Full Documentation of GAMA 1.5.1

Provided by the GAMA development team

http://code. googl e. conl p/ gama- pl at form

?able of Contents

Introduction 10 GAMA 1.5, L. .. 14
What's NeW IN GAMA 1.5, L. ... e e 14
INterface GUIdE. .. ..o e 15
INterface GUIE. . ... o e e e 16
INErOAUCTION. . . .t e e e 16
GAMA PEISPECHIVES. . . o oottt et e et e et e e e e e e e e 16
List of GAMA PEISPECHIVES. . . ..ttt e e e e e e e e e e e 16
Modeling/Simulation switch perspectives. . ... i i e e 18
Project and model Creation. ... ... ...t 20
PrOJECE CreatioN. . . . ..ottt et e e e e e e e e e e e e 20
MOAEl CreatioN. . . ... e 21
EXPEeriment FUNNING. . . . ...ttt e et e e e e e e e e e e e et e e 21
IS DB O S, . oottt 22
INErOUCHION. . .. e e 22
SPECIES INSPECION. .« ot ittt ettt ettt e e e e e e 22
AGENT INSPECIOL. . . . oottt e e e e e e e 22
MOdeliNng GUIdE. ... e e 24
Introduction to the Modeling GUIde. .. ... .. o e e e 25
INErOUCHION. . .. e e 25
GAML LaANQUAGE. . . oottt ettt e e e e e e e e 25
Model SECTIONS OVEIVIEBW. ...t 26
Model SECHIONS. . .o 27
INCIUGE. . .. 27
0I0baL. o 27
BN S, .« . ittt e 27
ENVIFONMENL. . . . oottt et e e e e e ettt et e e e e e e e 28
EXPEIIMEBNL. . L .ottt e e e e e e 28
SPECIES SECIION. .o e 30
SpeCies DefiNitioN. ... o e 31
I OUCHION. . .. 31
SpPeCieS TeClaration. . . . ... 31
Skills: behavioral plug-ins. . . ... 32
Aspects: display ProPerties. . . . ..ottt 33
Parent: inheritance Of SPECIES. . .. ...t 34

Full Documentation of GAMA 1.5.1 Page 1 of 210



GAMA

Documentation
Scheduling desCription. . . .. ... 34
Topology AeSCHIPLION. . . . oottt e e e e e e e e e 35
NESHING SPECIES. . oottt ettt e e e e e e 35
Control: behavioral architeCtUre. . .. ... .. e e e e e 35
Base: Java foundation. . ... ... e e 36
Variables definitioN. ... .. e 37
DB aratioN. . . . .o e e e 37
BaSiS. . oo e e 37
NIt OF oo e e e e 37
CONSE. . i e e e e 38
UPatE. .« oot 38
Special attribULES. . . .. 38
fUNCHION. . . e e e 38
02T 1] (=T 39
0 = DGR 011 39
Of o 39
Naming variables. . . ... ... 40
ReSErVEd KeYWOIdS. . ...t e e 40
NamMING CONVENTIONS. . . . . oottt e e e e e e et e et e e e e 40
ACCESSING Variables. . . o e 40
[0 = Tox A= (oo <=1 40
REMOtE ACCESS. . . .ot e e e e e e e e 41
BUIlt-in Variables. ... . 43
] (o o 18 Tox 1[0 o PR 43
List of built-in agent variables. . . ... .. e 43
B aAVIO S, . oo e e 44
Choice of an agent behavior architecture. .. ... ... ... 44
CommoNn bEhaVIOr SITUCIUNE. . . ... . e e e e e e e e e e e 44
FEIl X, o o ot 44
AT OULES. . . o e 44
D It ON. . . e 44
0 45
A UL, . ..o e e 45
D It ON. . .. e 45
Task behavior MOdelS. .. ... e 45
L= L 45
SUD ElemMENES. . .. e 45
D I ON. . . e 45
FSM-based bBehaviors. . ... e 45
£ = 1 46
AT OULES. . . o e 46
SUD BIEMENES. . o 46
D It ON. . . e 46
AT O S, L i e e e e e 47
Definition of an actioNn. . ... . . e 47
USE Of AN ACHON. . ..ot e e e 47
SIS, o oot e e 48

Page 2 of 210 Full Documentation of GAMA 1.5.1



GAMA Documentation

OV BIVIBW. .« ottt ettt e e e e e e e e e e 48
0701V T T 48
VaANADIES. . . o 48
P, o 48

heading. . ... 49
ESHNALION. . . . oottt 49

BT OIS, . ot 49
FOlOW. . o 49

OT0. . it e 49

000 1Y 49

L1720 49
EXpPeriment SECHION. .. .o e 51
Experiment definition. ... ... 52
Experiment definition. .. ... .. 52
EXP It By PO, .« oottt 52
GUL o 53
Definition of GUI eXperimeNnt. . .. ... o e e e 53
UL, L e e e 53
Par Al S. . . o 53

USEer COMMANG. . . ..ttt e et e e e e e e e e et e e e 53

U DU, . e e e e e 54
DISPIaY. . o e 54
AQENES JAY . . oottt 54

SPECIES lAY . . . ottt 55

IMAgE JAY . . e 56

Chart Ay . . 56

LE2 R = Y 57

Bl o 57
1Yo 31 (o 58

B alCN. ..o 59
D NIt ON. . .. 59
The batch experiment facets. . . ... ... 59
Parameter definition. . .. ... . 59

The method element. . . ... ... 60
BatCh Methods. . . ... 60
Exhaustive exploration of the parameter space. ............. i 60

Hill ClimbINg. . o e e e e e 61
Simulated ANNealing. . . .. ... i e 61

Tabu SearCh. ... . 62
Reactive Tabu SearCh. .. ... ... e 62
Genetic AlgONthm. . ... 63
GAML [aNQUAG . ..ot 65
Data Ty DS . . .ottt 66
Table Of CoNtENtS. . . ... 66
Primitive bUilt-in types. . .. o e 66
D00, . o e 66

Full Documentation of GAMA 1.5.1 Page 3 of 210



GAMA

Documentation

1= 66

] 66

L] 1] o 67
CompleX DUII-IN By PES. o o e 67
=0 = o | 67
(o0 017 111 67
1= 68

o T=T0] 0 011 Y/ 68
OraPN. 69
1 70
1> o 70
0= 11 71
1 71
PN, e 71
010 72
0] o 72

L] 01T = 73
SPECIES NAMES AS LY PES. o ittt ittt it ettt e et ettt e 73
LOPOIOgY . o ot 74
Defining CUSIOM Y PES. . . . oo e e e e e e e e 74
Sl M NS, . . o e e e 76
Table Of CONtENtS. .. ... e 76
NIl SYNAX. . . ot ittt 76
A, . o 76
AU UL, . o .o 76

D NIt ON. . . e 76
ASK. . e e 77
AT OULES. . .o e 77

D NIt ON. . .o 77

N Ot G, .« ottt e 78

o= 0] (101 78
AT OULES. . .o e 78

D fiNItiON. . o 79

o 5> 1 79
A DULES. .« o 79

D NI ON. . .o 79

0 o 81
AT OULES. . .o e 81
ENCIOSEA 1aQS. . . . ottt 81

D fiNItION. . . e 81

=T (0] 82
A OULES. . o 82

D iNItiON. . .o 82
P 82
AT OULES. . .. e e 82
FOIOWING ta0S. . . o ottt e e e 82

D NIt ON. . .o 82

Page 4 of 210 Full Documentation of GAMA 1.5.1



GAMA Documentation

= 83
AU UL, . o .o 83

D NIt ON. . 83
0T o1 83
A OULES. .« o 83

D NI ON. . .o 84
PUL. Lo e 85
AU UL, . o .o 85

D NIt ON. . 85
1] [T T 85
A OULES. .« o 85

D NI ON. . .o 86

=] 0101 86
AU UL, . o .o 86

D NIt ON. . 86
=] (U 0 87
A OULES. .« o 87

D NI ON. . .o 87
AV . . i et e e e e e e e 88
AU UL, . o .o 88

D NIt ON. . 88
B ot e 88
A OULES. .« o 88

D NI ON. . .o 88
SWILCN. L L 89
AU UL, . o .o 89
Embedded tags. . . . ..o 89

D NIt ON. . . 89
1T = 89
A OULES. . oo 89

D iNItiON. . .o 90

L@ 07T = 1o £ 91
Table Of CoNtENtS. . . ... 91
D NIt ON. . . . 91
Operators by CategoOrieS. . . ..ottt e e e e 91
(O 1S 1] o o] 0= = L (] £ 91
COMPArISON OPEIALOIS. . . . ottt ettt e et e e e e e e e e e e e e e e 92
Containers-related OPErators. . . .. ... .t e e e 92
Files-related Operators. . . ... ..o 92
Graphs-related OPEratorsS. . . ... .ottt e e e e e 92
[0 T To7= 1 0] o 1= - (o] = 92
MathematiCs OPEIAtOrS. . . ..ottt e e e e e 92
Matrix-related OPerators. . . .. ... .. e e 92
RaANAOM OPEIatOrS. . . . e e e 92
Spatial OPEratOrS. . .. oo 93
StatiStiCal OPEIALOIS. . . o .ttt e e 93
Strings-related OPeratOrS. . ..ot e 93

Full Documentation of GAMA 1.5.1 Page 5 of 210



GAMA

Documentation
S O I oo 93
L0 01T 1= 10 ] £ 93
e e 93
...................................................................................... 94
...................................................................................... 95
e 95
o e 95
2 95
L 96
...................................................................................... 96
P 96
R e e 97
e 97
e 97
S 99
o e e et e e e 99
T 99
L 100
P 100
D 100
e e e 101
A, . 101
ACCUMUIALE. . . . e 102
A0S, o it 102
Add_Bdge. . . .o 102
Add_POINt. . .. e 102
A Z. . o 103
= Vo (o [ o PP 103
=0 = o | 103
A0ENE ClOSEST 0. . ..ottt 104
ageNnt_frOM _gEOMEIY. . . ..ttt e 104
agents_at diStancCe. . . ... .. o 104
A0ENTS _INSIHE. . . oo 104
A0ENTS_OVEI aPPING. . . oot 105
AIMIONG. .+ ottt e e e e e e e e 105
o 105
BNY . o e e 105
ANY _J0CAtION _IN. . . oo 106
ANY POINE N, Lot 106
ATOUNG. . oot 106
B, L i 106
AS A g, ..o e e 106
S _dale. . ..o e 107
as_distanCe _graph. .. ... o 107
aS_edge _graph. . ... 107
= T o | o 108
BS Nt L 108

Page 6 of 210 Full Documentation of GAMA 1.5.1



GAMA Documentation

as_intersection_graph. . ... ... 108
=SS 0= o 109
oS = L) 109
B8 T, o 109
= L] 109
| 110
At AIStANCE. . . ..ot 110
At LOCAtION. . . ..o e e e e e 111
AN, . e 111
DINOMIAL. .. . 111
DOOL. . 111
DU . oo 112
o | 112
oo 112
ClBAN. L 113
CloSESt_POINtS WIth. . ..o 113
ClOSE St 10, . .ottt e 113
o0 - 1= 113
COIBCT. . o 114
COlUMIN At .. e e e e 114
COIUMNS _liSt. . o . 114
(070 115
COMEAINET. .\ttt ettt e e e e e e e 115
COMAINS. o .ttt et ettt e e e e e 115
CoNtaiNS _all. . . o e e 116
CONEAINS _ANY . . oottt ettt e e e e e e e e e e e e e e e 116
oo g1 =11 - =To [0 = 116
CONTAINS _VEIEX. . . . ottt ettt e e e e e et e e e et e e e e e e e e e e e e e 117
CONVEX_NUIL .o e 117
(00} 0 )Y 117
COPY DBt BN, . .. 117
COT R, L 118
070 1 118
o0 1] | 118
03 07T = P 118
(0 =T Vo 119
JEOrEE Of. . .o 119
o =T o1 (=0 119
AIreCtiON _DEtWEEN. . . . 119
IrECHION 10, . . .ot 120
AiSJOINt frOM. . o e 120
distanCe _betWeEN. . . ... 120
AIStANCE 0. . ..ot e 120
IV, e 121
I Y. L o e 121
BNlarged DY, . oo 121
VAl gAML o 121

Full Documentation of GAMA 1.5.1 Page 7 of 210



GAMA

Documentation
evaluate WIth. . ... 122
L2 T o T 122
BV BTy . e 122
XD+ e e e e e e e 122
= X P 123
farthest PoOINt 10, ... .. 123
L1 = 123
L] P 123
fIE St WItN. . 124
1T 124
10 L 125
L1160 125
fOldEr. . o 125
freqUENCY _Of. . . 126
JAUSS. .« o ittt et e 126
generate_barabasi_albert. .. ... .. 126
generate_WatlS _SrOQalZ. . ... ..ottt e 127
JBOMBIIIC MIBAN. .« . .ttt e et e e e e e e e 127
OO Y. o ot ettt e e e e e 127
0 = 128
OraPN. o 128
ON At . o 128
OIOUD Y. o 129
RarMONIC MEAN. . ... o 129
0= 1o = 129
1 130
IN_degree Of. . ..o 130
N EgES Of. . oo e 130
INEX _Of. . o e 130
11 (o = 131
] 131
11 = 132
1] (= £ =11 1o o 132
] (= ST =T 01 132
IS e e e e e 133
[ESJ L= T [ S 133
IS UMDY, . . e 133
[EST 0] (0] 61T 11 133
LESTE] £ =T o1 134
IS XL, L ot 134
T 134
laSt INAEX_Of. ..o 135
LaSt WD, .o e 135
1= T ) 136
N, 136
DK, L 136
S 137

Page 8 of 210 Full Documentation of GAMA 1.5.1



GAMA Documentation

] 137
l0ad_graph_from_dgs. . . .. oo 137
load_graph_from_dgs Old. . . ... ... e 138
load_graph_from_dot. . . ... 138
load_graph_from_edge. .. ... oo 138
load_graph_from _geXf. . ... o 139
load_graph_from_graphml. ... .. 139
load_graph_from gl . ... 140
load_graph_from_NCOL. . ... ... 140
load_graph_from_pajek. . . ... 140
load_graph_from I, ... oo 141
= T 141
Masked _DY. . ... e 142
0T 142
0= 142
A _Of. L e 143
TS T P 143
MEAN_AEVIAtION. . . ..ttt e e 144
AN R, . e 144
MEAIAN. . . . e e 144
001 144
N Of. L 145
107 o 145
UL e e 145
NEIGNDOUNS b, . ... e 146
NeIghbOUrS Of. . . . 146
NEW _fOldEr. . . 147
0 10 147
0 147
Of o 147
Of _QBNEIIC _SPECIES. . . . e e e e 147
Of S PBCIES. . .o 148
0N Of. o o 148
0 ) 149
OUL _degree Of. . ... 149
OUL BdgES Of. ..ot 149
OV APPING. . . oo 149
OV IS, . o 150
DT, L 150
partially _OVerlaps. . . ... 151
PaALN. L 151
Path DEtWEEN. . . . o 152
DAt 0. . 152
101 152
POINES 8. . . . ottt ettt e e e e 153
POISSON. & ottt ettt 153
POl G ON. L .o e 153

Full Documentation of GAMA 1.5.1 Page 9 of 210



GAMA

Documentation
POIYIINE. . 153
PredeCeSSOrS _Of. . o o 154
PrOQUCT. . . o oottt e e e e e e 154
ST (0] 01T 1= P 154
R oMU, . o e e 154
1= T 154
FECIANGIE. . o 155
FEAUCEA DY, . o 155
remove_dUPHCALES. . . . ... 155
FEMOVE_NOAE_frOM. . .o e 155
1Y £ P 156
1T = o T 156
(0] o 156
1 157
(01221 (=T o 1 o)V 157
10 11 o 158
(01| P 158
FOWS LSt . oot e 158
SCaAlEd Y. .o 158
Sl L. . . 158
SEL VBIDOS . . oo 159
Shapefile. . .. 159
ShURTIE. .« . 159
simple_clustering_by _distance. . ........... . i 159
simple_clustering_by_envelope_distance. . .............. i 160
SIMPHAICAtION. . . .. 160
£ 160
SKEIBtONIZE. . . . oo 161
SOlI. oo 161
0] 161
SOt Y. .ot 161
SOUICE _Of. . oo e e 161
SIS, o ittt e e e 162
SPECIES O L ottt e 162
Sl At . o e 162
SRl lNES. . .o e e 162
SRl TN, L 163
S0 | 163
ST U= = 163
standard_deviation. . . . ... .. 163
SH NG ot e 164
SUCCESSOIS Of. . oo e e e e 164
£ 0 164
BN L e 165
BANN. L 165
BArgEt Of. . oo 165
L2 166
Page 10 of Full Documentation of GAMA 1.5.1

210



GAMA Documentation

TG aAUSS. . ottt et e e 166

10 gAML . 166

L0 = = VP 167
LOKEBNIZE. . . o 167

170 0010 o Y25 167
LOUCNES. . o 167
L0117 T 0 L3P 168
transformed _Dy. . ... o 168
translated _Dy. . ... 168
translated 0. . . ... e 169
TANGIE. . o e e 169
ANQUIATE. . . ..o 169
TIUNCALEA_QAUSS. . . o oottt et e e e e e e e e e 169
UNITECIEA. . . . o 170
LU0 o 170
UNKNOWN. .« ottt et e e e e e e e e e e e e e e e 170
0T o o 171
VAIIANCE. . o\ttt et e et e e e e e e e e e 171
WEIGNE Of. . 171
W . o 172
WIth MaX _Of. . o 172
Wt MO L L o 172
WIth 0P IMIZer Y P, . .o e e 173
WIER PrECISION. . . o 173
WITN WIS, . . 173
WItNOUL OIS, .. e e 173
1= 174
KB WO A S, ettt e e e e e e 175
CONS NS, . . ..ottt e 175
Nl L e 175
trUe, falSe. . 175
global built-in variables. . . . ... .. 175
T, 175
Sl . o e e 175

LS =0 175
AN, L oot e e 176
PSEUAO-VANADIES. . . . o 176
Sl 176
L0125 | 176
OGN, . oo 177
UNIE S, o ottt et e e e e e e e 177
eI, L . e 177
B, L 177
L= 7 178
SUN . . o oot 178
VOIUMIE. L . 178
BUI-IN AQENtS. . .o e 179

Full Documentation of GAMA 1.5.1 Page 11 of
210



GAMA

Documentation
INErOAUCTHION. . . o . e e e e e 179
Cluster _bUIldEr. . .. e e 179
BCHIONS. . . ot 179
simple_clustering_by_distance. .. ... .. 179
clustering _CobWED. . ... ... e 179
ClUSEEIING DB S CaAN. . . . ittt ettt et et e e e e 180
ClUSEBIING BIM. . o e e e e 180
clustering_farthestFirst. . . .. ... e 181
clustering_sSimple_Kmeans. . . .. ...t e 181
CIUSEEIING _XMEANS. . . . ottt et e et e e e e e e e e e e e e 181
MUItiCHteria_analyzer. . ... .. 182
BT NS, L .ttt e e 182
weighted _means DM, . ... . e e 182
Promethee DM, . ... 183
BlECtrE DM 183
evidence _theory DM, ... ... 184
BUI-IN ACTIONS. . .o 185
BUII-IN @CHIONS. . . ..o 185
JEDUG. . oo e e 185
L= 185
Global built-in @CtiONS. . . . ... 185
T | 185
AU . . . ottt e e e e e e 185
Additional featUres........coiiiiii 187
GaAMA 3D . . .o 188
INEOAUCHION. . . L. 188
How to use OpenGL display in Gama. . .. ...ttt e e 188
Gama 3D Simulation PerspeCtiVE. . .. ...t 189
MOUSE INEEIACHION. . . oot e e e e e e 189
TOOgle DULLON. . . . 189
INfOrMALiON. . . .o 190
Why using 3D in your model?. . .. ... .o 190
MUK LY . . o e e e e 190
Digital Model Elevation. . ....... .. 191
Data INt0 oMM, .. . 191
User CONtrOl. ... e e e 193
INErOAUCTION. . . . e e e e e 193
USEI_COMMANG. . . . .ttt ettt e e e e e e e e e e e e e e e 193
USEE_OCALION. . . ..ttt e e e 194
B LT =T g [T 01U | Ao o =1 = o1 194
USEr CONrol arChiteCtUre. . . .. ..o e e e e e 194
user_only, user_first, USer_last. . ... ... 194
USBE PANEL. e 195
USEr_CONtrOlled. . . . o 198
Database ACCESS. . . ot e 199
DS I Pt ON. .« .ottt 199
I OUCHION. .. e 199
Page 12 of Full Documentation of GAMA 1.5.1

210



GAMA Documentation

SOLSKIlL . . 199
Define a species that uses the SQLSKILL skill. . ......... . o i 199
Map of CONNECLION PArAMELEIS. . . . ..ottt et e e e e e e 200
Action: testConnection [params:: connection_parameter]. .. ..., 200
Action: select [params:: connection_parameter, select::select_string]. ...................... 201
Action: executeUpdate [params:: connection_parameter, updateComm:: update_string]....... 201

AGENED B, . . . 202
Map of connection parameters. . . .. ... . 202
Action: testConnection [params:: connection_parameter]. . ............ .. 203
Action: connect [params:: connection_parameter]. . ... i e 203
ACioN: ISCONNECIEA [ | .o oot et e e e e e 204
ACHON: ClOSE [ ] ittt e e e e 204
ACtION: getParameter [ . ... oot 204
Action: select [select:: select_String]. .. ... ..o 205
Action: executeUpdate [updateComm:: update_String J.. ..., 205

Using SQL features to define environment or create Species. ..., 206
Define the boundary of the environment from database. ................. ... ... ... ........ 206
Create agents from the result of a "select” action............. ... ... . i, 207

Driving SKill. . .. 208

DS CIIPLION. . . ottt e 208

INEOAUCHION. . . L. 208

driving SKill. . . .o 208
Define a species that uses the driving sKill. . . ...... ... ... . i i 208
VaNADIES. . . 208

VING SPACE. . . ottt 208
lanes _attribUte. . ... e 208
LOlBrANCE. . . o . 209
ObStaClE _SPECIES. . ..o o 209
=T 1o 209
6 ] (0 209
Model eXamples. . . . ... 209

Full Documentation of GAMA 1.5.1 Page 13 of
210



GAMA
Documentation

Introduction to GAMA 1.5.1
What's new in GAMA 1.5.1

GAMA version 1.5.1 is the GAMA version that will be used for the Can Tho Tutorial 2012 and the Fall
Gama Coding Camp 2012. The version 1.5.1 improves some features of the 1.5 :
¢ correction of bugs (in particular, no more freezes when reloading an experiment)
o performance improvement (in particular for "big" models)
« improvement of the 3D integration (new operators to add a "z" to geometries, bug corrections...)
« new models (driving_traffic, Vote, 3D models)

Page 14 of Full Documentation of GAMA 1.5.1
210



GAMA Documentation

| nterface Guide

Full Documentation of GAMA 1.5.1 Page 15 of
210



GAMA
Documentation

Interface Guide

| ntroduction

Developed as a plugin of Eclipse, GAMA has an graphical user interface very close to the Eclipse one. It
is in particular based on the notions of editor, view and perspective. Views and editors and tabs in which
user can display information (in the case of view) and edit files (in the case of editors). For example, the
Gama Navigator allows to display the projects libraries. A Perspective a visual container in which are
organized a set of views and editors.

GAMA perspectives
List of GAMA perspectives

GAMA provides five distinct perspectives that we describe in details in dedicated sections:

« the Modeling perspective (the default perspective);

Model Navigator

Model edition frame Model outline

/

= P [] [rp— N — =0

o the Simulation perspective

Page 16 of Full Documentation of GAMA 1.5.1
210



GAMA Documentation

Run/pause the current simulation

| Step by step execution |

Launch a new simulation (with the
current parameters values)

= wm - ﬁUserstatricktaiIIa{jier.FDocum

gama_workspace_test_3/WACAMA/models /IWAGAMA_1.gaml

J % Simulation of experiment

————p)

&7

| GamaMNavig 52

=0

=0

p
{3b Parameters 5%

@ ~0

==

5} dynamlc[ﬁﬁ

o

I ——p s S|@L L L)
1

» [ Models library (22 }
|z Shared models (0}
Y|5User models (3

» T MAPS

b " est

Slows down the execution of |
the simulation

= GIS

GIS file of the nodes
GIS file of the

fUsers/patricktaillandier/{

JUsers/patric dier/l

= Model WAGAMAL System parameters for experiment |

v T HwacAMA
P =doc
(= images
P = includes
¥ (= models

4,

b

Zoom in, zoom out, fit the view,
zoom on an agent

Random seed

 Define: . 0.0
A

WAGAMA_1.gaml

WAGAMA_10.gan
WAGAMA_11.gam °

WAGAMA_12.gan @
WAGAMA_13.gan
WAGAMA_14.gan
WAGAMA_15.gan
WAGAMA_16.gan
WAGAMA_2 .gaml

= MAIA T ARAA T el

5J Console &2 =g

Parameters view (can be
altered from there)

f WAGAMA_L.gaml 52

.:.E]

|| 107Mofasam @ |

the Batch perspective

Full Documentation of GAMA 1.5.1

Page 17 of
210



GAMA
Documentation

Allows to pause/run the sequence of simulations

calibrfition sers /patrickta dier/D work 3 /WAGAMA /mod NAGAMA_14.gam
- —@ niels
GamaNavigator £3 =0 55 Parameters I3 2 a =0
- Number of parameters set already tested
e = Exploration method

¥ = models

= my_model.gaml

Current repetition for
the parameters set

Run 0
Repeat 1

T )//

Fp—
v" Twad Stop condition  (time) > (15)
4= Best pﬂmmetem set Best fitness - {average of 10 simulations)
. = " faund 50 ﬁ,r Last fitness - {of the last single simulation)
- Best solution - )
activities.shp ' Exploration method tabu
| activities.shx Tabu list size 5

X activity_type_data.csv

S environment.dbf
environment.shp
environmentshx

Maximum number of iterations 0.0

Parameters to explore

Quantity of input water North 7
Quantity of input water South 19

J
N

Current parameters set

S nodes_simple.dbf
nodes_simple_shp
nodes_simple.sho

S nodes.dbl
nodes.shp
nodes.shx

¥ owners_data.csv

¥ = models
WAGAMA_1 gami
WACAMA_10.gaml
WACAMA,_11.gaml
WACAMA,_12.gaml

- Console &
] —

- “my_model.gaml | WACAMA_13.gaml (5] WACAMA,_14 gaml I3

writable Insert 1:1 a21mofsiam @

the SVN Repository Exploring perspective
the Team Synchronizing perspective

Modeling/Simulation switch perspectives

GAMA offers the possibility to simply switch between the modeling and the simulation perspective.

Page 18 of
210

Full Documentation of GAMA 1.5.1



GAMA Documentation

P —— —
Perspective switch /(@) P HG|lar] S
button | ® switch Perspective (Fey Ve 1 cvelel 38

Modeling perspective | ‘f % | Simulation perspective

Cr———
© s L
L == L —— =

e o
= - ————

Full Documentation of GAMA 1.5.1 Page 19 of
210



GAMA
Documentation

Project and model creation

project creation

G TR R, Ao Vew Share Ocbug e

BOO wrm-:m;pn-:muwwm]
™ Dpen File I | g Shared models [ 4 ] J
- Oipen Project v__;u,,er models [ &1
Closs xW v T 5Democ Copy to Workspace
Close All 3 4] % ‘ .
. .o S ONev kN
e L8 ¥ imy e
4 Save As e b dor = Open documentation
e® ::ﬁ: ‘ @=ima Open File..
. ® ® @inci 3 Search Resource O¥R
' Swiich Workspace . ] o = moe
Restart ® o .
L ® ' » oo & Copy BC
@ [ » T2 Road T Paste eV
X Delete =
=
Mo
Sadect 4 widard —
e 88 Frapet
Crvatm g e CAMA Progeyy
Wamde
e Progect same =y _praget
- ':‘:." o s detmett omien
o G Pragein o o e
L LU
L
b EEEEE—
e [ Larae P
- [ [
R ——————
Page 20 of

210

Full Documentation of GAMA 1.5.1




GAMA Documentation

model creation

TR R, Ais Vien Shwe Debup bels | b (g Shared models (4] |
BOO default = [Userspairickialandier v B User modele TR 1
W WESEER  Open Flle »"¥pemog  Copy to Workspace
pen Project P S wAgLL ann
Close oW 2 MAELL
Close Al MW T | Mosial e
§ ° »imdoc ' Open documentation
Lave Al . L @imy Open File..
R bs ] (incy 2 Search Resource THR
@ imoon ‘ & mot Container. frmy_project Browse...
b4 eAxpar ® ® ° »Cifpredatt  [[E Copy HC
e ::‘mnmm;n. » ® ® i noad T Paste XV Choose a model () Empey  (®) Skeleton () Example
tan ® File name. model. 4
e ..  Delete ® e e
R Author patricktadiandier
Madsl rame. mymadel
Model description: [Examgle of model creaton]
800 New
Select a wizard —
r Create a hami
- fox the model description? ) Ye3 L) N0
Wizards:
(Rype finer text D)
» G Genaral
¥ 2 GAMA
2% Garna Froject « Back et > Cancel | fmen |
 Model file
=y !l
mocel mymodel
glebal {
/%% Tnsart the glabal definitions, varishles and actions here */
}
environment
#%% Insert the grids ond the properties of the environment */
¥
entities {
/%% Insert here the definition of the species of agents */
¥
— _ - . Finish experiment mymodel type: gui {
i [ hest> | | Cancel | L /%% Ingert hers the definition of the input and output of the madel %/
}

Experiment running

'] WAGAMA_1.gam! 82 =

-,
Run experiments:
T ———
*  WAGAMA1
* Author: Patrick Taillandier
* pDescription: model structure definition; species de

o'

Full Documentation of GAMA 1.5.1 Page 21 of
210



GAMA
Documentation

Inspectors

| ntroduction

The Inspectors allow to obtain informations about a species or an agent. There are two kinds of
inspectors :

e species inspector
e agentinspector

Species inspector

The species inspector provides informations about all the species present in a model. The species
inspector is Available through the Agents menu.

o = . ) =
425 Parameters rr,—] Monitors | 2t =3 i

i e——

| Agents NIISY Share Debug Help 2 world_species - 1 agent

| g Species world_species > BE = node - 14 agents

ﬂ L Chow cpecie: cpecto! > Population: 14 living agents £ Inspect
| & ' Attributes: | color x

-

£, Show agent inspector '
- 3 X Aspects: network
£ Open dynamic agent inspector

T L water - 0 agent

ar water_unit — 0 agent

Agent inspector

The agent inspector provides information about one specific agent. It also allows to change the values
of its variables during the simulation. The agent inspector is available from the Agents menu, by
right_clicking on a display, in the species inspector or when inspecting another agent.

Page 22 of Full Documentation of GAMA 1.5.1
210



GAMA Documentation

& Agent Inspector ﬁ\ . | = =0

= Agent waterQ

®
host  world_species0 & Change...

World agent »

quantity_clean | 20 ) =
node > water_units | [19 as water_unit,11 as water_unit,15 as water_unit,0 as wa )| 7 Edit |
Selected agents . [Fei]
location x 44.310640624296184 Yy 32.50329022B10536
B W e rame waterd
Focus ;
Highlight quantity = 20 | = o
S shape | [44.310640624296184,32.503200228105 36} as geometry
quantity_polluted = 0 3) =

highlight | false

It is possible to «highlight» the selected agent.

&Agenl Inspector 88 | =— =0
= Agent waterQ

® T A
host word seces0 |:>

quantity_clean | 20 )) = dp

Allows to choose the
color of the frame

water_units | [19 as water_unit, 11 as water_unit,15 as water_unit,0 as wa: | | o Edit

location x  44.310640624206184 ¥ 32.50320022810536
name ‘waterd’
quantity | 20 ) =

W— s wmPppodele=0
| == |

shape | [44.310640624296184,32.50329022610536} as geometry

quantity_polluted 0 | =

Full Documentation of GAMA 1.5.1 Page 23 of
210



GAMA
Documentation

Modeling Guide

Page 24 of Full Documentation of GAMA 1.5.1
210



GAMA Documentation

Introduction to the Modeling
Guide

| ntroduction

The modeling guide describe how to define a model with GAMA. A model is a GAML file (or set of files,
included in each other) that is composed of several sections (a description of these sections is provided
[Sections15 here]).

GAML Language

Actions (except built-in actions) and behaviors are written as sequences of statements.

Statements use expressions to define conditions, data changes, computations, etc. A statement
ends by a ";" (statement without block) and by a {...} (a block of statements).
An expression is composed of variables, keywords and operators.

Every expression (and, therefore, every variable) has a type: either a built-in type or a species, as
species can be seen as extended data types.

Species come preloaded with built-in variables and skills variables (and every species can make use
of the global built-in variables). All these variables can be redefined in GAML and, of course, new
variables can be declared.

Full Documentation of GAMA 1.5.1 Page 25 of
210



GAMA
Documentation

Model sections
overview

Page 26 of Full Documentation of GAMA 1.5.1
210



GAMA Documentation

Model Sections

A model is structured in several sections.

Include

This section allows to load another model file before loading the current file. This file can contain anything
(whole definition of a model, definition of a species, of an environment, of global variables, etc.) as long
as it respects the common structure of GAML models. Note that as many files as needed can be included.
Example:

import "../include/schelling_comon.gam"
import "../include/data_global.gam"

global

This "global" section defines the "world" agent, a special agent of a GAMA model. We can define
variables and behaviours for the "world" agent. Variables of "world" agent are global variables thus can
refered by agents of other species or other places in the model source code. Example:

gl obal {
i nt nunmber Bugs <- 100;
fl oat gl obal MaxConsunption <- 1;
float gl obal MaxFoodProdRate <- 0.01;
init {
create bug nunber: nunber Bugs;

}

Definitions of species are placed int this section. Example:

entities {
speci es bug {

float evol <- 1;

rgb color <- rgb ([255, 255/evol, 255/evol]);

float maxConsunpti on <- gl obal MaxConsunpti on;

stupi d_cell nmyPl ace update: |ocation as stupid_grid;

refl ex basic_nove {
| et destination <- one_of ((myPlace neighbours_at 4) where enpty(each. agents));
if destination != nil {

set |location <- destination;

}

reflex grow {
let transfer <- min ([maxConsunption, nyPl ace.food]);
set evol <- evol + transfer;
set nyPl ace.food <- nyPl ace.food - transfer;

Full Documentation of GAMA 1.5.1 Page 27 of
210



GAMA
Documentation

}
aspect basic {
draw shape: circle color: color size: 1

}

environment

This section contains definitions of environments. GAMA supports three types of topologies for
environments: continuous, grid and graph. By default, the world agent (i.e. the global agent that contains
all of the other agents) has a continuous topology and its geometry is a rectangle of size 100mx100m.
The size of the rectangle can be defined:

o using the width and height facets:
envi ronment wi dth: 200 hei ght: 100

e using the bounds facet, with:
* apoint ({x,y}):
envi ronnment bounds: {200, 100}

« a shapefile (GIS): envelope of all the data contained in the shapefile:
envi ronment bounds: "buil di ngs. shp"
o araster file (asc):
envi ronnment bounds: "mt.asc"
o aimage file (png, jpg, tiff) linked to a world file (respectively pgw, jgw, tfw):
envi ronnent bounds: "mt.png"
o alist of files (shapefile or ASC) : union of their envelopes:
envi ronment bounds: ["buil di ngs. shp", "mt.asc"]

This section could include the definition of one or several environments with grid topology. Example:

envi ronment wi dth: 100 hei ght: 100 {
grid stupid_cell width: 100 height: 100 torus: false {
rgb color <- rgb('black")
fl oat maxFoodProdRate <- gl obal MaxFoodPr odRat e
float maxConsunpti on <- gl obal MaxConsunpti on
float foodProd <- (rnd(1000) / 1000) * naxFoodProdRate
float food <- 0.0 update: food + foodProd

}
}

Each cell of a grid will be an agent. A grid represent a particular species of agents with a specific topology
(grid topology). It is possible to define for a grid like for other species: variables , actions , behaviors and
aspects .

experiment

This section defines experiments to run. Two kinds of experiment are supported: gui (graphic user
interface) and batch (exploration of models). Example:

Page 28 of Full Documentation of GAMA 1.5.1
210



GAMA Documentation

experiment my_experinmentation type: gui {
out put {
di spl ay stupid_display {
grid stupid_cell;
speci es bug aspect: basic;

}

Full Documentation of GAMA 1.5.1 Page 29 of
210



GAMA
Documentation

Species section

Page 30 of Full Documentation of GAMA 1.5.1
210



GAMA Documentation

Species Definition

| ntroduction

The agents' species are defined in the entities section. A model can contain any number of species.
Species are used to specify the structure and behaviors of agents. Although the definitions below apply to
all the species, some of them require specific declarations: the species of the world and the species of the
environmental places.

Species declaration

The simplest way to declare a species is the following:

speci es a_nane {
[vari abl e decl arati ons]
[action decl arati ons]
[ behavi or s]

}
for example:
species foo{} //it is also possible to directly wite: species foo;

The agents that will belong to this species will only be provided with some built-in attributes and actions,
a basic behavioral structure and nothing more. So, for instance, it is possible (somewhere else in the
model) to write something like:

let foo_agents type: list of: foo <- [];
create foo nunber: 10 return: foo_agents;
ask foo_agents {

wite ("my nane is: " + nane);

}

Which will result in the 10 agents writing their name, in turn, on the console. If the species declare
variables, the structure of the agents is modified consequently. For instance:

speci es foo {
float energy <- rnd (100) min: O nax: 100 update: energy - 0.001;

}

Will give each agent an amount of energy (between 0 and 100), which will decrease over time until it
reaches 0. The species can also declare actions that will supplement the built-in ones and extends the
possibilities of the agents. Here, we provide two possible actions for agents of species foo, eating and
stealing energy:

speci es foo {
float energy <- rnd (100) min: O nax: 100 update: energy - 0.001;
action eat {
set energy <- energy + rnd (2);
}
action steal {
| et another _agent type:foo <- any ((foo as list) - self);
if (another_agent != nil) and ((another_agent.energy) > 0){

Full Documentation of GAMA 1.5.1 Page 31 of
210



GAMA
Documentation

set anot her _agent. energy <- another_agent.energy - 0.01;
set energy <- energy + 0.01;

}

}

Of course, these actions do nothing unless they are called either by behaviors or by other agents. One
might for example extend the previous example like:

let foo_agents type: list of: foo <- [];
create foo nunmber: 1000 return: foo_agents;
ask (100 anpng (foo)) {

do eat;

}

ask (100 anong (foo)) {
do steal;

}

In this example, we create 1000 foos, ask 100 of them to eat, and another 100 of them to steal energy.

If these commands are done repetitively (for example, every turn in the world), they will result in a
somewhat complex dynamic distribution of the energy between the foos. Of course, the dynamics of foos
can also be declared from within their species. If we change slightly the declaration of foo like this:

species foo {
float energy <- rnd (100) min: O nax: 100 update: energy - 0.001;
action eat {
set energy <- energy + rnd (2);
}
action steal {
| et anot her_agent type:foo <- any ((foo as list) - self);
if (another_agent != nil) and ((another_agent.energy) > 0){
set anot her _agent. energy <- another_agent.energy - 0.01;
set energy <- energy + 0.01;

}
}
reflex {
if flip (0.1) {
do eat;
}
if flip (0.1) {
do steal;
}
}

}

We obtain agents that execute the reflex every turn and decide independently to eat or steal energy.
Once they are created using

create foo nunber: 1000;

they behave by their own.

Skills: behavioral plug-ins
Basic agents like the previous ones cannot, however, do many things. That's what skills are for. Example:

speci es foo skills: [noving]{

,

Page 32 of Full Documentation of GAMA 1.5.1
210



GAMA Documentation

makes foos benefit from a set of variables and behaviors declared by the situated skill. Skills are like plug-
ins written in Java and can provide a lot of new functionality to the agents.

Aspects: display properties

The aspect section allows to define the display of of the agents. it is possible to define different displays
(i.e. different aspect sections) for a same species. In this context, the user will be able to change the
display drawn during the simulation execution. The command draw allows to draw a shape (line, circle or
square), a icon, a text or the agent geometry. this command has several facets:

o shape: optional, can be either "line", "circle", "square" or "geometry (in this case, the geometry of the
agent will be drawn).
e geometry: any arbitrary geometry, that will only be affected by the color facet.

o text: string, optional, the text to draw.

o image: string, optional, path of the icon to draw (JPEG, PNG, GIF).

o color: rgb, optional, the color to use to display the shape/text/icon/geometry.

« size: float, size of the shape/text/icon (not use in the context of the drawing of a geometry).

o at: point, location where the shape/text/icon is drawn (not use in the context of the drawing of a
geometry).
o to: point, terminal location of the line (only use in the in the context of the drawing of a line).

o rotate: int, orientation of the shape/text/icon (not use in the context of the drawing of a geometry).

« z: float, optional (only works if the type of the display is opengl) Add a height to the geometry
previously defined (a point becomes a sphere, a line becomes a plan, a circle becomes a cylinder,
a square becomes a cube,a polygon becomes a polyhedron with height equal to the z value). Note:
This only works if a the agent has already a geometry.

