss / nb_tr_examples
total_tr_steps += nb_tr_steps
log_data = [str(total_tr_steps), "{:.5f}".format(avg_loss)]
# Validate
if args.do_eval and (args.local_rank == -1 or torch.distributed.get_rank() == 0):
predictions, eval_loss, eval_accuracy, fscore = evaluate(model, eval_dataloader, device)
log_data.append("{:.5f}".format(eval_loss))
log_data.append("{:.5f}".format(eval_accuracy))
log_data.append("{:.5f}".format(fscore))
# Check if score has improved
if fscore > best_val_score:
best_val_score = fscore
save_model(model, tokenizer, args.output_dir)
else:
# If we can't validate, we save model at each epoch
save_model(model, tokenizer, args.output_dir)
# Log
with open(output_log_file, "a") as f:
f.write("\t".join(log_data)+"\n")
# Load model
if args.do_train:
# Load model we just fine-tuned
output_model_file = os.path.join(args.output_dir, WEIGHTS_NAME)
output_config_file = os.path.join(args.output_dir, CONFIG_NAME)
output_tokenizer_file = os.path.join(args.output_dir, "tokenizer.pkl")
config = BertConfig(output_config_file)
model = BertForSequenceClassification(config, num_labels=num_labels)
model.load_state_dict(torch.load(output_model_file))
with open(output_tokenizer_file, "rb") as f:
tokenizer = pickle.load(f)
else:
# Load a model you fine-tuned previously
model = BertForSequenceClassification.from_pretrained(args.bert_model_or_config_file, num_labels=num_labels)
model.to(device)
# Evaluate model on validation data
if args.do_eval and (args.local_rank == -1 or torch.distributed.get_rank() == 0):
logger.info("***** Running evaluation *****")
logger.info(" Num examples = %d", len(eval_examples))
logger.info(" Batch size = %d", args.eval_batch_size)
predictions, eval_loss, eval_accuracy, fscore = evaluate(model, eval_dataloader, device)
loss = avg_loss if args.do_train else None
result = {'eval_loss': eval_loss,
'eval_accuracy': eval_accuracy,
'eval_fscore': fscore,
'global_step': global_step,
'loss': loss}
# Write evaluation results
output_eval_file = os.path.join(args.output_dir, "dev_results.txt")
with open(output_eval_file, "w") as writer:
logger.info("***** Eval results *****")
for key in sorted(result.keys()):
logger.info(" %s = %s", key, str(result[key]))
writer.write("%s = %s\n" % (key, str(result[key])))
# Write predictions
output_pred_file = os.path.join(args.output_dir, "dev_pred.txt")
with open(output_pred_file, "w", encoding="utf-8") as writer:
for label_id in predictions:
label = label_list[label_id]
writer.write(label + "\n")
# Predict labels of test set
if args.do_predict:
test_examples = processor.get_test_examples(args.data_dir)
test_features = convert_examples_to_features(
test_examples, label_list, args.max_seq_length, tokenizer)
all_input_ids = torch.tensor([f.input_ids for f in test_features], dtype=torch.long)
all_input_mask = torch.tensor([f.input_mask for f in test_features], dtype=torch.long)
all_segment_ids = torch.tensor([f.segment_ids for f in test_features], dtype=torch.long)
test_data = TensorDataset(all_input_ids, all_input_mask, all_segment_ids)
test_sampler = SequentialSampler(test_data)
test_dataloader = DataLoader(test_data, sampler=test_sampler, batch_size=args.eval_batch_size)
logger.info("***** Running prediction *****")
logger.info(" Num examples = %d", len(test_examples))
logger.info(" Batch size = %d", args.eval_batch_size)
predictions = predict(model, test_dataloader, device)
# Write predictions
output_pred_file = os.path.join(args.output_dir, "test_pred.txt")
with open(output_pred_file, "w", encoding="utf-8") as writer:
for label_id in predictions:
label = label_list[label_id]
writer.write(label + "\n")
if __name__ == "__main__":
main()