-
Notifications
You must be signed in to change notification settings - Fork 4
/
SpectrumNormalization.nb
465 lines (433 loc) · 17.8 KB
/
SpectrumNormalization.nb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
(* Content-type: application/vnd.wolfram.mathematica *)
(*** Wolfram Notebook File ***)
(* http://www.wolfram.com/nb *)
(* CreatedBy='Mathematica 12.1' *)
(*CacheID: 234*)
(* Internal cache information:
NotebookFileLineBreakTest
NotebookFileLineBreakTest
NotebookDataPosition[ 158, 7]
NotebookDataLength[ 18080, 457]
NotebookOptionsPosition[ 15544, 408]
NotebookOutlinePosition[ 16061, 427]
CellTagsIndexPosition[ 16018, 424]
WindowFrame->Normal*)
(* Beginning of Notebook Content *)
Notebook[{
Cell["\<\
Getting the normalization of the spectrum right in 2D, passing from momentum \
to position space.\
\>", "Text",
CellChangeTimes->{{3.825512516506415*^9,
3.825512536015049*^9}},ExpressionUUID->"7f01145d-c140-4211-8860-\
4ef5698740d9"],
Cell["Angular integral:", "Text",
CellChangeTimes->{{3.8255125387648563`*^9,
3.825512541588017*^9}},ExpressionUUID->"a9c1ab8a-41e6-4713-a0c9-\
197c452ff03d"],
Cell[BoxData[
RowBox[{
RowBox[{"P", "[", "k_", "]"}], ":=",
FractionBox["amp",
SuperscriptBox["k", "power"]]}]], "Input",
CellChangeTimes->{{3.8257181128484297`*^9, 3.825718120406605*^9}},
CellLabel->"In[1]:=",ExpressionUUID->"b4c94ca0-165c-4337-aeac-c3d09521b40d"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"angularInt", "=",
RowBox[{"2", "*",
RowBox[{"Integrate", "[",
RowBox[{
RowBox[{"Exp", "[",
RowBox[{"I", "*", "k", "*", "x", "*",
RowBox[{"Cos", "[", "\[Theta]", "]"}]}], "]"}], ",",
RowBox[{"{",
RowBox[{"\[Theta]", ",", "0", ",", "\[Pi]"}], "}"}]}], "]"}], "*", "k",
"*",
RowBox[{"P", "[", "k", "]"}], "*",
SuperscriptBox[
RowBox[{"(",
FractionBox["1",
RowBox[{"2", "\[Pi]"}]], ")"}], "2"]}]}]], "Input",
CellChangeTimes->{{3.825511685200555*^9, 3.825511731316161*^9}, {
3.825511990665029*^9, 3.825511994969474*^9}, {3.8255131708316317`*^9,
3.825513175254395*^9}, {3.8257181232594643`*^9, 3.825718143913319*^9},
3.825718197217881*^9, {3.8257183511178217`*^9, 3.825718355474298*^9}},
CellLabel->"In[2]:=",ExpressionUUID->"691f22a9-3d21-44f1-9be4-fd8c661c35b9"],
Cell[BoxData[
TemplateBox[{
FractionBox[
RowBox[{"amp", " ",
SuperscriptBox["k",
RowBox[{"1", "-", "power"}]], " ",
RowBox[{"BesselJ", "[",
RowBox[{"0", ",",
RowBox[{"k", " ", "x"}]}], "]"}]}],
RowBox[{"2", " ", "\[Pi]"}]],
RowBox[{
RowBox[{"k", " ", "x"}], "\[Element]",