For example, the following model allows to define three displays for the agent; one named "info", another
named "icon" and the last one named "default".

aspect info {
draw shape: square at: location size: 2 rotate: heading;
draw geonetry: square(2) rotated_by heading;
draw shape: line at: |location to:destination + (destination - |ocation) color:'wite';
draw shape: circle at: location size:4 enpty:true color:'wite';
draw text: heading color: '"white' size:1;
draw text: state color: 'white' size:1 at:my location + {1, 1};

}

aspect icon {
draw i mage: shape at: location size: 2 rotate: heading;
}
aspect default {
draw shape: square at: |ocation enpty: !hasFood color:'yellow size: 2 rotate: heading;

}
3D aspect with display type:openg!:

aspect sphere {
draw geonetry: geonetry (point([location.x,location.y])) z:0.1;
}
aspect pl an{
draw geonetry: geonetry (line ([{O,0},{10,10}])) z:10 ;
}
aspect cylinder {
draw geonetry: circle(l) z:1;

Full Documentation of GAMA 1.5.1 Page 33 of
210



GAMA
Documentation

}
aspect cube {
draw geonetry: square(l) z:1

}
aspect pol yhedron{
draw geonetry: polygon([{7,5.5}, {7.5,5}, {8.5,5}, {9,5.5},{9,6.5},{8.5,7},{7.5,7},{7,6.5}])
z:2;
}

Parent: inheritance of species

A species can be declared as a child of another species, using the parent property. For instance :

speci es foo skills:[noving] parent:bar {

, e
will make foo "inherit" from the definition of bar. What does "inherit" precisely mean in this context ?

o skills declared in bar, together with their built-in attributes and actions, are copied to foo and added
to the possible new skills defined in foo.

o variables declared in bar, are identically copied to foo unless a variable with the same name is
defined in foo, in which case this redefinition is kept. This also applies to built-in variables. The type
of the variable can be changed in this process as well (but be careful when doing it, since inherited
behaviors can rely on the previous type).

o actions declared in bar are identically copied to foo unless an action with the same name is defined
in foo, in which case this redefinition is kept.

« reflexes declared in bar are identically copied to foo unless a reflex with the same name is defined
in foo, in which case this redefinition is kept. Unnamed reflexes from both species are kept in the
definition of foo.

« behaviors declared in bar are identically copied to foo unless a behavior of the same type with the
same name is defined in foo, in which case this redefinition is kept.

¢ inits are treated differently : each of the init reflexes defined in bar and foo are kept in foo and they
are executed in the order of inheritance (ie. bar 's one first, then foo 's one).

Scheduling description

The modeler can specify the scheduling information of a species. The scheduling information composes
of the execution frequency and the list of agent to be scheduled.

« the execution frequency is the frequency which agents of the species are considered to be
scheduled.

« '"the list of agent to be scheduled" is an expression returning a list of agent dynamically evaluated at
runtime.

speci es foo skills:[nmoving] parent:bar frequency: 2 schedules: (list (foo)) where (each.energy >
50) {
var energy type: float init: rnd (100) min: O nax: 100 val ue: energy - 0.001

o frequency: consider to schedule agents of the "foo" species every 2 simulation step.

o schedules: is an expression of the list of agent to be scheduled, this expression returns "foo" agents
having energy greater than 50.

Page 34 of Full Documentation of GAMA 1.5.1
210



GAMA Documentation

Hence, every 2 simulation step, "foo" agents having energy greater than 50 are scheduled.

Topology description

The topology describes the spatial organization of the species. This imposes constraint on the movement
and perception (neighborhood) of the species' agents. GAMA supports three types of topology:
continuous, grid and graph.

speci es foo skills:[noving] parent:bar topol ogy: (square (10)) at_location {50, 50} {

, o
Topology of the "foo" species is a square of 10 meters each side at location {50, 50}.

A species can be defined inside another species. The enclosing species is the macro-species. The
enclosed species is the micro-species. A model has "world" species as top-level species. The "world"
species has one special agent ("world" agent) playing the role of the global context. The possibility to

establish micro-macro relationship, to specify the scheduling description and the topology description
enable the modeler to develop multi-scale model.

species A {

}
species B {
speci es C parent: A {

speci es D {

« "A"and "B" are micro-species of "world" species.

e "C"and "D" are micro-species of "B" species.

o "C" species is a sub-species of "A" species. So agents of "A" species can be [Commands14
captured] by an agent of "B" species to become a "C" agent, micro-agent of the "B" agent. Vice-
versa, a "C" agent, micro-agent of a "C" agent, can be [Commands14 released] from the "C" agent
to become an "A" agent.

Control: behaviora architecture

By default, species are created with a minimal behavioral architecture : they only allow the definition of
reflexes as a way to define the agents' behaviors. As reflex-based agents are somewhat limited when it
comes to maintaining a state between two steps or enabling the selection of behaviors, GAML provides
the modeler with two possible behavioral architectures, EMF (for Etho-Modeling Framework) and FSM
(Finite State Machines). Each of them gives the possibility to define new elements in addition to reflexes :
respectively tasks and states.

Full Documentation of GAMA 1.5.1 Page 35 of
210



GAMA
Documentation

Base: Java foundation

The corresponding class used to initialize agent. An advance feature of the GAMA platform allowing the
third party developer to develop their own agent architecture using the Java programming language.

Page 36 of Full Documentation of GAMA 1.5.1
210



GAMA Documentation

V ariables definition

Declaration

Except temporary variables, which are declared with their own syntax within behaviors or actions (see the
“let” statement for more details), all other variables are declared using the following one:

dat atype var_nane [optional _attributes: ...];

In this declaration, datatype refers to the name of a built-in type or a species declared in the model. The
value of var_name can be any combination of letters and digits (plus the underscore, " ") that does not
begin with a digit and that follows certain rules (see "Naming variables"). Examples of valid declarations
are:

int i;

list ny_list;

nmy_speci es nanme an_agent _of _my_species; // if my_species is declared in the nodel as a speci es.

These variables are given default values at their creation, depending on their datatype: Default Value

int float bool string list matrix [ point rgb graph geometry
0 0.0 false " 1 nil nil black nil nil
Deprecated alternative. Another way of declaring variable is also supported (for compatibility sake only).

This way is fully equivalent to the previous one. It is considered as deprecated and should not be
used anymore :

var var_nanme type: datatype [optional _attributes: ...];

var i type:int;

var ny_list type:list;

var an_agent _of _nmy_species type: ny_species nane; // if my_species is declared in the nodel as a
speci es.

Init or <-

When it is necessary to initialize the variable with another value than its default value, the init (or <-)
attribute can be used.

dat at ype var_nane <- initial_expression [optional _attributes:...];

which is equivalent to:

var var_nanme type: datatype <- initial_expression [optional attributes:...];
and to:
var var_nanme type: datatype init: initial_expression [optional _attributes:...];

The initial_expression is expected to be of the same type as the variable (otherwise it is casted to the
datatype). Its only (obvious) restriction is that it cannot refer to the variable being declared. Examples of
valid declarations are:

Full Documentation of GAMA 1.5.1 Page 37 of
210


Commands151.html#let
Commands151.html#let

GAMA
Documentation

int i < 0;

var i type:int init: O;

list ny list <- [i + 1, i + 2, i + 3];

var nmy_list type:list init: [i + 1, i + 2, i + 3];
agent an_agent <- self;

var an_agent type:agent init: self;

const

If the value of the variable is not intended to change over time, it is preferable to declare it as a constant
in order to avoid any surprise (and to optimize, a little bit, the compiler's work). This is done with the const
attribute set to true (if const is not declared, it is considered as false by default):

var var_nanme type: datatype init: initial_expression const: true [optional attributes:...];

With this declaration, the variable var_name will keep the result of initial_expression as its value for the
whole execution of the simulation.

update

What if, on the contrary, the value of the variable is supposed to change over time and the modeller
wants to define this evolution? The update attribute is precisely available for this purpose. Basically, its
contents is evaluated every time step and assigned to the variable. It means that, unless the contents of
this attribute refers to the variable itself, every modification made in the model to the value of the variable
will be lost and replaced with the evaluation of the expression.

datatype var_nane <- initial_expression update: val ue_expression [optional _attributes:...];

All the variables of all the agents are updated at the same time, before they are given a chance to
execute behaviors. Some examples of use for value:

o Automatically evolving variables:

int ny_int <- 0 update: ny_int + 1: // -> ny_int is increnented by 1 every tinme step.
float ny_float <- 100 update: ny_float - (ny_float / 100); // -> ny_float is decrenented by 1%
every time step.

e Sticky variables:

int sticky_int update: 100; // -> whatever the changes nade in the nodel to sticky_int, its value
returns to 100 at the begi nning of every step.

« Conditionally evolving variables:

int cond_int update: (ny_int < 100) ? O : ny_int / 10; // -> the value of cond_int depends on
that of ny_int.

float log_ny_int update: In (ny_int); // -> the value of "cond_int" is always coupled to that of
ny_int.

Specia attributes

function

The update attribute is computed only every step. But somethimes, we need more accurate updates
(i.e. that the value of the variable evaluated each time we use it). The function facet (attribute) has been
introduced to this purpose and has the following syntax:

Page 38 of Full Documentation of GAMA 1.5.1
210



GAMA Documentation

typel varl function: {an_expression} [optional _attributes:...];

Once a function is declared, whenever the variable is used somewhere, the function is computed (so the
value of the variable always remains accurate). The declaration of function is incompatible with both init
or update (an error will be raised). A shortcut has also been introduced:

typel varl -> {an_expression} [optional _attributes:...];

parameter

This way of defining parameters is deprecated. It is still supported for compatibility sake. The
parameters should now be defined into the experiment section (see parameters definition in GUI
or parameters definition in batch experiment ). This attribute can only be used in the context of global
variables, i.e. variables declared in the world species in the global section. Indicates that the value of

the variable will (or can) be defined by an external input : either a file or an optimization process (in the
case of batch simulations), or the user (in the case of interactive simulations with a user interface). Makes
const turns to false if it has been defined. For example, declaring:

int max_energy <- 300 paraneter:true;
will translate to this in the user interface:

[Parameter Editor] < http://gama-platform.googlecode.com/files/parameter.png> In several cases, this
interface will allow the user to change the value of the variable during a simulation. If behaviors depend
on it, the outcome of the simulation will then be affected by these changes, which can be a great way to
manually and interactively explore the effect of parameters on a model. More on this in the presentation of
the interface. The value of parameter can be used to nhame the variable on the interface. Any sequence of
characters will do. If true is used, then the name of the variable itself is used for the label. Example:

int max_energy <- 300 paraneter: "Mxinmm energy for the agents";

max, min

These two attributes are only available in the context of int or float variables. They allow the modeler to
control the values of the variable, by specifying a maximum and minimum value. The variable will never
be allowed to be lower than the minimum or greater than the maximum.

int max_energy <- 300 min: 100 max: 3000;

min and max combine gracefully with the parameter attribute and allow to control what the user can enter,
or the limits between which exploring the values of variables. from For int variables, when declared in

a "grid species”. Not documented, because it will be added to the declaration of matrices instead (and
removed from int). An example of the current use can be found in the "ants_from_file.xmlI" model.

of

Only defined in the context of matrix and list variables. Allows to define the type/species of values
contained in the list. For instance, it can be handy, sometimes, to fix the species of the agents in a list
at once rather than having to use the of _species operator every time. An example of that with the re-
declaration of the built-in neighbours variable in a model with only one species of agents:

l'i st nei ghbours of:species (self);

Doing so enables the use of neighbours, in the following expressions, without having to specify which kind
of agents are manipulated in it.

Full Documentation of GAMA 1.5.1 Page 39 of
210


output151.html#Input
batch151.html#Parameter_definition
http://gama-platform.googlecode.com/files/parameter.png>

GAMA
Documentation

Naming variables
Reserved Keywords

In GAML, some keywords are already reserved with a specific meaning and cannot be used for naming
variables (and also species, actions, etc. ). They are :

o The names of the global built-in variables

« The names of the primitive data types and new species defined in the model.

o The special keywords used by the language.

« The names of the variables found in every species.

« The names of the variables defined in skills when a species declares their use.

o The names of the units that can attached to numeric values.

Naming conventions

A variable name can be sequence of alphanumeric characters (plus the underscore, " _"). It should follow
certain rules:

o it should not begin by a digit;
« it should not contain space caracters.
By convention, it is recommended that:

o Vvariable name begins by a lower case letter.
Accessing variables

Direct access

Variables can be directly accessed differently depending on their status (i.e. the place where they were
declared: global variable, species variable or temporary/local variables):

o global variables can be directly accessed everywhere,

e species variables can be directly accessed in the scope of the species declaration,

o temporary variables can be directly accessed only in the scope in which they have been declared.

For instance, we can have a look at the following example:

speci es ani mal {
float energy <- 1000 min: O max: 2000 <- energy - 0.001;
int age_in_years <- 1 value: age_in_years + int (time / 365);

action eat {
arg anount default: O;
let gain type: float <- ampunt / age_in_years;
set energy <- energy + gain;

reflex feed {

Page 40 of Full Documentation of GAMA 1.5.1
210



GAMA Documentation

l et food_found type: int <- rnd(100);
do eat anount: food_found;

e Species declaration Everywhere in the species declaration, we are able to directly name and use:
e time, a global built-in variable,
e energy and age_in_years , the two species variables.
Nevertheless, in the species declaration, but outsite of the action eat and the reflex feed , we
cannot name the variables:
e amount, the argument of eat action,
e gain, alocal variable defined into the eat action,
« food_found, the local variable defined into the feed reflex.
o Eat action declaration In the eat action declaration, we can directly name and use:
e time, a global built-in variable,
e energy and age_in_years , the two species variables,
e amount, which is an argument to the action eat ,
e gain, a temporary variable within the action.
We cannot name and use the variables:
« food_found, the local variable defined into the feed reflex.
+ feed reflex declaration Similarly, in the feed reflex declaration, we can directly name and use:
e time, a global built-in variable,
e energy and age_in_years , the two species variables,
» food_found, the local variable defined into the reflex.
But we cannot access to variables:
e amount, the argument of eat action,
e gain, alocal variable defined into the eat action.

Remote access

When an agent needs to get access to the variable of another agent, a special notation (similar to that
used in Java) has to be used:

renot e_agent. vari abl e

where remote_agent can be the name of an agent, an expression returning an agent, self, myself, context
or each. For instance, if we modify the previous species by giving its agents the possibility to feed another
agent found in its neighbourhood, the result would be:

speci es ani mal {
var energy type: float init: 1000 min: O max: 2000 val ue: energy - 0.001;
var age_in_years type: int init: 1 value: age_in_years + int (tine / 365);
action eat {
arg anount default: O;
let gain type: float <- ampunt / age_in_years;
set energy <- energy + gain;
}
action feed {
arg target type: animal;
if (agent_to_feed != nil) and (agent_to_feed.energy < energy { // verifies that the agent
exists and that it need to be fed
ask agent _to _feed {
do eat anount: nyself.energy / 10; // asks the agent to eat 10% of our own energy

}
set energy <- energy - (energy / 10); // reduces the energy by 10%

Full Documentation of GAMA 1.5.1 Page 41 of
210



GAMA
Documentation

reflex {
| et candi dates type: ani mal val ue: agents_overlapping (10 around agent.shape); gathers al
t he nei ghbours
set agent _to_feed val ue: candidates with_m n_of (each.energy); //grabs one agent with the
| onest ener gy
do action: feed target: agent _to feed; // tries to feed it
}
}

In this example, agent_to_feed.energy, myself.energy and each.energy show different remote accesses
to the variable energy. The dotted notation used here can be employed in assignments as well. For
instance, an action allowing two agents to exchange their energy could be defined as:

action random exchange {//exchanges our energy with that of the cl osest agent
| et one_agent type: aninmal <- agent_closest_to (self)/>
let tenp type: float <-one_agent.energy; // tenporary storage of the agent's energy
set one_agent.energy <- energy; // assignnment of the agent's energy with our energy
set energy <- tenp;

Page 42 of Full Documentation of GAMA 1.5.1
210



GAMA Documentation

Built-in Variables

| ntroduction

In GAMA, every agents have some built-in variables linked to their identification, their location and their
components (an agent can contains other agents). These variables can be used like normal variables.

List of built-in agent variables

location ===

type: point

description: centroid of the agent shape ({x, y})
default value: random point in the environment

type: string
description: name of the agent; used to describe it
default value: species name + creation index

type: geometry
description: geometry of the agent. It can be point, a polyline or a polygon
default value: by default, a point geometry located at the location

type: list
description: list of agents that have the current agent for macro agent
default value: []

Full Documentation of GAMA 1.5.1

Page 43 of
210



GAMA
Documentation

Behaviors

Choice of an agent behavior architecture

GAMA integrates several agent behavior architectures that can be used in addition to the common
behavior structure:

e weighted_tasks
o sorted_tasks
o probabilistic_tasks
o fsm
The choice of an architecture (that is optional) is made through the control facet:

species ant control: fsm{

,

Common behavior structure

All agents (including the world and grid cells) are provided with a simple behavioral structure, based on
reflexes. Species can define any number of reflexes within their body.

reflex
Attributes

« when: a boolean expression

A reflex is a sequence of statements that can be executed, at each time step, by the agent. If no attribute
when are defined, it will be executed every time step. If there is an attribute when , it is executed only if

the boolean expression evaluates to true. It is a convenient way to specify the behavior of the agents.
Example:

reflex my_reflex { //Executed every tinme step
wite 'Executing the unconditional reflex';

}

reflex ny_reflex when: flip (0.5){ //Only executed when flip returns true
wite 'Executing the conditional reflex';

Page 44 of Full Documentation of GAMA 1.5.1
210



GAMA Documentation

Nt
Attributes

« when: a boolean expression

A special form of reflex that is evaluated only once when the agent is created, after the initialization of its
variables, and before it executes any reflex. Only one instance of init is allowed in each species (except in

case of inheritance, see this section). Useful for creating all the agents of a model in the definition of the
world, for instance.

Task behavior models

GAMA integrated several task behaviors model architectures. Species can define any number of tasks
within their body. At any given time, only one or several tasks are executed according to the architecture
chosen:

« weighted_tasks : in this architecture, only the task with the maximal weight is executed.

o sorted_tasks :in this architecture, the tasks are all executed in the order specified by their weights
(biggest first)

e probabilistic_tasks : this architecture uses the weights as a support for making a weighted
probabilistic choice among the different tasks. If all tasks have the same weight, one is randomly
chosen each step.

task
Sub elements

Besides a sequence of statements like reflex, a task contains the following sub elements:

« weight: Mandatory. The priority level of the task.

Definition
Like reflex, a task is a sequence of statement that can be executed, at each time step, by the agent. If

an agent owns several tasks, the scheduler choses a task to execute basing on its current priority weight
value.

FSM-based behaviors

FSM (Finite State Machine) is a finite state machine based behavior model. During its life cycle, agent
possesses several states. At any given time step, an agent is in one state.

Full Documentation of GAMA 1.5.1 Page 45 of
210



GAMA
Documentation

State
Attributes

¢ initial: a boolean expression, indicates the initial state of agent.
« final: a boolean expression, indicates the final state of agent.

Sub elements

o enter: a sequence of statements to execute upon entering the state.
e exit: a sequence of statements to execute right before exiting the state.
o transition: specifies the next state of the life cycle.

A state like a reflex can contains several statements that can be executed, at each time step, by the
agent. For an exemple of state, please have a look at the definition of "ant" species in this FSM exemple.

Page 46 of Full Documentation of GAMA 1.5.1
210



GAMA Documentation

Actions

Definition of an action

An action is a capability available to the agents of a species (what they can do). It is a block of statements
that can be used and reused whenever needed. An action can accept arguments (statement arg
nom_arg type: type). An action can return a result (statement return ). From a general point of view, an
action is declared with:

action action_nane {
[arg arg_nane type: var_type;]
[ sequence_of _st at enent s]
[return val ue;]

}

For example:

action action_addition {
arg argl type: int;
arg arg2 type: int;
return argl + arg2;

}

Some actions, called primitives, are directly coded in Java : for instance, the write action defined for all
the agents.

Use of an action

There are two ways to call an action: using a statement or as part of an expression
o action that does not return a result;

do action_nanme argl: vl arg2: v2;
o action that returns a result:

set ny_var <- self action_nane [argl::vl, arg2::v2];

The self keyword denotes the agent that will execute the action (the action must be defined in its
species). For action that returns a result, use of a map to pass arguments.

Full Documentation of GAMA 1.5.1 Page 47 of
210



GAMA
Documentation

Skills

Overview

Skills are built-in modules that provide a set of related built-in variables and built-in actions (in addition to
those already provided by GAMA) to the species that declare them. A declaration of skill is done by filling
the skills attribute in the species definition:

speci es ny_species skills: [skilll, skill2] {

}

Skills have been designed to be mutually compatible so that any combination of them will result in a
functional species. The list of available skills in GAMA is:

¢ moving: for agents that need to move.

So, for instance, if a species is declared as:

species foo skills: [noving]{

its agents will automatically be provided with the following variables : "speed, heading, destination (r/0)"
and the following actions: "move, goto, wander, follow" in addition to those built-in in species and declared
by the modeller. Most of these variables, except the ones marked read-only, can be customized and
modified like normal variables by the modeller. For instance, one could want to set a maximum for the
speed; this would be done by redeclaring it like this:

float speed max: 100 min:0;

Or, to obtain a speed increasing at each simulation step:
float speed max:100 min: 0 <- 1 update: speed * 1.01;
Or, to change the speed in a behavior:

if speed = 5 {
set speed <- 10;

}

moving
variables
Speed

« float, the speed of the agent, in meter/second.

Page 48 of Full Documentation of GAMA 1.5.1
210



GAMA Documentation

heading

« int, the absolute heading of the agent in degrees (in the range 0-359).

destination

e point, read-only, continuously updated destination of the agent with respect to its speed and
heading.

actions

follow

moves the agent along a given path passed in the arguments.

e _ speed :float, optional, the speed to use for this move (replaces the current value of speed).
o path : a path to be followed

—

do foll ow speed: speed * 2 path: road_path

goto

moves the agent towards the target passed in the arguments.

e _ target :point or agent, mandatory, the location or entity towards which to move.
e _ speed :float, optional, the speed to use for this move (replaces the current value of speed).

e« _ on :list, agent, graph, geometry, optional, that restrains this move (the agent moves inside this
geometry).
e _ return_path : bool, optional, if true, the action returns the path followed

e _ return: null or the path followed if return_path is setto true

do goto target: one_of (list (species (self))) speed: speed * 2 on: road_network;

move

moves the agent forward, the distance being computed with respect to its speed and heading. The value
of the corresponding variables are used unless arguments are passed.

e _ speed :float, optional, the speed to use for this move (replaces the current value of speed).

e _ heading :int, optional, the direction to take for this move (replaces the current value of
heading).

e _ bounds :localized entity, optional, the geometry (the localized entity geometry) that restrains
this move (the agent moves inside this geometry).

do nove speed: speed - 10 headi ng: heading + rnd (30) bounds: agentA;

wander

moves the agent towards a random location at the maximum distance (with respect to its speed). The
heading of the agent is chosen randomly if no amplitude is specified. This action changes the value of
heading.

Full Documentation of GAMA 1.5.1 Page 49 of
210



GAMA
Documentation

e _ speed :float, optional, the speed to use for this move (replaces the current value of speed).
o amplitude : int, optional, a restriction placed on the random heading choice. The new heading is

c_ﬁosen in the range (heading - amplitude/2, heading+amplitude/2).
e _ bounds :localized entity or geometry, optional, the geometry (the localized entity geometry) that

restrains this move (the agent moves inside this geometry).

do wander speed: speed - 10 anplitude: 120 bounds: agentA;

Page 50 of Full Documentation of GAMA 1.5.1
210



GAMA Documentation

Experiment section

Full Documentation of GAMA 1.5.1 Page 51 of
210



GAMA
Documentation

Experiment definition

Experiment definition

An experiment block defines how a model can be simulated (executed). Several experiments can be
defined for a model. They are defined using:

experiment exp_nane type: gui/batch {

,

Experiment types

There are two type of experiments :

e gui :experiment with a graphical interface, which displays its input parameters and outputs.
e batch : Allows to setup a series of simulations (w/o graphical interface).

Page 52 of Full Documentation of GAMA 1.5.1
210



GAMA Documentation

GUI

Definition of GUI experiment

A GUI experiment allows to display a graphical interface with input parameters and outputs (display, file,
monitor...). A GUI experiment is defined by:

experiment exp_nane type: gui {
[input]
[ out put]

}

| nput

Parameters

Experiments can define input, i.e. parameters. Defining parameters allows to make the value of a global
variable definable by the user through the user graphic interface. A parameter is defined as follow:

paraneter title var: global_var category: cat;
With:
o title: string to display
« var: reference to a global variable (defined in the global section)
e category: string used to «store» the operators on the Ul (optional)

Example:

paraneter "Value of toto: " var: toto;

User command

Experiments can also define some commands (buttons in the GUI) allowing the user to interact with the
simulation, i.e. to call an action defined in the model. Commands can either call directly an existing action
(with or without arguments) or be followed by a block that describes what to do when this command is
run. The syntax is:

user _command cnd_nane action: action_nane;
or

user _conmand cnd_nane action: action_nanme with: [argl::vall, arg2::val2, ...];
or

user _command cnd_name {
[ st at ement s]

}

Full Documentation of GAMA 1.5.1 Page 53 of
210



GAMA
Documentation

These commands are not executed when an agent runs. Instead, they are collected and appear as
buttons above the parameters of the simulation.

Output

Output blocks define how to visualize a simulation (with one or more display blocks that define separate
windows)

experiment exp_nane type: gui {
[input]
out put {
[di spl ay statenent s]
[ moni tor st at enent s]
[file statenents]

}
}

Display

A display refers to a part of the independent and mobile interface part that can display species, images,
texts or charts. There exist several kinds of display:

o classical displays (without specific type) used to species, text, image, charts...

display ny_display { ... }
o opengl displays (display with type: opengl ) used to display species, text or image. It allows to
display 3D models.
di splay ny_display type: opengl { ... }
o graphdisplay is a special kind of display dedicated to the dirplay of graphs. It is based on the
grapstream library. Note that it provides a pretty way of displaying graphs without regard of spatiality.
gr aphdi spl ay monNon2 graph: ny_graph lowquality:true
Each display can be refreshed independently by defining the facet refresh_every: nb (int) (the display
will be refreshed every nb steps of the simulation) Each display can include different layers (like in a GIS).

Although every combinaison of any number of following layers are allowed in GAML, it is recommended
to distinguish displays with species, image and/or text and display with charts (and text).

agents layer

agents allows the modeler to display only the agents that fulfill a given condition.

di splay ny_display {
agents | ayer_nane val ue: expression [additional options];

}
Additional options include:

« value (type = container) the set of agents to display
e aspect :the name of the aspect that should be used to display the species.

o transparency (type = float, from O to 1): the transparency rate of the agents (1 means no
transparancy)

Page 54 of Full Documentation of GAMA 1.5.1
210



GAMA Documentation

e position (type = point, from {1,1} to {0,0}): position of the upper-left corner of the layer (note that
{0.5,0.5} refers to the middle of the display)

e size (type = point, from {1,1} to {0,0}): size of the layer ({1,1} refers to the original size whereas
{0.5,0.5} divides by 2 the height and the width of the layer)

« refresh (type = boolean, opengl only ): specify whether the display of the species is refreshed.
(usefull in case of agents that do not move)

o 7 (type =float, from 0 to 1, opengl only ): altitude of the layer displaying agents

o focus (type = agent)

For instance, in a segregation model, agents will only display un happy agents:

di spl ay Segregation {
agents agent Di sappear value : people as |list where (each.is_happy = fal se) aspect:
wi t h_group_col or;

}

species allows modeler to display all the agent of a given species in the current display. In particular,
modeler can choose the aspect used to display them. The general syntax is:
di spl ay display_nanme {

speci es speci es_nane [additional options];

}
Additional options include:

e aspect :the name of the aspect that should be used to display the species.

e transparency (type = float, from O to 1): the transparency rate of the agents (1 means no
transparancy)

e position (type = point, from {1,1} to {0,0}): position of the upper-left corner of the layer (note that
{0.5,0.5} refers to the middle of the display)

e size (type = point, from {1,1} to {0,0}): size of the layer ({1,1} refers to the original size whereas
{0.5,0.5} divides by 2 the height and the width of the layer)

« refresh (type = boolean, opengl only ): specify whether the display of the species is refreshed.
(usefull in case of agents that do not move)

o 7 (type =float, from 0 to 1, opengl only ): altitude of the layer displaying agents

For instance it could be:

di spl ay ny_di spl ay{
speci es agentl aspect: base ;

}
Species can be superposed on the same plan:

di spl ay ny_di spl ay{
speci es agentl aspect: base;
speci es agent2 aspect: base;
speci es agent 3 aspect: base;

}

Species can be placed on different z values for each layer using the opengl display. z:0 means the layer
will be placed on the ground and z=1 means it will be placed at an height equal to the maximum size of
the environment.
di splay ny_display type: opengl{

speci es agentl aspect: base z:0;

speci es agent2 aspect: base z:0.5;

Full Documentation of GAMA 1.5.1 Page 55 of
210



GAMA
Documentation

speci es agent 3 aspect: base z:1;

}

Image layer
image allows modeler to display an image (e.g. as background of a simulation). The general syntax is:

di spl ay di splay_nane {
image |layer _nane file: inage file [additional options];

}
Additional options include:

« file (type = string): the name/path of the image (in the case of a raster image)

e gis (type = string): the name/path of the shape file (to display a shapefile as background, without
creating agents from it)

o color (type = color): in the case of a shapefile, this the color used to fill in geometries of the
shapefile

e transparency (type = float, from O to 1): the transparency rate (1 means no transparancy)

e position (type = point, from {1,1} to {0,0}): position of the upper-left corner of the layer (note that
{0.5,0.5} refers to the middle of the display)

e size (type = point, from {1,1} to {0,0}): size of the layer ({1,1} refers to the original size whereas
{0.5,0.5} divides by 2 the height and the width of the layer)

+ refresh (type = boolean, opengl only ): specify whether the display of the image is refreshed.

o z (type =float, from 0 to 1, opengl only ): altitude of the layer displaying the image

For instance:

di spl ay ny_di spl ay{
i mage nane: ' background' file:'../imges/ my_backgound.jpg'

}
Or

display city_display refresh_every: 1 {
image testd S gis: "../includes/building.shp" color: rgb('blue')
}

It is also possible to superpose images on different layers in the same way as for species using opengl
display.
di spl ay ny_di spl ay type: opengl {

i mage nane:'inmagel' file:'../imges/imgel.jpg

i mmge nane:'imge2' file:'../inmages/inmage2.jpg" z:0.5

}

chart layer

chart allows modeler to display a chart: this enables to display a specific value of the model at each
iteration. GAMA can display various chart types: time series ( series ), pie charts ( pie ) and histograms (
histogram ).
di spl ay chart_display [additional options] {

chart "chart nane" type: series {

data datal val ue: nydatal color: rgb('blue')

data data2 val ue: nydata2 color: rgb('blue')
}

Additional options include:

Page 56 of Full Documentation of GAMA 1.5.1
210



GAMA Documentation

e transparency (type = float, from O to 1): the transparency rate of the layer (1 means no
transparancy)

e position (type = point, from {1,1} to {0,0}): position of the upper-left corner of the layer (note that
{0.5,0.5} refers to the middle of the display)

e size (type = point, from {1,1} to {0,0}): size of the layer ({1,1} refers to the original size whereas
{0.5,0.5} divides by 2 the height and the width of the layer)

e background (type = color): the background color

e axes (type = color): the axes color

o type :the type of chart. It could be histogram , series or pie .

o style :the style of the chart. It could be: exploded , stack , bar or 3d
« font : the font used for legends.

e color (type = color)

text layer

text allows the modeler to display a string (that can change at each step) in a given position of the
display. The general syntax is:

di splay ny_display {
text ny_text value: expression [additional options];

Additional options include:

o value (type = string) the string to display

e transparency (type = float, from O to 1): the transparency rate of the layer (1 means no
transparancy)

e position (type = point, from {1,1} to {0,0}): position of the upper-left corner of the layer (note that
{0.5,0.5} refers to the middle of the display)

e size (type = point, from {1,1} to {0,0}): size of the layer ({1,1} refers to the original size whereas
{0.5,0.5} divides by 2 the height and the width of the layer)

o font : the font used for the text

e color (type = color): the color used to display the text
« refresh (type = boolean, opengl only ): specify whether the layer is refreshed.
o z (type =float, from 0 to 1, opengl only ): altitude of the layer displaying text

For instance:

di splay ny_display {

text agents value : 'Carrying ants : ' + string ( int ( ant as list count (each . has_food ) )
+int ( ant as list count ( each . state = "followingRoad' ) ) ) position: { 0.5, 0.03 }
color : rgb ( "black' ) size: { 1, 0.02 };

}

There are several ways to save data in a file in GAMA:

« The simplest way is to use the save statement (not in the experiment section)

o Use of the file output in the output section. In this case, a new line is added to the end of the file at
each simulation step.

file nane: "file_nane" type: file_type data: data_to wite;

Full Documentation of GAMA 1.5.1 Page 57 of
210


Commands151.html#save

GAMA
Documentation

with :

o file_type: text, csv or xml
o file_name: string
e data_to_write: string

Example:

file nane: "results" type: text data: tine +"; " + nb_preys + ";" + nb_predators;

Monitor

A monitor allows to follow the value of an arbitrary expression in GAML. Definition of a monitor:
noni tor nonitor_nane val ue: an_expression refresh_every: nb_steps;
with:

¢ value: mandatory, its value will be displayed in the monitor.

« refresh_every: int, optional : number of simulation steps between two computations of the
expression (default is 1).

Example:

nmoni tor "nb preys" value: |length(prey as list);

Page 58 of Full Documentation of GAMA 1.5.1
210



GAMA Documentation

Batch
Definition

Batch experiment allows to execute humerous successive simulation runs. It is used to explore the
parameter space of a model or to optimize a set of model parameters. A Batch experiment is defined by:
experiment exp_title type: batch {

[ paraneter to expl ore]
[ expl orati on net hod]

}

The batch experiment facets

Batch experiment have the following three facets:

o until: (expression) Specifies when to stop each simulations. Its value is a condition on variables
defined in the model. The run will stop when the condition is evaluated to true. If omitted, the first
simulation run will go forever, preventing any subsequent run to take place (unless a halt command
is used in the model itself).

e repeat: (integer) A parameter configuration corresponds to a set of values assigned to each
parameter. The attribute repeat specifies the number of times each configuration will be repeated,
meaning that as many simulations will be run with the same parameter values. Different random
seeds are given to the pseudo-random number generator. This allows to get some statistical power
from the experiments conducted. Default value is 1.

o keep_seed: (boolean) If true, the same series of random seeds will be used from one parameter
configuration to another. Default value is false.

experiment mny_batch_experiment type: batch repeat: 5 keep_seed: true until: time = 300 {

[ paraneter to expl ore]
[ expl orati on net hod]

}

Parameter definition

The parameter elements specifies which model parameters will change through the successive
simulations. A parameter is defined as follows:

paraneter title var: global _variable + possible_val ues
There are 2 ways to describe the range in which the value of the parameter will be explored :
o Explicit list: among : values_list
paraneter "Value of toto:" var: toto anpbng: [1, 3, 7, 15, 100];
¢ Range: min :min_value max :max_value step :increment_step
paraneter "Value of toto:" var: toto mn: 1 max: 100 step: 2;

For Strings and Booleans, you can only use the Explicit List. Each Batch methods may accept only some
kind of definitions and parameter types. See the description of each of them for details.

Full Documentation of GAMA 1.5.1 Page 59 of
210



GAMA
Documentation

The method e ement

If this element is omitted, the batch will run in a classical way, changing one parameter at each step until
all the possible combinations of parameter values have been covered. See #Exhaustive exploration of the
parameter space for details. The optional method element controls the algorithm which drives the batch.
It must contain at least a name attribute to specify the algorithm to use, and for an optimization method, a
minimize or a maximize attribute defining the expression to be optimized. Each combination of parameter
values is tested repeat times. The fithess of one combination is the average of fithess values obtained
with those repetitions. There might be additional attributes for tuning the exploration algorithm. See below
for a description of the available methods.

Batch Methods

Several batch methods are currently available. Each is described below.

Exhaustive exploration of the parameter space

Parameter definitions accepted: List with step and Explicit List. Parameter type accepted: all. This is the
standard batch method. The exhaustive mode is defined by default when there is no method element
present in the batch section. It explores all the combination of parameter values in a sequential way.
Example (models/ants/batch/ant_exhaustive_batch.xml)

experinment Batch type : batch repeat : 2 keep_seed : true until : (food_gathered = food_pl aced )
or ( time > 400 ) {

paraneter nane: 'Evaporation:' var : evaporation_rate among : [ 0.1, 0.2, 0.5, 0.8, 1.0 ]
unit : 'rate every cycle (1.0 neans 100%';

paraneter nane: 'Diffusion:' var : diffusion_rate min: 0.1 max : 1.0 unit : 'rate every
cycle (1.0 neans 100%' step : O0.3;

}

The order of the simulations depends on the order of the param. In our example, the first combinations
will be the followings:

e evaporation_rate = 0.1, diffusion_rate = 0.1, (2 times)
e evaporation_rate = 0.1, diffusion_rate = 0.4, (2 times)
e evaporation_rate = 0.1, diffusion_rate = 0.7, (2 times)
e evaporation_rate = 0.1, diffusion_rate = 1.0, (2 times)
e evaporation_rate = 0.2, diffusion_rate = 0.1, (2 times)

Note: this method can also be used for optimization by adding an method element with maximize or a
minimize attribute:

experiment Batch type : batch repeat : 2 keep_seed : true until : (food_gathered = food_placed )
or ( time > 400 ) {

paraneter nane: 'Evaporation:' var : evaporation_rate anbng : [ 0.1, 0.2, 0.5, 0.8, 1.0 ]
unit : 'rate every cycle (1.0 neans 100% ' ;

paraneter nane: 'Diffusion:' var : diffusion_rate min: 0.1 max : 1.0 unit : 'rate every
cycle (1.0 nmeans 100% ' step : 0.3;

met hod exhaustive nmaxi mze : food_gat hered;

}

Page 60 of Full Documentation of GAMA 1.5.1
210



GAMA Documentation

Hill Climbing

Name: hill_climbing Parameter definitions accepted: List with step and Explicit List. Parameter type
accepted: all. This algorithm is an implementation of the Hill Climbing algorithm. See the wikipedia article.
Algorithm:

Initialization of an initial solution s
iter = 0
Wiile iter <= iter_nmax, do:
Choi ce of the solution s' in the nei ghborhood of s that naximze the fitness function
If f(s') > f(s)
s =5’
El se
end of the search process
Endl f
iter = iter + 1

EndWi | e
Method parameters:
e iter_max: number of iterations

Example (models/ants/batch/ant_hill_climbing_batch.xml):

experiment Batch type : batch repeat : 2 keep_seed : true until : (food_gathered = food_placed )
or ( time > 400 ) {
paraneter nane: 'Evaporation:' var : evaporation_rate among : [ 0.1, 0.2, 0.5, 0.8, 1.0 ]

unit : 'rate every cycle (1.0 neans 100% ' ;

paraneter nane: 'Diffusion:' var : diffusion_rate min: 0.1 max : 1.0 unit : 'rate every
cycle (1.0 neans 100%' step : O0.3;

method hill _clinmbing iter_max: 50 maxim ze : food_gat hered;
}

Simulated Annealing

Name: annealing Parameter definitions accepted: List with step and Explicit List. Parameter type
accepted: all. This algorithm is an implementation of the Simulated Annealing algorithm. See the
wikipedia article. Algorithm:

Initialization of an initial solution s
temp = tenp_init
Wiile tenp > tenp_end, do:
iter =0
VWiile iter < nb_iter_cst_tenp, do:
Random choi ce of a solution s2 in the nei ghborhood of s
df = f(s2)-f(s)
If df >0
S = 82
El se,
rand = random nunber between 0 and 1
If rand > exp(df/T)

s = s2
Endl f
Endl f
iter = iter + 1
EndWi | e

EndWhi | e

Full Documentation of GAMA 1.5.1 Page 61 of
210



GAMA
Documentation

Method parameters:

o temp_init: Initial temperature

e temp_end: Final temperature

o temp_decrease: Temperature decrease coefficient

e nb_iter_cst_temp: Number of iterations per level of temperature

Example (models/ants/batch/ant_simulated_annealing_batch.xml):

experiment Batch type : batch repeat : 2 keep_seed : true until : (food_gathered = food_placed )
or ( time > 400 ) {

paraneter nane: 'Evaporation:' var : evaporation_rate among : [ 0.1, 0.2, 0.5, 0.8, 1.0 ]
unit : 'rate every cycle (1.0 neans 100% ' ;

paraneter nane: 'Diffusion:' var : diffusion_rate min: 0.1 max : 1.0 unit : 'rate every
cycle (1.0 neans 100%' step : 0.3

met hod annealing tenp_init: 100 tenp_end: 1 tenp_decrease: 0.5 nb_iter_cst_temp: 5
maxi m ze : food_gat hered

}

Tabu Search

Name: tabu Parameter definitions accepted: List with step and Explicit List. Parameter type accepted: all.
This algorithm is an implementation of the Tabu Search algorithm. See the wikipedia article. Algorithm:

Initialization of an initial solution s
tabuList = {}
iter = 0
VWiile iter <= iter_nmax, do
Choi ce of the solution s2 in the nei ghborhood of s such that:
s2 is not in tabulist
the fitness function is maxi mal for s2
S = 82
If size of tabulList = tabu_list_size
removi ng of the ol dest solution in tabuList

Endl f

tabuLi st = tabuList + s

iter = iter + 1
EndWi | e

Method parameters:

e iter_max: number of iterations
o tabu_list_size: size of the tabu list

experiment Batch type : batch repeat : 2 keep_seed : true until : (food_gathered = food_placed )
or ( time > 400 ) {

paraneter nane: 'Evaporation:' var : evaporation_rate among : [ 0.1, 0.2, 0.5, 0.8, 1.0 ]
unit : 'rate every cycle (1.0 neans 100% ' ;

paraneter nane: 'Diffusion:' var : diffusion_rate min: 0.1 max : 1.0 unit : 'rate every
cycle (1.0 nmeans 100%' step : 0.3

met hod tabu iter_max: 50 tabu_list_size: 5 nmaximze : food_gathered

}

Reactive Tabu Search

Name: reactive_tabu Parameter definitions accepted: List with step and Explicit List. Parameter type
accepted: all. This algorithm is a simple implementation of the Reactive Tabu Search algorithm ((Battiti

Page 62 of Full Documentation of GAMA 1.5.1
210



GAMA Documentation

et al., 1993)). This Reactive Tabu Search is an enhance version of the Tabu search. It adds two new
elements to the classic Tabu Search. The first one concerns the size of the tabu list: in the Reactive
Tabu Search, this one is not constant anymore but it dynamically evolves according to the context. Thus,
when the exploration process visits too often the same solutions, the tabu list is extended in order to
favor the diversification of the search process. On the other hand, when the process has not visited an
already known solution for a high number of iterations, the tabu list is shortened in order to favor the
intensification of the search process. The second new element concerns the adding of cycle detection
capacities. Thus, when a cycle is detected, the process applies random movements in order to break the
cycle. Method parameters:

¢ iter_max: number of iterations

o tabu_list_size init: initial size of the tabu list

o tabu_list_size _min: minimal size of the tabu list

o tabu_list_size_max: maximal size of the tabu list

e nb_tests wthout_col_max: number of movements without collision before shortening the tabu list
e cycle_size_min: minimal size of the considered cycles

e cycle_size_max: maximal size of the considered cycles

experiment Batch type : batch repeat : 2 keep_seed : true until : (food_gathered = food_placed )
or ( time > 400 ) {

paraneter nane: 'Evaporation:' var : evaporation_rate among : [ 0.1, 0.2, 0.5, 0.8, 1.0 ]
unit : 'rate every cycle (1.0 neans 100% ' ;

paraneter nane: 'Diffusion:' var : diffusion_rate min: 0.1 max : 1.0 unit : 'rate every

cycle (1.0 neans 100%' step : O0.3;
met hod tabu iter_max: 50 tabu_list_size_init: 5 tabu_list_size mn: 2 tabu_list_size_max: 10
nb_tests_wt hout_col _max: 20 cycle_size_min: 2 cycle_size_max: 20 maxinm ze : food_gat hered;

}

Genetic Algorithm

Name: genetic Parameter definitions accepted: List with step and Explicit List. Parameter type accepted:
all. This is a simple implementation of Genetic Algorithms (GA). See the wikipedia article. The principle
of GA is to search an optimal solution by applying evolution operators on an initial population of solutions
There are three types of evolution operators:

o Crossover: Two solutions are combined in order to produce new solutions
e Mutation: a solution is modified

o Selection: only a part of the population is kept. Different techniques can be applied for this selection.
Most of them are based on the solution quality (fitness).

