Skip to content

Latest commit

 

History

History
36 lines (22 loc) · 1.3 KB

README.md

File metadata and controls

36 lines (22 loc) · 1.3 KB

pointnet-keras

Original tensorflow implementation: https://github.com/charlesq34/pointnet

Package requirement: Python3.6, keras, tensorflow, numpy, matplotlib, h5py

Results

Segmentation Sample

seg_sample

How to Run code:

Classification:

  • Download the aligned dataset from Link
  • Put all traning .h5 files under Prepdata folder, all testing .h5 files under Prepdata_test folder
  • Run train_cls.py. Accuracy rate will be 82.5%, which is slightly lower than the original implementation.

Segmentation:

  • Download and unzip the shapenet dataset from Link.
  • Run Seg_dataprep.py then train_seg.py.

Point Architecture

  • Input Transformation Net: Input: Nx3 point cloud sample, Output: 3x3 transformation net input_transformation_net

  • Feature Transformation Net: feature_transformation_net

  • Global Feature: Input: Nx3 point cloud sample multiply input T_net. Output: 1*1024 global feature

  • Classification Net: Input: Nx3 point cloud sample multiply input T_net. Output: 1x40 softmax prediction classification_net