TemplateBox[{}, "Reals"]}]},
"ConditionalExpression"]], "Output",
CellChangeTimes->{{3.8255117103107*^9, 3.825511732740407*^9},
3.825511996394677*^9, 3.825513177898326*^9, 3.825518719868471*^9,
3.825676164918405*^9, 3.825718106034718*^9, {3.825718189588656*^9,
3.825718198790642*^9}, 3.825718357038307*^9, {3.825718413208715*^9,
3.825718427295665*^9}, 3.8257788867462807`*^9, 3.836400715776381*^9},
CellLabel->"Out[2]=",ExpressionUUID->"861eaa97-39cc-4f4c-a7d9-9368a33c9a72"]
}, Open ]],
Cell["Rescale:", "Text",
CellChangeTimes->{{3.825512432839636*^9, 3.825512433868415*^9}, {
3.825512543299107*^9,
3.825512545772903*^9}},ExpressionUUID->"59114730-0e73-4c08-a900-\
26791c4813fd"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"angularIntRescaled", "=",
RowBox[{"Assuming", "[",
RowBox[{
RowBox[{"k", ">", "0"}], ",",
RowBox[{
RowBox[{
RowBox[{
RowBox[{
RowBox[{"(",
RowBox[{"angularInt", "/.",
RowBox[{"k", "\[RuleDelayed]",
RowBox[{"k", "/", "x"}]}]}], ")"}], "*",
FractionBox["1", "x"]}], "//", "PowerExpand"}], "//", "Simplify"}], "//",
"Expand"}]}], "]"}]}]], "Input",
CellChangeTimes->{{3.825511958705675*^9, 3.825511963566634*^9},
3.825512003668605*^9, {3.825512392089448*^9, 3.82551245309457*^9},
3.8255131852030277`*^9, 3.825513273916944*^9, 3.8255133815583344`*^9, {
3.825718207143618*^9, 3.8257182140673647`*^9}, {3.82571836326752*^9,
3.8257183774008923`*^9}, {3.825778874934362*^9, 3.825778877134181*^9}},
CellLabel->"In[3]:=",ExpressionUUID->"dfdc3e9c-0591-4699-9745-b2bd825bb59a"],
Cell[BoxData[
FractionBox[
RowBox[{"amp", " ", "k", " ",
SuperscriptBox[
RowBox[{"(",
FractionBox["x", "k"], ")"}], "power"], " ",
RowBox[{"BesselJ", "[",
RowBox[{"0", ",", "k"}], "]"}]}],
RowBox[{"2", " ", "\[Pi]", " ",
SuperscriptBox["x", "2"]}]]], "Output",
CellChangeTimes->{{3.825512420985776*^9, 3.825512453310062*^9},
3.825513189572835*^9, 3.825513381891367*^9, 3.825676165128318*^9,
3.825718106178887*^9, {3.825718191251666*^9, 3.825718214764594*^9}, {
3.8257183635567913`*^9, 3.8257183777096024`*^9}, {3.825718410823189*^9,
3.825718427328127*^9}, {3.825778877433337*^9, 3.825778886876252*^9},
3.836400715877356*^9},
CellLabel->"Out[3]=",ExpressionUUID->"419ba5f1-218e-45a7-9a60-11228700522b"]
}, Open ]],
Cell["Integrate:", "Text",
CellChangeTimes->{{3.825779003839164*^9,
3.825779010070204*^9}},ExpressionUUID->"6fb57fa8-f58a-4363-9bf2-\
197ef6be605c"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"Integrate", "[",
RowBox[{"angularIntRescaled", ",",