Representation of the solutions:

¢ Individual solution: {Paraml1 = vall; Param2 =val2; ...}
e Gene: Parami = vali

Initial population building: the system builds nb_prelim_gen random initial populations composed of
pop_dim individual solutions. Then, the best pop_dim solutions are selected to be part of the initial
population. Selection operator: roulette-wheel selection: the probability to choose a solution is equals to:
fithess(solution)/ Sum of the population fitness. A solution can be selected several times. Ex: population
composed of 3 solutions with fitness (that we want to maximize) 1, 4 and 5. Their probability to be chosen
is equals to 0.1, 0.4 and 0.5. Mutation operator: The value of one parameter is modified. Ex: The solution
{Param1l = 3; Param2 = 2} can mute to {Paraml = 3; Param2 = 4} Crossover operator: A cut point is
randomly selected and two new solutions are built by taking the half of each parent solution. Ex: let

Full Documentation of GAMA 1.5.1 Page 63 of
210



GAMA
Documentation

{Paraml = 4; Param2 = 1} and {Paraml1 = 2; Param2 = 3} be two solutions. The crossover operator builds
two new solutions: {Paraml = 2; Param2 = 1} and {Paraml = 4; Param2 = 3}. Method parameters:

e pop_dim: size of the population (number of individual solutions)

e crossover_prob: crossover probability between two individual solutions

e mutation_prob: mutation probability for an individual solution

e nb_prelim_gen: number of random populations used to build the initial population
e max_gen: number of generations

experiment Genetic type : batch repeat : 2 keep_seed : true until : (food_gathered =
food_placed ) or ( tinme > 400 ) {

paraneter 'Evaporation:' var : evaporation_rate anpbng: [ 0.1, 0.2, 0.5, 0.8, 1.0]
unit : 'rate every cycle (1.0 neans 100% ' ;

paraneter 'Diffusion:' var: diffusion_rate min: 0.1 max: 1.0 unit:'rate every cycle (1.0
means 100% ' step: 0. 3;

met hod genetic maxim ze: food_gathered pop_dim 5 crossover_prob: 0.7 nutation_prob: 0.1
nb_prelimgen: 1 max_gen: 20;

}

Page 64 of Full Documentation of GAMA 1.5.1
210



GAMA Documentation

GAML language

Full Documentation of GAMA 1.5.1 Page 65 of
210



GAMA
Documentation

Data Types
Table of Contents

Primitive built-in types

bool

o Definition: primitive datatype providing two values: true or false .

o Litteral declaration: both true or false are interpreted as boolean constants.

o Other declarations: expressions that require a boolean operand often directly apply a casting to
bool to their operand. It is a convenient way to directly obtain a bool value.

bool (0) -> fal se

Top of the page

o Definition: primitive datatype holding floating point values comprised between -(2-252) * 21023 and

-(2-252) * 21023.
o Comments: this datatype is internally backed up by the Java double datatype.

o Litteral declaration: decimal notation 123.45 or exponential notation 123e45 are supported.
o Other declarations: expressions that require an integer operand often directly apply a casting to
float to their operand. Using it is a way to obtain a float constant.
float (12) -> 12.0

Top of the page
o Definition: primitive datatype holding integer values comprised between -231 and 231 - 1

o Comments: this datatype is internally backed up by the Java int datatype.

o Litteral declaration: decimal notation like 1, 256790 or hexadecimal notation like #1209FF are
automatically interpreted.

o Other declarations: expressions that require an integer operand often directly apply a casting to int
to their operand. Using it is a way to obtain an integer constant.

int (234.5) -> 234.

Top of the page

Page 66 of Full Documentation of GAMA 1.5.1
210



GAMA Documentation

string

o Definition: a datatype holding a sequence of characters.

o Comments: this datatype is internally backed up by the Java String class. However, contrary to
Java, strings are considered as a primitive type, which means they do not contain character objects.
This can be seen when casting a string to a list using the list operator: the result is a list of one-
character strings, not a list of characters.

o Litteral declaration: a sequence of characters enclosed in quotes, like 'this is a string' . If
one wants to literally declare strings that contain quotes, one has to double these quotes in the
declaration. Strings accept escape characters like \n (newline), \r (carriage return), \t (tabulation), as
well as any Unicode character (\uXXXX").

e Other declarations: see string

e Example: see [Operators_14 string operators] .

Top of the page

Complex built-in types

Contrarily to primitive built-in types, complex types have often various attributes. They can be accessed in
the same way as attributes of agents:

| et nomvar type: conplex_type <- init_var;
let attr_var type: type_attr <- nom.yvar.attr_name;

For example:

let fileText type: file <- "../datal/cell.Data";
let fileTextReadabl e type: bool <- fileText.readabl e;

agent

o Definition: a generic datatype that represents an agent whatever its actual species.

o Comments: This datatype is barely used, since species can be directly used as datatypes
themselves.

« Declaration: the agent casting operator can be applied to an int (to get the agent with this unique
index), a string (to get the agent with this name).

Top of the page

container

« Definition: a generic datatype that represents a collection of data.

¢ Comments: a container variable can be a list, a matrix, a map... Conversely each list, matrix
and map is a kind of container. In consequence every container can be used in container-related
operators.

e See also: [Operators_14 Container operators]

e Declaration:
container ¢ <- [1,2,3];

container ¢ <- matrix [[1,2,3],[4,5,6]];
container ¢ <- map ["x"::5, "y"::12];

Full Documentation of GAMA 1.5.1 Page 67 of
210



GAMA
Documentation

container ¢ <- list speciesl

Top of the page

« Definition: a datatype that represents a file.

e Built-in attributes:
e name (type = string): the name of the represented file (with its extension)
» extension(type = string): the extension of the file
e path (type = string): the absolute path of the file
e readable (type = bool, read-only): a flag expressing whether the file is readable
« writable (type = bool, read-only): a flag expressing whether the file is writable
e exists (type = bool, read-only): a flag expressing whether the file exists
» is_folder (type = bool, read-only): a flag expressing whether the file is folder
e contents (type = container): a container storing the content of the file
« Comments: a variable with the file type can handle any kind of file (text, image or shape files...).
The type of the content attribute will depend on the kind of file. Note that the allowed kinds of file are
the followings:
« text files: files with the extensions .txt, .data, .csv, .text, .tsv, .asc. The content is by default a list
of string.
» image files: files with the extensions .pgm, .tif, .tiff, .jpg, .jpeg, .png, .gif, .pict, .bmp. The content
is by default a matrix of int.
» shapefiles: files with the extension .shp. The content is by default a list of geometry.
» properties files: files with the extension .properties. The content is by default a map of
string::string .
» folders. The content is by default a list of string.
o Remark: Files are also a particular kind of container and can thus be read, written or iterated using
the container operators and commands.
o See also: [Operators_14 File operators]

o Declaration: afile can be created using the generic file (that opens a file in read only mode and
tries to determine its contents), folder or the new_folder (to open an existing folder or create a new
one) unary operators. But things can be specialized with the combination of the read / write and
image / text / shapefile / properties unary operators.

folder(a_string) // returns a file nmanaging a existing fol der

file(a_string) // returns any kind of file in read-only node

read(text(a_string)) // returns a text file in read-only node

read(i mage(a_string)) // does the same with an i mage file.

wite(properties(a_string)) // returns a property file which is available for witing
/1 (if it exists, contents will be appended unless it is cleared
/'l using the standard contai ner operations)

Top of the page

geometry

o Definition: a datatype that represents a vector geometry, i.e. a list of georeferenced points.
e Built-in attributes:

» location (type = point): the centroid of the geometry

» area (type = float): the area of the geometry

» perimeter (type = float): the perimeter of the geometry

Page 68 of Full Documentation of GAMA 1.5.1
210



GAMA Documentation

* holes (type = list of geometry): the list of the hole inside the given geometry
» contour (type = geometry): the exterior ring of the given geometry and of his holes
» envelope (type = geometry): the geometry bounding box
* width (type = float): the width of the bounding box
* height (type = float): the height of the bounding box
* points (type = list of point): the set of the points composing the geometry
o Comments: a geometry can be either a point, a polyline or a polygon. Operators working on
geometries handle transparently these three kinds of geometry. The envelope (a.k.a. the bounding
box) of the geometry depends on the kind of geometry:
» If this Geometry is the empty geometry, it is an empty point.
» If the Geometry is a point, it is a non-empty point.
» Otherwise, it is a Polygon whose points are (minx, miny), (maxx, miny), (maxx, maxy), (minx,
maxy), (minx, miny).
e See also: [Operators_14 Spatial operators]
o Declaration: geometries can be built from a point, a list of points or by using specific operators
(circle, square, triangle...).

geonetry var Geom <- circle(5);
geonetry pol ygonGeom <- pol ygon([{3,5}, {5,6},{1,4}]);

Top of the page

graph

« Definition: a datatype that represents a graph composed of vertices linked by edges.

e Built-in attributes:
» edges(type = list of agent/geometry): the list of all edges
» vertices(type = list of agent/geometry): the list of all vertices
» circuit (type = path): an approximate minimal traveling salesman tour (hamiltonian cycle)
» spanning_tree (type = list of agent/geometry): minimum spanning tree of the graph, i.e. a sub-
graph such as every vertex lies in the tree, and as much edges lies in it but no cycles (or loops)

are formed.
» connected(type = bool): test whether the graph is connected
¢ Remark:

» graphs are also a particular kind of container and can thus be manipulated using the container
operators and commands.

» This algorithm used to compute the circuit requires that the graph be complete and the triangle
inequality exists (if x,y,z are vertices then d(x,y)+d(y,z) < d(x,z) for all x,y,z) then this algorithm
will guarantee a hamiltonian cycle such that the total weight of the cycle is less than or equal to
double the total weight of the optimal hamiltonian cycle.

» The computation of the spanning tree uses an implementation of the Kruskal's minimum
spanning tree algorithm. If the given graph is connected it computes the minimum spanning
tree, otherwise it computes the minimum spanning forest.

o See also: [Operators_14 Graph operators]

o Declaration: graphs can be built from a list of vertices (agents or geometries) or from a list of edges
(agents or geometries) by using specific operators. They are often used to deal with a road network
and are built from a shapefile.

create road from shape file_road;

l et the_graph type: graph <- as_edge_graph(list(road));

graph([1,9,5]) --: ([2: in[] + out[], 5: in[] + out[], 9: in[] + out[]], [])
graph([ node(0), node(l), node(2)] /1 if node is a species

Full Documentation of GAMA 1.5.1 Page 69 of
210



GAMA

Documentation
graph(['a' ::345, "b'::13]) --: ([b: in[] + out[b::13], a: in[] + out[a::345], 13: in[b::13] +
out[], 345: in[a::345] + out[]], [a::345=(a, 345), b::13=(b, 13)])
graph(a_graph) --: a_graph
gr aph(nodel) --: null

Top of the page
list

« Definition: a composite datatype holding an ordered collection of values.

« Comments: lists are more or less equivalent to instances of [ArrayList] in Java (although they are
backed up by a specific class). They grow and shrink as needed, can be accessed via an index (see
@ or index_of), support set operations (like union and difference), and provide the modeller with
a number of utilities that make it easy to deal with collections of agents (see, for instance, shuffle,
reverse,where,sort_by,...).

o Remark: lists can contain values of any datatypes, including other lists. Note, however, that due to
limitations in the current parser, lists of lists cannot be declared litteraly; they have to be built using
assignments. Lists are also a particular kind of container and can thus be manipulated using the
container operators and commands.

o Litteral declaration: a set of expressions separated by commas, enclosed in square brackets, like
[12, 14, 'abc', self] . An empty list is noted [].

o Other declarations: lists can be build litteraly from a point, or a string, or any other element by
using the list casting operator.

list (1) -> [1]

let nyList <-list [1,2,3,4];
nmyList at 2 => 3

Top of the page

map

« Definition: a composite datatype holding an ordered collection of pairs (a key, and its associated
value).

e Built-in attributes:

» keys (type = list): the list of all keys
« values (type = list): the list of all values
e pairs (type = list of pairs): the list of all pairs key::value

« Comments: maps are more or less equivalent to instances of Hashtable in Java (although they are
backed up by a specific class).

« Remark: maps can contain values of any datatypes, including other maps or lists. Maps are also
a particular kind of container and can thus be manipulated using the container operators and
commands.

o Litteral declaration: a set of pair expressions separated by commas, enclosed in square brackets;
each pair is represented by a key and a value sperarated by "::'. An example of map is [agentA::'big’,
agentB::'small', agentC::'big'] . An empty map is noted [].

o Other declarations: lists can be built litteraly from a point, or a string, or any other element by
using the map casting operator.

map (1) -> [1::1]
map ({1,5}) -> [x::1, y::5]
[1 /] enmpty map

Top of the page

Page 70 of Full Documentation of GAMA 1.5.1
210



GAMA Documentation

matrix

o Definition: a composite datatype that represents either a two-dimension array (matrix) or a one-
dimension array (vector), holding any type of data (including other matrices).

o Comments: Matrices are fixed-size structures that can be accessed by index (point for two-
dimensions matrices, integer for vectors).

o Litteral declaration: Matrices cannot be defined literally. One-dimensions matrices can be built by
using the matrix casting operator applied on a list. Two-dimensions matrices need to to be declared
as variables first, before being filled.

//builds a one-di nension matrix, of size 5
let matl type: matrix <- matrix ([10, 20, 30, 40, 50]);
/!  builds a two-dinensions matrix with 10 colums and 5 |lines, where each cell is initialized to
0.0
let mat2 type:matrix <- 0.0 as_matrix({10,5});
/1 builds a two-dinmensions matrix with 2 colums and 3 lines, with initialized cells
let mat3 type:matrix <- matrix([["c1l1l","c12","c13"],["c21","c22","¢c23"]]);
-> cll;c21
cl2;c22
c13; c23

Top of the page
« Definition: a datatype holding a key and its associated value.
e Built-in attributes:
» key (type = string): the key of the pair, i.e. the first element of the pair
« value (type = string): the value of the pair, i.e. the second element of the pair
o Remark: pairs are also a particular kind of container and can thus be manipulated using the

container operators and commands.
o Litteral declaration: a pair is defined by a key and a value sperarated by "::".

o Other declarations: a pair can also be built from:
e apoint,
e amap (in this case the first element of the pair is the list of all the keys of the map and the
second element is the list of all the values of the map),
« alist (in this case the two first element of the list are used to built the pair)
pair testPair <- "key"::56;
pair testPairPoint <- {3,5}; /Il 3::5
pair testPairList2 <- [6,7,8]; /Il 6::7
pair testPairMap <- [2::6,5::8,12::45]; // [12,5,2]::[45,8, 6]

Top of the page

« Definition: a datatype representing a path (i.e. a polyline) linking two agents or geometries in a
graph or more generally two points
e Built-in attributes:
» source (type = point): the source point, i.e. the first point of the path
» target (type = point): the target point, i.e. the last point of the path
» graph (type = graph): the current topology (in the case it is a spatial graph), null otherwise
» segments (type = list of geometry): the list of the geometries composing the path

Full Documentation of GAMA 1.5.1 Page 71 of
210



GAMA
Documentation

o Comments: the path created between two agents/geometries or locations will strongly depend on
the topology in which it is created.

e Remark: paths are particular cases of geometries. Thus they have also all the built-in attributes of
the geometry datatype and can be used with every kind of operator or command admitting geometry.

e Remark: apathis immutable , i.e. it can not be modified after it is created.

o Declaration: paths are very barely defined litterally. We can nevertheless use the path unary
operator on a list of points to build a path. Operators dedicated to the computation of paths (such as
path_to or path_between) are often used to build a path.

path([{1,5},{2,9},{5,8}]) // a path from{1,5} to {5,8} through {2, 9}

geonetry rect <- rectangl e(5)
geonetry poly <- polygon([{10, 20}, {11, 21}, {10, 21}, {11, 22}])
path pa <- rect path_to poly; // built a path between rect and poly, in the topol opy
/1 of the current agent (i.e. a line in a& continuous

t opol ogy,
// a path in a graph in a graph topol ogy )
a_t opol ogy path_between a_contai ner_of geonetries // idemw th an explicit topology and the
possiblity
/1 to have nore than 2 geonetries
/1 (the path is then built inscrenentally)

Top of the page

point

o Definition: a datatype normally holding two positive float values. Represents the absolute
coordinates of agents in the model.

e Built-in attributes:

* X (type = float): coordinate of the point on the x-axis
* vy (type = float): coordinate of the point on the y-axis

« Comments: point coordinates should be positive, if a negative value is used in its declaration, the
point is built with the absolute value.

e Remark: points are particular cases of geometries and containers. Thus they have also all the built-
in attributes of both the geometry and the container datatypes and can be used with every kind of
operator or command admitting geometry and container.

o Litteral declaration: two numbers, separated by a comma, enclosed in braces, like {12.3, 14.5}

o Other declarations: points can be built litteraly from a list, or from an integer or float value by using
the point casting operator.

point ([12,123.45]) -> {12.0, 123.45}
point (2) -> {2.0, 2.0}

Top of the page

o Definition: a datatype that represents a color in the RGB space.

e Built-in attributes:
* red(type = int): the red component of the color
» green(type = int): the green component of the color
* Dblue(type = int): the blue component of the color
» darker(type = rgb): a new color that is a darker version of this color
» brighter(type = rgb): a new color that is a brighter version of this color

Page 72 of Full Documentation of GAMA 1.5.1
210



GAMA Documentation

e Remark: rgbs are also a particular kind of container and can thus be manipulated using the
container operators and commands.

o Litteral declaration: there exist lot of ways to declare a color. We use the rgb casting operator
applied to:

» astring. The allowed color names are the constants defined in the Color Java class, i.e.: black,
blue, cyan, darkGray, lightGray, gray, green, magenta, orange, pink, red, white, yellow.

» alist. The integer value associated to the three first elements of the list are used to define the
three red (element 0 of the list), green (element 1 of the list) and blue (element 2 of the list)
components of the color.

* amap. The red, green, blue compoenents take the value associated to the keys "r*, "g", "b" in
the map.

* an integer < - the decimal integer is translated into a hexadecimal < - OXRRGGBB. The red
(resp. green, blue) component of the color take the value RR (resp. GG, BB) translated in
decimal.

o Declaration:

rgb testColor <- rgb('white'); /'l rgb [255, 255, 255]
rgbh test <- rgh([3,5,67]); /1 rgb [3,5,67]
rgb te <- rgb(340); /1 rgb [0,1,84]

rgb tete <- rgb(["r"::34, "g"::56, "b"::345]); // rgb [34, 56, 255]

Top of the page

species
« Definition: a generic datatype that represents a species
e Built-in attributes:
» topology (type=topology): the topology is which lives the population of agents
« Comments: this datatype is actually a "meta-type". It allows to manipulate (in a rather limited fashion,
however) the species themselves as any other values.
o Litteral declaration: the name of a declared species is already a litteral declaration of species.

« Other declarations: the species casting operator, or its variant called species_of can be applied to an
agent in order to get its species.

Top of the page

Species hames as types

Once a species has been declared in a model, it automatically becomes a datatype. This means that :

e It can be used to declare variables, parameters or constants,
e It can be used as an operand to commands or operators that require species parameters,
e It can be used as a casting operator (with the same capabilities as the built-in type agent)

In the simple following example, we create a set of "humans" and initialize a random "friendship network"
among them. See how the name of the species, human, is used in the create command, as an argument
to the list casting operator, and as the type of the variable named friend.

gl obal {
init {
create human nunber: 10;
ask list (human) {
set friend <- one_of (list (human) - self);

}

Full Documentation of GAMA 1.5.1 Page 73 of
210



GAMA
Documentation

}

}

entities {
speci es human {

}

}

human friend <- nil;

Top of the page

pology

to

Definition: a topology is basically on neighbourhoods, distance,... structures in which agents
evolves. It is the environment or the context in which all these values are computed. It also provides
the access to the spatial index shared by all the agents. And it maintains a (eventually dynamic) link
with the 'environment' which is a geometrical border.
Built-in attributes:
» places(type = container): the collection of places (geometry) defined by this topology.
e environment(type = geometry): the environment of this topology (i.e. the geometry that defines
its boundaries)
Comments: the attributes places depends on the kind of the considered topolopy. For continuous
topologies, it is a list with their environment. For discrete topologies, it can be any of the container
supporting the inclusion of geometries (list, graph, map, matrix)
Remark: There exist various kinds of topology: continous topology and discrete topology (e.g. grid,
graph...)
See also: [Operators_14 Topology operators]
Declaration: To create a topology, we can use the topology unary casting operator applied to:
e an agent: returns a continuous topology built from the agent's geometry
e aspecies name: returns the topology defined for this species population
e ageometry: returns a continuous topology built on this geometry
e ageometry container (list, map, shapefile): returns an half-discrete (with corresponding places),
half-continuous topology (to compute distances...)
e ageometry matrix (i.e. a grid): returns a grid topology which computes specifically
neighbourhood and distances
e ageometry graph: returns a graph topology which computes specifically neighbourhood and
distances

More complex topologies can also be built using dedicated operators, e.g. to decompose a geometry...
Top of the page

Defining custom types

Sometimes, besides the species of agents that compose the model, it can be necessary to declare
custom datatypes. Species serve this purpose as well, and can be seen as "classes" that can help to
instantiate simple "objects". In the following example, we declare a new kind of "object", bottle, that lacks
the skills habitually associated with agents (moving, visible, etc.), but can nevertheless group together
attributes and behaviors within the same closure. The following example demonstrates how to create the
species:

speci es bottle {

f

|l oat volume <- 0.0 max:1 min:0.0;

bool is_enpty function: {volunme = 0.0};

Page 74 of Full Documentation of GAMA 1.5.1

210



}

action fill {
set volunme <- 1;

}

How to use this species to declare new bottles :

create bottle nunber: 1 {

}

set volune <- 0.5;

GAMA Documentation

And how to use bottles as any other agent in a species (a drinker owns a bottle; when he gets thirsty, it
drinks a random quantity from it; when it is empty, it refills it):

speci es drinker {

}

bottle my_bottle<- nil;
float quantity <- rnd (100) / 100;
bool thirsty <- false update: flip (0.1);

action drink {
if condition: ! bottle.is_enmpty {

set bottle.volune <- nmax [bottle.volunme - quantity, 0.0];

set thirsty <- false;

}
}
init {
let cretated_bottle type:list of:bottle <- [];
create bottle nunber: 1 return: created_bottle;
set volume <- 0.5;
}
set my_bottle <- first(created_bottle);
}
reflex filling_bottle when: bottle.is_enpty {
ask nmy_bottle {
do fill;
}
}

reflex drinking when: thirsty {
do dri nk;
}

Top of the page

Full Documentation of GAMA 1.5.1

Page 75 of
210



GAMA
Documentation

Statements

Table of Contents
General syntax

A statement is a keyword, followed by specific attributes, some of them mandatory (in bold), some of
them optional. One of the attribute names can be ommitted (the one that is omissible in the sequel). It has
to be the first one.

st at ement _keyword expressionl attribute2: expression2 ...
or
statement _keyword attributel: expressionl attribute2: expression2 ...;

If the statement encloses other statements, they are declared between curly brakets, as in:

st at ement _keywor d1l expressionl attribute2: expression2... {
st at ement _keywor d2 expressionl attribute2: expression2...;
st at ement _keywor d3 expressionl attribute2: expression2...;

add
Attributes

o item (omissible): any expression
e to :an expression that evaluates to a container
e at: any expression

Allows to add, i.e. to insert, a new element in a container (a list, matrix, map, ...). The new element can
be added either at the end of the container or at a particular position. Incorrect use: The addition of a

new element at a position out of the bounds of the container will produce a warning and let the container
unmodified.

add expr to: expr_container; // Add at the end
add expr at: expr to: expr_container; /1 Add at position expr

Note that the behavior and the type of the attributes depends on the specific kind of container.
e Caseofa list

In the case of list, the expression in the attribute at: should be an integer.

let enmptyList type: list <- [];

Page 76 of Full Documentation of GAMA 1.5.1
210



GAMA Documentation

add 0 at: O to: enptyList ; /] enptyList now equal s [O]

add 10 at: O to: enptylList ; /1 enptyList now equals [10, 0]
add 25 at: 2 to: enptylList ; /1 enptyList now equal s [10, 0, 20]
add 50 to: enptylList; /'l enptylList now equal s [10, 0, 20, 50]

e Case of a matrix

This statement can not be used on matrix. Please refer to the statement “put .

e Caseofa map
As a map is basically a list of pairs key::value , we can also use the add statement on it. It is important to
note that the behavior of the statement is slightly different, in particular in the use of the at attribute.

let enptyMap type: map <- [];
add "val 1" at: "x" to: enptyMap; /] enptyList now equal s [x::val 1]

If the at: attribute is ommitted, a pair null::expr_item will be added to the map. An important exception is
the case where the is a pair expression: in this case the pair is added.

add "val 2" to: enptyMap; /'l enptyList now equals [null::val2, x::vall]
add 5::"val 4" to: enptyMap; /] enptyList now equals [null::val2, 5::val4, x::vall]

Notice that, as the key should be unique, the addition of an item at an existing position (i.e. existing key)
will only modify the value associated with the given key.

add "val 3" at: "x" to: enptyMap; /'l enptyList now equals [null::value2, 5::val4, x::val3]

Top of the page

ask
Attributes

o target (omissible): an expression that evaluates to an agent or a list of agents
e as: an expression that evaluates to a species

Allows an agent, the sender agent (that can be the world agent ), to ask another (or other) agent(s) to
perform a set of statements. It obeys the following syntax, where the target attribute denotes the receiver
agent(s):

ask receiver_agent(s) {

[ st at enent s]

}

If the value of the target attribute is nil or empty, the statement is ignored. The species of the receiver
agents must be known in advance for this statement to compile. If not, it is possible to cast them using the
as attribute, like :

ask receiver_agent(s) as: a_species_expression {
[ st at enent _set]

}

Full Documentation of GAMA 1.5.1 Page 77 of
210


Sections151.html#global

GAMA
Documentation

Alternative forms for this casting are :
o if there is only a single receiver agent:

ask speci es_nane (receiver_agent) {
[statenment _set]

}
o if receiver_agent(s) is a list of agents:

ask receiver_agents of _speci es speci es_nane {
[statement _set]

}

Any statement can be declared in the block statements . All the statements will be evaluated in the
context of the receiver agent(s), as if they were defined in their species, which means that an expression
like *self* will represent the receiver agent and not the sender. If the sender needs to refer to itself, some
of its own attributes (or temporary variables) within the block statements , it has to use the keyword
*myself* .

speci es ani mal {
float energy <- rnd (1000) min: 0.0 {
reflex when: energy > 500 { // executed when the energy is above the given threshold
let others type: list of: animal <- (self neighbours_at 5) of_species animal; // find al
the nei ghbouring aninals in a radius of 5 neters
| et shared_energy type: float <- (energy - 500) / length (others); // conpute the anpunt
of energy to share with each of them
ask others { // no need to cast, since others has already been filtered to only include
ani mal s
if (energy < 500) { // refers to the energy of each animal in others
set energy <- energy + nyself.shared_energy; // increases the energy of each
ani ma
set nysel f.energy <- nyself.energy - nysel f.shared_energy; // decreases the
energy of the sender
}
}

Notice

If the target is an addition of list like "target = (list speciesA) + (list speciesB)", the temporary built list will
use the default cast from the first list and won't add the second list as the elements are from a different
type. Top of the page

capture
Attributes

o target (omissible): an expression that is evaluated as an agent or a list of the agent to be captured.

o as :the species that the captured agent(s) will become, this is a micro-species of the calling agent's
species.

e returns: a list of the newly captured agent(s).

Page 78 of Full Documentation of GAMA 1.5.1
210



GAMA Documentation

Allows an agent to capture other agent(s) as its micro-agent(s). The preliminary for an agent A to capture

an agent B as its micro-agent is that the A's species must defined a micro-species which is a sub-species
of B's species (cf. [Species14 Nesting species]).

species B {

species A {
speci es C parent: B {

o To capture all "B" agents as "C" agents, we can ask an "A" agent to execute the following statement:
capture list(A) as: G
Deprecated writing:
capture target: list (A as: G

See also the release statement . Top of the page

create
Attributes

o species (omissible): an expression that evaluates to a species

e number: an expression that evaluates to an int

« from: an expression that evaluates to a localized entity, a list of localized entities or a string
¢ with: an expression that evaluates to a map

o type: an expression that evaluates to a string

e size: an expression that evaluates to a float

e return: a temporary variable name

Allows an agent to create *number* agents of species *species* , to create agents of species *species*

from a shapefile or to create agents of species *species* from one or several localized entities
(discretization of the localized entity geometries). Its simple syntax is:

« To create *an_int* agents of species *a_species* :
create a_speci es nunber: an_int;

Deprecated writing:

Ccreate species: a_species nunber: an_int;

If *number* equals 0 or species is not a species, the statement is ignored.

Full Documentation of GAMA 1.5.1 Page 79 of
210



GAMA
Documentation

o To create agents of species *a_species* (with two attributes type and nature ) from a shapefile
*the_shapefile* while reading attributes ' TYPE_OCC' and 'NATURE' of the shapefile:

create a_species from the_shapefile with: [type:: 'TYPE_ OCC, nature::' NATURE ];

One agent will be created by object contained in the shapefile. In this example, we assume that for the
species *a_species* , two variables *type* and *nature* are declared and that their type corresponds to
the types of the shapefile attributes.

« To create agents of species *a_species* by discretizing the geometry of one or several localized
entities:

create a_species from [agentA, agentB, agent(C;
Two types of discretization exist:

o 'Triangles' : default discretization. The agent geometries are decomposed into triangles; for
each triangle, an agent is created. If a size is declared by attribute *size* , the geometries are first
decomposed into squares of size *size* , then each square is decomposed into triangles.

create a_species from [agentA, agentB, agentC] type: 'Triangles' size: 10.0

e 'Squares' : agent geometries are decomposed into squares of size *size* ; for each square, an
agent is created:

create a_species from [agentA, agentB, agentC] type: 'Squares' size: 10.0

The agents created are initialized following the rules of their species. If one wants to refer to them after
the statement is executed, the returns keyword has to be defined: the agents created will then be referred
to by the temporary variable it declares. For instance, the following statement creates 0 to 4 agents of the
same species as the sender, and puts them in the temporary variable children for later use.

create species (self) nunmber: rnd (4) returns: children
ask children {

}

If one wants to specify a special initialization sequence for the agents created, create provides the same
possibilities as ask . This extended syntax is:

create a_speci es nunber: an_int {
[ st at ement s]

}

The same rules as in ask apply. The only difference is that, for the agents created, the assignments of
variables will bypass the initialization defined in species. For instance:

create species(self) nunber: rnd (4) returns: children {

set location <- nyself.location + {rnd (2), rnd (2)}; // tells the children to be initially
| ocated close to nme

set parent <- nyself; // tells the children that their parent is nme (provided the variable
parent is declared in this species)

}
Top of the page

Page 80 of Full Documentation of GAMA 1.5.1
210



GAMA Documentation

do
Attributes

o action (omissible): the name of an action or a primitive
¢ with: a map expression

Enclosed tags

¢ arg name : specify the arguments expected by the action/primitive to execute.

Definition

Allows the agent to execute an action or a primitive. For a list of primitives available in every species, see
this [Built_in_14 page]; for the list of primitives defined by the different skills, see this [Skills_14 page].
Finally, see this [Species_14 page] to know how to declare custom actions. The simple syntax (when the
action does not expect any argument and the result is not to be kept) is:

do nane_of _action_or_primtive;
Deprecated writing:
do action: name_of _action_or_primtive;

In case the result of the action needs to be made available to the agent, the returns keyword has to be
defined; the result will then be referred to by the temporary variable declared in this attribute:

let result <- self name_of _action_or_prinmtive [];
Deprecated writing:
let result <- nane_of _action_or_primtive(self, []);

In case the action expects one or more arguments to be passed, they are defined by using facets,
enclosed tags or a map. We can have the three following notations:

do nanme_of _action_or_primtive argl: expressionl arg2: expression2;
Deprecated writing:

do nane_of _action_or_primtive with: [argl::expressionl, arg2::expression2];
or
do nanme_of _action_or_primtive {

arg argl val ue: expressionl;

arg arg2 val ue: expression2;

}

In the case of an action returning a value, we can only use facets or a map as follows:

let result <- self nanme_of _action_or_primtive [argl::expressionl, arg2::expression2];
Deprecated writing:

do nane_of _action_or_primtive argl: expressionl arg2: expression2 returns: result;
or
let result <- nane_of _action_or_primtive(self, [argl::expressionl, arg2::expression2]);

Full Documentation of GAMA 1.5.1 Page 81 of
210



GAMA
Documentation

Top of the page

aerror
Attributes

e message (omissible): string, the message to display. Modelers can add some formatting characters
to the message (carriage returns, tabs, or Unicode characters), which will be used accordingly in the
error dialog.

makes the agent output an error dialog (if the simulation contains a user interface). Otherwise displays
the error in the console.

error 'This is an error raised by ' + self;

| f
Attributes

e condition (omissible): a boolean expression

Following tags

¢ else : encloses alternative statements

Allows the agent to execute a sequence of statements if and only if the condition evaluates to true. The

generic syntax is:

i f bool _expr {
[ st at ement s]

}
Deprecated writing:
if condition: bool _expr { [statenments] }

Optionally, the statements to execute when the condition evaluates to false can be defined in a following
statement else . The syntax then becomes:
if bool _expr {

[ st at ement s]

}

el se {

Page 82 of Full Documentation of GAMA 1.5.1
210



}

[ st at ement s]

GAMA Documentation

ifs and elses can be imbricated as needed. For instance:

i f bool _expr {

[ st at ement s]

else if bool _expr2 {

}

[ st at ement s]

el se {

}

[ st at ement s]

Top of the page

let
Attributes

name (omissible): the name of the temporary variable

type: the datatype of the temporary variable

value : an expression

Allows the agent to declare a temporary variable, local to the scope in which it is defined. The naming

rules follow those of the variable declarations. In addition, a temporary variable cannot be declared twice
in the same scope. The generic syntax is:

let tenp_varl type:

a_dat at ype <- an_expression;

If the datatype of the variable is not specified, it is inferred from that of the expression (which can be
enforced using casting operators if necessary). After it has been declared this way, a temporary variable
can be used like regular variables (for instance, the set statement should be used to assign it a new value
within the same scope). Top of the page

loop
Attributes

var (omissible): a temporary variable name
times: an int expression

while: a boolean expression

over: a list, point, matrix or map expression
from: an int expression

to: an int expression

Full Documentation of GAMA 1.5.1

Page 83 of
210



GAMA
Documentation

e step: an int expression

Allows the agent to perform the same set of statements either a fixed number of times, or while a
condition is true, or by progressing in a collection of elements or along an interval of integers. The basic
syntax for each of these usages are:

loop tinmes: an_int_expression {

[ st at ement s]

}
Or:

| oop while: a_bool _expression {
[ st at ement s]

}
Or:

loop a_tenp_var over: a_list_expression {
[ st at ement s]

}
Or:

loop a_tenp_var from int_expression_1 to: int_expression_2 {
[ st at ement s]

}
loop a_tenp_var from int_expression_1 to: int_expression_2 step: int_expression3{
[ st at ement s]

}

In these latter two cases, the var attribute designates the name of a temporary variable, whose scope is
the loop, and that takes, in turn, the value of each of the element of the list (or each value in the interval).
For example, in the first instance of the "loop over" syntax :
let a type: int < O;
loop i over: [10, 20, 30] {

set a<- a+i;
} /1 a now equal s 60

The second (quite common) case of the loop syntax allows one to use an interval of integers. The from
and to attributes take a a integer expression as arguments, with the first (resp. the last) specifying the
beginning (resp. end) of the interval. The step is assumed equal to 1.

let the |ist <-list (species_of (self)) {

loop i from O to: length (the_list){
ask target: the_list at i {

}

} I/ every agent of the list is asked to do sonet hing

Be aware that there are no prevention of infinite loops. As a consequence, open loops should be used
with caution, as one agent may block the execution of the whole model. Top of the page

Page 84 of Full Documentation of GAMA 1.5.1
210



GAMA Documentation

put
Attributes

e in :an expression that evaluates to a container
¢ item (omissible): any expression

e at: any expression

e key: any expression

o all: any expression

Allows the agent to replace a value in a container at a given position (in a list or a map) or for a given key
(in a map). The allowed parameters configurations are the following:

put expr at: expr in: expr_container;
put all: expr in: expr_container;

Note that the behavior and the type of the attributes depends on the specific kind of container:

« Inthe case of a list , the position should an integer in the bound of the list. The attribute all is used
to replace all the elements of the list by the given value.

let testlList type: list <- [1,2,3,4,5]; /] testList now contains [1,2,3,4,5]
put -10 at: 1 in: testList; /] testList now contains [1,-10,3,4,5]
put all: 10 in: testlList; /'l testList now contains [10, 10, 10, 10, 10]

+ Inthe case of a matrix , the position should be a point in the bound of the matrix. The attribute all is
used to replace all the elements of the matrix by the given value.
let testMat type: matrix <- [[0,1],[2,3]]; //testMat now contains [[O0,1],[2,3]]

put -10 at: {1,1} in: testMat; //testMat now contains [[-10,1],[2,3]]
put all: 10 in: testMat; //testMat now contains [[10,10],[10, 10]]

+ Inthe case ofa map , the position should be one of the key values of the map. Notice that if the
given key value does not exist in the map, the given pair key::value will be added to the map. The
attribute all is used to replace the value of all the pairs of the map.

let testMap type: map <- ["x"::4,"y"::7]; //testMap now contains ["x"::4,"y"::7]

put -10 key: "y" in: testMp; //test Map now contains ["x"::4,"y"::10]
put -20 key: "z" in: testMp; //testMap now contains ["x"::4,"y"::7, "z"::-20]
put all: -30 in: testMap; //test Map now contains ["x"::-30,"y"::-30, "z"::-30]

Top of the page

release
Attributes

e target (omissible): an expression that is evaluated as an agent or a list of the agent to be released.
o returns: a list of the newly released agent(s).

