The Envoy project (and in the future UDPA) takes API stability and versioning seriously. Providing stable APIs is a necessary step in ensuring API adoption and success of the ecosystem. Below we articulate the API versioning guidelines that aim to deliver this stability.
The Envoy APIs consist of a family of packages, e.g. envoy.admin.v2alpha
,
envoy.service.trace.v2
. Each package is independently versioned with a protobuf semantic
versioning scheme based on https://cloud.google.com/apis/design/versioning.
The major version for a package is captured in its name (and directory structure). E.g. version 2
of the tracing API package is named envoy.service.trace.v2
and its constituent protos are located
in api/envoy/service/trace/v2
. Every protobuf must live directly in a versioned package namespace,
we do not allow subpackages such as envoy.service.trace.v2.somethingelse
.
Minor and patch versions will be implemented in the future, this effort is tracked in envoyproxy#8416.
In everyday discussion and GitHub labels, we refer to the v2
, v3
, vN
, ...
APIs. This has a
specific technical meaning. Any given message in the Envoy API, e.g. the Bootstrap
at
envoy.config.bootstrap.v3.Boostrap
, will transitively reference a number of packages in the Envoy
API. These may be at vN
, v(N-1)
, etc. The Envoy API is technically a DAG of versioned package
namespaces. When we talk about the vN xDS API
, we really refer to the N
of the root
configuration resources (e.g. bootstrap, xDS resources such as Cluster
). The
v3 API bootstrap configuration is envoy.config.bootstrap.v3.Boostrap
, even
though it might might transitively reference envoy.service.trace.v2
.
In general, within a package's major API version, we do not allow any breaking changes. The guiding principle is that neither the wire format nor protobuf compiler generated language bindings should experience a backward compatible break on a change. Specifically:
-
Fields should not be renumbered or have their types changed. This is standard proto development procedure.
-
Renaming of fields or package namespaces for a proto must not occur. This is inherently dangerous, since:
-
Field renames break wire compatibility. This is stricter than standard proto development procedure in the sense that it does not break binary wire format. However, it does break loading of YAML/JSON into protos as well as text protos. Since we consider YAML/JSON to be first class inputs, we must not change field names.
-
For service definitions, the gRPC endpoint URL is inferred from package namespace, so this will break client/server communication.
-
For a message embedded in an
Any
object, the type URL, which the package namespace is a part of, may be used by Envoy or other API consuming code. Currently, this applies to the top-level resources embedded inDiscoveryResponse
objects, e.g.Cluster
,Listener
, etc. -
Consuming code will break and require source code changes to match the API changes.
-
-
Some other changes are considered breaking for Envoy APIs that are usually considered safe in terms of protobuf wire compatibility:
-
Upgrading a singleton field to a repeated, e.g.
uint32 foo = 1;
torepeated uint32 foo = 1
. This changes the JSON wire representation and hence is considered a breaking change. -
Wrapping an existing field with
oneof
. This has no protobuf or JSON/YAML wire implications, but is disruptive to various consuming stubs in languages such as Go, creating unnecessary churn. -
Increasing the strictness of protoc-gen-validate annotations. Exceptions may be granted for scenarios in which these stricter conditions model behavior already implied structurally or by documentation.
-
The exception to the above policy is for API versions tagged vNalpha
. Within an alpha major
version, arbitrary breaking changes are allowed.
Note that changes to default values for wrapped types, e.g. google.protobuf.UInt32Value
are not
governed by the above policy. Any management server requiring stability across Envoy API or
implementations within a major version should set explicit values for these fields.
The API lifecycle follows a calendar clock. At the end of Q4 each year, a major API version increment may occur for any Envoy API package, in concert with the quarterly Envoy release.
Envoy will support at most three major versions of any API package at all times:
- The current stable major version, e.g. v3.
- The previous stable major version, e.g. v2. This is needed to ensure that we provide at least 1 year for a supported major version to sunset. By supporting two stable major versions simultaneously, this makes it easier to coordinate control plane and Envoy rollouts as well. This previous stable major version will be supported for 1 year after the introduction of the new current stable major version.