RowBox[{"{",
RowBox[{"k", ",", "0", ",", "\[Infinity]"}], "}"}]}], "]"}]], "Input",
CellChangeTimes->{{3.8257790110113*^9, 3.825779011013139*^9}},
CellLabel->"In[4]:=",ExpressionUUID->"ccee2977-6730-4b2a-aef5-94d0013b426a"],
Cell[BoxData[
TemplateBox[{
RowBox[{"-",
FractionBox[
RowBox[{
SuperscriptBox["2",
RowBox[{
RowBox[{"-", "1"}], "-", "power"}]], " ", "amp", " ", "power", " ",
SuperscriptBox["x",
RowBox[{
RowBox[{"-", "2"}], "+", "power"}]], " ",
RowBox[{"Gamma", "[",
RowBox[{"-",
FractionBox["power", "2"]}], "]"}]}],
RowBox[{"\[Pi]", " ",
RowBox[{"Gamma", "[",
FractionBox["power", "2"], "]"}]}]]}],
RowBox[{
FractionBox["1", "2"], "<",
RowBox[{"Re", "[", "power", "]"}], "<", "2"}]},
"ConditionalExpression"]], "Output",
CellChangeTimes->{3.82577902487379*^9, 3.836400730784237*^9},
CellLabel->"Out[4]=",ExpressionUUID->"17689209-09aa-4fe4-9435-1acf4173ac06"]
}, Open ]],
Cell["\<\
Agrees w/ result from the NIST site, https://dlmf.nist.gov/10.22#E43, after \
identities are used\
\>", "Text",
CellChangeTimes->{{3.8255119762752*^9, 3.825511986769731*^9}, {
3.825676311212741*^9, 3.82567633123311*^9}, {3.825676361875558*^9,
3.825676367182002*^9}, {3.825676512538471*^9, 3.8256765136914997`*^9}, {
3.8257790147983932`*^9,
3.82577905931522*^9}},ExpressionUUID->"8ae66398-702c-413a-ae80-\
880bb415f258"],
Cell[CellGroupData[{
Cell[BoxData[{
RowBox[{"\[CapitalGamma]identity", "=",
FractionBox[
RowBox[{"Gamma", "[",
RowBox[{"1", "-",
RowBox[{"power", "/", "2"}]}], "]"}],
RowBox[{
RowBox[{"-",
FractionBox["power", "2"]}],
RowBox[{"Gamma", "[",
RowBox[{
RowBox[{"-", "power"}], "/", "2"}], "]"}]}]]}], "\[IndentingNewLine]",
RowBox[{"%", "//", "FullSimplify"}]}], "Input",
CellChangeTimes->{{3.825779040057622*^9, 3.825779049951371*^9}, {
3.825779094722611*^9, 3.825779110907763*^9}, {3.8257791479629517`*^9,
3.825779151600512*^9}},
CellLabel->"In[5]:=",ExpressionUUID->"bf526400-8b4f-4e97-8119-afda63797e06"],
Cell[BoxData[
RowBox[{"-",
FractionBox[
RowBox[{"2", " ",
RowBox[{"Gamma", "[",
RowBox[{"1", "-",
FractionBox["power", "2"]}], "]"}]}],
RowBox[{"power", " ",
RowBox[{"Gamma", "[",
RowBox[{"-",
FractionBox["power", "2"]}], "]"}]}]]}]], "Output",
CellChangeTimes->{{3.825779099051723*^9, 3.825779111138852*^9}, {
3.8257791483732243`*^9, 3.825779151738903*^9}, 3.836400730836994*^9},
CellLabel->"Out[5]=",ExpressionUUID->"1986275c-f1e7-4f5d-9f4a-85eceda2f85c"],
Cell[BoxData["1"], "Output",