Full Documentation of GAMA 1.5.1 Page 85 of
210



GAMA
Documentation

Allows an agent to release its micro-agent(s). The preliminary for an agent to release its micro-agents is
that species of these micro-agents are sub-species of other species (cf. [Species14 Nesting species]).

The released won't be micro-agents of the calling agent anymore. Being released from a macro-agent,
the micro-agents will change their species and host (macro-agent) .

species A {
}
species B {
species C parent: A {

}

species D {
}
}

Agents of "C" species can be released from a "B" agent to become agents of A species. Agents of "D"
species cannot be released from the "A" agent because species "D" has no parent species.

o Torelease all "C" agents from a "B" agent, we can ask the "C" agent to execute the following
statement:
rel ease target: list (O;
The "C" agent will change to "A" agent. The won't consider "B" agent as their macro-agent (host)

anymore. Their host (macro-agent) will the be the host (macro-agent) of the "B" agent. See also the
capture statement . Top of the page

remove
Attributes

o from :an expression that evaluates to a container
¢ item (omissible): any expression

¢ index: any expression

e key: any expression

o all: any expression

Allows the agent to remove an element from a container (a list, matrix, map...). This statement should be

used in the following ways, depending on the kind of container used and the expected action on it:

remove expr from expr_contai ner
remove index: expr from expr_container
renove key: expr from expr_container
remove all: expr from expr_container

e Case of list .

In the case of list, the attribut item: is used to remove the first occurence of a given expression, whereas
all is used to remove all the occurences of the given expression.

Page 86 of Full Documentation of GAMA 1.5.1
210



GAMA Documentation

let testList type: list <- [3,2,1,2,3]; //testList now contains [3,2,1,2,3]
renove 2 from |istTest; // testList now contains [3,1,2,3]

renove all: 3 from listTest; // testList now contains [1, 2]

remove index: 1 from |istTest;

e Case of matrix
This statement can not be used on matrix .
o Inthe case of map

In the case of map, the attribute key: is used to remove the pair identified by the given key.

|l et mapTest type: map <- ["x"::5, "y"::7]; /1 mapTest now contains ["x"::5, "y"::7]
remove key: "x" from mapTest; /1 mapTest now contains ["y"::7]

Top of the page

return
Attributes

o value (omissible): an expression

Allows to specify which value to return from the evaluation of the surrounding statement. Usually used
within the declaration of an action. Contrary to other languages, using return does not stop the evaluation

of the surrounding statement (for instance, a loop). It simply indicates what value to return: if it is inside a
loop, then, only the last evaluation of return will be returned. Example:

action foo {
return 'foo';

}
reflex {

let foo_result type: string <- self.foo [];

do wite {

arg message <- foo_result;

}
}
/Il the agent will print foo on the console at each step

In the specific case one wants an agent to ask another agent to execute a statement with a return, it can
be done similarly to:

Speci es A
action foo_different {
return 'foo_not_sane';

}

Species B

reflex witing{
let tenp type: string <- sone_agent_ A foo_different [];
wite tenp;

}

/'l the agent will print foo_not_same on the console at each step

Full Documentation of GAMA 1.5.1 Page 87 of
210



GAMA
Documentation

Top of the page

save
Attributes

e to :an expression that evaluates to an string
e species: an expression that evaluates to a species
o type: an expression that evaluates to an string

Allows to save the localized entities of species *species* into a particular kind of file (shapefile, text or

csv...). The type can be "shp", "text" or "csv". Its simple syntax is:

save a_species to: the_shapefile type: a_type file;

e.g for a .shp file:

save a_species to: (path + "shapefile.shp") type: "shp" with: [attributl1::ATT1];

It can be use at the end of the init or in a user command. Do not use it in experiment Top of the page

Set
Attributes

e an expression that either returns a variable or an element of a composite type
e Vvalue :an expression

Allows the agent to assign a value to a variable. See this section to know how to access variables.

Examples:

set nmy_var <- expression;
set tenp_var <- expression;
set gl obal _var <- expression;

The variable assigned can be accessed in the value atribute. In that case, it represents the value of the
variable before it has been modified. Examples (with temporary variables):

let ny_int type: int <- 1000;
set my_int <- nmy_int + 1; // nmy_int now equals 1001

Top of the page

Page 88 of Full Documentation of GAMA 1.5.1
210



GAMA Documentation

switch
Attributes

o value (omissible): an expression

Embedded tags

match value {...}
e match_one list_values{... }
¢ match_between [valuel, value2?] {...}
o default{...}

Definition
The "switch... match" statement is a powerful replacement for imbricated "if ... else ..." constructs. All the

blocks that match are executed in the order they are defined. The block prefixed by default is executed
only if none have matched (otherwise it is not). Examples:

switch an_expression {
match valuel {...}
mat ch_one [val uel, value2, value3] {...}
mat ch_bet ween [val uel, value2] {...}
default {...}

}
Example:

switch 3 {
match 1 {wite "Match 1"; }
match 2 {wite "Match 2"; }
match 3 {wite "Match 3"; }
match_one [4,4,6,3,7] {wite "Match one_of"; }
mat ch_between [2, 4] {wite "Match between"; }
default {wite "Match Default"; }

}

Top of the page

write
Attributes

e message (omissible): string, the message to display. Modelers can add some formatting characters
to the message (carriage returns, tabs, or Unicode characters), which will be used accordingly in the
console.

Full Documentation of GAMA 1.5.1 Page 89 of
210



GAMA
Documentation

Definition
makes the agent output an arbitrary message in the console.

wite 'This is a nmessage from' + self;

Top of the page

Full Documentation of GAMA 1.5.1

Page 90 of
210



GAMA Documentation

Operators

This file is automatically generated from java files. Do Not Edit It.

Table of Contents
Definition

An operator performs a function on one, two, or three operands. An operator that only requires one
operand is called a unary operator. An operator that requires two operands is a binary operator. And
finally, a ternary operator is one that requires three operands. The GAML programming language has
only one ternary operator, ? :, which is a short-hand if-else statement. Unary operators are written using

aprefix parenthesized notation. Prefix notation means that the operator appears before its operand. Note
that unary expressions should always been parenthesized:

unary_oper at or (operand)
Most of binary operators can use two notations:

« the fonctional notation, which used a parenthesized notation around the operands (this notation
cannot be used with arithmetic and relational operators such as: +, -, /, * , A, =, 1=, <, > > = <=...)
« the infix notation, which means that the operator appears between its operands

bi nary_operator(opl, op2)
O
opl bi nary_operator op2

The ternary operator is also infix; each component of the operator appears between operands:
opl ? op2 : op3

In addition to performing operations, operators are functional, i.e. they return a value. The return value
and its type depend on the operator and the type of its operands. For example, the arithmetic operators,
which perform basic arithmetic operations such as addition and subtraction, return numbers - the result of
the arithmetic operation. Moreover, operators are strictly functional, i.e. they have no side effects on their
operands. For instance, the shuffle operator, which randomizes the positions of elements in a list, does
not modify its list operand but returns a new shuffled list. Top of the page

Operators by categories
Casting operators

e agent, as, as_int, as_matrix , bool , container , float , geometry , graph, int, is, list, pair , path ,
point , rgb , species , species_of , string, to_gaml, to_java , topology , unknown ,

Full Documentation of GAMA 1.5.1 Page 91 of
210



GAMA
Documentation

Comparison operators

o Iz <, <=, 2,5, >

Containers-related operators

e I, accumulate , among, any, as_map, at, collate , collect , contains , contains_all , copy_between
, count , empty , first_with , grid_at , group_by , index_of , last_with , map , matrix , max , max_of,
min , min_of , mul , of_generic_species , of _species , one_of, product , remove_duplicates , select,
sort, sort_by , sum , where , with_max_of , with_min_of ,

Files-related operators

« file, folder, get, image , is_image , is_properties , is_shape , is_text , new_folder , properties , read
, Shapefile , text , write ,

Graphs-related operators

e add_edge, agent_from_geometry , as_distance_graph , as_edge_graph , as_intersection_graph
, contains_edge , contains_vertex , degree_of , directed , generate_barabasi_albert
, generate_watts_strogatz , in_degree_of , in_edges_of , load_graph_from_dgs ,
load_graph_from_dgs_old , load_graph_from_dot , load_graph_from_edge , load_graph_from_gexf
, load_graph_from_graphml, load_graph_from_Igl , load_graph_from_ncol , load_graph_from_pajek
, load_graph_from_tlp , out_degree_of , out_edges_of , predecessors_of , remove_node_from
, rewire_n , set_verbose , source_of , successors_of , target_of , undirected , weight_of ,
with_optimizer_type , with_weights ,

Logical operators

e :,! ?, and, not, or,

Mathematics operators

e /,~,* abs, acos, asin, atan, ceil , cos, div, even, exp, fact, floor, In, mod , round , sin, sqrt,
tan, tanh , with_precision ,

Matrix-related operators

e column_at, columns_list, row_at, rows_list,

Random operators

e binomial , flip , gauss , poisson, rnd , shuffle , TGauss , truncated_gauss ,

Page 92 of Full Documentation of GAMA 1.5.1
210



GAMA Documentation

Spatl al operators

,+,<--1,add_point, add_z,add_z pt, agent_closest_to, agents_at_distance , agents_inside
, agents_overlappmg any_location_in , any_point_in, around , as_4 grid , as_grid , at_distance
, at_location , buffer , circle , clean, closest_points_with , closest to, cone , convex_hull ,
covered_by, covers, crosses , direction_between , direction_to , disjoint_from , distance_between
, distance_to , enlarged_by , farthest_point_to , inside , inter , intersection , intersects , line , link
, masked_by , neighbours_at , neighbours_of , norm , overlapping , overlaps , partially_overlaps
, path_between , path_to , points_at , polygon , polyline , rectangle , reduced_by , rotated_by
, scaled_by , simple_clustering_by_distance , simple_clustering_by_envelope_distance ,
simplification , skeletonize , solid , split_at , split_lines , square , touches , towards , transformed_by
, translated_by , translated_to , triangle , triangulate , union , without_holes ,

Statistical operators

e corR, frequency_of , geometric_mean , harmonic_mean , mean , mean_deviation , meanR , median
, R_compute , standard_deviation , variance ,

Strings-related operators

e as _date, as_time, contains_any , first, in, is_number , last, last_index_of , length , reverse ,
split_with , tokenize ,

System

e .,copy,dead, eval_gaml, evaluate_with , every , of , user_input ,

Operators

¢ Possible use:
o OP(int) --- > int
* OP(float) --- > float
» shape OP list of shapes --- > shape
» float OP int--- > float
e rgbOPint---> rgb
o list OP any --- > list
» shape OP float --- > shape
* point OP float --- > point
* point OP point --- > point
» shape OP species --- > shape
* list OP list --- > list
* rgbOPrgb---> rgb
e intOPint---> int
* point OP int --- > point

Full Documentation of GAMA 1.5.1 Page 93 of
210



GAMA
Documentation

* int OP float --- > float
» shape OP shape --- > shape
* float OP float --- > float
¢ Result: a new color resulting from the substraction of each component of the color with the right
operandreturns a new list in which all the elements of the right operand have been removed
from the left onea new color resulting from the substraction of the two operands, component by
componentthe difference of the two operands
o Comment: The behavior of the operator depends on the type of the operands.

e Special cases:

» if the right-operand is a list of points, geometries or agents, returns the geometry resulting from
the difference between the left-geometry and all of the right-geometries

» if the right operand is an object of any type (except list), - returns a copie of the left operand
without this object

» if the left-hand operand is a geometry and the rigth-hand operand a float, returns a geometry
corresponding to the left-hand operand (geometry, agent, point) reduced by the right-hand
operand distance

» if left-hand operand is a point and the right-hand a number, returns a new point with each
coordinate as the difference of the operand coordinate with this number.

» if both operands are points, returns their difference.

» if the right-operand is a species, returns the geometry resulting from the difference between the
left-geometry and all of geometries all agents of the right-species

* when itis used as an unary operator, - returns the opposite or the operand.

» if the right operand is empty or nil, - returns the left operand

» if both operands are humbers, performs a normal arithmetic difference and returns a float if one
of them is a float.

» if the right-operand is a point, a geometry or an agent, returns the geometry resulting from the
difference between both geometries

e Seealso: +,

geonl - [geon?, geonB, geomd] --: a geonetry corresponding to geoml - (geonR + geonB + geon#)
1.0 - 1--: 0.0

rgb([ 255, 128, 32]) - 3 .- rgb([ 252, 125, 29])

[1,2,3,4,5,6] - 2 .- [1,3,4,5,6]

[1,2,3,4,5,6] - O .- [1,2,3,4,5,6]

shape - 5 --: returns a geonetry corresponding to the geonetry of the agent applying the operator
reduced by a distance of 5

{1, 2} - 4.5 .- {-3.5, -2.5}

{1, 2} - {4, 5} .- {-3.0;-3.0}

geonl - speciesA --: a geonetry corresponding to geoml - (the geonetry of all agents of species
speci esA)

- (-56) .- 56

[1,2,3,4,5,6] - [2,4,9] .- [1,3,5, 6]

[1,2,3,4,5,6] - [O,38] .- [1,2,3,4,5,6]

rgb([ 255, 128, 32]) - rgb('red") .- rgb([0, 128, 32])

1-1 .- 0

{1, 2} - 4 .- {-3.0;-2.0}

geonll - geon? --: a geonetry corresponding to difference between geonl and geon®

Top of the page

e Possible use:
e anyOPany---> any

Page 94 of Full Documentation of GAMA 1.5.1
210



GAMA Documentation

e Seealso:?,

Top of the page

e Possible use:
 anyOP any --- > pair
¢ Result: produces a new pair combining the left and the right operands

Top of the page

e Possible use:
* OP(boal) --- > bool
¢ Result: opposite boolean value.
e Special cases:
» if the parameter is not boolean, it is casted to a boolean value.
e See also: bool ,

I (true) .- fal se

Top of the page

o Possible use:
» float OP float --- > bool
e any OP any --- > bhool
o Result: true if both operands are different, false otherwise

« Comment: this operator will return false if the two operands are identical (i.e., the same object) or
equal. Comparisons between nil values are permitted.

e Seealso: =,
4.5 = 4.7 --: false
[2,3] '=1[2,3] --: false
[2,4] '=1[2,3] --: true

Top of the page

o Possible use:
e bool OP any expression --- > any
« Result: if the left-hand operand evaluates to true, returns the value of the left-hand operand of the :,
otherwise that of the right-hand operand of the :
« Comment: These functional tests can be combined together.

e Seealso::,
[10, 19, 43, 12, 7, 22] collect ((each > 20) ? 'above' : 'below) --: ['below, 'below,
'above', 'below, 'below, 'above']

Full Documentation of GAMA 1.5.1 Page 95 of
210



GAMA
Documentation

set color value:(food >5) ? 'red" : ((food >= 2)? '"blue' : 'green')

Top of the page

/

o Possible use:
 intOPint---> float
e point OP int --- > point
e point OP float --- > point
» float OP int--- > float
e int OP float --- > float
e rgbOPint---> rgb
» float OP float --- > float
e rgb OP float --- > rgb
« Result: a float, equal to the division of the left-hand operand by the rigth-hand operand.a new color
resulting from the division of each component of the color by the right operanda new color resulting
from the division of each component of the color by the right operand. The result on each component
is then truncated.
e Special cases:
 if the right-hand operand is equal to zero, raises a "Division by zero" exception
 if the left-hand operator is a point and the right-hand a number, returns a point with coordinates
divided by the number
e See also: *,

{2,5} / 4 --: {0.5;1. 25}
rgb([255, 128, 32]) / 2 ==t rgb([ 127, 64, 16])
rgb([ 255, 128, 32]) / 2.5 oot rghb([102, 51, 13])

Top of the page

o Possible use:

e agent OP any expression --- > any
o Result: returns an evaluation of the expresion (right-hand operand) in the scope the given agent.
e Special cases:

« if the agent is nil or dead, throws an exception

agent .| ocati on .- returns the |ocation of the agent

Top of the page
N\

¢ Possible use:
e intOPint---> int
* float OP int--- > float
e int OP float --- > float
» float OP float --- > float
¢ Result: the left-hand operand raised to the power of the right-hand operand.

e Special cases:

Page 96 of Full Documentation of GAMA 1.5.1
210



GAMA Documentation

» if the right-hand operand is equal to O, returns 1
» ifitis equal to 1, returns the left-hand operand.
e Seealso: *, sqrt,

Top of the page
\* AN

e Possible use:
* point OP int--- > point
» float OP float --- > float
* float OP int--- > float
 intOPint---> int
* int OP float --- > float
» shape OP float --- > shape
* rgbOPint---> rgb
* point OP float --- > point
* point OP point --- > float
¢ Result: the product of the two operandsa new color resulting from the product of each component of
the color with the right operand
e Special cases:
» if the left-hand operator is a point and the right-hand a humber, returns a point with coordinates
multiplied by the number
» if both operands are int, returns the product as an int
» if the left-hand operand is a geometry and the rigth-hand operand a float, returns a geometry
corresponding to the left-hand operand (geometry, agent, point) scaled by the right-hand
operand coefficient
» if both operands are points, returns their scalar product
e Seealso:/,

{2,5} * 4 --: {8.0; 20.0}

shape * 2 --: returns a geonetry corresponding to the geonetry of the agent applying the operator
scaled by a coefficient of 2

rgb([ 255, 128, 32]) * 2 oot rgb([ 255, 255, 64])

{2,5} * {4.5, 5} --: 34.0

Top of the page
\* * N

Same signification as » operator.

Top of the page

+

¢ Possible use:
» shape OP float --- > shape
» shape OP shape --- > shape
» shape OP map --- > shape
» string OP any --- > string
o list OP list --- > list

Full Documentation of GAMA 1.5.1 Page 97 of
210



GAMA
Documentation

* rgbOPint---> rgb
* float OP int--- > float
e string OP string --- > string
* point OP int--- > point
* point OP float --- > point
* float OP float --- > float
* int OP float --- > float
 intOPint---> int
* point OP point --- > point
* listOP any --- > list
* rgbOPrgb---> rgb
¢ Result: returns a new list containing all the elements of both operandsa new color resulting from the
sum of each component of the color with the right operandthe sum, union or concatenation of the
two operands.a new color resulting from the sum of the two operands, component by component
o Comment: + is only defined with a list as left operand

e Special cases:

» if the left-hand operand is a geometry and the rigth-hand operand a float, returns a geometry
corresponding to the left-hand operand (geometry, agent, point) enlarged by the right-hand
operand distance

» if the right-operand is a point, a geometry or an agent, returns the geometry resulting from the
union between both geometries

» if the left-hand operand is a geometry and the rigth-hand operand a map (with [distance::float,
quadrantSegments:: int (the number of line segments used to represent a quadrant of a circle),
endCapStyle::int (1: (default) a semi-circle, 2: a straight line perpendicular to the end segment,
3: a half-square)] ), returns a geometry corresponding to the left-hand operand (geometry,
agent, point) enlarged considering the right-hand operand parameters

» if the right operand is nil, + returns the left operand

» if the left-hand operand is a string, returns the concatenation of the two operands (the left-hand
one beind casted into a string

» if left-hand operand is a point and the right-hand a number, returns a new point with each
coordinate as the sum of the operand coordinate with this number.

» if both operands are numbers (float or int), performs a normal arithmetic sum and returns a float
if one of them is a float.

» if both operands are points, returns their sum.

» if the right operand is an object of any type (except list), + returns a copie of the left operand
with this object

e Seealso: -, -,

shape + 5 --: returns a geonetry correspondi ng to the geonetry of the agent applying the operator
enl arged by a distance of 5

geonl + geon? --: a geonetry corresponding to union between geonl and geon®

shape + [distance::5.0, quadrantSegnents::4, endCapStyle:: 2] --: returns a geonetry
corresponding to the geonetry of the agent applying the operator enlarged by a distance of 5,
with 4 segnents to represent a quadrant of a circle and a straight |ine perpendicular to the end
segnent

"hello " + 12 .- "hello 12"
[1,2,3,4,5,6] + [2,4,9] .- [1,2,3,4,5,6
[1,2,3,4,5,6] + [O,8] .- [1,2,3,4,5
rgb([ 255, 128, 32]) + 3 .- rgb([ 255, 131, 35]
1.0 +1 --: 2.0

{1, 2} + 4 .- {5.0; 6.0}

{1, 2} + 4.5 .- {5.5, 6.5}

1+1 .- 2

{1, 2} + {4, 5} .- {5.0;7.0}

Page 98 of Full Documentation of GAMA 1.5.1
210



GAMA Documentation

[1,2,3,4,56] + 2 oot [1,2,3,4,5,6,2]
[1,2,3,4,5,6] + 0 cat [1,2,3,4,5,6,0]
rgb([ 255, 128, 32]) + rgb('red") .- rgb([ 255, 128, 32])

Top of the page

<

e Possible use:
* int OP float --- > bool
e string OP string --- > bool
* point OP point --- > bool
* intOPint---> bool
» float OP float --- > bool
* float OP int--- > bool
¢ Result: true if the left-hand operand is less than the right-hand operand, false otherwise.

e Special cases:
» if the operands are strings, a lexicographic comparison is performed
» if both operands are points, returns true if only if left component (x) of the left operand if less
than or equal to x of the right one and if the right component (y) of the left operand is greater
than or equal to y of the right one.
» if one of the operands is nil, returns false

3 <25 --: false

abc < aeb --: true
{5,7} <{4,6} --: false
{5,7} < {4,8 --: false
--: true

7.6 --: true

7 --: true

www
o1 o1 A
AN N N

Top of the page

Same signification as disjoint_from operator.

Top of the page

<=

o Possible use:
e string OP string --- > bool
e point OP point --- > bool
» float OP float --- > bool
e int OP float --- > bool
* intOPint---> bool
» float OP int--- > bool
o Result: true if the left-hand operand is less or equal than the right-hand operand, false otherwise.

e Special cases:
 if the operands are strings, a lexicographic comparison is performed

Full Documentation of GAMA 1.5.1 Page 99 of
210



GAMA

Documentation

if both operands are points, returns true if only if left component (x) of the left operand if less
than or equal to x of the right one and if the right component (y) of the left operand is greater

than or equal to y of the right one.
if one of the operands is nil, returns false

abc <= aeb --: true
{5,7} <= {4,6} --: false
{5,7} <= {4,8} --: false
3.5 <=3.5 --: true

3 <=25 --: false

3 <=7 - true

7.0 <= --: true

Top of the page

<>

Same signification as != operator.

Top of the page

e Possible use:

o Result: true if both operands are equal, false otherwise

float OP float --- > bool
any OP any --- > bool

« Comment: this operator will return true if the two operands are identical (i.e., the same object) or

equal. Comparisons between nil values are permitted.

e See also: =,
3=3 --: true
4.5 = 4.7 --: false
3.0 =3 --: true
[2,3] =[2,3] --: true

Top of the page

>

e Possible use:

int OP int --- > bool

float OP int --- > bool
string OP string --- > bool
float OP float --- > bool
point OP point --- > bool
int OP float --- > bool

¢ Result: true if the left-hand operand is greater than the right-hand operand, false otherwise.
e Special cases:

if one of the operands is nil, returns false

if the operands are strings, a lexicographic comparison is performed

Page 100 of

210

Full Documentation of GAMA 1.5.1



GAMA Documentation

» if both operands are points, returns true if only if left component (x) of the left operand if greater
than x of the right one and if the right component (y) of the left operand is greater than y of the

right one.
3>7 --: false
3.5 >7 --: false
abc > aeb --: false
3.5 >7.6 --: false
{5,7} > {4,6} --: true
{5 7} > {4,8 --: false
3>25 --: true

Top of the page

>=

o Possible use:
e point OP point --- > bool
e string OP string --- > bool
» float OP float --- > bool
* intOPint---> bool
» float OP int--- > bool
e int OP float --- > bool
o Result: true if the left-hand operand is greater or equal than the right-hand operand, false otherwise.

e Special cases:
 if both operands are points, returns true if only if left component (x) of the left operand if greater
than or equal to x of the right one and if the right component (y) of the left operand is greater
than or equal to y of the right one.
 if the operands are strings, a lexicographic comparison is performed
 if one of the operands is nil, returns false

{5,7} >= {4,6} --: true
{5,7} >={4,8} --: false
abc >= aeb --: false

abc >= abc --: true

3.5 >= 3.5 --: true
3>>7 --: false

3.5 >=7 --: false
3>=2.5 --: true

Top of the page

abs

e Possible use:
e OP(int) ---> int
* OP(float) --- > float
¢ Result: the absolute value of the operand (so a positive int or float depending on the type of the
operand).

abs (200 * -1 + 0.5) --: 200.5

Top of the page

Full Documentation of GAMA 1.5.1 Page 101 of
210



GAMA
Documentation

accumulate

e Possible use:
e container OP any expression --- > list
¢ Result: returns a new flat list, in which each element is the evaluation of the right-hand operand. If
this evaluation returns a list, the elements of this result are added directly to the list returned
« Comment: accumulate is dedicated to the application of a same computation on each element of a
container (and returns a list) In the right-hand operand, the keyword each can be used to represent,
in turn, each of the right-hand operand elements.
e Special cases:
» if the left-hand operand is nil, accumulate returns an empty list
e See also: collect ,

[al, a2, a3] accumrul ate (each nei ghbours_at 10) .- a flat list of all the nei ghbours
of these three agents
[1,2,4] accunulate ([2,4]) .- [2,4,2,4,2,4]

Top of the page

aCOoS

e Possible use:
* OP(float) --- > float
e OP(int) --- > float
¢ Result: the arccos of the operand (which has to be expressed in decimal degrees).

e See also: asin, atan,
acos (90) .- 0

Top of the page

add_edge

Possible use:
e graph OP pair --- > graph
« Result: add an edge between source vertex and the target vertex
« Comment: If the edge alrzdy exists the graph is unchanged
e Seealso: [#],
set graph <- graph add_edge (source::target);

Top of the page

add_point

o Possible use:
e shape OP point --- > shape
o Result: A geometry resulting from the adding of a right-point (coordinate) to the right-geometry

squar e(5) add_point {10,10} --: returns a hexagon

Top of the page

Page 102 of Full Documentation of GAMA 1.5.1
210



GAMA Documentation

add z

e Possible use:
* point OP float --- > point
» shape OP float --- > shape
e Result: add z
« Comment: Return a geometry with a z valueThe add_z operator set the z value of the whole
shape.For each point of the cell the same z value is set.
e Seealso: add_z pt,

set shape <- shape add_z rnd(100)

Top of the page

o Possible use:
e shape OP point --- > shape
e Result: add_z pt
o Comment: Return a geometry with a z value

e Seealso: add z,
loop i from O to: |ength(shape.points) - 1{set shape <- shape add_z_pt {i,val Z};}

Top of the page

agent

o Possible use:
* OP(any) --- > agent
o Result: casting of the operand to an agent (if a species name is used, casting to an instance of
species hame).
e Special cases:
» if the operand is a point, returns the closest agent (resp. closest instance of species hame) to
that point (computed in the topology of the calling agent);
» if the operand is an agent, returns the agent (resp. tries to cast this agent to species name and
returns nil if the agent is instance of another species);
» if the operand is an int, returns the agent (resp. instance of species hame) with this unique
index;
e See also: of species, species,

speci es node {}

node( 0) --: nodeO

node( 3. 78) --: nul
node(true) --: nul
node({23, 4.0} --: node2
node( 5: : 34) --: nul

node( gr een) --: nul
node([1,5,9,3]) --: null
node( nodel) --: nodel
node('4') --: nul

Top of the page

Full Documentation of GAMA 1.5.1 Page 103 of
210



GAMA
Documentation

agent closest_to

Possible use:
* OP(any) ---> agent
o Result: A agent, the closest to the operand (casted as a geometry).
« Comment: the distance is computed in the topology of the calling agent (the agent in which this
operator is used), with the distance algorithm specific to the topology.
e See also: neighbours_at , neighbours_of , agents_inside , agents_overlapping , closest_to , inside ,
overlapping ,

agent _cl osest _to(self) --: return the cl osest agent to the agent applying the operator.

Top of the page

agent_from_geometry

o Possible use:
e path OP shape --- > agent
Result: returns the agent corresponding to given geometry (right-hand operand) in the given path
(left-hand operand).
Special cases:
 if the left-hand operand is nil, returns nil

let line type: geonetry <- one_of (path_foll owed. segnents)
let ag type: road <- road(path_followed agent_fromgeonetry line);

Top of the page

agents at_distance

Possible use:
* OP(float) --- > list
¢ Result: A list of agents situated at a distance < = the right argument.

« Comment: Equivalent to neighbours_at with a left-hand argument equal to 'self'
e See also: neighbours_at , neighbours_of , agent_closest_to , agents_inside , closest_to , inside ,
overlapping , at_distance ,

agents_at _di stance(20) --: all the agents (excluding the caller) which distance to the caller is
<= 20

Top of the page

agents inside

o Possible use:
» OP(any) --- > list of agents
o Result: A list of agents covered by the operand (casted as a geometry).

e See also: agent_closest_to , agents_overlapping , closest_to , inside , overlapping ,

agents_inside(self) --: return the agents that are covered by the shape of the agent applying the
oper at or .

Top of the page

Page 104 of Full Documentation of GAMA 1.5.1
210



GAMA Documentation

agents_overlapping

Possible use:
* OP(any) --- > list of agents
o Result: A list of agents overlapping the operand (casted as a geometry).

e See also: neighbours_at , neighbours_of , agent_closest_to , agents_inside , closest_to , inside ,
overlapping , at_distance ,

agents_overl apping(self) --: return the agents that overlap the shape of the agent applying the
oper at or .

Top of the page

among

¢ Possible use:
e intOP map ---> map
* int OP container --- > list
¢ Result: a list of length the value of the left-hand operand, containing random elements from the right-
hand operand
e Special cases:
« if the right-hand operand is a map, among returns a map of right-hand operand element instead
of a list
+ if the right-hand operand is empty or nil, among returns a new empty list
» if the left-hand operand is greater than the length of the right-hand operand, among returns the
right-hand operand.

2 anong [1::2, 3::4, 5::6] .- [1::2, 3::4]

3 anong [1,2,4,3,5,7,6, 8] .- [1,2,8]

3 anong g2 .- [ node6, nodell, node7]

3 anong |ist(node) .- [ nodel, nodell, node4]

Top of the page

and

e Possible use:
* bool OP any expression --- > bool
¢ Result: a bool value, equal to the logical and between the left-hand operand and the rigth-hand
operand.
« Comment: both operands are always casted to bool before applying the operator. Thus, an
expression like (1 and 0) is accepted and returns false.
e See also: bool , or,

Top of the page

Same signification as one_of operator.

Top of the page

Full Documentation of GAMA 1.5.1 Page 105 of
210



GAMA
Documentation

any_location In

e Possible use:
* OP(shape) --- > point
¢ Result: A point inside (or touching) the operand-geometry.
e See also: closest_points_with , farthest_point_to , points_at ,

any_l ocation_in(square(5)) --: a point of the square, for exanple : {3, 4.6}.

Top of the page

any_point_in
Same signification as any_location_in operator.

Top of the page

around

o Possible use:
« float OP any --- > shape
« Result: A geometry resulting from the difference between a buffer around the right-operand casted in
geometry at a distance left-operand (right-operand buffer left-operand) and the right-operand casted
as geometry.
e Special cases:
e returns a circle geometry of radius right-operand if the left-operand is nil
e See also: circle, cone, line, link , norm, point , polygon , polyline , rectangle , square , triangle ,

10 around circle(5) --: returns a the ring geonetry between 5 and 10.

Top of the page

aS

¢ Possible use:
» any OP species --- > agent
¢ Result: casting of the left-hand operand to a species.
e Special cases:
 if the right-hand operand is nil, transforms the left-hand operand into an agent
» if the left-hand operand is nil, returns nil
» if the left-hand operand is an agent, if the right-hand is a agent, returns it, otherwise returns nil
» if the left-oprand is a integer, returns an agent with the right-operans as id
» if the left-operand is a poiny, returns the agent the closest to right-hand operand
» otherwise, returns nil
e See also: agent,

Top of the page

as 4 grid

e Possible use:

Page 106 of Full Documentation of GAMA 1.5.1
210



GAMA Documentation

» shape OP point --- > matrix
¢ Result: A matrix of square geometries (grid with 4-neighbourhood) with dimension given by the rigth-
hand operand ({nb_cols, nb_lines}) corresponding to the square tessellation of the left-hand operand
geometry (geometry, agent)

self as_grid {10, 5} --: returns matrix of square geonetries (grid with 4-nei ghbourhood) w th
10 columms and 5 lines corresponding to the square tessellation of the geonetry of the agent
appl yi ng the operator.

Top of the page

as date

e Possible use:
* OP(double) --- > string
» double OP string --- > string
¢ Result: converts a number into a string with year, month, day, hour, minutes, second following a
given pattern (right-hand operand)
¢ Comment: Pattern should include : "%Y %M %D %h %m %s" for outputting years, months, days,
hours, minutes, seconds
e Special cases:
» used as an unary operator, uses a defined pattern with years, months, days
¢ See also: as_time

as_dat e(22324234) --: 8 nonths, 18 days
22324234 as_date "W mY% d % h %n m % seconds” --: 8 m18 d 9 h 10 m 34 seconds

Top of the page

as _distance graph

o Possible use:
e container OP float --- > graph
o Result: creates a graph from a list of vertices (left-hand operand). An edge is created between each
pair of vertices close enough (less than a distance, right-hand operand).
o Comment: as_distance_graph is more efficient for a list of points than as_intersection_graph.

e See also: as_intersection_graph , as_edge_graph ,
list(ant) as_di stance_graph 3.0;

Top of the page

as edge graph

e Possible use:
* OP(container) --- > graph
* OP(map) --- > graph
¢ Result: creates a graph from the list/map of edges given as operand
e Special cases:
» if the operand is a list, the graph will be built with elements of the list as vertices
» if the operand is a map, the graph will be built by creating edges from pairs of the map
e See also: as_intersection_graph , as_distance_graph ,

Full Documentation of GAMA 1.5.1 Page 107 of
210



GAMA

Documentation
as_edge_graph([{1, 5}, {12, 45},{34,56}]) ~--: build a graph with these three vertices and
reflexive |inks on each vertices
as_edge_graph([{1,5}::{12,45},{12,45}::{34,56}]) =--: build a graph with these three vertices

and two edges

Top of the page

as grid

o Possible use:
e shape OP point --- > matrix
+ Result: A matrix of square geometries (grid with 8-neighbourhood) with dimension given by the rigth-
hand operand ({nb_cols, nb_lines}) corresponding to the square tessellation of the left-hand operand
geometry (geometry, agent)

self as_grid {10, 5} --: returns a matrix of square geonetries (grid w th 8-nei ghbourhood) wth
10 colums and 5 lines corresponding to the square tessellation of the geonetry of the agent
appl yi ng the operator.

Top of the page

as int

o Possible use:
e string OP int --- > int
o Result: parses the string argument as a signed integer in the radix specified by the second
argument.
e Special cases:
 if the left operand is nil or empty, as_int returns O
 if the left operand does not represent an integer in the specified radix, as_int throws an
exception
e See also: int,

'20' as_int 10 --: 20;

'20' as_int 8 --: 16;

'20' as_int 16 --1 32

"1F as_int 16 --: 31
"hello'" as_int 32 --: 18306744

Top of the page

as_intersection_graph

e Possible use:
e container OP float --- > graph
o Result: creates a graph from a list of vertices (left-hand operand). An edge is created between each
pair of vertices with an intersection (with a given tolerance).
« Comment: as_intersection_graph is more efficient for a list of geometries (but less accurate) than
as_distance_graph.
e See also: as_distance_graph, as_edge_graph,

list(ant) as_intersection_graph 0.5;

Top of the page

Page 108 of Full Documentation of GAMA 1.5.1
210



GAMA Documentation

as map

e Possible use:
» container OP any expression --- > map
¢ Result: produces a new map from the evaluation of the right-hand operand for each element of the
left-hand operand
¢ Comment: the right-hand operand should be pair or a map.

e Special cases:
» if the left-hand operand is nil or empty, as_map returns a new empty map.

[1,2,3,4,5,6,7,8] as_map (each::(each * 2) .- [1::2, 2::4, 3::6, 4::8, 5::10, 6::12
7::14, 8::16]
[1::2,3::4,5::6] as_map (each::(each * 2)) .- [2::4, 4::8, 6::12]

Top of the page

as_matrix

e Possible use:
» any OP point --- > matrix
e container OP point --- > matrix
o Result: casts the left operand into a matrix with right operand as preferrenced size

« Comment: This operator is very useful to cast a file containing raster data into a matrix.Note that
both components of the right operand point should be positive, otherwise an exception is raised.The
operator as_matrix creates a matrix of preferred size. It fills in it with elements of the left operand
until the matrix is full If the size is to short, some elements will be omitted. Matrix remaining elements
will be filled in by nil.

e Special cases:

» if the right operand is nil, as_matrix is equivalent to the matrix operator

e See also: matrix ,

Top of the page

as time

e Possible use:
* OP(double) --- > string
¢ Result: converts the given number into a string with hours, minutes and seconds

« Comment: as_time operator is a particular case (using a particular pattern) of the as_date operator.
¢ See also: as_date ,

as_tinme(22324234) --: 09:10: 34

Top of the page
o Possible use:

e OP(int) --- > float
e OP(float) --- > float

Full Documentation of GAMA 1.5.1 Page 109 of
210



GAMA
Documentation

¢ Result: the arcsin of the operand (which has to be expressed in decimal degrees).
e See also: acos, atan,

acos (90) --: 1

Top of the page

at

o Possible use:
e container OP [KeyType] --- > [ValueType]
e map OP any --- > any
e string OP int --- > string
« Result: the element at the right operand index of the container
« Comment: The first element of the container is located at the index 0. In addition, if the user tries
to get the element at an index higher or equals than the length of the container, he will get an
[IndexOutOfBoundException] .The at operator behavior depends on the nature of the operand
e Special cases:
« ifitis alist or a matrix, at returns the element at the index specified by the right operand
« ifitis afile, at returns the element of the file content at the index specified by the right operand
« ifitis a population, at returns the agent at the index specified by the right operand
« ifitis a graph and if the right operand is a node, at returns the in and out edges corresponding
to that node
« ifitis a graph and if the right operand is an edge, at returns the pair node_out::node_in of the
edge
e ifitis a graph and if the right operand is a pair nodel::node2 , at returns the edge from nodel to
node2 in the graph
« ifitis a map, at returns the value corresponding the right operand as key. If the right operand is
not a key of the map, at returns nil
e See also: contains_any contains_all, contains_any ,

[1, 2, 3] at 2 -- 3
[{1,2}, {3,4}, {5,6}] at O --: {1.0; 2.0}
"abcdef' at 0 --: 'a';

Top of the page

at_distance

o Possible use:
» list OP float --- > list
e species OP float --- > list
« Result: A list of agents among the left-operand list that are located at a distance < = the right
operand from the caller agent (in its topology)
e Special cases:
« If the left operand is a species, return agents of the specified species (slightly more efficient
than using list(speciesl), for instance)
e See also: neighbours_at , neighbours_of , agent_closest_to , agents_inside , closest _to, inside ,
overlapping , neighbours_at , neighbours_of , agent_closest_to , agents_inside , closest_to , inside ,
overlapping ,

[agl, ag2, ag3] at_distance 20 --: return the agents of the |list |located at a distance <= 20 from
the caller agent (in the sane order).

Page 110 of Full Documentation of GAMA 1.5.1
210



GAMA Documentation

speci esl at_distance 20 --: return the agents of speciesl |ocated at a distance <= 20 fromthe
cal l er agent.

Top of the page

at_location

¢ Possible use:
e shape OP point --- > shape
¢ Result: A geometry resulting from the tran of a translation to the right-hand operand point of the left-
hand operand (geometry, agent, point)

self at_location {10, 20} --: returns the geonetry resulting froma translation to the |ocation
{10, 20} of the geonetry of the agent applying the operator.

Top of the page

datan

o Possible use:

e OP(float) --- > float

e OP(int) --- > float
o Result: the arctan of the operand (which has to be expressed in decimal degrees).
e See also: acos, asin,

atan (45) --: 1

Top of the page

binomial
¢ Possible use:
*  OP(point) --- > int

¢ Result: A value from a random variable following a binomial distribution. The operand {n,p}
represents the number of experiments n and the success probability p.