- Optionally, the next experimental alpha major version, e.g. v4alpha. This is a release candidate
for the next stable major version. This is only generated when the current stable major version
requires a breaking change at the next cycle, e.g. a deprecation or field rename. This release
candidate is mechanically generated via the
protoxform tool from the
current stable major version, making use of annotations such as
deprecated = true
. This is not a human editable artifact.
An example of how this might play out is that at the end of September in 2020, we will freeze
envoy.config.bootstrap.v4alpha
and this package will become the current stable major version
envoy.config.bootstrap.v4
. The envoy.config.bootstrap.v3
package will become the previous stable
major version and support for envoy.config.bootstrap.v2
will be dropped from the Envoy
implementation. Note that some transitively referenced package, e.g.
envoy.config.filter.network.foo.v2
may remain at version 2 during this release, if no changes were
made to the referenced package.
The implication of this API lifecycle and clock is that any deprecated feature in the Envoy API will retain implementation support for 1-2 years (1.5 years on average).
The Envoy APIs can be safely extended with new packages, messages, enums, fields and enum values, while maintaining backwards compatibility. Additions to the API for a given package should normally only be made to the current stable major version. The rationale for this policy is that:
- The feature is immediately available to Envoy users who consume the current stable major version.
This would not be the case if the feature was placed in
vNalpha
. vNalpha
can be mechanically generated fromvN
without requiring developers to maintain the new feature in both locations.- We encourage Envoy users to move to the current stable major version from the previous one to consume new functionality.
As a pragmatic concession, we allow API feature additions to the previous stable major version for a single quarter following a major API version increment. Any changes to the previous stable major version must be manually reflected in a consistent manner in the current stable major version as well.
We maintain backwards compatibility within a major version but allow breaking changes across major versions. This enables API deprecations, cleanups, refactoring and reorganization. The Envoy APIs have a stylized workflow for achieving this. There are two prescribed methods, depending on whether the change is mechanical or manual.
Field deprecations, renames, etc. are mechanical changes that are supported by the protoxform tool. These are guided by annotations.
A manual breaking change is distinct from the mechanical changes such as field deprecation, since in
general it requires new code and tests to be implemented in Envoy by hand. For example, if a developer
wants to unify HeaderMatcher
with StringMatcher
in the route configuration, this is a likely
candidate for this class of change. The following steps are required:
- The new version of the feature, e.g. the
NewHeaderMatcher
message should be added, together with referencing fields, in the current stable major version for the route configuration proto. - The Envoy implementation should be changed to consume configuration from the fields added in (1). Translation code (and tests) should be written to map from the existing field and messages to (1).
- The old message/enum/field/enum value should be annotated as deprecated.
- At the next major version,
protoxform
will remove the deprecated version automatically.
This approach ensures that API major version releases are predictable and mechanical, and has the
bulk of the Envoy code and test changes owned by feature developers, rather than the API owners.
There will be no major vN
initiative to address technical debt beyond that enabled by the above
process.
To avoid maintaining more than two stable major versions of a package, and to cope with diamond dependency, we add a restriction on how packages may be referenced transitively; a package may have at most one version of another package in its transitive dependency set. This implies that some packages will have a major version bump during a release cycle simply to allow them to catch up to the current stable version of their dependencies.
Some of this complexity and churn can be avoided by having strict rules on how packages may
reference each other. Package organization and BUILD
visibility constraints should be used
restrictions to maintain a shallow depth in the dependency tree for any given package.
In addition to stability, the API versioning policy has an explicit goal of minimizing the developer overhead for the Envoy community, other clients of the APIs (e.g. gRPC), management server vendors and the wider API tooling ecosystem. A certain amount of API churn between major versions is desirable to reduce technical debt and to support API evolution, but too much creates costs and barriers to upgrade.
We consider deprecations to be mandatory changes. Any deprecation will be removed at the next stable API version.
Other mechanical breaking changes are considered discretionary. These include changes such as
field renames and are largely reflected in protobuf comments. The protoxform
tool may decide to
minimize API churn by deferring application of discretionary changes until a major version cycle
where the respective message is undergoing a mandatory change.
The Envoy API structure helps with minimizing churn between versions. Developers should architect and split packages such that high churn protos, e.g. HTTP connection manager, are isolated in packages and have a shallow reference hierarchy.