CellChangeTimes->{{3.825779099051723*^9, 3.825779111138852*^9}, {
3.8257791483732243`*^9, 3.825779151738903*^9}, 3.836400730848069*^9},
CellLabel->"Out[6]=",ExpressionUUID->"3d145bf6-2635-43b8-ba4a-c1ad9feff346"]
}, Open ]],
Cell["Clean up a little", "Text",
CellChangeTimes->{{3.825779124459466*^9,
3.825779130679515*^9}},ExpressionUUID->"e16c85d9-b576-41ea-8433-\
e8721a945c4b"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{
RowBox[{"spectrum", "[",
RowBox[{"amp_", ",", "power_"}], "]"}], "=",
RowBox[{
RowBox[{"-",
FractionBox[
RowBox[{
SuperscriptBox["2",
RowBox[{
RowBox[{"-", "1"}], "-", "power"}]], " ", "amp", " ", "power", " ",
SuperscriptBox["x",
RowBox[{
RowBox[{"-", "2"}], "+", "power"}]], " ",
RowBox[{"Gamma", "[",
RowBox[{"-",
FractionBox["power", "2"]}], "]"}]}],
RowBox[{"\[Pi]", " ",
RowBox[{"Gamma", "[",
FractionBox["power", "2"], "]"}]}]]}], "*",
"\[CapitalGamma]identity"}]}]], "Input",
CellChangeTimes->{{3.825512008464058*^9, 3.8255120663985147`*^9}, {
3.8255122747087803`*^9, 3.825512275299057*^9}, {3.8255123084719563`*^9,
3.825512311855484*^9}, {3.8255124589883842`*^9, 3.82551245928977*^9}, {
3.82551301910949*^9, 3.825513025370142*^9}, {3.825513198659568*^9,
3.82551320542554*^9}, {3.8257182216340322`*^9, 3.825718229920189*^9}, {
3.825718393752838*^9, 3.82571841793817*^9}, {3.825779071255949*^9,
3.8257790818169518`*^9}, {3.825779131955352*^9, 3.825779139359202*^9}},
CellLabel->"In[7]:=",ExpressionUUID->"12d21341-9d85-4521-8efc-0d6f6795ae32"],
Cell[BoxData[
FractionBox[
RowBox[{
SuperscriptBox["2",
RowBox[{"-", "power"}]], " ", "amp", " ",
SuperscriptBox["x",
RowBox[{
RowBox[{"-", "2"}], "+", "power"}]], " ",
RowBox[{"Gamma", "[",
RowBox[{"1", "-",
FractionBox["power", "2"]}], "]"}]}],
RowBox[{"\[Pi]", " ",
RowBox[{"Gamma", "[",
FractionBox["power", "2"], "]"}]}]]], "Output",
CellChangeTimes->{
3.8257790825589123`*^9, {3.825779139600215*^9, 3.825779153921988*^9},
3.836400730862441*^9},
CellLabel->"Out[7]=",ExpressionUUID->"cbfda516-c82f-4ba0-80ef-3c1a4d9deecc"]
}, Open ]],
Cell["\<\
Strictly only valid for 2>power>1/2; values outside this range defined by \
analytic continuation/ regularization.\
\>", "Text",
CellChangeTimes->{{3.825676368963278*^9, 3.825676392852891*^9}, {
3.8256764373531733`*^9,
3.8256764731242247`*^9}},ExpressionUUID->"6ce1e5b1-3569-43c8-9fa2-\
d17693c13ef4"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"Plot", "[",
RowBox[{
RowBox[{
RowBox[{"spectrum", "[",
RowBox[{"1", ",", "power"}], "]"}], "/.",