¢ Comment: The binomial distribution is the discrete probability distribution of the number of
successes in a sequence of n independent yes/no experiments, each of which yields success with
probability p, cf. Binomial distribution on Wikipedia.

e See also: poisson , gauss,

bi nom al ({15,0.6}) --: a random positive integer

Top of the page

bool

e Possible use:
* OP(any) --- > bool
¢ Result: casting of the operand to a boolean value.

e Special cases:
» if the operand is null, returns false;
» if the operand is an agent, returns true if the agent is not dead;
» if the operand is an int or a float, returns true if it is not equal to O (or 0.0);

Full Documentation of GAMA 1.5.1 Page 111 of
210



GAMA
Documentation

» if the operand is a file, bool is formally equivalent to exists;

» if the operand is a container, bool is formally equivalent to not empty (a la Lisp);
» if the operand is a string, returns true is the operand is true;

* Otherwise, returns false.

bool (3. 78) --: true
bool (true) --: true
bool ({23, 4.0} --: false
bool (5:: 34) --: false
bool (green) --: fal se
bool ([1,5,9, 3]) --: true
bool (nodel) --: true
bool (' 4") --: fal se
bool (' 4.7") --: false

Top of the page

buffer

Same signification as + operator.

Top of the page
cell
e Possible use:

* OP(double) --- > double
¢ Result: maps the operand to the smallest following integer.

« Comment: More precisely, ceiling(x) is the smallest integer not less than x.
e See also: floor , round ,

ceil (3) S50 7T)
ceil (3.5) --: 4.0
ceil (-4.7) --1 -4.0

Top of the page

circle

e Possible use:
* OP(float) --- > shape
o Result: A circle geometry which radius is equal to the operand.
« Comment: the centre of the circle is by default the location of the current agent in which has been
called this operator.
e Special cases:
» returns a point if the operand is lower or equal to 0.
e See also: around , cone, line, link , norm , point , polygon , polyline , rectangle , square , triangle ,

circle(10) --: returns a geonetry as a circle of radius 10

Top of the page

Page 112 of Full Documentation of GAMA 1.5.1

210



GAMA Documentation

clean

e Possible use:

* OP(shape) --- > shape
¢ Result: A geometry corresponding to the cleaning of the operand (geometry, agent, point)
« Comment: The cleaning corresponds to a buffer with a distance of 0.0

cleaning(self) --: returns the geonetry resulting fromthe cleaning of the geonetry of the agent
appl yi ng the operator

Top of the page

closest_points with

o Possible use:
» shape OP shape --- > list of points
o Result: A list of two closest points between the two geometries.

e See also: any_location_in, any point_in, farthest_point_to , points_at ,

geonl cl osest_points_with(geon2) --: [ptl, pt2] with ptl the closest point of geonl to geon? and
ptl the cl osest point of geon?2 to geonil

Top of the page

closest_to

o Possible use:
e container of shapes OP shape --- > any
e species OP shape --- > agent
« Result: An agent among the left-operand list, the closest to the operand (casted as a geometry).
« Comment: the distance is computed in the topology of the calling agent (the agent in which this
operator is used), with the distance algorithm specific to the topology.
e Special cases:
« if the left-operand is a species, return an agent of the specified species.
o See also: neighbours_at , neighbours_of , neighbours_at , neighbours_of , inside , overlapping ,
agents_overlapping , agents_inside , agent_closest_to,
[agl, ag2, ag3] closest_to(self) --: return the closest agent anbng agl, ag2 and ag3 to the agent
appl yi ng the operator
nei ghbour s_at
nei ghbour s_of

speci esl closest_to(self) --: return the cl osest agent of species speciesl to the agent applying
t he operat or

Top of the page

collate

o Possible use:
e OP(list) --- > list
o Result: a new list containing interleaved elements of the operand
« Comment: the operand should be a list of lists of elements. The result is a list of elements.

Full Documentation of GAMA 1.5.1 Page 113 of
210



GAMA
Documentation

e Special cases:

» if the operand is nil or a list of (non-list) elements, accumulate returns an empty list
collate([1,2,4,3,5,7,6,8]) .- [1
collate([['el1",'el2"','el13"],['e21",'e22","'e23"],["'e31","'e32","'e33"]]) --:

[ell, e21, e31, el2, e22, e32, €13, €23, e33]

Top of the page

collect

e Possible use:
e container OP any expression --- > list
¢ Result: returns a new list, in which each element is the evaluation of the right-hand operand.

« Comment: collect is very similar to accumulate except. Nevertheless if the evaluation of the right-
hand operand produces a list,the returned list is a list of list of elements. In contrarily, the list
produces by accumulate is only a list of elements (all the lists) produced are concaneted. In addition,
collect can be applied to any container.

e Special cases:

» if the left-hand operand is nil, accumulate returns an empty list

e See also: accumulate ,

[1,2,4] collect (each *2) .- [2,4,8]

[1,2,4] collect ([2, 4]) .- [[2,4].[2,4].[2,4]]

[1::2, 3::4, 5::6] collect (each + 2) --: [8,4,6]

(l'ist(node) collect (node(each).location.x * 2) --: [25.65, 158.99, 140.80, 80.11, 125.47,

37.830, 4.62,...]

Top of the page

column_at

o Possible use:
e matrix OP int --- > list
o Result: returns the column at a num_col (rigth-hand operand)

e See also: row_at, rows_list,

matrix([["el 11", "el 12", "el 13"],["el 21", "el 22", "el 23"], ["el 31", "el 32", "€l 33"]]) colum_at 2 --:
["el 31", "el 32", "el 33"]

Top of the page

columns list

e Possible use:
e OP(matrix) --- > list of lists
¢ Result: returns a list of the columns of the matrix, with each column as a list of elements

e See also: rows_list,

colums_list(matrix([["el 11", "el 12","el 13"],["el 21", "el 22", "el 23"],["el 31", "el 32","el 33"]]) ~--:
[["el 11","el 12","el 13"],["el 21", "el 22", "el 23"],["el 31", "el 32", "el 33"]]

Top of the page

Page 114 of Full Documentation of GAMA 1.5.1
210



GAMA Documentation

cone

Possible use:
*  OP(poaint) --- > shape
Result: A cone geometry which min and max angles are given by the operands.
Comment: the centre of the cone is by default the location of the current agent in which has been
called this operator.
Special cases:
» returns nil if the operand is nil.
See also: around , circle , line , link , norm , point , polygon , polyline , rectangle , square , triangle ,

cone({0, 45}) --: returns a geonetry as a cone with min angle is 0 and max angle is 45

Top of the page

container

Possible use:
e OP(any) --- > container
Result: casting of the operand to a container

Special cases:

» if the operand is a container, returns itself

« otherwise, returns the operand casted to a list
See also: list ,

Top of the page

contains

Possible use:
e container OP any --- > boolean
e string OP string --- > bool
Result: true, if the container contains the right operand, false otherwise

Comment: the contains operator behavior depends on the nature of the operand

Special cases:
« ifitis alist or a matrix, contains returns true if the list or matrix contains the right operand
« ifitis a map, contains returns true if the operand is a key of the map
« ifitis a file, contains returns true it the operand is contained in the file content
« ifitis a population, contains returns true if the operand is an agent of the population, false
otherwise
« ifitis a graph, contains returns true if the operand is a node or an edge of the graph, false
otherwise
 if both operands are strings, returns true if the right-hand operand contains the right-hand
pattern;
See also: contains_any contains_all, contains_any ,

[1, 2, 3] contains 2 .- true
[{1,2}, {3,4}, {5,6}] contains {3, 4} .- true
"abcded' contains 'bc' --: true

Top of the page

Full Documentation of GAMA 1.5.1 Page 115 of
210



GAMA
Documentation

contains _all

e Possible use:
» container OP container --- > bool
e string OP list --- > bool
¢ Result: true if the left operand contains all the elements of the right operand, false otherwise

¢ Comment: the definition of contains depends on the container

e Special cases:
» if the right operand is nil or empty, contains_all returns true
e See also: contains , contains_any ,

[1,2,3,4,5,6] contains_all [2,4] .- true

[1,2,3,4,5,6] contains_all [2,8] .- fal se
[1::2, 3: 4 5::6] contains_all [1,3] .- true
[1::2, 3::4, 5::6] contains_all [2,4] .- fal se
"abcabcabc" contains_all ["ca", "xy"] .- fal se

Top of the page

contains_any

o Possible use:
e string OP list --- > bool
e container OP container --- > bool
o Result: true if the left operand contains one of the elements of the right operand, false otherwise

¢« Comment: the definition of contains depends on the container

e Special cases:
» if the right operand is nil or empty, contains_any returns false
e See also: contains , contains_all ,

"abcabcabc" contains_any ["ca","xy"] .- true
[1,2,3,4,5, 6] contains_any [2,4] .- true
[1,2,3,4,5,6] contains_any [2,8] .- true
[1::2, 3::4, 5::6] contains_any [1, 3] .- true
[1::2, 3::4, 5::6] contains_any [2,4] .- fal se

Top of the page

contains_edge

o Possible use:
e graph OP any --- > bool
e graph OP pair --- > bool
o Result: returns true if the graph(left-hand operand) contains the given edge (righ-hand operand),
false otherwise
e Special cases:
 if the left-hand operand is nil, returns false
 if the right-hand operand is a pair, returns true if it exists an edge between the two elements of
the pair in the graph
« See also: contains_vertex ,

| et graphFromVap type: graph <- as_edge_graph([{1,5}::{12, 45}, {12, 45}::{34,56}])
graphFromvap contai ns_edge |ink({1,5}::{12,45}) --: true

Page 116 of Full Documentation of GAMA 1.5.1
210



GAMA Documentation

| et graphEpidem o type: graph <-
gener at e_bar abasi _al bert( ["edges_specy":: edge, "vertices_specy"::node, "size"::3,"nm'::5] )
gr aphEpi deri o cont ai ns_edge (node(0)::node(3)); .- true

Top of the page

contains_vertex

e Possible use:
» graph OP any --- > bool
¢ Result: returns true if the graph(left-hand operand) contains the given vertex (righ-hand operand),
false otherwise
e Special cases:
» if the left-hand operand is nil, returns false
e See also: contains_edge ,

| et graphFromVap type: graph <- as_edge_graph([{1,5}::{12, 45}, {12, 45}::{34,56}])
graphFromvap contains_vertex {1,5} --: true

Top of the page

convex_hull

¢ Possible use:
» OP(shape) --- > shape
¢ Result: A geometry corresponding to the convex hull of the operand.

convex_hull (self) --: returns the convex hull of the geonetry of the agent applying the operator

Top of the page

copy

e Possible use:
* OP(any) --- > any
e Result: returns a copy of the operand.

Top of the page

copy_between

e Possible use:
* list OP point --- > list
e string OP point --- > string
¢ Result: returns a copy of a sublist of the left operand between a begin index (x of the right operand
point) and a end index (y of the right operand point
e Special cases:
» if the right operand is nil or empty, copy_between returns a copy of the left operand
» if the begin index is higher than the end index, copy_between returns a new empty list

[1,2,3,4,5,6,7] copy_between {0, 3} .- [1,2,3]
"abcabcabc" copy_between {2, 6} .- cabc

Top of the page

Full Documentation of GAMA 1.5.1 Page 117 of
210



GAMA
Documentation

corR

o Possible use:
+ container OP container --- > any

Top of the page

COS

e Possible use:
* OP(float) --- > float
e OP(int) --- > float
¢ Result: the cosinus of the operand (in decimal degrees).
e Special cases:
» the argument is casted to an int before being evaluated. Integers outside the range [0-359] are
normalized.
e Seealso: sin, tan,

cos (0) --: 1

Top of the page

count

o Possible use:
e container OP any expression --- > int
o Result: returns an int, equal to the number of elements of the left-hand operand that make the right-
hand operand evaluate to true.
« Comment: in the right-hand operand, the keyword each can be used to represent, in turn, each of
the elements.
e Special cases:
 if the left-hand operand is nil, count returns 0
e See also: group_hy,

[1,2,3,4,5,6,7,8] count (each > 3) .- 5

g2 count (length(g2 out_edges_of each) =0 ) .- 5 /1 Nunmber of nodes of
graph g2 without any out edge

(l'ist(node) count (round(node(each).location.x) > 32) --: 2 /'l Nunmber of agents node
with x > 32

[1::2, 3::4, 5::6] count (each > 4) .- 1

Top of the page

Crosses

o Possible use:
e shape OP shape --- > bool
« Result: A boolean, equal to true if the left-geometry (or agent/point) crosses the right-geometry (or
agent/point).
e Special cases:
» if one of the operand is null, returns false.
« if one operand is a point, returns false.

Page 118 of Full Documentation of GAMA 1.5.1
210



GAMA Documentation

e See also: <--:, disjoint_from , intersects , overlaps , partially_overlaps , touches ,

pol yline([ {10, 10}, {20, 20}]) crosses polyline([{10,20},{20,10}]) --: true.
pol yli ne([{10, 10}, {20, 20}]) crosses geonetry({15,15}) --: false
pol yline([{O0, 0}, {25, 25}]) crosses pol ygon([{10, 10}, {10, 20}, {20, 20}, {20, 10}]) --: true

Top of the page

dead

e Possible use:
* OP(agent) --- > bool
¢ Result: true if the agent is dead, false otherwise.

dead(agent _A) .- true or false

Top of the page

degree of

Possible use:
e graph OP any --- > int
o Result: returns the degree (in+out) of a vertex (right-hand operand) in the graph given as left-hand
operand.
e See also: in_degree_of , out_degree_of,

gr aphEpi dem o degree_of (node(3))
Top of the page

directed

o Possible use:
e OP(graph) --- > graph
« Result: the operand graph becomes a directed graph.
« Comment: the operator alters the operand graph, it does not create a new one.

e See also: undirected ,

Top of the page

direction _between

o Possible use:
» topology OP container of shapes --- > int
o Result: A direction (in degree) between a list of two geometries (geometries, agents, points)
considering a topology.
o See also: towards , direction_to , distance_to , distance_between , path_between , path_to,

nmy_topol ogy direction_between [agl, ag2] --: the direction between agl and ag2 considering the
t opol ogy ny_t opol ogy

Top of the page

Full Documentation of GAMA 1.5.1 Page 119 of
210



GAMA
Documentation

direction_to

Same signification as towards operator.

Top of the page

digoint_from

e Possible use:
» shape OP shape --- > bool
¢ Result: A boolean, equal to true if the left-geometry (or agent/point) is disjoints from the right-
geometry (or agent/point).
e Special cases:
» if one of the operand is null, returns true.
» if one operand is a point, returns false if the point is included in the geometry.
e See also: intersects , crosses , overlaps , partially_overlaps , touches ,

pol yli ne([ {10, 10}, {20, 20}]) disjoint_from polyline([{15, 15}, {25, 25}]) --: false.

pol ygon([{10, 10}, {10, 20}, { 20, 20}, { 20, 10}]) di sjoi nt _from pol ygon([{15, 15}, {15, 25}, {25, 25},
{25, 15}]) --: false.

pol ygon([ {10, 10}, {10, 20}, { 20, 20}, {20, 10}]) di sjoint_from geonetry({15, 15}) --: fal se.

pol ygon([{10, 10}, {10, 20}, { 20, 20}, { 20, 10}]) disjoint_from geonetry({25, 25}) --: true.

pol ygon([{10, 10}, {10, 20}, {20, 20}, {20, 10}]) disjoi nt _from pol ygon([{35, 35}, {35, 45}, {45, 45}
{45, 35}]) --: true

Top of the page

distance between

o Possible use:
» topology OP container of shapes --- > float
« Result: A distance between a list of geometries (geometries, agents, points) considering a topology.

o See also: towards , direction_to , distance_to , direction_between , path_between , path_to

ny_t opol ogy di stance_between [agl, ag2, ag3] --: the distance between agl, ag2 and ag3
consi dering the topol ogy nmy_t opol ogy

Top of the page

distance to

e Possible use:
* point OP point --- > float
» shape OP shape --- > float
¢ Result: A distance between two geometries (geometries, agents or points) considering the topology
of the agent applying the operator.
e See also: towards , direction_to , distance_between , direction_between , path_between , path_to,

agl distance_to ag2 --: the distance between agl and ag2 considering the topol ogy of the agent
appl yi ng the operator

Top of the page

Page 120 of Full Documentation of GAMA 1.5.1
210



GAMA Documentation

div
e Possible use:
* float OP int--- > int
e int OP float --- > int
 intOPint---> int
* float OP float --- > int
¢ Result: an int, equal to the truncation of the division of the left-hand operand by the rigth-hand
operand.
e Special cases:
» if the right-hand operand is equal to zero, raises an exception.
e See also: mod,

40 div 4.1 --: 9
40 div 3 --: 13

Top of the page

empty

¢ Possible use:
e OP(container) --- > boolean
e OP(string) --- > bool
¢ Result: true if the operand is empty, false otherwise.

« Comment: the empty operator behavior depends on the nature of the operand

e Special cases:

» ifitis alist, empty returns true if there is no element in the list, and false otherwise

« ifitis a map, empty returns true if the map contains no key-value mappings, and false otherwise

» ifitis afile, empty returns true if the content of the file (that is also a container) is empty, and
false otherwise

» ifitis a population, empty returns true if there is no agent in the population, and false otherwise

» ifitis a graph, empty returns true if it contains no vertex and no edge, and false otherwise

« ifitis a matrix of int, float or object, it will return true if all elements are respectively 0, 0.0 or null,
and false otherwise

» ifitis a matrix of geometry, it will return true if the matrix contains no cell, and false otherwise

» ifitis a string, empty returns true if the string does not contain any character, and false
otherwise

empty ([1) ==t true
enpty ('abced') .- fal se

Top of the page

enlarged by
Same signification as + operator.

Top of the page

eval _gaml

e Possible use:

Full Documentation of GAMA 1.5.1 Page 121 of
210



GAMA
Documentation

* OP(string) --- > any
¢ Result: evaluates the given GAML string.

e See also: eval_java,
eval _gani ("2+3") .- 5

Top of the page

evaluate with

o Possible use:
e string OP any expression --- > any
+ Result: evaluates the left-hand java expressions with the map of parameters (right-hand operand)

e See also: eval_gaml, eval_java,

Top of the page

even

o Possible use:

e OFP(int) --- > bool
o Result: true if the operand is even and false if it is odd.
e Special cases:

» if the operand is equal to O, it returns true.

even (3) .- fal se
even (-12) --: true

Top of the page

every

e Possible use:
* OFP(int) --- > bool
o Result: true every operand time step, false otherwise
« Comment: the value of the every operator depends deeply on the time step. It can be used to do
something not every step.
reflex text_every {

if every(2) {wite "the tine step is even";}
else {wite "the time step is odd";}

Top of the page

exp

e Possible use:

* OP(float) --- > float

e OP(int) --- > float
¢ Result: returns Euler's number e raised to the power of the operand.
e Special cases:

» the operand is casted to a float before being evaluated.

Page 122 of Full Documentation of GAMA 1.5.1
210



GAMA Documentation

e Seealso:In,
exp (0) .- 1

Top of the page

fact

o Possible use:
e OP(int) ---> int
o Result: the factorial of the operand.
e Special cases:
» if the operand is less than 0, fact returns O.

fact (4) -- 24

Top of the page

farthest_point_to

o Possible use:
» shape OP point --- > point
o Result: the farthest point of the left-operand to the left-point.
e See also: any_location_in, any point_in, closest points_with , points_at ,

geom farthest _point_to(pt) --: the closest point of geomto pt

Top of the page

file
e Possible use:
* OP(string) --- > file
¢ Result: opens a file in read only mode, creates a GAML file object, and tries to determine and store
the file content in the contents attribute.
« Comment: The file should have a supported extension, see file type deifnition for supported file
extensions.
e Special cases:
» If the specified string does not refer to an existing file, an exception is risen when the variable is
used.
+ See also: folder , new_folder ,

let fileT type: file value: file("../includes/Stupid_Cell.Data");
/1 fileT represents the file "../includes/Stupid_Cell.Data"
/1 fileT.contents here contains a matrix storing all the data of the text file

Top of the page

first
e Possible use:

* OP(string) --- > string
* OP(container) --- > [ValueType]

Full Documentation of GAMA 1.5.1 Page 123 of
210



GAMA
Documentation

¢ Result: the first element of the operand
o Comment: the first operator behavior depends on the nature of the operand

e Special cases:
» ifitis a string, first returns a string composed of its first character
« ifitis alist, first returns the first element of the list, or nil if the list is empty
» ifitis a map, first returns nil (the map do not keep track of the order of elements)
» ifitis afile, first returns the first element of the content of the file (that is also a container)
» ifitis a population, first returns the first agent of the population
» ifitis a graph, first returns the first element in the list of vertexes
» ifitis a matrix, first returns the element at {0,0} in the matrix
» for a matrix of int or float, it will return O if the matrix is empty
» for a matrix of object or geometry, it will return null if the matrix is empty
e See also: last,

first ('abce') .- 'a'
first ([1, 2, 3]) .- 1
first ({10,12}) .- 10.

Top of the page

first with

e Possible use:
» container OP any expression --- > any
¢ Result: the first element of the left-hand operand that makes the right-hand operand evaluate to
true.
« Comment: in the right-hand operand, the keyword each can be used to represent, in turn, each of
the right-hand operand elements.
e Special cases:
» if the left-hand operand is nil, first_with returns nil
e See also: group_by , last_with , where ,

[1,2,3,4,5,6,7,8] first_with (each > 3) .- 4

g2 first_with (length(g2 out_edges_of each) = 0) .- node9
(list(node) first_w th (round(node(each).location.x) > 32) .- node2
[1::2, 3::4, 5::6] first_with (each.key > 4) .- 5::6

Top of the page

flip

o Possible use:
e OP(float) --- > bool
o Result: true or false given the probability represented by the operand

e Special cases:
« flip 0 always returns false, flip 1 true
e Seealso: rnd,

flip (0.66666) --: 2/3 chances to return true.

Top of the page

Page 124 of Full Documentation of GAMA 1.5.1
210



GAMA Documentation

float

e Possible use:
* OP(any) --- > float
¢ Result: casting of the operand to a floating point value.

e Special cases:
» if the operand is numerical value, returns its value as a floating point value;
» if the operand is a string, tries to convert its content to a floating point value;
» if the operand is a boolean, returns 1.0 for true and 0.0 for false;
» otherwise, returns 0.0

e Seealso:int,

float(7) --1 7.0
float(true) - 1.
float ({23, 4.0} --: 0
float(5::34) --: 0.0
f | oat (green) --: 0.0
float([1,5,9, 3]) --: 0.0
fl oat (nodel) --: 0.0
int('4") --: 4.0
int('4.7) --1 4

Top of the page

floor

e Possible use:
* OP(double) --- > double
¢ Result: maps the operand to the largest previous following integer.

« Comment: More precisely, floor(x) is the largest integer not greater than x.
e See also: ceil , round ,

floor(3) --: 3.0
floor(3.5) --: 3.0
floor(-4.7) --: -5.0

Top of the page

folder

e Possible use:
* OP(string) --- > file
¢ Result: opens an existing repository
e Special cases:
» If the specified string does not refer to an existing repository, an exception is risen.
« See also: file , new_folder ,

let dirT type: file value: folder("../includes/");
/1 dirT represents the repository "../includes/"
/1 dirT.contents here contains the list of the nanes of included files

Top of the page

Full Documentation of GAMA 1.5.1 Page 125 of
210



GAMA
Documentation

frequency_of

Possible use:
» container OP any expression --- > map
Result: Returns a map with keys equal to the application of the right-hand argument (like collect) and
values equal to the frequency of this key (i.e. how many times it has been obtained)
See also: as_map ,

[agl, ag2, ag3, ag4] frequency_of each. size .- will return the different sizes as keys and
the nunber of agents of this size as val ues

Top of the page

gauss

Possible use:

*  OP(point) --- > float
Result: A value from a normally distributed random variable with expected value (mean) and
variance (standardDeviation). The probability density function of such a variable is a Gaussian.
Special cases:

» when the operand is a point, it is read as {mean, standardDeviation}

» when standardDeviation value is 0.0, it always returns the mean value
See also: truncated_gauss , poisson ,

gauss({0,0.3}) --: 0.22354
gauss({0,0.3}) --: -0.1357

Top of the page

9

enerate barabas albert

Possible use:

* OP(map) --- > graph
Result: returns a random scale-free network (following Barabasi#Albert (BA) model).
Comment: The Barabasi#Albert (BA) model is an algorithm for generating random scale-free
networks using a preferential attachment mechanism. A scale-free network is a network whose
degree distribution follows a power law, at least asymptotically.Such networks are widely observed
in natural and human-made systems, including the Internet, the world wide web, citation networks,
and some social networks. [From Wikipedia article] The map operand should includes following
elements:
Special cases:

» ‘"edges_specy": the species of edges

» ‘"vertices_specy": the species of vertices

» "size": the graph will contain (size + 1) nodes

e "m": the number of edges added per novel node
See also: generate_watts_strogatz ,

| et graphEpi denmi o type: graph <- generate_barabasi_al bert( [

"edges_specy": : edge
"vertices_specy"::node

"size"::3
"m'::5] )
Page 126 of Full Documentation of GAMA 1.5.1

210



GAMA Documentation

Top of the page

generate watts_strogatz

Possible use:
* OP(map) --- > graph

o Result: returns a random small-world network (following Watts-Strogatz model).

o Comment: The Watts-Strogatz model is a random graph generation model that produces graphs
with small-world properties, including short average path lengths and high clustering.A small-world
network is a type of graph in which most nodes are not neighbors of one another, but most nodes
can be reached from every other by a small number of hops or steps. [From Wikipedia article] The
map operand should includes following elements:

e Special cases:

» "edges_specy": the species of edges
» ‘"vertices_specy": the species of vertices
» "size": the graph will contain (size + 1) nodes. Size must be greater than k.
« "p": probability to "rewire" an edge. So it must be between 0 and 1. The parameter is often
called beta in the literature.
» "k" the base degree of each node. k must be greater than 2 and even.
See also: generate_barabasi_albert ,

| et graphWatts type: graph <- generate_watts_strogatz( ["
"edges_specy":: edge,
"vertices_specy"::node,

"size"::2,
p"::0.3
k"::0] )

Top of the page

geometrl C_mean

Possible use:
* OP(list) --- > float
¢ Result: the geometric mean of the elements of the operand. See Geometric_mean < http://
en.wikipedia.org/wiki/Geometric_mean> for more details.
« Comment: The operator casts all the numerical element of the list into float. The elements that are
not numerical are discarded.
¢ See also: mean , median , harmonic_mean ,

geonetric_nean ([4.5, 3.5, 5.5, 7.0]) --: 4.962326343467649

Top of the page

geometry

o Possible use:
e OP(any) --- > shape

+ Result: casts the operand into a geometry

e Special cases:
» if the operand is a point, returns a corresponding geometry point
« if the operand is a agent, returns its geometry

Full Documentation of GAMA 1.5.1 Page 127 of
210


http://en.wikipedia.org/wiki/Geometric_mean>
http://en.wikipedia.org/wiki/Geometric_mean>

GAMA
Documentation

» if the operand is a population, returns the union of each agent geometry

» if the operand is a pair of two agents or geometries, returns the link between the geometry of
each element of the operand

» if the operans is a graph, returns the corresponding multi-points geometry

» if the operand is a container of points, if first and the last points are the same, returns the
polygon built from these points

» if the operand is a container, returns the union of the geometry of each element

» otherwise, returns nil

geonetry({23, 4.0}) --: Point
geonet ry(a_graph) --: Ml tiPoint
geonet ry(nodel) --: Point
geonetry([{0, 0}, {1, 4},{4,8},{0,0}]) --: Pol ygon

Top of the page

get

o Possible use:
e shape OP string --- > any

Top of the page

graph

o Possible use:
e OP(any) --- > graph
o Result: casting of the operand to a graph.
e Special cases:
« if the operand is a graph, returns the graph itself
» if the operand is a list, returns a new graph with the elements of the left-hand operand as
vertices and no edge. The graph will be spatial is the right-hand operand is true;
« if the operand is a map,
» otherwise, returns nil

graph([1,5,9,3]) --: ([2: in[] + out[], 3: in[] + out[], 5: in[] + out[], 9: in[] + out[]]
[n

graph(['a' ::345, "b'::13]) --: ([b: in[] + out[b::13], a: in[] + out[a::345], 13: in[b::13] +
out[], 345: in[a::345] + out[]], [a::345=(a, 345), b::13=(b, 13)])

graph(a_graph) --: a_graph

graph(nodel) --: null

Top of the page

grid_at

o Possible use:
e species OP point --- > agent
o Result: returns the cell of the grid (right-hand operand) at the position given by the right-hand
operand
« Comment: If the left-hand operand is a point of floats, it is used as a point of ints.

e Special cases:
 if the left-hand operand is not a grid cell species, returns nil

Page 128 of Full Documentation of GAMA 1.5.1
210



GAMA Documentation

grid_cell grid_at {1,2} .- returns the agent grid_cell with grid_x=1 and grid_y = 2

Top of the page

group by

o Possible use:
e container OP any expression --- > map
* map OP any expression --- > map
« Result: a map, where the keys take the possible values of the right-hand operand and the map
values are the list of elements of the left-hand operand associated to the key value
« Comment: in the right-hand operand, the keyword each can be used to represent, in turn, each of
the right-hand operand elements.
e Special cases:
 if the left-hand operand is nil, group_by returns a new empty map
o See also: first_with , last_with , where ,

[1,2,3,4,5,6,7,8] group_by (each > 3) .- [false::[1, 2, 3], true::[4, 5, 6, 7, 8]]
g2 group_by (length(g2 out_edges_of each) ) .- [ 0::[node9, node7, nodelO, node8
nodell], 1::[node6], 2::[node5], 3::[node4d]]

(l'ist(node) group_by (round(node(each).location.x)) --: [32::[node5], 21::[nodel], 4:
[node0], 66::[node2], 96::[node3]]

[1::2, 3::4, 5::6] group_by (each > 4) .- [false::[2, 4], true::[6]]

Top of the page

harmonic_mean

o Possible use:
e OP(list) --- > float
« Result: the harmonic mean of the elements of the operand. See Harmonic_mean < http://
en.wikipedia.org/wiki/Harmonic_mean> for more details.
« Comment: The operator casts all the numerical element of the list into float. The elements that are
not numerical are discarded.
e See also: mean , median , geometric_mean ,

harnmoni c_nean ([4.5, 3.5, 5.5, 7.0]) --: 4.804159445407279

Top of the page

Image
o Possible use:
e OP(string) --- > file
« Result: opens a file that is a kind of image.
« Comment: The file should have an image extension, cf. file type deifnition for supported file
extensions.
e Special cases:
» If the specified string does not refer to an existing image file, an exception is risen.
e See also: file , shapefile , properties , text ,

let fileT type: file value: inmage("../includes/testlnmage.png"); // fileT represents the file
"../lincludes/test Shape. png"

Full Documentation of GAMA 1.5.1 Page 129 of
210


http://en.wikipedia.org/wiki/Harmonic_mean>
http://en.wikipedia.org/wiki/Harmonic_mean>

GAMA
Documentation

Top of the page
e Possible use:
» string OP string --- > bool

» any OP container --- > bool
Result: true if the right operand contains the left operand, false otherwise
o Comment: the definition of in depends on the container
Special cases:
» if both operands are strings, returns true if the left-hand operand patterns is included in to the
right-hand string;
» if the right operand is nil or empty, in returns false
e See also: contains ,

"bc' in 'abcded' --: true
2in[1,2,3,4,5,6] : true
7in[1,2,3,4,5 6] : false
3in[21::2, 3::4, 5::6] : true
6 in[1::2, 3::4, 5::6] : false

Top of the page

In degree of

Possible use:
e graph OP any --- > int
o Result: returns the in degree of a vertex (right-hand operand) in the graph given as left-hand
operand.
e See also: out_degree of, degree_of,

gr aphEpi denmi o i n_degree_of (node(3)) .- 2
Top of the page

In edges of

Possible use:
» graph OP any --- > list
¢ Result: returns the list of the in-edges of a vertex (right-hand operand) in the graph given as left-
hand operand.
e See also: out_edges_of,

graphFromvap i n_edges_of node({12,45}) --: [LineString]
Top of the page

iIndex_of

o Possible use:
e matrix OP any --- > point
e string OP string --- > int

Page 130 of Full Documentation of GAMA 1.5.1
210



GAMA Documentation

* listOP any --- > int

* map OP any ---> any
o Result: the index of the first occurence of the right operand in the left operand container
o Comment: The definition of index_of and the type of the index depend on the container

e Special cases:
» if the left operand is a matrix, index_of returns the index as a point
» if both operands are strings, returns the index within the left-hand string of the first occurrence of
the given right-hand string
» if the left operand is a list, index_of returns the index as an integer
» if the left operand is a map, index_of returns the index as a pair
¢ See also: at, last_index_of,

matrix([[21,2,3],[4,5,6]]) index_of 4 .- {1.0; 0.0}
"abcabcabc" index_of "ca" .- 2

[1,2,3,4,5, 6] index _of 4 . 3

[4,2,3,4,5,4] index_of 4 - 0

[1::2, 3::4, 5::6] index_of 4 .- 3::4

Top of the page
o Possible use:
» species OP any --- > list of agents

» container of shapes OP any --- > list of agents
o Result: A list of agents among the left-operand list, covered by the operand (casted as a geometry).

e Special cases:
» if the left-operand is a species, return agents of the specified species (slightly more efficient
than using list(speciesl), for instance).
e See also: neighbours_at , neighbours_of , closest_to , overlapping , agents_overlapping ,
agents_inside , agent_closest to,

speci esl inside(self) --: return the agents of species speciesl that are covered by the shape of
the agent applying the operator.
[agl, ag2, ag3] inside(self) --: return the agents anbng agl, ag2 and ag3 that are covered by the

shape of the agent applying the operator.
Top of the page
e Possible use:
* OP(any) ---> int
o Result: casting of the operand to an integer value.
e Special cases:
» if the operand is a float, returns its value truncated (but not rounded);
» if the operand is an agent, returns its unique index;
» if the operand is a string, tries to convert its content to an integer value;
» if the operand is a boolean, returns 1 for true and O for false;
» if the operand is a color, returns its RGB value as an integer;

» otherwise, returns 0
e See also: round , float,

Full Documentation of GAMA 1.5.1 Page 131 of
210



GAMA

Documentation
int(3.78) --: 3
int(true) --0 1
int({23, 4.0} --: 0
int(5::34) --: 0
i nt (green) --: -16711936
int([1,5,9,3]) --: 0
i nt (nodel) == 1
int('4") .- 4
int('4.7") --: /] Exception

Top of the page

|Nter
e Possible use:

» shape OP shape --- > shape
» container OP container --- > list

¢ Result: A geometry resulting from the intersection between the two geometriesthe intersection of the

two operands

« Comment: both containers are transformed into sets (so without duplicated element, cf.
remove_deplicates operator) before the set intersection is computed.

e Special cases:
» returns false if the right-operand is nil

» if an operand is a graph, it will be transformed into the set of its nodes
» if an operand is a map, it will be transformed into the set of its values
» if an operand is a matrix, it will be transformed into the set of the lines

e See also: union, +, -, remove_duplicates ,

square(5) intersects {10,10} --: false
[1,2,3,4,5,6] inter [2,4] oot
[1,2,3,4,5,6] inter [0, 8] .
[1::2, 3::4, 5::6] inter [2,4] oot
[1::2, 3::4, 5::6] inter [1,3] oot
matrix([[21,2,3],[4,5,4]]) inter [3,4] --

Top of the page

Intersection

Same signification as inter operator.

Top of the page

|ntersects

e Possible use:
» shape OP point --- > bool
» shape OP shape --- > bool

¢ Result: A boolean, equal to true if the left-geometry (or agent/point) intersects the right-geometry (or

agent/point).
e Special cases:

» if one of the operand is null, returns false.

[2,4]
[]
[2, 4]

[]
[4.3]

e See also: <--:, disjoint_from , crosses , overlaps , partially_overlaps , touches,

Page 132 of
210

Full Documentation of GAMA 1.5.1



GAMA Documentation

square(5) intersects {10,10} --: false.

Top of the page
o Possible use:

e any OP any expression --- > bool
o Result: returns true is the left operand is of the right operand type, false otherwise

O is int .- true
an_agent is node .- true
1 is float .- fal se

Top of the page

IS Image
o Possible use:

e OP(string) --- > bool
o Result: the operator tests whether the operand represents the name of a supported image file

o Comment: cf. file type definition for supported (espacially image) file extensions.
o See also: image , is_text, is_properties , is_shape ,

is_imge("../includes/Stupid_Cell.Data") --: false;
is_image("../includes/test.png") --: true;

is_imge("../includes/test.properties") --: fal se;
is_image("../includes/test.shp") --: false;

Top of the page

IS _number

o Possible use:
e OP(string) --- > bool
o Result: tests whether the operand represents a numerical value
o« Comment: Note that the symbol . should be used for a float value (a string with , will not be
considered as a numeric value). Symbols e and E are also accepted. A hexadecimal value should

begin with #.
i s_nunber("test") --: false
i s_nunber ("123. 56") --: true
i s_nunber ("-1.2e5") --: true
i s_nunber ("1, 2") --: false
i s_nunber (" #12FA") --: true

Top of the page

IS_properties

o Possible use:
e OP(string) --- > bool
o Result: the operator tests whether the operand represents the name of a supported properties file

Full Documentation of GAMA 1.5.1 Page 133 of
210



GAMA
Documentation

Comment: cf. file type definition for supported (espacially image) file extensions.
See also: properties , is_text, is_shape , is_image ,

is_properties("../includes/Stupid_Cell.Data") --: fal se;
is_properties("../includes/test.png") --: false;
is_properties("../includes/test.properties") --: true;

is_properties("../includes/test.shp") --: fal se;

Top of the page

IS shape

Possible use:
e OP(string) --- > bool
Result: the operator tests whether the operand represents the name of a supported shapefile

Comment: cf. file type definition for supported (espacially image) file extensions.
See also: image , is_text , is_properties , is_image ,

i s_shape("../includes/Stupid_Cell.Data") --: false;
i s_shape("../includes/test.png") --: fal se;
i s_shape("../includes/test.properties") --: fal se;
i s_shape("../includes/test.shp") --:  true;

Top of the page

IS text

Possible use:
e OP(string) --- > bool
Result: the operator tests whether the operand represents the name of a supported text file

Comment: cf. file type definition for supported (espacially image) file extensions.
See also: text , is_properties , is_shape , is_image ,

is_text("../includes/Stupid_Cell.Data") --: true;

is_text("../includes/test.png") --: fal se;
is_text("../includes/test.properties") --: false;
is_text("../includes/test.shp") --: fal se;

Top of the page

|ast

Page 134 of

Possible use:
* OP(string) --- > string
* OP(container) --- > [ValueType]
Result: the last element of the operand
Comment: the last operator behavior depends on the nature of the operand

Special cases:

» ifitis a string, last returns a string composed of its last character, or an empty string if the

operand is empty
» ifitis alist, last returns the last element of the list, or nil if the list is empty
» ifitis a map, last returns nil (the map do not keep track of the order of elements)
« ifitis afile, last returns the last element of the content of the file (that is also a container)

210

Full Documentation of GAMA 1.5.1



GAMA Documentation

» ifitis a population, last returns the last agent of the population
» ifitis a graph, last returns the last element in the list of vertexes
» ifitis a matrix, last returns the element at {length-1,length-1} in the matrix
» for a matrix of int or float, it will return O if the matrix is empty
» for a matrix of object or geometry, it will return null if the matrix is empty
e See also: first,

last ('abce') .- ‘e
last ({10, 12}) .- 12
last ([1, 2, 3]) .- 3.

Top of the page

last_index_of

e Possible use:
e string OP string --- > int
* matrix OP any --- > point
* map OP any ---> any
* listOP any --- > int
¢ Result: the index of the last occurence of the right operand in the left operand container

o Comment: The definition of last_index_of and the type of the index depend on the container

e Special cases:
» if both operands are strings, returns the index within the left-hand string of the rightmost
occurrence of the given right-hand string
» if the left operand is a matrix, last_index_of returns the index as a point
» if the left operand is a map, last_index_of returns the index as a pair
» if the left operand is a list, last_index_of returns the index as an integer
¢ See also: at, last_index_of,

"abcabcabc" | ast_i ndex_of "ca" - 5
matrix([[1,2,3],[4,5,4]]) last_index_of 4 .- {1.0; 2.0}
[1::2, 3::4, 5::4] last_index_of 4 .- 5::4
[1,2,3,4,5,6] |ast_index_of 4 .- 3

[4,2,3,4,5,4] last_index_of 4 -- 5

Top of the page

last_ with

o Possible use:
e container OP any expression --- > any
o Result: the last element of the left-hand operand that makes the right-hand operand evaluate to
true.
« Comment: in the right-hand operand, the keyword each can be used to represent, in turn, each of
the right-hand operand elements.
e Special cases:
» if the left-hand operand is nil, last_with returns nil
e See also: group_by , first_with , where ,

[1,2,3,4,5,6,7,8] last_with (each > 3) .- 8

g2 last_with (length(g2 out_edges_of each) = 0 ) .- nodell
(list(node) last_wth (round(node(each).location.x) > 32) --: node3
[1::2, 3::4, 5::6] last_with (each. key > 4) .- 5::6

Full Documentation of GAMA 1.5.1 Page 135 of
210



GAMA
Documentation

Top of the page

length

e Possible use:
* OP(string) --- > int
* OP(container) --- > int
¢ Result: the number of elements contained in the operand

« Comment: the length operator behavior depends on the nature of the operand

e Special cases:
» ifitis a string, length returns the number of characters
» ifitis alist or a map, length returns the number of elements in the list or map
» ifitis a population, length returns number of agents of the population
» ifitis a graph, last returns the number of vertexes or of edges (depending on the way it was
created)

» ifitis a matrix, length returns the number of cells

length ('l am an agent') .- 13

length ([12,13]) .- 2

Top of the page

¢ Possible use:

» OP(list of points) --- > shape
¢ Result: A polyline geometry from the given list of points.
e Special cases:

» if the operand is nil, returns the point geometry {0,0}

» if the operand is composed of a single point, returns a point geometry.
e See also: around , circle , cone, link , norm , point , polygone , rectangle , square , triangle ,

polyline([{0O,0}, {O,10}, {10,210}, {10,0}]) --: returns a polyline geonetry conposed of the 4
poi nt s.