RowBox[{"x", "\[RuleDelayed]", "1"}]}], ",",
RowBox[{"{",
RowBox[{"power", ",",
RowBox[{"1", "/", "2"}], ",", "2"}], "}"}]}], "]"}]], "Input",
CellChangeTimes->{{3.836401567968569*^9, 3.8364015929895973`*^9}, {
3.836402595427643*^9, 3.836402602106207*^9}, {3.836415034424532*^9,
3.8364150406967297`*^9}},
CellLabel->"In[19]:=",ExpressionUUID->"5a7c63ea-9d77-4a2c-8750-9d4a2f3d4cc1"],
Cell[BoxData[
GraphicsBox[{{{}, {},
TagBox[
{RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6], Opacity[
1.], LineBox[CompressedData["
1:eJwVU3k0lIsD1UbSkz1LWUpFtookjJv8spwsIUV6tIjybO2vpDPUU0+8FktZ
IxXFKzUKQ2WXddJiGWTJWMZYZqzN9336eX/cc/+599x77jlX41iwy4nFIiIi
EQv4j1P3BUuJiPTAWKOAkXSJAd5STnvlkh5odFhmqFxlwLzoUObfYj2oq9FI
SYlggK1hbSy7qgcrDGjMtFsMKEyuObxRtQeKN/2SMlMZuBNfl2Vv3gMvtcb5
l2UMRLA3IPHPHrSxLhBfxPPh69MZuI3fg/nGmp8OSfk4qn7xzouZXoxPVm96
9vUNuAa5eS3cPuTJWM5yibcweZlbbMT+gWCVAJvzaoUobGHf6uzqR6+O0uo4
ryJUO2d6bPnEQYiEqXLWLSZEzyfyGlsGUHGhNlSrpRgSyz39M9oGkSRWFvFM
7R0ejr3lqNcOYSwir5Lm/h4+Ybs2chuHsb3Lm1326gMKvX18vMu4aNVvaX0R
VormV64xK/JG0PDEvkVkfRlUckNCf73mIdEtW6DZUYapn5v80h+PQnY23Xlp
dDl+ja9UvPV8DKe8AoRzzhVgub1j5OSMY7GUTlOgSiXui13fWOIwgbDvB7Uu
f6+El0mpWw1rAlEaJp6tzCqM3qu9pmXHR9sLveNf71YjvuxU3IsGPgLSuWW0
yBqoZQcnsRwEKNmSnuV47SNCCnc/tK4WQCGw+cTjK7Vgp+RG9tlO4vWvotue
yXWQyPkR8LV8EoFtdLHwwnqonabbHjWdwthC7JO+BthL5IvKlkzh5ol2Vgut
CbtY+RXK26ehqV05dSiZBQc/++M2hdMoEdNO3ZD8CeYFdnOSO2eQ71A/VHyx
GZNb5KJ1X80gLjvBeIPHZ5RfPb842HAWt10fHmzw/QKPmcyLYv/OokZjSdaZ
q1/xeYNJn6nmHE4sDjFlvvwGH+3jBrFP5uD5mi77XbMV7w54hlqq/gT/dpZt
fl4bDNy5z+QyfoLuQSSsS2Pj5DXrVpqKEJHVIYZBbzsxFdU8uGatEKOF4R5O
HzoRfu/wHKEqhIFnyirjj51IyjijxFwnRP2Mt6UcuxMNH9I8jTcLIeXNdJGb
74QBOdOtv1MIp6RoES2bLsycyxpSOygE54b406quLlz3XS5cFCuEfLok30i1
G0dr16aJxwtR3Da8Mlq7Gxa6hrul7wsxtS/zzohRN2b5v0epJwsRatk6XbG3
G/5hDGVkCiHheHFPx6VuOMd5mV1hLPQPLkrObe2Gann+lZkvQgToKW2VduhB
0dqjv7hyBKT3WMn5q/bC/M1pgqVA4Htjx6VWzV6U2kfM5isSqEu8XG+n04uP
oZnjV9cQCGJW2NFMetHWzumW0SRgX2PtdsSlF3Px/qWmhgTo23Z1Jt/oxQ7J
c+FRzgT+3Fj3P7mF372Zj1yy+R8CennZelH9fYjia8TuuENAKiujVHK0D179
Jev23CPwaKmRbvJ0H0TrBJZHEgg02kgV1Yv+gHu8Fz0hjUDt64TeaO0fEOoY
U4tfEjC16DuTGPIDuzw4Mx0sAqFSth5blvVDzp4eOdxMINYwqK9ash9DFioK
s18IbCx1avJV7MddTeftMm0ELGNERSt0+tE3XnLWtoeA38mH4WMu/fgrMm4i
f2Khn5Krv2pmP+oYVtwYaRL9DjHWjns5uErL59yVJTGzRIlOuHGwrUazN16e
hEOReg7jCAdJ7GVtqUokjNrTlfZc4ODUoo9V/2qQOHl2pflYBgfLnewzGreS
AHNA5xTBgTV3v/tvLiSK6B3HIgsGIDxb5Sq9n8S42trINxUDeEFtd5I/QKIp
W3WZgDUABenV1msPkTg2IxMcOzQAzo52Q71jC/pBf//LyoO4/tfvqxzOkPA1
VfYZpQ+iTN23OvoeCf38unp5jyGs6W5WCooj0ap06aSe7xAupNICnRJIpAWl
+LmeHYKusrycTBIJZ7NuXl3MEB7IVh69n0Hi+axjiX/FEEJE11EZeSRc3gr+
uLZ1GOq8LsOCpgX/MKH8TYmL0Od2Nx58IuE0Sbs3osVFy8k37EufSViZFbTL
mnARzYkON28hYSZ/xT3pABdz381YZV0k1sfuSI+I4+JTc6J/A49EWMlTRpfs
COgFbhm9KyjYGn/bzdTgQbd5782RlRSOh175VmfEQyvXMnhakoKNjV3ttA0P
+qr6NHFZChrS0q+Sg3jouC7avkWFQpdRTK7eOx6MXQqk6DoULprLlKd6j4LH
U6Sr2lNo6jWlBRWP4YHoKj8tRwpPNdrP7/48Biv1ZY7b9lFgKY3Y7BweQ5Ir
X8V6P4VyREzfXj0OG2ZtQeBhCg7xxQe558fx6Mbl8ZIACviDV920ZgLu6zq9
PGMW8gbdzarGJ/A8pDF1920KMfrLz5aTE6Dev+/UvkuhgXlk7os4H488Mw7N
xVEoDBvIMdLkgxfneyA+hcLopscKAg8+6GJ8B1YOhXCu9m9RtXxk85bRrOoo
SKQ9O1fMFEBoOhu6uYGCaxX5LadOAIe/h5jSTRQEn2NbCtgCCDbUm/Q0U0h8
v6h1PSGAufcdo7D2Bf0muVlX2uTC/sq6BUMULJQsLDxqJjH71kBFR2wed+N9
LQ5NTWFzykzVcvF5jF8xbxeKTeNw+LuQgRXzcAlqYpeqTKN0797qDMl5XFax
LntvNY2bPb6nFRXmQVc4YPlP/DTCt6sXm6yeR9/XJfqhj6bxf7GcNK8=
"]]},
Annotation[#, "Charting`Private`Tag$48043#1"]& ]}, {}},
AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
Axes->{True, True},
AxesLabel->{None, None},
AxesOrigin->{0.5, 0},
DisplayFunction->Identity,
Frame->{{False, False}, {False, False}},
FrameLabel->{{None, None}, {None, None}},
FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}},
GridLines->{None, None},
GridLinesStyle->Directive[
GrayLevel[0.5, 0.4]],
ImagePadding->All,
Method->{
"DefaultBoundaryStyle" -> Automatic,
"DefaultGraphicsInteraction" -> {
"Version" -> 1.2, "TrackMousePosition" -> {True, False},
"Effects" -> {
"Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2},
"Droplines" -> {
"freeformCursorMode" -> True,
"placement" -> {"x" -> "All", "y" -> "None"}}}}, "DefaultMeshStyle" ->
AbsolutePointSize[6], "ScalingFunctions" -> None,
"CoordinatesToolOptions" -> {"DisplayFunction" -> ({
(Identity[#]& )[
Part[#, 1]],
(Identity[#]& )[
Part[#, 2]]}& ), "CopiedValueFunction" -> ({
(Identity[#]& )[
Part[#, 1]],
(Identity[#]& )[
Part[#, 2]]}& )}},
PlotRange->NCache[{{
Rational[1, 2], 2}, {0., 1.3521682546100284`}}, {{0.5, 2}, {0.,
1.3521682546100284`}}],
PlotRangeClipping->True,
PlotRangePadding->{{
Scaled[0.02],
Scaled[0.02]}, {
Scaled[0.05],
Scaled[0.05]}},
Ticks->{Automatic, Automatic}]], "Output",
CellChangeTimes->{3.836415899764474*^9},
CellLabel->"Out[19]=",ExpressionUUID->"fac61c34-e273-4651-86c0-a613d5bacac1"]
}, Open ]]
},
WindowSize->{1440., 773.25},
WindowMargins->{{0, Automatic}, {0, Automatic}},
TaggingRules->{
"WelcomeScreenSettings" -> {"FEStarting" -> False}, "TryRealOnly" -> False},
Magnification:>1.7 Inherited,