Top of the page

link
o Possible use:
*  OP(pair) --- > shape
¢ Result: A link between the 2 elements of the pair.
« Comment: The geometry of the link is the intersection of the two geometries when they intersect,
and a line between their centroids when they do not.
e Special cases:
« if the operand is nil, link returns a point {0,0}
« if one of the elements of the pair is a list of geometries or a species, link will consider the union
of the geometries or of the geometry of each agent of the species
e See also: around , circle , cone, line , norm, point , polygon , polyline , rectangle , square , triangle ,

link (geonil::geonR) --: returns a |link geonetry between geonil and geon?

Page 136 of Full Documentation of GAMA 1.5.1
210



GAMA Documentation

Top of the page
list
e Possible use:
* OP(any) --- > list
* OP(container) --- > list
¢ Result: transforms the operand into a list
« Comment: list always tries to cast the operand except if it is an int, a bool or a float; to create a list,
instead, containing the operand (including another list), use the + operator on an empty list (like [] +
‘abc’).
e Special cases:
» if the operand is a point or a pair, returns a list containing its components (two coordinates or
the key and the value);
» if the operand is a rgb color, returns a list containing its three integer components;
» if the operand is a file, returns its contents as a list;
» if the operand is a matrix, returns a list containing its elements;
» if the operand is a graph, returns the list of vetices or edges (depending on the graph)
» if the operand is a species, return a list of its agents;

» if the operand is a string, returns a list of strings, each containing one character;
» otherwise returns a list containing the operand.

Top of the page

In

e Possible use:
e OP(int) --- > float
* OP(float) --- > float
¢ Result: returns the natural logarithm (base e) of the operand.

e Special cases:
» an exception is raised if the operand is less than zero.
e Seealso: exp,
I'n(1) .- 0.0

Top of the page

o Possible use:

e« OP(map) --- > graph
o Result: returns a graph loaded from a given file following DGS graph file format versions 1 and 2
o Comment: similar to load_graph_from_dgs_old

e See also: load_graph_from_dgs_old ,

Top of the page

Full Documentation of GAMA 1.5.1 Page 137 of
210



GAMA
Documentation

Ioad | graph_from dgs old

| et

Possible use:

* OP(map) --- > graph
Result: returns a graph loaded from a given file following DGS file format (version 3).
Comment: DGS is a file format allowing to store graphs and dynamic graphs in a textual human
readable way, yet with a small size allowing to store large graphs. Graph dynamics is defined using
events like adding, deleting or changing a node or edge. With DGS, graphs will therefore be seen as
stream of such events. [From GraphStream related page: http://graphstream-project.org/] The map
operand should includes following elements:
Special cases:

» "filename": the filename of the file containing the network

» "edges_specy": the species of edges

» ‘"vertices_specy": the species of vertices
See also: load_graph_from_dgs ,

my_graph type: graph <- |oad_graph_fromdgs_old( [
“filename"::"../incl udes/Barabasi Gener at ed. dgs",
"edges_specy": : edgeSpecy,
"vertices_specy"::nodeSpecy] );

Top of the page

load graph from_dot

| et

Possible use:
* OP(map) --- > graph
Result: returns a graph loaded from a given file following DOT file format.
Comment: DOT is a plain text graph description language. It is a simple way of describing graphs
that both humans and computer programs can use. See: http://en.wikipedia.org/wiki/DOT _language
for more details.The map operand should includes following elements:
Special cases:
« "filename": the filename of the file containing the network
» ‘"edges_specy": the species of edges
» ‘"vertices_specy": the species of vertices
See also: load_graph_from_dgs_old ,

ny_graph type: graph <- |oad_graph_fromdot( [
"filenanme"::"exanpl e_of dot_file",
"edges_specy": : edgeSpecy,
"vertices_specy"::nodeSpecy] );

Top of the page

Ioad | graph_from edge

Possible use:
* OP(map) --- > graph
Result: returns a graph loaded from a given file following Edge file format.
Comment: This format is a simple text file with numeric vertex ids defining the edges. The map
operand should includes following elements:
Special cases:

Page 138 of Full Documentation of GAMA 1.5.1

210


http://en.wikipedia.org/wiki/DOT_language

GAMA Documentation

» "filename": the filename of the file containing the network
» "edges_specy": the species of edges
» ‘"vertices_specy": the species of vertices

e See also: load_graph_from_dgs_old ,

| et ny_graph type: graph <- |oad_graph_from edge( [
"filename"::"exanpl e_of _edge_file",
"edges_specy": : edgeSpecy,
"vertices_specy"::nodeSpecy] );

Top of the page

load_graph_from_gexf

o Possible use:

* OP(map) --- > graph
¢ Result: returns a graph loaded from a given file following GEXF file format.
o Comment: GEXF (Graph Exchange XML Format) is a language for describing complex networks
structures, their associated data and dynamics. Started in 2007 at Gephi project by different actors,
deeply involved in graph exchange issues, the gexf specifications are mature enough to claim being
both extensible and open, and suitable for real specific applications. See: http://gexf.net/format/ for
more details.The map operand should includes following elements:
e Special cases:
« "filename": the filename of the file containing the network
» ‘"edges_specy": the species of edges
» ‘"vertices_specy": the species of vertices

e See also: load_graph_from_dgs_old ,

I et ny_graph type: graph <- |oad_graph_fromgexf( [
"filenanme"::"exanpl e_of Gexf _file",
"edges_specy": : edgeSpecy,
"vertices_specy"::nodeSpecy] );

Top of the page

load graph from_graphml

o Possible use:

 OP(map) --- > graph
o Result: returns a graph loaded from a given file following GEXF file format.
o Comment: GraphML is a comprehensive and easy-to-use file format for graphs based on XML.
See: http://graphml.graphdrawing.org/ for more details.The map operand should includes following
elements:
e Special cases:
» "filename": the filename of the file containing the network
» ‘"edges_specy": the species of edges
» ‘"vertices_specy": the species of vertices

e See also: load_graph_from_dgs_old,

l et ny_graph type: graph <- |oad_graph_fromgraphm ( [
"filenanme"::"exanpl e_of _Graphm _file",
"edges_specy": : edgeSpecy,
"vertices_specy"::nodeSpecy] );

Full Documentation of GAMA 1.5.1 Page 139 of
210


http://gexf.net/format/
http://graphml.graphdrawing.org/

GAMA
Documentation

Top of the page

load graph_from Ig|

e Possible use:

* OP(map) --- > graph
o Result: returns a graph loaded from a given file following LGL file format.
o Comment: LGL is a compendium of applications for making the visualization of large networks and
trees tractable. See: http://Igl.sourceforge.net/ for more details.The map operand should includes
following elements:
e Special cases:
» "filename": the filename of the file containing the network
» "edges_specy": the species of edges
» ‘"vertices_specy": the species of vertices

e See also: load_graph_from_dgs_old ,

l et ny_graph type: graph <- load_graph_fromlgl( [
"filename"::"exanple_of LG _file",
"edges_specy": : edgeSpecy,
"vertices_specy"::nodeSpecy] );

Top of the page

load graph from_ncol

o Possible use:
e« OP(map) --- > graph
o Result: returns a graph loaded from a given file following ncol file format.
« Comment: This format is used by the Large Graph Layout progra. It is simply a symbolic weighted
edge list. It is a simple text file with one edge per line. An edge is defined by two symbolic
vertex names separated by whitespace. (The symbolic vertex names themselves cannot contain
whitespace.) They might followed by an optional number, this will be the weight of the edge. See:
http://bioinformatics.icmb.utexas.edu/lgl for more details.The map operand should includes following
elements:
e Special cases:
« "filename": the filename of the file containing the network
» ‘"edges_specy": the species of edges
» ‘"vertices_specy": the species of vertices
e See also: load_graph_from_dgs_old ,

l et ny_graph type: graph <- |oad_graph_fromncol ( [
"filenane"::"exanpl e_of ncol _file",
"edges_specy": : edgeSpecy,
"vertices_specy"::nodeSpecy] );

Top of the page

load_graph _from_pajek

¢ Possible use:
e OP(map) --- > graph
¢ Result: returns a graph loaded from a given file following Pajek file format.

Page 140 of Full Documentation of GAMA 1.5.1
210


http://lgl.sourceforge.net/
http://bioinformatics.icmb.utexas.edu/lgl

GAMA Documentation

o Comment: Pajek (Slovene word for Spider) is a program, for Windows, for analysis and visualization
of large networks. See: http://pajek.imfm.si/doku.php?id=pajek for more details.The map operand
should includes following elements:
e Special cases:
» "filename": the filename of the file containing the network
» "edges_specy": the species of edges
» ‘"vertices_specy": the species of vertices

e See also: load_graph_from_dgs_old ,

I et ny_graph type: graph <- |oad_graph_from pajek( [
“filename"::"exanpl e_of _Pajek_file",
"edges_specy": : edgeSpecy,
"vertices_specy"::nodeSpecy] );

Top of the page

load graph from tlp

o Possible use:
e« OP(map) --- > graph
o Result: returns a graph loaded from a given file following TLP file format.
o Comment: TLP is the Tulip software graph format. See: http://tulip.labri.fr/TulipDrupal/?q=tlp-file-
format for more details.The map operand should includes following elements:
e Special cases:
« "filename": the filename of the file containing the network
» ‘"edges_specy": the species of edges
» ‘"vertices_specy": the species of vertices
e See also: load_graph_from_dgs_old ,

| et ny_graph type: graph <- load_graph_fromtlp( [
"filenanme"::"exanple_of TLP file",
"edges_specy": : edgeSpecy,
"vertices_specy"::nodeSpecy] );

Top of the page

map

o Possible use:
» OP(container) --- > map
 OP(any) ---> map
¢ Result: casting of the operand to a map.
e Special cases:
» if the operand is a color RRGGBB, returns a map with the three elements: "r'::RR , "g"::GG ,
"b"::BB ;
» if the operand is a point, returns a map with two elements: "x":: x -ccordinate and "y":. y -
coordinate;
» if the operand is pair, returns a map with this only element;
» if the operand is a species hame, returns the map containing all the agents of the species as a
pair nom_agent::agent ;
» if the operand is a agent, returns a map containing all the attributes as a pair
attribute_name::attribute_value ;

Full Documentation of GAMA 1.5.1 Page 141 of
210


http://pajek.imfm.si/doku.php?id=pajek
http://tulip.labri.fr/TulipDrupal/?q=tlp-file-format
http://tulip.labri.fr/TulipDrupal/?q=tlp-file-format

GAMA
Documentation

» if the operand is a list, returns a map containing either elements of the list if it is a list of pairs, or
pairs list.get(i) ::list .get(i+1);

» if the operand is a file, returns the content casted to map;

» if the operand is a graph, returns the a map with pairs edge_source::edge_target ;

» otherwise returns a map containing only the pair operand::operand .

Top of the page

masked by

e Possible use:
» shape OP list of agents --- > shape
» shape OP species --- > shape
o Result: A geometry representing the part of the right operand visible from the point of view of the
agent using the operator while considering the obstacles defined by the left operand

per cepti on_geom nmasked_by obstacle_list --: returns the geonmetry representing the part of
percepti on_geom vi si ble fromthe agent position considering the |ist of obstacles obstacle_list.
percepti on_geom nmasked_by obstacl e_species --: returns the geonetry representing the part

of perception_geomvisible fromthe agent position considering the obstacles of species
obst acl e_speci es.

Top of the page

matrix

¢ Possible use:
* OP(container) --- > matrix
* OP(any) --- > matrix
o OP(list) --- > matrix
¢ Result: casts the operand into a matrix
e Special cases:
» if the operand is a file, returns its content casted as a matrix
» ifthe operand is a map, returns a 2-columns matrix with keyx in the first one and value in the
second one;
» ifthe operand is a list, returns a 1-row matrix. Notice that each element of the list should be a
single element or lists with the same length;
» if the operand is a graph, returns nil;
» otherwise, returns a 1x1 matrix with the operand at the (0,0) position.
e See also: as_matrix ,

Top of the page

MaX

o Possible use:
e OP(container) --- > [ValueType]
¢ Result: the maximum element found in the operand
« Comment: the max operator behavior depends on the nature of the operand

e Special cases:
o fitis alist of int of float, max returns the maximum of all the elements

Page 142 of Full Documentation of GAMA 1.5.1
210



GAMA Documentation

» ifitis a list of points: max returns the maximum of all points as a point (i.e. the point with the
greatest coordinate on the x-axis, in case of equality the point with the greatest coordinate on
the y-axis is chosen. If all the points are equal, the first one is returned. )

» ifitis a population of a list of other type: max transforms all elements into integer and returns
the maximum of them

» ifitis a map, max returns the maximum among the list of all elements value

» ifitis a file, max returns the maximum of the content of the file (that is also a container)

» ifitis a graph, max returns the maximum of the list of the elements of the graph (that can be the
list of edges or vertexes depending on the graph)

» ifitis a matrix of int, float or object, max returns the maximum of all the numerical elements
(thus all elements for integer and float matrices)

« ifitis a matrix of geometry, max returns the maximum of the list of the geometries

» ifitis a matrix of another type, max returns the maximum of the elements transformed into float

e See also: min,

max ([ 100, 23.2, 34.5]) oot 100. 0
max([{1.0;3.0},{3.0;5.0},{9.0;1.0},{7.0;8.0}]) --: {9.0;1.0}

Top of the page

max_of

¢ Possible use:
» container OP any expression --- > any
¢ Result: the maximum value of the right-hand expression evaluated on each of the elements of the
left-hand operand
« Comment: in the right-hand operand, the keyword each can be used to represent, in turn, each of
the right-hand operand elements.
e Special cases:
» if the left-hand operand is nil, max_of returns the right-hand operand default value
e See also: min_of,

[1,2,4,3,5,7,6,8] nmax_of (each * 100 ) .- 800
g2 max_of (Ilength(g2 out_edges_of each) ) .- 3
(l'ist(node) max_of (round(node(each).location.x)) --: 96
[1::2, 3::4, 5::6] max_of (each.value + 3) .- 9

Top of the page

mean

e Possible use:
* OP(container) --- > any
¢ Result: the mean of all the elements of the operand
« Comment: the elements of the operand are summed (see sum for more details about the sum of
container elements ) and then the sum value is divided by the number of elements.
e Special cases:
» if the container contains points, the result will be a point
e See also: sum,

mean ([4.5, 3.5, 5.5, 7.0]) --: 5.125

Top of the page

Full Documentation of GAMA 1.5.1 Page 143 of
210



GAMA
Documentation

mean_deviation

e Possible use:
* OP(list) --- > float
¢ Result: the deviation from the mean of all the elements of the operand. See Mean_deviation < http://
en.wikipedia.org/wiki/Absolute deviation> for more details.
« Comment: The operator casts all the numerical element of the list into float. The elements that are
not numerical are discarded.
e See also: mean , standard_deviation ,

mean_devi ation ([4.5, 3.5, 5.5, 7.0]) --: 1.125

Top of the page

meanR

o Possible use:
e OP(container) --- > any

Top of the page

median
e Possible use:

e OP(list) --- > float
o Result: the median of all the elements of the operand.

« Comment: The operator casts all the numerical element of the list into float. The elements that are
not numerical are discarded.
e See also: mean,

nedi an ([4.5, 3.5, 5.5, 7.0]) --: 5.0

Top of the page
min
o Possible use:

e OP(container) --- > [ValueType]
¢ Result: the minimum element found in the operand.

o Comment: the min operator behavior depends on the nature of the operand

e Special cases:

» ifitis alist of int or float: min returns the minimum of all the elements

« ifitis a list of points: min returns the minimum of all points as a point (i.e. the point with the
smallest coordinate on the x-axis, in case of equality the point with the smallest coordinate on
the y-axis is chosen. If all the points are equal, the first one is returned. )

» ifitis a population of a list of other types: min transforms all elements into integer and returns
the minimum of them

» ifitis a map, min returns the minimum among the list of all elements value

» ifitis a file, min returns the minimum of the content of the file (that is also a container)

» ifitis a graph, min returns the minimum of the list of the elements of the graph (that can be the
list of edges or vertexes depending on the graph)

Page 144 of Full Documentation of GAMA 1.5.1
210


http://en.wikipedia.org/wiki/Absolute_deviation>
http://en.wikipedia.org/wiki/Absolute_deviation>

GAMA Documentation

» ifitis a matrix of int, float or object, min returns the minimum of all the numerical elements (thus
all elements for integer and float matrices)
» ifitis a matrix of geometry, min returns the minimum of the list of the geometries
» ifitis a matrix of another type, min returns the minimum of the elements transformed into float
e See also: max,

min ([100, 23.2, 34.5]) B 23.2

Top of the page

min_of

o Possible use:
e container OP any expression --- > any
o Result: the minimum value of the right-hand expression evaluated on each of the elements of the
left-hand operand
« Comment: in the right-hand operand, the keyword each can be used to represent, in turn, each of
the right-hand operand elements.
e Special cases:
 if the left-hand operand is nil, first_with returns nil
e See also: max_of,

[1,2,4,3,5,7,6,8] min_of (each * 100 ) .- 100

g2 min_of (length(g2 out_edges_of each) ) =ot 0
(l'ist(node) mn_of (round(node(each).location.x)) --: 4

[1::2, 3::4, 5::6] min_of (each.value + 3) -- 5

Top of the page

mod

¢ Possible use:
e intOPint---> int
¢ Result: an int, equal to the remainder of the integer division of the left-hand operand by the rigth-
hand operand.
e Special cases:
+ if the right-hand operand is equal to zero, raises an exception.
e See also: div,

40 nod 3 --0 1
40 nod 4 --: 0

Top of the page

mul

o Possible use:
e OP(container) --- > any
o Result: the product of all the elements of the operand
o Comment: the mul operator behavior depends on the nature of the operand

e Special cases:
« ifitis alist of int or float: mul returns the product of all the elements

Full Documentation of GAMA 1.5.1 Page 145 of
210



GAMA
Documentation

» ifitis a list of points: mul returns the product of all points as a point (each coordinate is the
product of the corresponding coordinate of each element)

» ifitis a list of other types: mul transforms all elements into integer and multiplies them

» ifitis a map, mul returns the product of the value of all elements

» ifitis a file, mul returns the product of the content of the file (that is also a container)

» ifitis a graph, mul returns the product of the list of the elements of the graph (that can be the list
of edges or vertexes depending on the graph)

» ifitis a matrix of int, float or object, mul returns the product of all the numerical elements (thus
all elements for integer and float matrices)

» ifitis a matrix of geometry, mul returns the product of the list of the geometries

» ifitis a matrix of other types: mul transforms all elements into float and multiplies them

e See also: sum,

mul ([100, 23.2, 34.5]) B 80040. 0

Top of the page

neighbours at

o Possible use:
e point OP float --- > list
e shape OP float --- > list
« Result: a list, containing all the agents located at a distance inferior or equal to the right-hand
operand to the left-hand operand (geometry, agent, point).
« Comment: The topology used to compute the neighbourhood is the one of the left-operand if this
one is an agent; otherwise the one of the agent applying the operator.
o See also: neighbours_of , closest_to , overlapping , agents_overlapping , agents_inside ,
agent_closest_to, at_distance ,

(sel f neighbours_at (10)) --: returns all the agents |located at a distance |ower or equal to 10
to the agent applying the operator

Top of the page

nelghbours of

e Possible use:

» topology OP pair --- > list

» topology OP agent --- > list

» graph OP any --- > list

¢ Result: a list, containing all the agents located at a distance inferior or equal to 1 to the right-hand
operand agent considering the left-hand operand topology.returns the list of neighbours of the given
vertex (right-hand operand) in the given graph (left-hand operand)

e Special cases:

» alist, containing all the agents located at a distance inferior or equal to the right member (float)
of the pair (right-hand operand) to the left member (agent, geometry or point) considering the
left-hand operand topology.

e See also: neighbours_at , closest_to , overlapping , agents_overlapping , agents_inside ,
agent_closest_to , predecessors_of , successors_of ,

t opol ogy(sel f) nei ghbours_of self::10--: returns all the agents |ocated at a distance | ower or
equal to 10 to the agent applying the operator considering its topol ogy.
t opol ogy(sel f) nei ghbours_of self --: returns all the agents located at a distance |ower or equal

to 1 to the agent applying the operator considering its topol ogy.

Page 146 of Full Documentation of GAMA 1.5.1
210



GAMA Documentation

gr aphEpi dem o nei ghbours_of (node(3)) .- [ nodeO, node2]
gr aphFr omVap nei ghbours_of node({12, 45}) --: [{21.0;5.0},{34.0;56.0}]

Top of the page

new_folder

¢ Possible use:
e OP(string) --- > file
+ Result: opens an existing repository or create a new folder if it does not exist.

e Special cases:
» If the specified string does not refer to an existing repository, the repository is created. If the
string refers to an existing file, an exception is risen.
e See also: folder , file ,

l et dirNewTl type: file value: new folder("../incl/"); /1 dirNewT represents the repository
"..lincl/"

/1 eventually creates the
directory ../incl

Top of the page

norm

e Possible use:
*  OP(poaint) --- > float
¢ Result: the norm of the vector with the coordinnates of the point operand.

norm({3, 4}) .- 5.0

Top of the page

not

Same signification as ! operator.

Top of the page

of

Same signification as . operator.

Top of the page

of generic_species

o Possible use:
e container OP species --- > list
o Result: a list, containing the agents of the left-hand operand whose species is that denoted by the
right-hand operand and whose species extends the right-hand operand species
o See also: of_species,

/'l species test {}

Full Documentation of GAMA 1.5.1 Page 147 of
210



GAMA
Documentation

/'l species sous_test parent: test {}

[sous_test(0), sous_test(1l),test(2),test(3)] of_generic_species test .-

[sous_testO, sous_testl, test2, test3]

[sous_test(0), sous_test(1l),test(2),test(3)] of_generic_species sous_test .-

[ sous_testO0, sous_test 1]

[sous_test(0),sous_test(1l),test(2),test(3)] of_species test --: [test2,test3]
[sous_test(0), sous_test(1l),test(2),test(3)] of_species sous_test .-

[ sous_testO0, sous_test1]

Top of the page

of species

o Possible use:
e container OP species --- > list
o Result: a list, containing the agents of the left-hand operand whose species is that denoted by
the right-hand operand.The expression agents of_species (species self) is equivalent to agents
where (species each = species self); however, the advantage of using the first syntax is that the
resulting list is correctly typed with the right species, whereas, in the second syntax, the parser
cannot determine the species of the agents within the list (resulting in the need to cast it explicitely if
it is to be used in an ask statement, for instance).
e Special cases:
» if the right operand is nil, of _species returns the right operand
e See also: of generic_species,

(sel f nei ghbours_at 10) of species (species (self)) --: all the neighbouring agents of the
sane speci es.

[test(0),test (1), node(1l), node(2)] of_species test --: [testO,test1]

[1,2,3,4,5, 6] of _species test .- [1

Top of the page

one_of

e Possible use:
* OP(container) --- > [ValueType]
* OP(species) --- > agent
¢ Result: one of the values stored in this container using GAMA.getRandom()a random element from
the list
« Comment: the one_of operator behavior depends on the nature of the operand

e Special cases:
» if the operand is empty, one_of returns nil
« ifitis alist or a matrix, one_of returns one of the elements of the list or of the matrix
» ifitis a map, one_of returns one of the values of the map
» ifitis a graph, one_of returns one of the nodes of the graph
« ifitis afile, one_of returns one of the elements of the content of the file (that is also a container)
» ifitis a population, one_of returns one of the agents of the population
» if the list is empty, returns nil
» If the operand is a species, the operand is casted to a list before the expression is evaluated.
Therefore, if foo is the name of a species, any(foo) will return a random agent from this species

(see list)
any ([1,2,3]) .- 1, 2, or 3
one_of ([1,2,3]) .- 1, 2, or 3
Page 148 of Full Documentation of GAMA 1.5.1

210



GAMA Documentation

one_of ([2::3, 4::5, 6::7]) .- 3, 50r 7

/'l The speci es bug has previously been defined

one_of (bug) .- bug3

let mat3 type:matrix value: matrix([["c1l1","c12","c13"],["c21","c22","c23"]])
one_of (mat 3) .- "cll","cl2","c13", "c21","c22" or "c23"

one_of (bug) --: bug3 /! The species "bug" has previously be defined

Top of the page

or

e Possible use:
* bool OP any expression --- > bool
¢ Result: a bool value, equal to the logical or between the left-hand operand and the rigth-hand
operand.
« Comment: both operands are always casted to bool before applying the operator. Thus, an
expression like 1 or 0 is accepted and returns true.
e See also: bool , and ,

Top of the page

out_degree of

e Possible use:
» graph OP any --- > int
¢ Result: returns the out degree of a vertex (right-hand operand) in the graph given as left-hand
operand.
e See also: in_degree_of , degree_of,

gr aphEpi dem o out _degree_of (node(3))

Top of the page

out_edges of

o Possible use:
e graph OP any --- > list
o Result: returns the list of the out-edges of a vertex (right-hand operand) in the graph given as left-
hand operand.
e See also: in_edges_of,

gr aphEpi dem o out _edges_of (node(3))
Top of the page

overlapping

o Possible use:
» container of shapes OP any --- > list of agents
» species OP any --- > list of agents
o Result: A list of agents among the left-operand list, overlapping the operand (casted as a geometry).

e Special cases:
» if the left-operand is a species, return agents of the specified species.

Full Documentation of GAMA 1.5.1 Page 149 of
210



GAMA
Documentation

e See also: neighbours_at , neighbours_of , agent_closest_to , agents_inside , closest_to , inside ,
agents_overlapping ,

[agl, ag2, ag3] overlapping(self) --: return the agents anbng agl, ag2 and ag3 that overlap the
shape of the agent applying the operator
speci esl overl appi ng(self) --: return the agents of species speciesl that overlap the shape of

the agent applying the operator

Top of the page

overlaps

o Possible use:
e shape OP shape --- > bool
« Result: A boolean, equal to true if the left-geometry (or agent/point) overlaps the right-geometry (or
agent/point).
e Special cases:
» if one of the operand is null, returns false.
« if one operand is a point, returns true if the point is included in the geometry
e See also: <--:, disjoint_from , crosses , intersects , partially_overlaps , touches ,

pol yli ne([{10, 10}, {20, 20}]) overl aps polyline([{15, 15}, {25, 25}]) --: true

pol ygon([{10, 10}, {10, 20}, { 20, 20}, {20, 10}]) overl aps pol ygon([{15, 15}, {15, 25}, {25, 25}, {25, 15}])
--: true

pol ygon([{10, 10}, {10, 20}, { 20, 20}, {20, 10}]) overl aps geonetry({25, 25}) --: true

pol ygon([{10, 10}, {10, 20}, { 20, 20}, {20, 10}]) overl aps pol ygon([{35, 35}, {35, 45}, {45, 45}, {45, 35}])
--: false

pol ygon([{10, 10}, {10, 20}, { 20, 20}, { 20, 10}]) overlaps polyline([{10, 10}, {20, 20}]) --: true

pol ygon([ {10, 10}, {10, 20}, { 20, 20}, {20, 10}]) overl aps geonetry({15,15}) --: true

pol ygon([ {10, 10}, {10, 20}, { 20, 20}, {20, 10}]) overl aps pol ygon([{O, 0}, {0, 30}, {30, 30}, {30,0}]) --
true

pol ygon([{10, 10}, {10, 20}, { 20, 20}, {20, 10}]) overl aps pol ygon([{15, 15}, {15, 25}, {25, 25}, {25, 15}])
--: true

pol ygon([ {10, 10}, {10, 20}, { 20, 20}, { 20, 10}]) overl aps pol ygon([{10, 20}, {20, 20}, {20, 30}, {10, 30}])
--1 true

Top of the page

pair
e Possible use:
* OP(any) ---> pair
¢ Result: casting of the operand to a pair value.
e Special cases:
» if the operand is null, returns null;
» if the operand is a point, returns the pair x- coordinate::y -coordinate;
» if the operand is a particular kind of geometry, a link between geometry, returns the pair formed
with these two geoemtries;
» if the operand is a map, returns the pair where the first element is the list of all the keys of the
map and the second element is the list of all the values of the map;
» if the operand is a list, returns a pair with the two first element of the list used to built the pair
» if the operand is a link, returns a pair source_link::destination_link
» Otherwise, returns the pair string(operand) ::operand .

pair(true) --: true::true
pair ({23, 4.0} --: 23.0::4.0
Page 150 of Full Documentation of GAMA 1.5.1

210



GAMA Documentation

pair([1,5,9,3]) --: 1::5
pair([[3,7],[2,6,9],0]) -2 [3,7]1::[2,6,9]
pair(['a'::345, '"b'::13, 'c¢'::12]) --: [b,c,a]::[13, 12, 345]

Top of the page

partially overlaps

Possible use:
» shape OP shape --- > bool
¢ Result: A boolean, equal to true if the left-geometry (or agent/point) partially overlaps the right-
geometry (or agent/point).
o Comment: if one geometry operand fully covers the other geometry operand, returns false (contrarily
to the overlaps operator).
e Special cases:
» if one of the operand is null, returns false.
e See also: <--:, disjoint_from , crosses , overlaps , intersects , touches ,

pol yl'i ne([ {10, 10}, {20, 20}]) partially_overlaps polyline([{15, 15}, {25,25}]) --: true

pol ygon([{10, 10}, {10, 20}, { 20, 20}, {20, 10}]) partially_overlaps pol ygon([{15, 15}, {15, 25}, {25, 25},
{25, 15}]) --: true

pol ygon([ {10, 10}, {10, 20}, {20, 20}, {20, 10}]) partially_overl aps geonetry({25,25}) --: true

pol ygon([{10, 10}, {10, 20}, { 20, 20}, {20, 10}]) partially_overl aps pol ygon([{35, 35}, {35, 45}, {45, 45},
{45, 35}]) --: false

pol ygon([ {10, 10}, {10, 20}, { 20, 20}, {20, 10}]) partially_overl aps pol yline([{10, 10}, {20, 20}]) --
fal se

pol ygon([{10, 10}, {10, 20}, {20, 20}, {20, 10}]) partially_overl aps geonetry({15,15}) --: false

pol ygon([ {10, 10}, {10, 20}, { 20, 20}, {20, 10}]) partially_overl aps pol ygon([{O, 0}, {0, 30}, {30, 30},
{30,0}]) --: false

pol ygon([{10, 10}, {10, 20}, {20, 20}, {20, 10}]) partially_overl aps pol ygon([ {15, 15}, {15, 25}, {25, 25},
{25,15}]) --: true

pol ygon([{10, 10}, {10, 20}, { 20, 20}, {20, 10}]) partially_overlaps pol ygon([{10, 20}, {20, 20}, {20, 30},
{10, 30}]) --: false

Top of the page

path

e Possible use:
* OP(any) --- > path
¢ Result: casting of the operand to a path
e Special cases:
» if the operand is a path, returns itself
» if the operand is a list, casts the list into a list of point and returns the path (in the current
topology) through these points.
» otherwise, returns nil
e See also: graph ,

path([{2,5}, {4,7}, {2,1}]) --: [polyline ([{2.0,5.0},{4.0,7.0}]),polyline ([{4.0,7.0},
{2.0,1.0}])1]

Top of the page

Full Documentation of GAMA 1.5.1 Page 151 of
210



GAMA
Documentation

path between

Possible use:
» topology OP container of shapes --- > path
¢ Result: A path between a list of two geometries (geometries, agents or points) considering a

topology.
e See also: towards , direction_to , distance_between , direction_between , path_to , distance_to,

nmy_t opol ogy path_between [agl, ag2] --: A path between agl and ag2

Top of the page

path to

o Possible use:
e shape OP shape --- > path
e point OP point --- > path
+ Result: A path between two geometries (geometries, agents or points) considering the topology of
the agent applying the operator.
o See also: towards , direction_to , distance_between , direction_between , path_between ,
distance_to ,

agl path_to ag2 --: the path between agl and ag2 considering the topol ogy of the agent applying
t he operator

Top of the page

point

e Possible use:
* OP(any) --- > point
¢ Result: casting of the operand to a point value.
e Special cases:
» if the operand is null, returns null;
» if the operand is an agent, returns its location
» if the operand is a geometry, returns its centroid
» if the operand is a list with at least two elements, returns a point with the two first elements of
the list (casted to float)
» if the operand is a map, returns the point with values associated respectively with keys "x" and

y
» if the operand is a pair, returns a point with the two elements of the pair (casted to float)

» otherwise, returns a point {val,val} where val is the float value of the operand

poi nt (0) --: {0.0;0.0}

poi nt (true) --: {1.0; 1.0}

poi nt (5:: 34) --: {5.0; 34.0}

point([1,5,9,3]) --: {1.0;5.0}

point([[3,7],[2,6,9],0]) --:{0.0; 0.0}

point(['a'::345, 'y'::13, 'c¢'::12]) --: {0.0;13.0}

poi nt (nodel) --: {64.06165572529225; 18. 401233796267537} /'l centroid of nodel
shape

Top of the page

Page 152 of Full Documentation of GAMA 1.5.1
210



GAMA Documentation

points at

e Possible use:
* int OP float --- > list
o Result: A list of left-operand number of points located at a the right-operand distance to the agent
location.
e See also: any_location_in, any_point_in, closest_points_with , farthest_point_to ,

3 points_at(20.0) --: returns [ptl, pt2, pt3] with ptl, pt2 and pt3 located at a distance of 20.0
to the agent |ocation

Top of the page

POISSON

¢ Possible use:

* OP(float) --- > int

o Result: A value from a random variable following a Poisson distribution (with the positive expected
number of occurence lambda as operand).

o Comment: The Poisson distribution is a discrete probability distribution that expresses the probability
of a given number of events occurring in a fixed interval of time and/or space if these events occur
with a known average rate and independently of the time since the last event, cf. Poisson distribution
on Wikipedia.

e See also: binomial , gauss ,

poi sson(3.5) --: a random positive integer

Top of the page

polygon

e Possible use:
* OP(list of points) --- > shape
¢ Result: A polygon geometry from the given list of points.
e Special cases:
» if the operand is nil, returns the point geometry {0,0}
» if the operand is composed of a single point, returns a point geometry
» if the operand is composed of 2 points, returns a polyline geometry.
e See also: around , circle, cone, line , link , norm , point, polyline , rectangle , square , triangle ,

pol ygon([{O, 0}, {O, 10}, {10,120}, {10,0}]) --: returns a pol ygon geonetry conposed of the 4
poi nt s.

Top of the page

polyline
Same signification as line operator.

Top of the page

Full Documentation of GAMA 1.5.1 Page 153 of
210



GAMA
Documentation

pr

edecessors of

Possible use:
» graph OP any --- > list
Result: returns the list of predecessors (i.e. sources of in edges) of the given vertex (right-hand
operand) in the given graph (left-hand operand)
See also: neighbours_of , successors_of ,

gr aphEpi demi o predecessors_of (node(3)) --: [node0, node2]
gr aphFromvap predecessors_of node({12, 45}) .- [{1.0;5.0}]

Top of the page

product

Same signification as mul operator.

Top of the page

properties

Possible use:

e OP(string) --- > file
Result: opens a file that is a kind of properties.
Comment: The file should have a properties extension, cf. type file definition for supported file
extensions.
Special cases:

» If the specified string does not refer to an existing propserites file, an exception is risen.
See also: file , shapefile , image , text,

let fileT type: file value: properties("../includes/testProperties.properties"); [/ fileT
represents the properties file "../includes/testProperties.properties"

Top of the page

R_compute

Possible use:
e OP(string) ---> map

Top of the page

read

Page 154 of

Possible use:
e OFP(file) --- > any
e OP(string) --- > any
Result: marks the file so that only read operations are allowed.
Comment: A file is created by default in read-only mode. The operator write can change the mode.

See also: file , write ,

210

Full Documentation of GAMA 1.5.1



GAMA Documentation

read(shapefile("../imges/point_eau.shp")) --: returns a file in read-only npde representing
"../limages/ poi nt _eau. shp"

Top of the page

rectangle

¢ Possible use:
* OP(point) --- > shape
¢ Result: A rectangle geometry which side sizes are given by the operands.

« Comment: the centre of the rectangle is by default the location of the current agent in which has
been called this operator.
e Special cases:
» returns nil if the operand is nil.
e See also: around , circle, cone, line , link , norm, point , polygon , polyline , square , triangle ,

rectangl e({10, 5}) --: returns a geonetry as a rectangle with width = 10 and heigh = 5.

Top of the page

reduced by

Same signification as - operator.

Top of the page

remove_duplicates

e Possible use:

* OP(container) --- > list
o Result: produces a set from the elements of the operand (i.e. a list without duplicated elements)
e Special cases:

» if the operand is nil, remove_duplicates returns nil

» if the operand is a graph, remove_duplicates returns the set of nodes

» if the operand is a map, remove_duplicates returns the set of values without duplicate

» if the operand is a matrix, remove_duplicates returns a matrix withtout duplicated row

remove_duplicates([3,2,5,1,2,3,5,5,5]) --: [3,2,5,1]
renove_duplicates([1::3,2::4,3::3,5::7]) --: [3,4,7]

Top of the page

remove _node from

¢ Possible use:
» shape OP graph --- > graph
¢ Result: removes a node from a graph.
« Comment: all the edges containing this node are also removed.

node(0) renove_node_from graphEpi demi o; .- returns the graph wi thout node(0)

Top of the page

Full Documentation of GAMA 1.5.1 Page 155 of
210



GAMA
Documentation

reverse

e Possible use:
* OP(string) --- > string
» OP(container) --- > container
¢ Result: the operand elements in the reversed order in a copy of the operand.

« Comment: the reverse operator behavior depends on the nature of the operand

e Special cases:

» ifitis a string, reverse returns a new string with caracters in the reversed order

» ifitis alist, reverse returns a copy of the operand list with elements in the reversed order

» ifitis a map, reverse returns a copy of the operand map with each pair in the reversed order
(i.e. all keys become values and values become keys)

« ifitis afile, reverse returns a copy of the file with a reversed content

» ifitis a population, reverse returns a copy of the population with elements in the reversed order

» ifitis a graph, reverse returns a copy of the graph (with all edges and vertexes), with all of the
edges reversed

» if itis a matrix, reverse returns a new matrix containing the transpose of the operand.

reverse ('abcd') .- "dcba’';
reverse ([10,12,14]) .- [14, 12, 10]
reverse ([k1::44, k2::32, k3::12]) --: [12::k3, 32::k2, 44::k1]

Top of the page

e Possible use:
» graph OPint---> graph
o Result: rewires the given count of edges.
« Comment: If there are too many edges, all the edges will be rewired.

e See also: rewire_p,
set graphEpi demi o <- graphEpidem o rewire_n 10;

Top of the page

rgb

o Possible use:

 OP(any)---> rgb
« Result: casting of the operand to a rgb color.
e Special cases:

« if the operand is nil, returns white;

» if the operand is a string, the allowed color names are the constants defined in the
java.awt.Color class, i.e.: black, blue, cyan, darkGray, lightGray, gray, green, magenta, orange,
pink, red, white, yellow. Otherwise tries to cast the string to an int and returns this color

« if the operand is a list, the integer value associated to the three first elements of the list are used
to define the three red (element 0 of the list), green (element 1 of the list) and blue (element 2 of
the list) components of the color;

« if the operand is a map, the red, green, blue components take the value associated to the keys
"r", "g", "b" in the map;

Page 156 of Full Documentation of GAMA 1.5.1
210



GAMA Documentation

» if the operand is a matrix, return the color of the matrix casted as a list;

» if the operand is a boolean, returns black for true and white for false;

» if the operand is an integer value, the decimal integer is translated into a hexadecimal value:
OxRRGGBB. The red (resp. green, blue) component of the color take the value RR (resp. GG,
BB) translated in decimal.

rgb(3.78) --: rgb([0,0,3])

rgb(true) --: rgbh([0,0,0]) //black
rgb({23, 4.0} --: rgb([0,0,0]) //black
rgb(5:: 34) --: rgb([0,0,0]) //black
rgb(green) --: rgb([0,255,0]) //green
rgb([1,5,9,3]) --: rgb([1,5,9])
rgb(nodel) --: rgb([0,0,1])

rgb('4") --: rgh([0,0,4])

rgb('4.7") --: /] Exception

Top of the page

rnd

e Possible use:
e OP(int) ---> int
* OP(point) --- > point
* OP(float) --- > int
¢ Result: a random integer in the interval [0, operand]

« Comment: to obtain a probability between 0 and 1, use the expression (rnd n) / n, where n is used to
indicate the precision
e Special cases:
» if the operand is a point, returns a point with two random integers in the interval [0, operand]
» if the operand is a float, it is casted to an int before being evaluated
e Seealso:flip,

rnd (2) --: 0, 1 or 2

rnd (1000) / 1000 --: a float between 0 and 1 with a precision of 0.001
rnd ({2.5,3}) --: {x,y} with x in [0,2] and y in [0, 3]

rnd (2.5) --: 0, 1 or 2

Top of the page

rotated by

o Possible use:
e shape OP int--- > shape
e shape OP float --- > shape
+ Result: A geometry resulting from the application of a rotation by the right-hand operand angle
(degree) to the left-hand operand (geometry, agent, point)
o Comment: the right-hand operand can be a float or a int

o See also: transformed_hy , translated_by ,

self rotated_by 45 --: returns the geonetry resulting froma 45 degres rotation to the geonetry
of the agent applying the operator.