FrontEndVersion->"12.1 for Linux x86 (64-bit) (June 19, 2020)",
StyleDefinitions->"Default.nb",
ExpressionUUID->"5f27ea59-2188-4ccf-a4dd-f0e4f8b7b0eb"
]
(* End of Notebook Content *)
(* Internal cache information *)
(*CellTagsOutline
CellTagsIndex->{}
*)
(*CellTagsIndex
CellTagsIndex->{}
*)
(*NotebookFileOutline
Notebook[{
Cell[558, 20, 247, 6, 59, "Text",ExpressionUUID->"7f01145d-c140-4211-8860-4ef5698740d9"],
Cell[808, 28, 161, 3, 59, "Text",ExpressionUUID->"a9c1ab8a-41e6-4713-a0c9-197c452ff03d"],
Cell[972, 33, 277, 6, 70, "Input",ExpressionUUID->"b4c94ca0-165c-4337-aeac-c3d09521b40d"],
Cell[CellGroupData[{
Cell[1274, 43, 870, 20, 74, "Input",ExpressionUUID->"691f22a9-3d21-44f1-9be4-fd8c661c35b9"],
Cell[2147, 65, 837, 19, 96, "Output",ExpressionUUID->"861eaa97-39cc-4f4c-a7d9-9368a33c9a72"]
}, Open ]],
Cell[2999, 87, 199, 4, 59, "Text",ExpressionUUID->"59114730-0e73-4c08-a900-26791c4813fd"],
Cell[CellGroupData[{
Cell[3223, 95, 897, 20, 73, "Input",ExpressionUUID->"dfdc3e9c-0591-4699-9745-b2bd825bb59a"],
Cell[4123, 117, 755, 16, 87, "Output",ExpressionUUID->"419ba5f1-218e-45a7-9a60-11228700522b"]
}, Open ]],
Cell[4893, 136, 152, 3, 59, "Text",ExpressionUUID->"6fb57fa8-f58a-4363-9bf2-197ef6be605c"],
Cell[CellGroupData[{
Cell[5070, 143, 313, 6, 49, "Input",ExpressionUUID->"ccee2977-6730-4b2a-aef5-94d0013b426a"],
Cell[5386, 151, 801, 22, 115, "Output",ExpressionUUID->"17689209-09aa-4fe4-9435-1acf4173ac06"]
}, Open ]],
Cell[6202, 176, 440, 9, 59, "Text",ExpressionUUID->"8ae66398-702c-413a-ae80-880bb415f258"],
Cell[CellGroupData[{
Cell[6667, 189, 641, 16, 128, "Input",ExpressionUUID->"bf526400-8b4f-4e97-8119-afda63797e06"],
Cell[7311, 207, 509, 13, 99, "Output",ExpressionUUID->"1986275c-f1e7-4f5d-9f4a-85eceda2f85c"],
Cell[7823, 222, 246, 3, 56, "Output",ExpressionUUID->"3d145bf6-2635-43b8-ba4a-c1ad9feff346"]
}, Open ]],
Cell[8084, 228, 159, 3, 59, "Text",ExpressionUUID->"e16c85d9-b576-41ea-8433-e8721a945c4b"],
Cell[CellGroupData[{
Cell[8268, 235, 1207, 28, 99, "Input",ExpressionUUID->"12d21341-9d85-4521-8efc-0d6f6795ae32"],
Cell[9478, 265, 587, 17, 99, "Output",ExpressionUUID->"cbfda516-c82f-4ba0-80ef-3c1a4d9deecc"]
}, Open ]],
Cell[10080, 285, 317, 7, 59, "Text",ExpressionUUID->"6ce1e5b1-3569-43c8-9fa2-d17693c13ef4"],
Cell[CellGroupData[{
Cell[10422, 296, 546, 13, 49, "Input",ExpressionUUID->"5a7c63ea-9d77-4a2c-8750-9d4a2f3d4cc1"],
Cell[10971, 311, 4557, 94, 408, "Output",ExpressionUUID->"fac61c34-e273-4651-86c0-a613d5bacac1"]
}, Open ]]
}
]
*)