Top of the page

Full Documentation of GAMA 1.5.1 Page 157 of
210



GAMA
Documentation

round

e Possible use:
* OP(float) --- > int
e OP(int) ---> int
¢ Result: the rounded value of the operand.

e Special cases:
» if the operand is an int, round returns it
e See also: int, with_precision ,

round (0.51) .- 1
round (100. 2) .- 100

Top of the page

row_at

o Possible use:
e  matrix OP int --- > list
o Result: returns the row at a num_line (rigth-hand operand)

e See also: column_at, columns_list,

matrix([["el 11", "el 12", "el 13"],["el 21", "el 22", "el 23"], ["el 31", "el 32", "el 33"]]) row.at 2 --:
["el 13", "el 23", "el 33"]

Top of the page

rows list

e Possible use:
e OP(matrix) --- > list of lists
¢ Result: returns a list of the rows of the matrix, with each row as a list of elements

e See also: columns_list,

rows_|ist(matrix([["el11","el 12","el 13"],["el 21", "el 22", " el 23"],["el 31", "el 32", "el 33"]]) .-
[["el 11","el 21", "el 31"],["el 12", "el 22", "el 32"],["el 13", "el 23", "el 33"]]

Top of the page

scaled by

Same signification as * operator.

Top of the page

sel ect

Same signification as where operator.

Top of the page

Page 158 of Full Documentation of GAMA 1.5.1
210



GAMA Documentation

set verbose

set

Possible use:

e graph OP bool --- > graph
Result: sets the verbose attributes of the graph (left-hand operand) to the given boolean value (right-
hand operand).
Comment: When verbose of a graph is true, it will display the shortest path computation level with
static optimizer. This operator is useful to monitor the computation of
See also: with_optimizer_type ,

gr aphEpi demi o <- graphEpi dem o set_verbose fal se

Top of the page

shapefile

| et

Possible use:

* OP(string) --- > file
Result: opens a file that a is a kind of shapefile.
Comment: The file should have a shapefile extension, cf. file type definition for supported file
extensions.
Special cases:

» If the specified string does not refer to an existing shapefile file, an exception is risen.
See also: file , properties , image , text,

fileT type: file value: shapefile("../includes/testProperties.shp")
/Il fileT represents the shapefile file "../includes/testProperties.shp"

Top of the page

shuffle

Possible use:
e OP(matrix) --- > matrix
* OP(list) --- > list
» OP(species) --- > list
* OP(string) --- > string
Result: The elements of the operand in random order.
Special cases:
» if the operand is empty, returns an empty list (or string, matrix)
See also: reverse ,

shuffle ([["c11","c12","c13"],["c21","¢c22","¢c23"]]) --: [["cl2","c21","c11"],["c13","c22","c23"]]
shuffle ([12, 13, 14]) --: [14,12,13];

shuffle (bug) --: shuffle the list of all agents of the “bug® species

shuffle ("abc') --: 'bac

Top of the page

simple clustering by distance

Possible use:

Full Documentation of GAMA 1.5.1 Page 159 of
210



GAMA
Documentation

» list of agents OP float --- > list
o Result: A list of agent groups clustered by distance considering a distance min between two groups.
o Comment: use of hierarchical clustering with Minimum for linkage criterion between two groups of
agents.
e See also: simple_clustering_by_envelope_distance ,

[agl, ag2, ag3, ag4, ag5] sinpleC usteringByDi stance 20.0 --: for exanple, can return [[agl,
ag3], [ag2?], [ag4, ag5]]

Top of the page

simple clustering b

¢ Possible use:
» list of agents OP float --- > list
o Result: A list of agent groups clustered by distance (considering the agent envelop) considering a
distance min between two groups.
e« Comment: use of hierarchical clustering with Minimum for linkage criterion between two groups of
agents.
e See also: simple_clustering_by_distance ,

envelope distance

[agl, ag2, ag3, ag4, ag5] sinpleC usteringByDi stance 20.0 --: for exanple, can return [[agl,
ag3], [ag2], [ag4, ag5]]

Top of the page
o Possible use:
e shape OP float --- > shape
o Result: A geometry corresponding to the simplification of the operand (geometry, agent, point)

considering a tolerance distance.
o Comment: The algorithm used for the simplification is Douglas-Peucker

self sinplification 0.1 --: returns the geonetry resulting fromthe application of the Dougl as-
Peuker al gorithmon the geonetry of the agent applying the operator with a tol erance di stance of
0.1.

Top of the page
o Possible use:
e OP(float) --- > float

e OP(int) --- > float
o Result: the sinus of the operand (in decimal degrees).

e Special cases:
« the argument is casted to an int before being evaluated. Integers outside the range [0-359] are
normalized.
e See also: cos, tan,
cos (0) --: O

Top of the page

Page 160 of Full Documentation of GAMA 1.5.1
210



GAMA Documentation

skeletonize

e Possible use:
* OP(shape) --- > list of shapes
¢ Result: A list of geometries (polylines) corresponding to the skeleton of the operand geometry
(geometry, agent)

skel et oni ze(sel f) --: returns the list of geometries corresponding to the skel eton of the
geonetry of the agent applying the operator

Top of the page

Same signification as without_holes operator.

Top of the page

sort

Same signification as sort_by operator.

Top of the page

sort_by

¢ Possible use:
» container OP any expression --- > list
* map OP any expression --- > map
¢ Result: a list, containing the elements of the left-hand operand sorted in ascending order by the
value of the right-hand operand when it is evaluated on them.
« Comment: the left-hand operand is casted to a list before applying the operator. In the right-hand
operand, the keyword each can be used to represent, in turn, each of the elements.
e Special cases:
» if the left-hand operand is nil, sort_by returns nil
e See also: group_hy,

[1,2,4,3,5,7,6,8] sort_by (each) .- [1,2,3,4,5,6,7, 8]

g2 sort_by (length(g2 out_edges_of each) ) .- [ node9, node7, nodelO, node8, nodell
node6, node5, node4]

(l'ist(node) sort_by (round(node(each).location.x)) --: [ node5, nodel, nodeO, node2, node3]

[1::2, 3::4, 5::6] sort_by (each) --

Top of the page

source of

o Possible use:
e graph OP any --- > any
« Result: returns the source of the edge (right-hand operand) contained in the graph given in left-hand
operand.
e Special cases:
« if the lef-hand operand (the graph) is nil, throws an Exception

Full Documentation of GAMA 1.5.1 Page 161 of
210



GAMA
Documentation

e See also: target_of,

| et graphEpi dem o type: graph <-
gener at e_bar abasi _al bert( ["edges_specy":: edge, "vertices_specy"::node, "size"::3,"nm'::5] )

gr aphEpi demi o sour ce_of (edge(3)) --: nodel
| et graphFromVap type: graph <- as_edge_graph([{1,5}::{12, 45}, {12, 45}::{34,56}])
gr aphFromvap source_of (link({1,5}::{12, 45})) --: {1.0;5.0}

Top of the page

species

o Possible use:
* OP(any) --- > species

o Result: casting of the operand to a species.

e Special cases:
+ if the operand is nil, returns nil;
» if the operand is an agent, returns its species;
» if the operand is a string, returns the species with this name (nil if not found);
» otherwise, returns nil

speci es(sel f) --: species of the current agent
speci es(' node') --: node

species([1,5,9,3]) --: null

speci es(nodel) --: node

Top of the page

species of
Same signification as species operator.

Top of the page

split_at

e Possible use:
» shape OP point --- > list of shapes
¢ Result: The two part of the left-operand lines split at the given right-operand point

e Special cases:
» if the left-operand is a point or a polygon, returns an empty list

polyline([{1,2},{4,6}]) split_at {7,6} ~--: [polyline([{1.0;2.0},{7.0;6.0}])
polyline([{7.0;6.0},{4.0;6.0}])].

Top of the page

split_lines

o Possible use:
e OP(list) --- > list of shapes
o Result: A list of geometries resulting after cutting the lines at their intersections.

Page 162 of Full Documentation of GAMA 1.5.1
210



split_lines([line([{0, 10}, {20,10}], line([{O, 10}, {20, 10}]
polylines: line([{O, 10}, {10,10}]), line([{10,10}, {20, 10}]
l'ine([{10,10}, {10,20}])

Top of the page

spllt with

Possible use:
e string OP string --- > list

characters of the right-hand operand.

"to be or not to be,that is the question
[to, be,or,not,to, be,that,is,the, question]

split_with'

Top of the page

sgrt

Possible use:
* OP(int) --- > float
* OP(float) --- > float
Result: returns the square root of the operand.

Special cases:
» if the operand is negative, an exception is raised

sqrt(4) .- 2.0

Top of the page

square

Possible use:
* OP(float) --- > shape

called this operator.
Special cases:
» returns nil if the operand is nil.

square(10) --: returns a geonetry as a square of side size

Top of the page

standard deviation

Possible use:
e OP(list) --- > float

Full Documentation of GAMA 1.5.1

Result: a list, containing the sub-strings (tokens) of the left-

See also: around , circle , cone, line , link , norm , point , polygon , polyline ,

GAMA Documentation

1) returns a |list of four
), line([{10,0}, {10,10}]) and

hand operand delimited by each of the

Comment: delimiters themselves are excluded from the resulting list

Result: A square geometry which side size is equal to the operand.
Comment: the centre of the square is by default the location of the current agent in which has been

rectangle , triangle ,

10

Result: the standard deviation on the elements of the operand. See Standard_deviation < http://
en.wikipedia.org/wiki/Standard_deviation> for more details.

Page 163 of
210


http://en.wikipedia.org/wiki/Standard_deviation>
http://en.wikipedia.org/wiki/Standard_deviation>

GAMA
Documentation

o Comment: The operator casts all the numerical element of the list into float. The elements that are
not numerical are discarded.
¢ See also: mean , mean_deviation ,

standard_deviation ([4.5, 3.5, 5.5, 7.0]) --: 1.2930100540985752

Top of the page

string

o Possible use:
* OP(any) --- > string
¢ Result: casting of the operand to a string.
e Special cases:
 if the operand is nil, returns 'nil’;
« if the operand is an agent, returns its name;
» if the operand is a string, returns the operand;
» if the operand is an int or a float, returns their string representation (as in Java);
« if the operand is a boolean, returns 'true’ or 'false’;
» if the operand is a species, returns its name;
« if the operand is a color, returns its litteral value if it has been created with one (i.e. 'black’,
'green’, etc.) or the string representation of its hexadecimal value.
» if the operand is a container, returns its string representation.

string(0) --: 0

string({23, 4.0} --: {23.0; 4.0}

string(5::34) --: 5::34

string(['a'::345, 'b'::13, 'c¢'::12]) ~--: b,13; c,12; a, 345

Top of the page

successors of

¢ Possible use:
» graph OP any --- > list
¢ Result: returns the list of successors (i.e. targets of out edges) of the given vertex (right-hand
operand) in the given graph (left-hand operand)
e See also: predecessors_of , neighbours_of ,

gr aphEpi demi o successors_of (node(3)) -0 [
gr aphFr omvap successors_of node({12, 45}) --: [{34.0;56.0}]

Top of the page

sum

o Possible use:
e OP(container) --- > any
o Result: the sum of all the elements of the operand
o Comment: the sum operator behavior depends on the nature of the operand

e Special cases:
« ifitis alist of int or float: sum returns the sum of all the elements

Page 164 of Full Documentation of GAMA 1.5.1
210



GAMA Documentation

» ifitis a list of points: sum returns the sum of all points as a point (each coordinate is the sum of
the corresponding coordinate of each element)

» ifitis a population or a list of other types: sum transforms all elements into integer and sums
them

» ifitis a map, sum returns the sum of the value of all elements

» ifitis a file, sum returns the sum of the content of the file (that is also a container)

» ifitis a graph, sum returns the sum of the list of the elements of the graph (that can be the list of
edges or vertexes depending on the graph)

» ifitis a matrix of int, float or object, sum returns the sum of all the numerical elements (i.e. all
elements for integer and float matrices)

» ifitis a matrix of geometry, sum returns the sum of the list of the geometries

» ifitis a matrix of other types: sum transforms all elements into float and sums them

e See also: mul,

sum ([ 12, 10, 3]) .- 25.0
sum([{1.0;3.0},{3.0;5.0},{9.0;1.0},{7.0;8.0}]) --: {20.0;17.0}

Top of the page

tan

e Possible use:
* OP(float) --- > float
* OP(int) --- > float
« Result: the trigonometic tangent of the operand (in decimal degrees).
e Special cases:
» the argument is casted to an int before being evaluated. Integers outside the range [0-359] are
normalized.
e« See also: cos, sin,

cos (180) --: O

Top of the page

tanh

e Possible use:
e OP(int) --- > float
* OP(float) --- > float
¢ Result: the hyperbolic tangent of the operand (which has to be expressed in decimal degrees).

tanh(0) --: 0.0
tanh( 1) --: 0.7615941559557649
tanh(10) --: 0.9999999958776927

Top of the page

target_of

e Possible use:
e graph OP any --- > any
o Result: returns the target of the edge (right-hand operand) contained in the graph given in left-hand
operand.

Full Documentation of GAMA 1.5.1 Page 165 of
210



GAMA
Documentation

e Special cases:
» if the lef-hand operand (the graph) is nil, returns nil
e See also: source_of,

| et graphEpi dem o type: graph <-
gener at e_bar abasi _al bert( ["edges_specy"::edge, "vertices_specy"::node, "size"::3,"nm'::5] )

gr aphEpi demi o sour ce_of (edge(3)) --: nodel
| et graphFromVap type: graph <- as_edge_graph([{1,5}::{12, 45}, {12, 45}::{34,56}])
gr aphFromvap source_of (link({1,5}::{12, 45})) --: {1.0;5.0}

Top of the page

text

o Possible use:
e OP(string) --- > file
o Result: opens a file that a is a kind of text.

¢ Comment: The file should have a text extension, cf. file type definition for supported file extensions.

e Special cases:
» If the specified string does not refer to an existing text file, an exception is risen.
o See also: file , properties , image , shapefile ,

let fileT type: file value: text("../includes/Stupid_Cell.Data")
/1 fileT represents the text file "../includes/Stupid_Cell.Data"

Top of the page

TGauss

Same signification as truncated_gauss operator.

Top of the page

to_gaml

o Possible use:
e OP(any) --- > string
o Result: represents the gaml way to write an expression in gaml, depending on its type

e See also: to_java,

to_gani (0) --: 0

to_gamn (3.78) --: 3.78

to_gam (true) --: true

to_gani ({23, 4.0}) --: {23.0,4.0}

to_gani (5::34) --: (5)::(34)

t o_gani (green) --: rgb (-16711936)

to_gan (' hello') --: 'hello

to_gam ([1,5,9,3]) --1 [1,5,9, 3]

to_gam (['"a'::345, 'b'::13, 'c'::12]) == ([("b")::(13),('c')::(212),('a")::(345)] as
map )

to_gam ([[3,5,7,9],[2,4,6,8]]) --: [3,2,5,4,7,6,9,8] as matrix

to_gani (a_graph) --: ([((1 as node):: (3 as node)):: (5 as edge), ((0 as node):: (3 as

node)):: (3 as edge), ((1 as node):: (2 as node)):: (1l as edge), ((0 as node):: (2 as node)):: (2 as
edge), ((0 as node):: (1 as node)):: (0 as edge), ((2 as node)::(3 as node))::(4 as edge)] as map )
as graph

Page 166 of Full Documentation of GAMA 1.5.1
210



GAMA Documentation

t o_gani (nodel) --: 1 as node

Top of the page

to java

o Possible use:

e OP(any) --- > string
o Result: represents the java way to write an expression in java, depending on its type
e« Comment: NOT YET IMPLEMENTED

e See also: to_gaml,

Top of the page

tokenize

Same signification as split_with operator.

Top of the page

topology

o Possible use:
* OP(any) --- > topology
¢ Result: casting of the operand to a topology.
e Special cases:
« if the operand is a topology, returns the topology itself;
» if the operand is a spatial graph, returns the graph topology associated;
« if the operand is a population, returns the topology of the population;
« if the operand is a shape or a geometry, returns the continuous topology bounded by the
geometry;
» if the operand is a matrix, returns the grid topology associated
« if the operand is another kind of container, returns the multiple topology associated to the
container
» otherwise, casts the operand to a geometry and build a topology from it.
e See also: geometry ,

t opol ogy(0) --: null

t opol ogy(a_gr aph) --: Miltiple topology in POLYGON ((24.712119771887785 7.867357373616512,
24.712119771887785 61.283226839310565, 82.4013676510046 7.867357373616512)) at

| ocati on[ 53. 556743711446195; 34. 57529210646354]

Top of the page

touches

¢ Possible use:
» shape OP shape --- > bool
+ Result: A boolean, equal to true if the left-geometry (or agent/point) touches the right-geometry (or
agent/point).
« Comment: returns true when the left-operand only touches the right-operand. When one geometry
covers partially (or fully) the other one, it returns false.

Full Documentation of GAMA 1.5.1 Page 167 of
210



GAMA
Documentation

e Special cases:
» if one of the operand is null, returns false.
e See also: <--:, disjoint_from , crosses , overlaps , partially_overlaps , intersects ,

pol yl'i ne([ {10, 10}, {20, 20}]) touches geonetry({15,15}) --: false

pol yli ne([{10, 10}, {20, 20}]) touches geonetry({10,10}) --: true
geonetry({15, 15}) touches geonetry({15,15}) --: false

pol yline([ {10, 10}, {20, 20}]) touches polyline([{10,10},{5,5}]) --: true
pol yli ne([{10, 10}, {20, 20}]) touches polyline([{5,5},{15,15}]) --: false
pol yline([{10, 10}, {20, 20}]) touches polyline([{15, 15}, {25, 25}]) --: false

pol ygon([ {10, 10}, {10, 20}, { 20, 20}, {20, 10}]) touches pol ygon([{15, 15}, {15, 25}, {25, 25}, {25, 15}]) --
Li: jgon([{lo, 10}, {10, 20}, { 20, 20}, {20, 10}]) touches pol ygon([{10, 20}, {20, 20}, { 20, 30}, {10, 30}]) --:
Lgrjgon([{lo,10},{10,20},{20,20},{20,10}]) touches pol ygon([{10, 10}, {0, 10}, {0, O}, {10,0}]) --
Lgrsgon([{lo,10},{10,20},{20,20},{20,10}]) touches geonetry({15, 15}) --: fal se

pol ygon([{10, 10}, {10, 20}, { 20, 20}, { 20, 10}]) touches geonetry({10, 15}) --: true

Top of the page

towards

o Possible use:
» shape OP shape --- > int
« Result: The direction (in degree) between the two geometries (geometries, agents, points)
considering the topology of the agent applying the operator.
o See also: distance_between , distance_to , direction_between , path_between , path_to,

agl towards ag2 --: the direction between agl and ag2 and ag3 considering the topol ogy of the
agent appl yi ng the operator

Top of the page

transformed by

o Possible use:
e shape OP point --- > shape
o Result: A geometry resulting from the application of a rotation and a translation (rigth-operand : point
{angle(degree), distance} of the left-hand operand (geometry, agent, point)
o See also: rotated_by , translated_hy ,

self transformed_by {45, 20} --: returns the geonetry resulting from45# rotati on and 10m
transl ation of the geonetry of the agent applying the operator

Top of the page

trandated by

Possible use:
» shape OP point --- > shape
¢ Result: A geometry resulting from the application of a translation by the right-hand operand distance
to the left-hand operand (geometry, agent, point)
e See also: rotated_by , transformed_by ,

Page 168 of Full Documentation of GAMA 1.5.1
210



GAMA Documentation

self translated_by 45 --: returns the geonetry resulting froma 10mtranslation to the geomnetry
of the agent applying the operator.

Top of the page

translated to

Same signification as at_location operator.

Top of the page

triangle

o Possible use:
* OP(float) --- > shape
¢ Result: A triangle geometry which side size is given by the operand.
« Comment: the centre of the triangle is by default the location of the current agent in which has been
called this operator.
e Special cases:
» returns nil if the operand is nil.
e See also: around , circle , cone , line , link , norm , point , polygon , polyline , rectangle , square ,

triangle(5) --: returns a geonetry as a triangle with side_size = 5.

Top of the page

triangulate

e Possible use:
* OP(shape) --- > list of shapes
» OP(list of shapes) --- > list of shapes
o Result: A list of geometries (triangles) corresponding to the Delaunay triangulation of the operand
geometry (geometry, agent, point)A list of geometries (triangles) corresponding to the Delaunay
triangulation of the operand list of geometries

triangulate(self) --: returns the |ist of geonetries (triangles) corresponding to the Del aunay
triangul ati on of the geonetry of the agent applying the operator.
triangulate(self) --: returns the |ist of geonetries (triangles) corresponding to the Del aunay

triangul ati on of the geometry of the agent applying the operator.

Top of the page

truncated gauss

o Possible use:
e OP(point) --- > float
e OP(list) --- > float
¢ Result: A random value from a normally distributed random variable in the interval Jmean -
standardDeviation; mean + standardDeviation][.
e Special cases:
« when the operand is a point, it is read as {mean, standardDeviation}
« if the operand is a list, only the two first elements are taken into account as [mean,
standardDeviation)]

Full Documentation of GAMA 1.5.1 Page 169 of
210



GAMA
Documentation

» when truncated_gauss is called with a list of only one element mean, it will always return 0.0
e See also: gauss,

truncated_gauss ({0, 0.3}) --: an float between -0.3 and 0.3
truncated_gauss ([0.5, 0.0]) --: 0.5 (always)

Top of the page

undirected

o Possible use:
e OP(graph) --- > graph
« Result: the operand graph becomes an undirected graph.
« Comment: the operator alters the operand graph, it does not create a new one.

e See also: directed ,

Top of the page

union

Same signification as + operator.

o Possible use:
* OFP(list) --- > shape
» OP(species) --- > shape
* list OP list --- > list
¢ Result: The geometry resulting from the union of all geometries of agents of the operand-
speciesreturns a new list containing all the elements of both operands without duplicated elements.
Elements of this new list are sorted.
o Comment: union is only defined with a list as left operand

e Special cases:
» if the right-operand is a list of points, geometries or agents, returns the geometry resulting from
the union all the geometries
 if the right operand is nil, union returns a copy of the left operand
e See also: inter, +,

uni on([ geonil, geonR, geonB]) --: a geonetry corresponding to union between geonl, geon? and geonB
uni on(speciesl) --: returns the geonetry resulting fromthe union of all of the geonetries of
agents of species speciesl.

[1,2,3,4,5,6] union [2,4,9] .- [1,2,3,4,5,6, 9]

[1,2,3,4,5,6] union [0, 8] .- [0,1,2,3,4,5,6, 8]

[1,3,2,4,5,6,8,5,6] union [0, 8] .- [0,1,2,3,4,5,6, 8]

Top of the page

unknown

¢ Possible use:
o OP(any)---> any
¢ Result: returns the operand itself

Top of the page

Page 170 of Full Documentation of GAMA 1.5.1
210



GAMA Documentation

user_input

e Possible use:

 OP(map) ---> map

o Result: asks the user for some values (not defined as parameters)

« Comment: This operator takes a map [string::value] as argument, displays a dialog asking the user
for these values, and returns the same map with the modified values (if any). The dialog is modal
and will interrupt the execution of the simulation until the user has either dismissed or accepted it. It
can be used, for instance, in an init section to force the user to input new values instead of relying on
the initial values of parameters :

init {

| et values <- user_input(["Nunmber" :: 100, "Location" :: {10, 10}])

create node nunber : int(values at "Nunber") with: [location:: (point(values at
"Location"))];
}

Top of the page

variance

o Possible use:
* OP(list) --- > float
¢ Result: the variance of the elements of the operand. See Variance < http://en.wikipedia.org/wiki/
Variance> for more details.
o Comment: The operator casts all the numerical element of the list into float. The elements that are
not numerical are discarded.
¢ See also: mean , median ,

variance ([4.5, 3.5, 5.5, 7.0]) --: 1.671875

Top of the page

weight_of
e Possible use:
e graph OP any --- > float
¢ Result: returns the weight of the given edge (right-hand operand) contained in the graph given in
right-hand operand.
« Comment: In a localized graph, an edge has a weight by default (the distance between both
vertices).
e Special cases:
» if the left-operand (the graph) is nil, returns nil
» if the right-hand operand is not an edge of the given graph, weight_of checks whether it is a
node of the graph and tries to return its weight
» if the right-hand operand is neither a node, nor an edge, returns 1.
| et graphFromVap type: graph <- as_edge_graph([{1,5}::{12, 45}, {12, 45}::{34,56}])
graphFromvap source_of (1ink({1,5}::{12,45})) --: 41.48493702538308

Top of the page

Full Documentation of GAMA 1.5.1 Page 171 of
210


http://en.wikipedia.org/wiki/Variance>
http://en.wikipedia.org/wiki/Variance>

GAMA
Documentation

where

e Possible use:
* map OP any expression --- > map
e container OP any expression --- > list
¢ Result: a list containing all the elements of the left-hand operand that make the right-hand operand
evaluate to true.
« Comment: in the right-hand operand, the keyword each can be used to represent, in turn, each of
the right-hand operand elements.
e Special cases:
» if the left-hand operand is a list nil, where returns a new empty list
e See also: first_with , last_with , where ,

[1,2,3,4,5,6,7,8] where (each > 3) .- [4, 5 6, 7, 8]

g2 where (length(g2 out_edges_of each) = 0 ) .- [ node9, node7, nodelO,
node8, nodell]

(l'ist(node) where (round(node(each).location.x) > 32) .- [ node2, node3]

[1::2, 3::4, 5::6] where (each.value > 4) --

Top of the page

with _max_of

¢ Possible use:
» container OP any expression --- > any
« Result: one of elements of the left-hand operand that maximizes the value of the right-hand operand

« Comment: in the right-hand operand, the keyword each can be used to represent, in turn, each of
the right-hand operand elements.
e Special cases:
» if the left-hand operand is nil, with_max_of returns the default value of the right-hand operand
e See also: where , with_min_of ,

[1,2,3,4,5,6,7,8] with_nmax_of (each ) .- 8

g2 with_nmax_of (length(g2 out_edges_of each) ) .- node4
(list(node) with_max_of (round(node(each).|ocation.x)) .- node3
[1::2, 3::4, 5::6] with_max_of (each) .- 6

Top of the page

with_min_of

e Possible use:
» container OP any expression --- > any
¢ Result: one of elements of the left-hand operand that minimizes the value of the right-hand operand

« Comment: in the right-hand operand, the keyword each can be used to represent, in turn, each of
the right-hand operand elements.
e Special cases:
» if the left-hand operand is nil, with_max_of returns the default value of the right-hand operand
e See also: where , with_max_of ,

[1,2,3,4,5,6,7,8] with_mn_of (each ) .- 1

g2 with_mn_of (length(g2 out_edges_of each) ) .- nodell

(list(node) with_m n_of (round(node(each).|ocation.x)) .- node0

Page 172 of Full Documentation of GAMA 1.5.1

210



GAMA Documentation

[1::2, 3::4, 5::6] with_m n_of (each) - 2

Top of the page

with_optimizer_type

o Possible use:
e graph OP string --- > graph

¢ Result: changes the shortest path computation method of the griven graph

« Comment: the right-hand operand can be "Djikstra", "Bellmann”, "Astar" to use the associated
algorithm. Note that these methods are dynamic: the path is computed when needed. In contrarily,
if the operand is another string, a static method will be used, i.e. all the shortest are previously
computed.

e See also: set_verbose ,

set graphEpi dem o <- graphEpi demi o with_optim zer_type "static";

Top of the page

with_precision

¢ Possible use:
* float OP int--- > float
¢ Result: round off the value of left-hand operand to the precision given by the value of right-hand
operand
¢ See also: round ,

12345. 78943 with_precision 2 .- 12345. 79
123 with_precision 2 .- 123. 00

Top of the page

with_weights

o Possible use:

e graph OP list --- > graph

e graph OP map --- > graph
o Result: returns the graph (left-hand operand) with weight given in the map (right-hand operand).
o Comment: this operand re-initializes the path finder

e Special cases:
 if the right-hand operand is a list, affects the n elements of the list to the n first edges. Note that
the ordering of edges may change overtime, which can create some problems...
 if the left-hand operand is a map, the map should contains pairs such as: vertex/ edge::double

graph_from edges (list(ant) as_map each::one_of (list(ant))) wth_weights (list(ant) as_map
each: : each. f ood)

Top of the page

without_holes

e Possible use:
* OP(shape) --- > shape

Full Documentation of GAMA 1.5.1 Page 173 of
210



GAMA
Documentation

¢ Result: A geometry corresponding to the operand geometry (geometry, agent, point) without its
holes

solid(self) --: returns the geonetry corresponding to the geonetry of the agent applying the
operator w thout its holes

Top of the page

write

o Possible use:
* OFP(file) --- > any
« Result: marks the file so that read and write operations are allowed.
¢ Comment: A file is created by default in read-only mode.
e See also: file , read ,

write(shapefile("../inages/point_eau.shp")) --: returns a file in read-wite node representing
"../limages/ poi nt _eau. shp"

Top of the page

Page 174 of Full Documentation of GAMA 1.5.1
210



GAMA Documentation

Keywords

constants

Represents the null value (or undefined value). It is the default value of variables of type agent, point or
species when they are not initialized.

true, false

Represent the two possible values of boolean variables or expressions. (see bool).

global built-in variables

Global built-in variables can be accessed (and sometimes modified) by the world agent and every other
agents in the model.

« float, read-only, represents the current simulated time in seconds (the default unit). Begins at zero.
gl obal {

int nb_mnutes function: { int(time / 60)};

step

« float, represents the time step between two executions of the set of agents, in seconds. Its default
value is 1. Each turn, the value of time is incremented by the value of step. The definition of step
must be coherent with that of the agents' variables like speed.

gl obal {
float step <- 10.0;

seed

« float, represents the seed used in the computation of random numbers. Keeping the same seed
between two runs of the same model ensures that the sequence of events will remain the same,

Full Documentation of GAMA 1.5.1 Page 175 of
210



GAMA
Documentation

which can be useful when debugging a model. Declaring it as a parameter allows the user or an
external process (batch, for instance) to modify it.

gl obal {

float seed <- 354 paraneter: true;

agents

o list, read-only, returns a list of all the agents of the model that are considered as "active" (i.e. all
the agents with behaviors, excluding the places). Note that obtaining this list can be quite time
consuming, as the world has to go through all the species and get their agents before assembling
the result. For instance, instead of writing something like:

ask agents of _species ny_species {
}
one would prefer to write (which is much faster):

ask list (ny_species) {

pseudo-variables

Pseudo-variables are special variables whose value cannot be changed by agents (but can change
depending on the context of execution).

self

self is a pseudo-variable (can be read, but not written) that always holds a reference to the executing
agent.

o Example (sets the friend field of another random agent to self and reversely) :

let potential friend <- one_of (list (species(self)) - self);
if potential friend !'= nil {

set potential _friend.friend <- self;

set friend <- potential friend;

}

myself

myself is the same as self, except that it needs to be used instead of self in the definition of remotely-
executed code (ask and |create commands). myself represents the sender agent when the code is
executed by the target agent.

« Example (asks the first agent of my species to set its color to my color) :

ask first (list (species (self))){
set color <- nyself.color;

}

Page 176 of Full Documentation of GAMA 1.5.1
210



GAMA Documentation

o« Example (create 10 new agents of my species, share my energy between them, turn them towards
me, and make them move 4 times to get closer to me) :

create species (self) nunmber: 10 {
set energy <- nyself.energy / 10.0;
loop times: 4 {
set heading <- towards (nyself);
do nove;

}

each

each is a pseudo-variable only used in filter expressions following operators such as where or first_with. It
represents, in turn, each of the elements of the target datatype (a list, string, point or matrix, usually).

units

Units can be used to qualify the values of numeric variables. By default, unqualified values are considered
as:

« meters for distances, lengths...

¢ seconds for durations

¢ cubic meters for volumes

¢ kilograms for masses

So, an expression like
let foo type: float <- 1;

will be considered as 1 meter if foo is a distance, or 1 second if it is a duration, or 1 meter/second if it is
a speed. If one wants to specify the unit, it can be done very simply by adding the unit name after the
numeric value, like:

let foo type: float <- 1 centineter;

In that case, the numeric value of foo will be automatically translated to 0.01 (meter). It is recommended
to always use float as the type of the variables that might be qualified by units (otherwise, for example in
the previous case, they might be truncated to 0). Several units names are allowed as qualifiers of numeric
variables. As they can be used in expressions directly, they are considered as reserved keywords (and
therefore cannot be used for naming variables and species). Their complete list is:

length

meter (default), meters, m, centimeters, centimeter, cm, millimeter, millimeters, mm, decimeter,
decimeter, dm, kilometer, kilometers, km, mile, miles, yard, yards, inch, inches, foot, feet, ft.

second (default), seconds, sec, s, minute, minutes, mn, hour, hours, h, day, days, d, month, months, year,
years, y, millisecond, milliseconds, msec.

Full Documentation of GAMA 1.5.1 Page 177 of
210



GAMA
Documentation

Mass

kilogram (default),kilogram, kilo, kg, ton, tons, t, gram, grams, g, ounce, ounces, 0z, pound, pounds, Ib,
lbm.

surface

square_meter (default), m2, square_meters, square_mile, square_miles, sqmi, square_foot, square_feet,
sqft.

volume

ma3 (default), liter, liters, I, centiliter, centiliters, cl, deciliter, deciliters, dl, hectoliter, hectoliters, hl. These
represent the basic metric and US units. Composed and derived units (like velocity, acceleration, special
volumes or surfaces) can be obtained by combining these units using the and / operators. For instance:

float one_kmh <- 1 km/ h const: true;

float one_m crosecond <-1 sec / 1000;

float one_cubic_inch <- 1 sqin * 1 inch;
etc ...

Page 178 of Full Documentation of GAMA 1.5.1
210



GAMA Documentation

Built-in Agents

| ntroduction

It is possible to use in the models a set of built-in agents. These agents allow to directly use some
advance features like clustering, multi-criteria analysis, etc. The creation of these agents are similar as for
other kinds of agents:

create species: ny_built_in_agent return: the_agent;
The list of available built-in agents in GAMA is:
o cluster_builder: allows to use clustering techniques on a set of agents.
o multicriteria_analyzer: allows to use multi-criteria analysis methods.
So, for instance, to be able to use clustering techniques in the model:

create cluster_builder return: clusterer;

cluster builder

The cluster_builder agent allows to divide a set of agents into different clusters according to the values
of some of their attributes. This agents is built from the weka library : most of the clustering algorithms are
directlty based on their weka implementation.

actions

simple_clustering_by distance
Returns groups of agents using hierarchical clustering. The distance between agents are directly
computed from the agent locations (euclidean distance). The distance between two groups of agents
corresponds to the min of distances between the agents of each group.

e _, agents: list, the list of Entities to be divided into groups.

e _ dist_min: float, minimal distance between two groups. By default, num_clusters = -1.

o _ distance_geom: bool, optional, if true, uses the distance between the agent geometry; otherwise
uses the distance between the agent centroid (more optimize). By default, distance_geom = false.
o _ return: list, a list of groups; each group is a list of agents.

let ags type: list of: agent <- [agentA, agentB, agentC, agentD, agentE];
l et groups type: list <- self sinple_clustering_by_distance [agents::ags, dist_mn::10.0];

clustering_cobweb

Returns groups of agents using the Cobweb and Classit clustering algorithms (Weka implementation).
For more information see: D. Fisher (1987). Knowledge acquisition via incremental conceptual clustering.

Full Documentation of GAMA 1.5.1 Page 179 of
210


http://www.cs.waikato.ac.nz/ml/weka/

GAMA
Documentation

Machine Learning. 2(2):139-172; J. H. Gennari, P. Langley, D. Fisher (1990). Models of incremental
concept formation. Artificial Intelligence. 40:11-61.

e _, agents: list, the list of Entities to be divided into groups.

e _ attributes: list, the list of the agent attributes (string: the attribute names) used to divide the agents
into groups. For the moment, only numeric attributes are considered.

e _ acuity: float, optional, minimum standard deviation for numeric attributes. By default, acuity = 1.0.

_, cutt_off: float, optional, set the category utility threshold by which to prune nodes. By default,

cutoff = 0.0028209479177387815.

e _ seed, int, optional, The random number seed to be used. By default, seed = 42.

e _ return: list, a list of groups; each group is a list of agents.

let ags type: list of: agent <- [agentA, agentB, agentC, agentD, agentF];
let attribs type: list of: string <- ['area','food_quantity','proxinmty_ to_roads'];
l et groups type: list <- self clustering_cobweb [agents::ags, attributes::attribs];

clustering_DBScan

Returns groups of agents using the DBScan algorithm (Weka implementation). For more information see:
Martin Ester, Hans-Peter Kriegel, Joerg Sander, Xiaowei Xu: A Density-Based Algorithm for Discovering
Clusters in Large Spatial Databases with Noise. In: Second International Conference on Knowledge
Discovery and Data Mining, 226-231, 1996.

e _, agents: list, the list of Entities to be divided into groups.

o _ attributes: list, the list of the agent attributes (string: the attribute names) used to divide the agents
into groups. For the moment, only numeric attributes are considered.

e _ distance_f: string, optional, The distance function to use : 2 possible distance functions: (by
default) euclidean; and 'manhattan’.

o _, epsilon: float, optional, radius of the epsilon-range-queries. By default, epsilon = 0.9.

e _ Mmin_points: int, optional, minimun number of [DataObjects] required in an epsilon-range-query. By
default, min_points = 6.

o _ return: list, a list of groups; each group is a list of agents.

let ags type: list of: agent <- [agentA, agentB, agentC, agentD, agentE];
let attribs type: list of: string <- ['"area','food_quantity','proximty to_roads'];
l et groups type: list <- self clustering_DBScan [agents::ags, attributes::attribs];

clustering_em

Returns groups of agents using the EM (expectation maximisation) algorithm (Weka implementation).

e _ agents: list, the list of Entities to be divided into groups.

o _ attributes: list, the list of the agent attributes (string: the attribute names) used to divide the agents
into groups. For the moment, only numeric attributes are considered.

e _ max_iterations: int, optional, the maximum number of iterations to perform. By default,
max_iterations = 100.

e _ num_clusters: int, optional, set number of clusters. if num_clusters equals -1, EM decides how

many clusters to create by cross validation. By default, num_clusters = -1.

_, min_std_dev: float, optional, set minimum allowable standard deviation. By default, min_std_dev

= 1.0E-6.

e _ seed, int, optional, The random number seed to be used. By default, seed = 100.

. return: list, a list of groups; each group is a list of agents.

Page 180 of Full Documentation of GAMA 1.5.1
210



GAMA Documentation

let ags type: list of: agent <- [agentA, agentB, agentC, agentD, agentF];
let attribs type: list of: string <- ['area','food_quantity','proxinmty_ to_roads'];
let groups type: list <- self clustering_em[agents::ags, attributes::attribs];

clustering_farthestFirst

Returns groups of agents using the farthestFirst algorithm (Weka implementation). For more information
see: Hochbaum, Shmoys (1985). A best possible heuristic for the k-center problem. Mathematics of
Operations Research. 10(2):180-184.

e _, agents: list, the list of Entities to be divided into groups.

o _ attributes: list, the list of the agent attributes (string: the attribute names) used to divide the agents
into groups. For the moment, only numeric attributes are considered.
e _ num_clusters: int, optional, set number of clusters. By default, num_clusters = 2.

e _ seed, int, optional, The random number seed to be used. By default, seed = 1.
o _ return: list, a list of groups; each group is a list of agents.

let ags type: list of: agent <- [agentA, agentB, agentC, agentD, agentF];
let attribs type: list of: string <- ['"area','food_quantity','proximty to_roads'];
l et groups type: list <- self clustering farthestFirst [agents::ags, attributes::attribs];

clustering_ ssimple_kmeans
Returns groups of agents using the K-Means algorithm (Weka implementation).

e _ agents: list, the list of Entities to be divided into groups.

o _ attributes: list, the list of the agent attributes (string: the attribute names) used to divide the agents
into groups. For the moment, only numeric attributes are considered.

e _ distance_f: string, optional, The distance function to use : 4 possible distance functions: (by
default) euclidean; otherwise, 'chebysheVv', 'manhattan' and 'levenshtein’.

o _ dont_replace_missing_values: bool, optional, Replace missing values globally with mean/mode.
By default, dont_replace_missing_values = false.

e _ max_iterations: int, optional, the maximum number of iterations to perform. By default,
max_iterations = 500.

e _ num_clusters: int, optional, set number of clusters. By default, num_clusters = 2.

e _ preserve_instances_order: bool, optional, Preserve order of instances. By default,
preserve_instances_order = false.
e _ seed, int, optional, The random number seed to be used. By default, seed = 10.

. return: list, a list of groups; each group is a list of agents.

let ags type: list of: agent <- [agentA, agentB, agentC, agentD, agentE]|;
let attribs type: list of: string <- ['"area','food_quantity', ' proximty to_roads'];
let groups type: list <- self clustering_sinple_kneans [agents::ags, attributes::attribs];

clustering_xmeans

Returns groups of agents using the X-Means algorithm (Weka implementation). "X-Means is K-Means
extended by an Improve-Structure part. In this part of the algorithm the centers are attempted to be
split in its region. The decision between the children of each center and itself is done comparing the
BIC-values of the two structures. For more information see: Dan Pelleg, Andrew W. Moore: X-means:
Extending K-means with Efficient Estimation of the Number of Clusters. In: Seventeenth International
Conference on Machine Learning, 727-734, 2000." (Weka documentation).

Full Documentation of GAMA 1.5.1 Page 181 of
210



GAMA
Documentation

_, agents: list, the list of Entities to be divided into groups.

_, attributes: list, the list of the agent attributes (string: the attribute names) used to divide the agents

into groups. For the moment, only numeric attributes are considered.

e _ bin_<-float, optional, Set the value that represents true in the new attributes. By default,
bin_value = 1.0.

e _, cut_off_factor: float, optional, the cut-off factor to use. By default, cut_off_factor = 0.5.

e _ distance_f: string, optional, The distance function to use : 4 possible distance functions: (by
default) euclidean; otherwise, 'chebyshev', 'manhattan’ and 'levenshtein’

e _ max_iterations: int, optional, the maximum number of iterations to perform. By default,
max_iterations = 1.

e _ max_kmeans: int, optional, the maximum number of iterations to perform in KMeans. By default,
max_iterations = 1000.

e _ max_kmeans_for_children: int, optional, the maximum number of iterations KMeans that is
performed on the child centers. By default, max_kmeans_for_children = 1000.

e _, max_num_clusters: int, optional, set maximum number of clusters. By default, max_num_clusters
=4.

e _ min_num_clusters: int, optional, set minimum number of clusters. By default, min_num_clusters =
2.

e _, seed, int, optional, The random number seed to be used. By default, seed = 10.

e _ return: list, a list of groups; each group is a list of agents.

let ags type: list of: agent <- [agentA, agentB, agentC, agentD, agentF];
let attribs type: list of: string <- ['area','food_quantity','proxinmty_ to_roads'];
l et groups type: list <- self clustering_xneans [agents::ags, attributes::attribs];

multicriteria_analyzer

The multicriteria_analyzer agent allows to make a decision from a set of candidate solutions according
to a set of criteria.

actions
weighted means DM

Returns the index of the candidate with the highest utility. The utility of each candidate is computed by a
weighted means.

o _ criteria: list, the list of criteria. A criterion is a map that contains two elements: a name, and a
weight.

o _ candidates: list, the list of candidates. A candidate is a list of floats; each float representing the
value of a criterion for this candidate.

e _ return:int, the index of the selected candidate.

let crits type: list <- [[nanme::'proximty', weight::1], [nanme::'quality', weight::3],
[nane: : "' useful ness', weight::2]];

let cands type: list <- [[0.8, 0.1, 0.3],[0.5, 0.7, 0.5],[0.1, 0.5 0.9],[0.9, 0.2, 0.4],[0.86,
0.5, 0.5],[0.7, 0.4, 0.3]];

let index type: int <- self weighted _neans_DM [criteria::crits, candidates::cands];

Page 182 of Full Documentation of GAMA 1.5.1
210



GAMA Documentation

promethee DM

Returns the index of the best candidate according to the Promethee Il method. This method is based

on a comparison per pair of possible candidates along each criterion: all candidates are compared to
each other by pair and ranked. More information about this method can be found in Behzadian, M.,
Kazemzadeh, R., Albadvi, A., M., A.. PROMETHEE: A comprehensive literature review on methodologies
and applications. European Journal of Operational Research(2009)

e _ criteria: list, the list of criteria. A criterion is a map that contains fours elements: a name, a weight,
a preference value (p) and an indifference value (q). The preference value represents the threshold
from which the difference between two criterion values allows to prefer one vector of values over
another. The indifference value represents the threshold from which the difference between two
criterion values is considered significant.

o _ candidates: list, the list of candidates. A candidate is a list of floats; each float representing the
value of a criterion for this candidate.

e _ return:int, the index of the selected candidate.

let crits type: list <- [[nanme::'proximty', weight::1, p::0.9, g::0.1], [nane::'quality’
weight::3, p::1.0, q::0.0],[nane::"'useful ness', weight::2, p::0.8, g::0.2]];

|l et cands type: list <- [[0.8, 0.1, 0.3],[0.5, 0.7, 0.5],[0.1, 0.5, 0.9],[0.9, 0.2, 0.4],[0.6
0.5, 0.5],[0.7, 0.4, 0.3]];

let index type: int <- self pronethee_DM [criteria::crits, candidates::cands];

electre DM

Returns the index of the best candidate according to a method based on the ELECTRE methods. The
principle of the ELECTRE methods is to compare the possible candidates by pair. These methods
analyses the possible outranking relation existing between two candidates. An candidate outranks
another if this one is at least as good as the other one. The ELECTRE methods are based on two
concepts: the concordance and the discordance. The concordance characterises the fact that, for an
outranking relation to be validated, a sufficient majority of criteria should be in favor of this assertion. The
discordance characterises the fact that, for an outranking relation to be validated, none of the criteria in
the minority should oppose too strongly this assertion. These two conditions must be true for validating
the outranking assertion. More information about the ELECTRE methods can be found in Figueira, J.,
Mousseau, V., Roy, B.: ELECTRE Methods. In: Figueira, J., Greco, S., and Ehrgott, M., (Eds.), Multiple
Criteria Decision Analysis: State of the Art Surveys, Springer, New York, 133--162 (2005)

e _ criteria: list, the list of criteria. A criterion is a map that contains fives elements: a name, a
weight, a preference value (p), an indifference value (q) and a veto value (v). The preference value
represents the threshold from which the difference between two criterion values allows to prefer
one vector of values over another. The indifference value represents the threshold from which the
difference between two criterion values is considered significant. The veto value represents the
threshold from which the difference between two criterion values disqualifies the candidate that
obtained the smaller value.

o _ candidates: list, the list of candidates. A candidate is a list of floats; each float representing the
value of a criterion for this candidate.

e _ return:int, the index of the selected candidate.

let crits type: list <- [[name::'proximty', weight::1, p::0.9, g::0.1, v::0.95],

[nane::"quality', weight::3, p::0.8, g::0.0, v:1.0],
[ nane: : ' useful ness', weight::2, p::0.8, g::0.2

l et cands type: list <- [[0.8, 0.1, 0.3],[0.5, 0.7

0.5, 0.5],[0.7, 0.4, 0.3]];

let index type: int <- self electre_ DM [criteria::crits, candidates::cands];

v::0.9]];
0.5],[0.1, 0.5, 0.9],[0.9, 0.2, 0.4],[0.86,

Full Documentation of GAMA 1.5.1 Page 183 of
210


http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6VCT-4VF56TV-1&_user=10&_coverDate=01%2F01%2F2010&_rdoc=1&_fmt=high&_orig=search&_sort=d&_docanchor=&view=c&_searchStrId=1389284642&_rerunOrigin=google&_acct=C000050221&_version=1&_urlVersion=0&_userid=10&md5=d334de2a4e0d6281199a39857648cd36
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6VCT-4VF56TV-1&_user=10&_coverDate=01%2F01%2F2010&_rdoc=1&_fmt=high&_orig=search&_sort=d&_docanchor=&view=c&_searchStrId=1389284642&_rerunOrigin=google&_acct=C000050221&_version=1&_urlVersion=0&_userid=10&md5=d334de2a4e0d6281199a39857648cd36
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6VCT-4VF56TV-1&_user=10&_coverDate=01%2F01%2F2010&_rdoc=1&_fmt=high&_orig=search&_sort=d&_docanchor=&view=c&_searchStrId=1389284642&_rerunOrigin=google&_acct=C000050221&_version=1&_urlVersion=0&_userid=10&md5=d334de2a4e0d6281199a39857648cd36
http://www.springerlink.com/content/g367r44322876223/
http://www.springerlink.com/content/g367r44322876223/
http://www.springerlink.com/content/g367r44322876223/

GAMA
Documentation

evidence _theory DM

Returns the index of the best candidate according to a method based on the Evidence theory. This
theory, which was proposed by Shafer ( Shafer G (1976) A mathematical theory of evidence, Princeton
University Press ), is based on the work of Dempster ( Dempster A (1967) Upper and lower probabilities
induced by multivalued mapping. Annals of Mathematical Statistics, vol. 38, pp. 325--339 ) on lower and
upper probability distributions.

o _ criteria: list, the list of criteria. A criterion is a map that contains seven elements: a name, a first
threshold s1, a second threshold s2, a value for the assertion "this candidate is the best" at threshold
sl (v1p), a value for the assertion "this candidate is the best" at threshold s2 (v2p), a value for
the assertion "this candidate is not the best" at threshold s1 (v1c), a value for the assertion "this
candidate is not the best" at threshold s2 (v2c). v1lp, v2p, vlc and v2c have to been defined in order
that: vip + vlc < =1.0; v2p + v2c < = 1.0.

o _ candidates: list, the list of candidates. A candidate is a list of floats; each float representing the
value of a criterion for this candidate.

e _ return:int, the index of the selected candidate.

let crits type: list <- [[nanme::'proximty', s1::0.1, s2::0.8, vlp::0, v2p::0.3, vic::0.5,
v2c::0], [nane::'quality',s1l::0.0, s2::0.8, vlp::0.05, v2p::0.5, vlic::0.6, v2c::0],

[nane:: " useful ness', s1::0.0, s2::0.8, vip::0, v2p::0.2, vic::0.9, v2c::0]];

| et cands type: list <- [[0.8, 0.1, 0.3],[0.5, 0.7, 0.5],[0.1, 0.5, 0.9],[0.9, 0.2, 0.4],[0.86,
0.5, 0.5],[0.7, 0.4, 0.3]];

let index type: int <- self evidence_theory DM [criteria::crits, candi dates::cands];

Page 184 of Full Documentation of GAMA 1.5.1
210


http://www.glennshafer.com/books/amte.html
http://www.glennshafer.com/books/amte.html
http://projecteuclid.org/DPubS?service=UI&version=1.0&verb=Display&handle=euclid.aoms/1177698950
http://projecteuclid.org/DPubS?service=UI&version=1.0&verb=Display&handle=euclid.aoms/1177698950

GAMA Documentation

Built-in Actions

Built-in actions

Two built-in actions are provided to each agent. These actions can be directly used by all species of
agents (amongst them the world agent).

debug

makes the agent output an arbitrary message in the console. The message is automatically prefixed with
the cycle of the simulation and followed by a carriage return and postfixed with information concerning the
agent that called this action.

e _ Mmessage : string, mandatory, the message to display.

do debug nessage: 'This is a nessage from' + self;

tell

makes the agent output a dialog (if the simulation contains a user interface). The simulation goes on, but
its interface is not accessible until the dialog is closed (use with caution, as it may prevent the user from
accessing the interface).

e _ Mmessage : string, mandatory, the message to display.

do tell nessage: 'This is a nessage dialog raised by ' + self;

Global built-in actions

In addition to the built-in actions, there are two actions provided to the world agent.

halt

o stops the simulation.
gl obal {
reflex halting when: enpty (agents) {

do halt;
}

pause

¢ pauses the simulation, which can then be continued by the user.

gl obal {

Full Documentation of GAMA 1.5.1 Page 185 of
210



GAMA
Documentation

reflex toto when: tine = 100 {
do pause;

}

Page 186 of Full Documentation of GAMA 1.5.1
210



GAMA Documentation

Additional features

Full Documentation of GAMA 1.5.1 Page 187 of
210



GAMA
Documentation

Gama 3D

| ntroduction

Gama default display is based on the Java2D API that can show some limits when dealing with a huge
amount of data or when once wants to display the model in a more realistic way. Since 1.5 version ,
OpenGL 3D display is integrated in GAMA.

How to use OpenGL display in Gama

To use the openGL display just define the atrribute type of the display with " type:opengl " in the output of
your model:
experiment my_3D experinent type: gui {
out put {
di spl ay nyDi spl ay type: opengl {
speci es nmySpeci es;

}
}
This will create an opengl view of your model. With this view you can now navigate throught the model in
2D as with the default display but also in 3D.

Page 188 of Full Documentation of GAMA 1.5.1
210



GAMA Documentation

Gama 3D Simulation perspective

< city_displdy &3 (] o= q@ » P ("O

z value

1:08.40597

11315 1943 oy
-

4‘ P

% Tracking

D view

Mouse interaction

¢ click + mouve = make the model moving on the plan

o ctrl (or cmd for mac) + mouve: make the camera orbitting around the model. (you can use the arcball
button to activate this function without using ctrl (or cmd for mac).
o scroll out/in: zoom out/in

Toogle button

o Archall: Enables to orbit around the model. When this button is clicked simply drag the mouse to
orbit around the model. And press shift to pan the model. If this button is not activated press the ctrl
(or cmd for mac) + drag the mouse to use arcball.

o Tracking: This function is only available in 2D mode. When activing this function the display switch
automatically to 2D mode. You can then select one agent. This agent will be displayed in red during
the rest of the simulation.

« 3D view: Positions the model in 3D view when activated and positions the model in 2D view when
desactivated.

e Snapshot: Creates a picture of the current display when clicking on it. The picture will be stored in
a folder snapshots in the same folder where your model is. You can take different picture of your
model the name of the file will be linked with the current iteration (this function also exists with the
default display in Java 2D).

Full Documentation of GAMA 1.5.1 Page 189 of
210



GAMA
Documentation

|nformation

« 3D axes: Gives an indication of the position of the camera so that you always know where you are
positioned in 3D.
o zvalue: Displays the z value of the camera.

o scale: Indicates the scale of the model. Shows what is the value of 1 unit of each axes.

Why using 3D in your model?

The third dimension not only enables to move and manipulate the world (the model) in an interactive
and intuitive way but also provides new way to visualize models. Many examples can be found in the
models/3D repository. Here is an overview of the feature provided by Gama 3D.

Multi layer

During a simulation, a user may want to observe the same agent evolving in different environment, such
a thing can easily be provided by using the multi layer display. On each different layer the user describes
the agent he wants to see. Species can be placed on different z value for each layer using the opengl
display. z:0 means the layer will be placed on the ground and z=1 means it will be placed at an height
equal to the maximun size of the environment.

T

di spl ay nyDi splay type: opengl {
speci es buil ding aspect: base z:0;
speci es road aspect: base z:0.5;
speci es peopl e aspect: base z:1;

}

See example in:

nodel s/ 3D/ road_traffic/nodel s/ nodel _buil di ng_el evation_multi _|ayer. gani
or

nmodel s/ 3D/ mul ti _| ayer_rendering/ multi _| ayer_picture. gam
nodel s/ 3D/ mul ti _| ayer _rendering/vi etnam nulti_| ayer. ganl
nmodel s/ 3D/ mul ti _| ayer_rendering/vietnamnulti _|ayer_w th_3D Agent. gani

Page 190 of Full Documentation of GAMA 1.5.1
210



GAMA Documentation

Digital Model Elevation

A digital elevation model is a digital model or 3D representation of a terrain’s surface. From a 2D picture
the value of the pixel is converted to an altitude value and is then rendered in 3D.

Dregrnal rrpdel elevatiosn

See example in;

nodel s/ 3D/ DEM nodel s/ nodel _nekong_mmt . gani
nodel s/ 3D/ DEM nodel s/ nodel _france_mmt . gani

Data into form

There is many way to visualize and distinguish data elements: size, value, texture, color, orientation

and shape. For each agent the value of one of its parameters can represented in different ways such

as a text, a color (e.g light for low value dark for high value), a cercle where the radius of the circle is
proportional to the value and a 3D view where the height of the agent is proportional to the value. In many
cases the shape of the agent can be used to represent one or several of its attributes.

Full Documentation of GAMA 1.5.1 Page 191 of
210



Documentation

GAMA

.- 1._. aF =g " :
Rt AR

L :
AT I -+ ket g
& il HH.-.-._.- &

...:r:rm_nn_..n.
h."".".n_.“ LT
e S
n._““....r..n.l_“:

fLALANLLL
r..._.......L”“."u".
ikl g LL.-—L-

I3 i Loy

Full Documentation of GAMA 1.5.1

form ganm

data_to_

nodel s/ 3D/ Pri miti veShape/ nodel s/ grid
210

See example in:
Page 192 of



GAMA Documentation

User Control

| ntroduction

GAMA provides some tools to give more flexibility to the user in controlling the agents, creating agents,
killing agents, running specific actions, etc.

user command

Anywhere in the global block, in a species or in an (GUI) experiment, user_command statements can be
implemented. They can either call directly an existing action (with or without arguments) or be followed
by a block that describes what to do when this command is run. Their syntax can be (depending of the
modeler needs) either:

user _command cnd_nane action: action_w thout _arg_nane;

or

user _conmand cnd_nane action: action_nanme with: [argl::vall, arg2::val2, ...];
or

user _conmmand cnd_nanme {
[ st at ement s]

}

For instance :

user _command kill _nysel f action: die;

or

user _command kill _nyself action: some_action with: [argl::vall, arg2::val2, ...];
or

user _conmand kil l _nysel f {
do action: die;
}
These commands (which belong to the "top-level” statements like actions, reflexes, etc.) are not executed
when an agent runs. Instead, they are collected and used as follows:

« When defined in a GUI experiment, they appear as buttons above the parameters of the simulation;

« When defined in the global block or in any species,
« when the agent is inspected, they appear as buttons above the agents' attributes
» when the agent is selected by a right-click in a display, these command appear under the usual
"Inspect”, "Focus" and "Highlight" commands in the pop-up menu.

Remark: The execution of a command obeys the following rules:

+ when the command is called from right-click pop-menu, it is executed immediately,

« when the command is called from panels, its execution is postponed until the end of the current step
and then executed at that time.

Full Documentation of GAMA 1.5.1 Page 193 of
210



GAMA
Documentation

user |ocation

In the special case when the user_command is called from the pop-up menu (from a right-click on an
agent in a display), the location chosen by the user (translated into the model coordinates) is passed to
the execution scope under the name user_location .

Example :
gl obal {
user _conmmand "Create agents here" {
create nmy_species nunber: 10 with: [l ocation::user_location];
}
}

This will allow the user to click on a display, choose the world (always present now), and select the menu
item "Create agents here". Note that if the world is inspected (this user_command appears thus as a
button) and the user chooses to push the button, the agent will be created at a random location.

"user_input” operator

As it is also, sometimes, necessary to ask the user for some values (not defined as parameters), the
user_input unary operator has been introduced. This operator takes a map [string::value] as argument,
displays a dialog asking the user for these values, and returns the same map with the modified values
(if any). The dialog is modal and will interrupt the execution of the simulation until the user has either
dismissed or accepted it. It can be used, for instance, in an init section like the following one to force the
user to input new values instead of relying on the initial values of parameters :

gl obal {
init {
l et values type: map <- user_input(["Nunber" :: 100, "Location" :: {10, 10}]);
create nmy_speci es nunber : int(values at "Nunber") with: [location:: (point(values at
"Location"))];
}
}

user control architecture

user_only, user first, user last

A new type of control architecture has been introduced to allow users to take control over an agent during
the course of the simulation. It can be invoked using three different keywords: user_only , user_first ,
user_last .

speci es user control: user_only {

,

If the control chosen is user_first , it means that the user controled panel is opened first, and then the
agent has a chance to run its "own" behaviors (reflexes, essentially, or "init" in the case of a "user_init"
panel). If the control chosen is user_last , it is the contrary.

Page 194 of Full Documentation of GAMA 1.5.1
210



GAMA Documentation

user_panel

This control architecture is a specialization of the Finite State Machine Architecture where the "behaviors"
of agents can be defined by using new constructs called user_panel (and one user_init ), mixed with
"states" or "reflexes". This user_panel translates, in the interface, in a semi-modal view that awaits the
user to choose action buttons, change attributes of the controlled agent, etc. Each user_panel, like a
state in FSM, can have a enter and exit sections, but it is only defined in terms of a set of user_command
s which describe the different action buttons present in the panel. Example, in the circle.gaml model :

speci es user control:user_only {

user _panel "Basic Control "{

user _command "Kill one cell" {

ask (one_of (cells)){
do die;

}

}

user _conmmand "Create one cell" {
create cells nunber: 1;

}

}
}

this will create a simple panel like the one on the following image.

Full Documentation of GAMA 1.5.1 Page 195 of
210



GAMA
Documentation

B —
Il User Control EE\\_

[user(] Basic Control

| Kill one cell |

| Create one cell |

| Continue | | Inspect |

user_commands can also accept inputs, in order to create more interesting commands for the user. This
uses the user_input statement (and not operator), which is basically the same as a temporary variable
declaration whose value is asked to the user. Example:

user _command "Kill cells" {
user _i nput "Nunmber" returns: nunber type: int <- 10;
ask (nunmber anong list(cells))({
do die;
}
}

It translates into a button + an input (as depicted on the following image).

Page 196 of Full Documentation of GAMA 1.5.1
210



GAMA Documentation

Il user Control &3 = 8

[userD] Advanced Control

| Kill cells | Number = 10 = ar

| Create cells | MNumber | 10 = gp
Location x 0.0 ¥ 0.0

| Kill user |

| Continue | | Inspect |

Several inputs are of course allowed (see « Create Cells » on the same panel).

user _command "Create cells" {
user _i nput "Nunmber" returns: nunber type: int <- 10;
user _i nput "Location" returns: |loc type: point <- {0,0};
create cells nunber: number with: [location::|oc];

}

As user_panel# is a specialization of state , the modeler has the possibility to describe several panels
and choose the one to open depending on some condition, using the same syntax than for finite state
machines :

¢ either adding transitions to the user_panels,
e oOr setting the state attribute to a new value, from inside or from another agent.

This ensures a great flexibility for the design of the user interface proposed to the user, as it can be
adapted to the different stages of the simulation, etc.. Follows a simple example, where, every 10 steps,
and depending on the value of an attribute called « advanced », either the basic or the advanced panel is
proposed.

speci es user control:user_only{
bool advanced <- fal se;
user _panel default initial: true {
transition to: "Basic Control" when: every (10) and !advanced;
transition to: "Advanced Control" when: every(10) and advanced;

}

user _panel "Advanced Control" {
user _conmand "Kill cells" {
user _i nput "Nunmber" returns: nunber type: int <- 10;
ask (nunmber anong list(cells))({
do die;
}
}

Full Documentation of GAMA 1.5.1 Page 197 of
210



GAMA
Documentation

user _command "Create cells" {
user _i nput "Nunmber" returns: nunber type: int <- 10;
user _input "Location" returns: loc type: point <- {0,0};
create cells nunber: number with: [location::|oc];

}
user _conmmand "Kill user" {
do die;
}
transition to: default when: true;
}
user _panel "Basic Control "{
user _command "Kill one cell" {
ask (one_of (cells)){
do die;
}
}
user _conmmand "Create one cell" {
create cells nunber: 1;
}
transition to: default when: true;
}
}

The panel marked with the « initial: true » facet will be the one run first when the agent is supposed to
run. If none is marked, the first panel (in their definition order) is chosen. A special panel called user_init
will be invoked only once when initializing the agent if it is defined. If no panel is described or if all
panels are empty (ie. no user_commands), the control view is never invoked. If the control is said to be
"user_only", the agent will then not run any of its behaviors.

user_controlled

Finally, each agent provided with this architecture inherits a boolean attribute called user_controlled .
If this attribute becomes false, no panels will be displayed and the agent will run "normally” unless its
species is defined with a user_only control.

Page 198 of Full Documentation of GAMA 1.5.1
210



GAMA Documentation

Database access

Description

¢ plug-in: irit.maelia.gaml.additions
¢ author: TRUONG Minh Thai, Frederic AMBLARD, Benoit GAUDOU, Christophe SIBERTIN-BLANC

| ntroduction

SQL features of GAMA provide a set of actions on [DataBase] Management Systems (DBMS) for agents
in GAMA. With these features, an agent can execute SQL queries (create, Insert, select, update, drop,
delete) to various kinds of DBMS. These features are implemented in the irit. maelia.gaml.additions plug-in
with two components:

o the skill SQLSKILL
¢ the built-in species AgentDB .

SQLSKILL and AgentDB provide almost same features (a same set of actions on DBMS) but with a little
difference:

e an agent of species AgentDB will maintain a unique connection to the database during the whole
simulation. The connection is thus initialized when the agent is created.
o in contrarily, an agent of a species with the SQLSKILL skill will open a connection each time he
wants to execute a query. This means that each action will composed of three running steps:
* Make a database connection.
¢ Execute SQL statement.
» Close database connection.

An agent with the SQLSKILL spends lot of time to create/close the connection each time it needs to

send a query, it saves database connection (DBMS often limit the number of simultaneous connections).
In contrast, an AgentDB agent only needs to establish one database connection and it can be used

for any actions. Because it does not need to create and close database connection for each action,
therefore actions of AgentDB agents are executed faster than actions of SQLSKILL ones but we must
pay a connection for each agent. With SQL features, we can create species, define environment or store
simulation results into DBMS. It helps us to have more flexibility in management of simulation models and
analysis of simulation results.

SQL Skill
Define a species that uses the SQLSKILL skill

Example of declaration:

entities {

Full Documentation of GAMA 1.5.1 Page 199 of
210



GAMA
Documentation

species toto skills: [SQ.SKILL]
{

/linsert your descriptions here

}

, e
Agents with such a skill can use additional actions (defined in the skill).

Map of connection parameters

In the actions defined in the SQLSKill, a parameter containing the connection parameters is requiered. It
is a map with following key::value pairs:

Key Description

dbtype DBMS type value. Its value is a string. we
must use "sglserver” when we want to connect
to a sqglerver. That is the same for "sqglite" or
"mysql" (ignore case sensitive)

host Host name or IP address of data server. it is
absent when  we work with SQlite.

port Port of connection. It is absent when we work with
SQLite.

database Name of database. It is file name include path
when we work with SQLite.

user Username. It is absent when we work with SQLite.

passwd Password. It is absent when we work with SQLite.

Action: testConnection [params::
connection_parameter]

The action tests the connection to a given database.

e Return value : boolean
» true: the agent can connect to the DBMS (to the given Database with given name and
password)
» false: the agent cannot connect
¢ Arguments
» params: (type = map) map of connection parameters

Example: Definitions of connection parameter

/'l SQLSERVER connection paraneter
map SQSERVER <- [
"host'::'local host',
"dbtype'::'sql server',
' dat abase' ::' BPH ,
"port'::'1433',
‘user'::'sa',
'passwd' ::'abc'];

Page 200 of Full Documentation of GAMA 1.5.1
210



GAMA Documentation

/1l MySQL connection paraneter

mp MSQL <- [
"host'::'local host',
"dbtype'::"' MySQ',
‘database'::'', // it may be a null string
"port'::'3306',
‘user'::'root’',
'passwd' ::"'abc'];
[ISQite

map SQITE <- [
"dbtype'::"'sqlite',
"database'::'../includes/neteo.db'];

Use example: Check a connection to MySQL

if (self testConnection[ parans:: M/SQ]){
wite "Connection is OK" ;

}el se{
write "Connection is fal se" ;

}

Action: select [params.: connection_parameter,
select::select_string]

The action creates a connection to a DBMS and executes the select statement. If the connection fails
then it throws a [GamaRuntimeException].

e Return value : if the connection succeed, it returns a list with three elements:
» The first element is a list of column name.
» The second element is a list of column type.
» The third element is a data set.
¢ Arguments
» params: (type = map) map containing the connection parameters
» select: (type = string) the SQL request

Examples:

map PARAMS <- ['dbtype'::'sqglite',' database'::'../includes/neteo.db'];
list t < [];

reflex test {

set t <- list(self select[parans:: PARAMS, select::"SELECT * FROM points ;"]);
}

Action: executeUpdate [params::
connection_parameter, updateComm::
update string |

The action creates a connection to the DBMS and executes an update command (create/insert/delete/

drop). If the connection is fail then it throws a [GamaRuntimeException].

o Return value : if the connection succeed, it returns an integer that is the number of lines in the table
affected by the update

Full Documentation of GAMA 1.5.1 Page 201 of
210



GAMA

Documentation

¢ Arguments

params: (type = map) map containing the connection parameters
select: (type = string) the SQL update command

Example: Table creation

map PARAMS <- ['dbtype'::'sqglite',' database'::'../includes/neteo.db'];
do execut eUpdate parans: PARAMS

}

updat eConm " CREATE TABLE registration " +
"(id I NTEGER PRI MARY KEY, " +
" first TEXT NOT NULL, " +
" last TEXT NOT NULL, " +
' age | NTEGER);";

Example: Insert data into table

do execut eUpdat e parans: PARANMS

}

updat eComm "1 NSERT | NTO regi stration " +
"VALUES (101, 'Mahnaz', 'Fatma', 25);"

Example: Update data

do execut eUpdat e parans: PARANMS

}

updat eComm " UPDATE Regi stration " +
"SET age = 30 WHERE id in (100, 101)";

Example: Delete record

do execut eUpdate parans: PARAMS

}

updat eComm " DELETE FROM regi strati on WHERE i d=100 “;

Example: Drop table

do execut eUpdate parans: PARAMS

}

updat eComm " DROP TABLE registration”;

AgentDB

AgentBD is a built-in species, it supports behaviors that look like actions in SQLSKILL but it is a bit
different from SQLSKILL: an AgentDB agent uses only one connection for several actions. It means that
AgentDB creates a connection to a DBMS and keeps that connection open for its later operations with the

DBMS.

Map of connection parameters

In the actions defined in the AgentDB, a parameter containing the connection parameters is requiered. It
is a map with following key::value pairs:

Key Description
dbtype DBMS type value. Its value is a string. we
must use "sqglserver" when we want to connect
Page 202 of Full Documentation of GAMA 1.5.1

210



GAMA Documentation

to a sqlerver. That is the same for "sqglite” or
"mysql" (ignore case sensitive)

host Host name or IP address of data server. it is
absent when  we work with SQlite.

port Port of connection. It is absent when we work with
SQLite.

database Name of database. It is file name include path
when we work with SQLite.

user Username. It is absent when we work with SQLite.

passwd Password. It is absent when we work with SQLite.

Action: testConnection [params::
connection_parameter]

This action tests whether the connection is possible to the DBMS.

¢ Return value : it returns a boolean value:
» true: the agent can connect to DBMS.
» false: the agent cannot connect to DBMS.
e Arguments
» params: (type = map) map containing the connection parameters

Example: test of a possible connection to a DB

/1 MySQL connection paraneter
let MYSQL type: map <- [
"host'::'local host"',
"dbtype'::' MySQ',
' dat abase' : ;"' ",
"port'::'3306",
‘user'::'root’',
‘passwd' ::'abc'];
if (self testConnection[ parans:: MSQ]){
wite "The connection is possible" ;
}el se{
wite "The connection is not possible" ;

}

Action: connect [params::
connection _parameter]

The action connect creates a connection to a DBMS. If the connection can be established then it will
assign the connection object into a internal attribute of the AgentDB species (conn) otherwise it throws
a [GamaRuntimeException]. Note: The current current connection must be closed before creating a new
one.

¢ Arguments
» params: (type = map) map containing the connection parameters

Full Documentation of GAMA 1.5.1 Page 203 of
210



GAMA
Documentation

Example: Establish a connection to SQLServer

/'l SQLSERVER connecti on paraneter
| et SQLSERVER type: map <- [
"host'::"'local host"',
"dbtype'::'sql server',
' dat abase' ::' BPH ,
"port'::'1433",
‘user'::'sa',
' passwd' ::'abc'];
/1 make connection
do connect parans:: SQLSERVER;

Action: isConnected [ |

The action isConnected tests whether the agent connection is open.

¢ Return value : it returns a boolean value:
e true: the agent has already a connection to a DBMS
» false: the agent has no connection to a DBMS.
e Arguments
e params: (type = map) map containing the connection parameters

Example

if (self isConnected []){

wite "It already has a connection”;
el se {

do connect parans: SQLI TE;
}

Action: close| ]

The action close closes the current database connection of the agent. If the agent has no database
connection then it throws a [GamaRuntimeException]. Example:

if (self isConnected []){
do cl ose;

}

Action: getParameter [ |

The action getParameter will return a map object containing parameters of the current database
connection if the agent has a database connection. If it do not have an open connection, it throws a
[GamaRuntimeException].

e Return value :a map containing connection parameters

Example

if (self isConnected []){
wite self getParaneter[];

}

Page 204 of Full Documentation of GAMA 1.5.1
210



GAMA Documentation

Action: select [select:: select_string]

The action select executes the select statement by using the current database connection of the
agent. If the database connection does not exist or the select statement fails then it throws a
[GamaRuntimeException], otherwise it returns a list with three elements.

e Return value : alist of three elements:
» The first element is a list of column name.
» The second element is a list of column type.
» The third element is a data set.
¢ Arguments
» select (type = string): the select query

Example

if (self isConnected[]){
let t value: self select[select::"SELECT id_point, tenp_nmin FROM points ;"];
wite t;

el se {
wite "Error: You nust establish a connections before select!";

}

Action: executeUpdate [updateComm::
update string |

The action executeUpdate executes an update command (create/insert/delete/drop) by using the current
database connection of the agent. If the database connection does not exist or the update command fails
then it throws a [GamaRuntimeException] otherwise it returns an integer value.

o Return value : an integer that is the number of lines in the table affected by the update

e Arguments
e updateComm (type = string): update command string

Example: Table creation

| et PARAMS type: map <-
['dbtype'::'sqglite',' database'::'../includes/neteo.db'];
do connect parans: PARANS;
do execut eUpdat e updat eComm " CREATE TABLE registration " +
"(id | NTEGER PRI MARY KEY, " +
" first TEXT NOT NULL, " +
" last TEXT NOT NULL, " +
' age | NTEGER);";
}

Example: Insertion of data into a table

do execut eUpdat e updat eComm "I NSERT I NTO regi stration " +
"VALUES (101, 'Mahnaz', 'Fatma', 25);";
}

Example: Update of data

do execut eUpdat e updat eComm " UPDATE Regi stration " +
"SET age = 30 WHERE id in (100, 101)";
}

Example: Deletion of a record

Full Documentation of GAMA 1.5.1 Page 205 of
210



GAMA
Documentation

do execut eUpdat e updat eComm "DELETE FROM regi strati on WHERE i d=100 "
}

Example: Drop table

do execut eUpdat e updat eComm "DROP TABLE registration”
}

Using SQL featuresto define
environment or create species

In Gama, we can use results of select action of SQLSKILL or AgentDB to create species or define
boundary of environment in the same way we are doing it with shape files.

Define the boundary of the environment from
database

We can select geometry data from MySQL, SQLite or SQLServer [DataBase] Management Systems and
define the environment boundary by using the query result. We have to follow the two following steps to
define the boundary of an environment.

o Step 1: specify select query by declaration a map object with keys as below:

Key Description

dbtype DBMS type value. Its value is a string. we
must use "sglserver" when we want to connect
to a sqlerver. That is the same for "sglite” or
"mysql" (ignore case sensitive)

host Host name or IP address of data server. it is
absent when  we work with SQlite.

port Port of connection. It is absent when we work with
SQLite.

database Name of database. It is file name include path
when we work with SQLite.

user Username. It is absent when we work with SQLite.

passwd Password. It is absent when we work with SQLite.

select Selection string

Example:

gl obal {

map BOUNDS <-
['dbtype'::"sqglite', ' database'::"'../includes/bph.sqglite'

"select"::"sel ect geonetry from bph where id_2=38253 or id_2=38254;"];

e Step 2: define boundary of environment by using the map object in first step.

Page 206 of Full Documentation of GAMA 1.5.1
210



GAMA Documentation

envi ronnent bounds: BOUNDS ;

Note: We can do similarly if we work with MySQL server or SQLServer. But with SQLServer , we must
convert Geometry format in SQLServer to binary format. For example, we want to use [MidiPyrenees]
region (ID_1=1004) from table FRA_ADM2 as a boundary of simulation environment:

gl obal {
map BOUNDS <-
["host'::"'local host',
"dbtype'::' SQLSERVER ,
"port'::'1433",
' dat abase' : : ' BPH , °
‘user'::'test’',

'passwd' :: "' abc',
"select'::'select geom STAsBi nary() as geo from FRA_ADM2 WHERE | D 1=1004"];
}

envi ronnent bounds: BOUNDS ;

Create agents from the result of a "select” action

If we are familiar with how to create agents from a shapefile then it becomes very simple to create agents
from select result. We can do as below:

e Step 1 : Define a species with SQLSKILL or AgentDB

entities {
species agt_wi th_DB skills: SQSKILL {

{
/linsert your descriptions here
}
}
o Step 2 : Define a connection and select paramaters
gl obal {
map PARAMS <- ['dbtype'::'sqglite','database'::"'../includes/bph.sqglite'];

string LOCATI ONS <-
"select 1D 4, Nane_4, geonetry from bph where id_2=38253 or id_2=38254;";

o Step 3 : Create agents by using select result
gl obal {

init {
let resSelect type: list <- [];
create agt_w th_DB nunber: 1 {
set resSelect <- list(self select [paranms:: PARAMS, select:: LOCATIONS]);

}
create |locations from resSelect
with:[ id:: "id_4", customnane:: "name_4", geo::"geonetry"] {
set shape val ue: geo;
}

}

Full Documentation of GAMA 1.5.1 Page 207 of
210



GAMA
Documentation

Driving Skill

Description

¢ plug-in: simtools.gaml.extensions.traffic
o author: Patrick Taillandier, Javier Gil Quijano and Philippe Caillou

| ntroduction

This extensions of GAMA is a new skill that extends the moving skill and that provides new moving
actions that take into account the traffic jam and the number of lanes of roads. This skill is implemented in
the simtools.gaml.extensions.traffic plug-in.

driving skill
Define a species that uses the driving skill

Example of declaration:

entities {
speci es car skills: [driving]
{
/linsert your descriptions here
}
}

Agents with such a skill will automatically be provided with the variables of the moving skill ("speed,
heading, destination (r/0)") and the following variables : "living_space, lanes_attribute, tolerance,
obstacle_species". They will also be provided with the action of the moving skill ("move, goto, wander,
follow") and the following action: "moveTraffic".

variables

living_space

« float, the min distance between the agent and an obstacle (in meter).

lanes_attribute

« string, the name of the attribut of the road agent that determine the number of road lanes.

Page 208 of Full Documentation of GAMA 1.5.1
210


Skills151.html#moving
Skills151.html#moving

GAMA Documentation

tolerance

« float, the tolerance distance used for the computation (in meter).

obstacle species

o list of species, the list of species that are considered as obstacles.

action

goto

moves the agent towards the target passed in the arguments. When moving on a road section, an agent
cannot pass through n obstacles excepts if the number of lanes for this road section is equal or higher
than n+1 .

e _ target :point or agent, mandatory, the location or entity towards which to move.
e _ speed :float, optional, the speed to use for this move (replaces the current value of speed).

e« _ on :list, agent, graph, geometry, optional, that restrains this move (the agent moves inside this
geometry).
e _ return_path :bool, optional, if true, the action returns the path followed.

e« _ living_space : float, optional, min distance between the agent and an obstacle (replaces the
current value of living_space).

e« _ tolerance : float, optional, tolerance distance used for the computation (replaces the current
value of tolerance).

e _ lanes_attribute : string, optional, the name of the attribut of the road agent that determine the

number of road lanes (replaces the current value of lanes_attribute)
e _ return_path : bool, optional, if true, the action returns the path followed

e _ return: null or the path followed if return_path is setto true

do gotoTraffic target: one_of (list (species (self))) speed: speed * 2 on: road_network
l'iving_space: 2.0;

Model examples

Three models based on this plug-in are available in GAMA 1.5.1: RoadTrafficSimple ,
RoadTrafficComplex and RoadTrafficCity . These models are defined in the driving_traffic project.

¢ RoadTrafficSimple

Full Documentation of GAMA 1.5.1 Page 209 of
210



GAMA
Documentation

o RoadTrafficCity

[® traffic_jam_display 23 ™._[[@ chart _display = O |[{2} parameters | & Monitors | [5 city_display 52 =0

LN L

AN \

Page 210 of Full Documentation of GAMA 1.5.1
210



