diff --git a/cortex/mapper/__init__.py b/cortex/mapper/__init__.py index c2bfd516..e1de25f2 100644 --- a/cortex/mapper/__init__.py +++ b/cortex/mapper/__init__.py @@ -4,6 +4,7 @@ from .. import dataset from .mapper import Mapper, _savecache +from .utils import nanproject, vol2surf def get_mapper(subject, xfmname, type='nearest', recache=False, **kwargs): diff --git a/cortex/mapper/utils.py b/cortex/mapper/utils.py new file mode 100644 index 00000000..bf8c76e1 --- /dev/null +++ b/cortex/mapper/utils.py @@ -0,0 +1,131 @@ +import cortex +import numpy as np +import scipy + + +def nanproject(data, mapper, reweigh=True): + """Project data using the passed mapper while dealing with NaNs. + + Parameters + ---------- + data : array-like (n_voxels,) or (n_samples, n_voxels) + The data to be projected. + mapper : sparse matrix (n_vertices, n_voxels) + reweigh : bool + Whether to reweigh the mapper after dealing with NaNs. (Mostly for debugging, + this should be left to True). + + Returns + ------- + data_projected : array-like (n_vertices, ) or (n_samples, n_vertices) + The projected data. + """ + is_1d = False + if data.ndim == 1: + data = np.atleast_2d(data) + is_1d = True + if data.ndim > 2: + raise ValueError("Only one-dimensional or two-dimensional data are allowed") + # First zero-out nans + good = ~(np.any(np.isnan(data), axis=0)) + n_voxels = data.shape[1] + # make diagonal sparse matrix with mask + good_sparse = scipy.sparse.csr_matrix( + (good.astype(float), (np.arange(n_voxels), np.arange(n_voxels))) + ) + # zero-out voxels with nans + good_mapper = mapper.dot(good_sparse) + # change data in rows + if reweigh: + # now convert to lil to reweigh everything + good_mapper = good_mapper.tolil() + # take only rows with data to be used + rows_to_change = np.where(good_mapper.sum(1) > 0.0)[0] + for row in rows_to_change: + sum_row = sum(good_mapper.data[row]) + good_mapper.data[row] = [dt / sum_row for dt in good_mapper.data[row]] + # convert back to csr + good_mapper = good_mapper.tocsr() + # project -- mapper is (n_vertices, n_voxels), data is (n_samples, n_voxels) + data_projected = good_mapper.dot(data.T).T + # set vertices receiving only nans to nan + bad = (~good).astype(float) + bad_vertex = np.abs(mapper.dot(bad) - 1.0) < 1e-09 + data_projected[:, bad_vertex] = np.nan + if is_1d: + data_projected = data_projected[0] + return data_projected + + +def vol2surf( + data, + subject, + xfm_name, + target_surface="native", + mask_name="thick", + mapper="line_nearest", + subject_freesurfer=None, +): + """Project a subject's volumetric data to a target surface. + + Parameters + ---------- + data : array (n_voxels,) or (n_samples, n_voxels) + The flattened volumetric data. + subject : str + Subject name. + xfm_name : str + Transform name. + mask_name : str + Mask to use for the projection. Default is "thick". It should match the + `n_voxels`. + target_surface : str + Surface to project the data to. Default is "native", corresponding to the + participant's surface. Alternatives are "fsaverage", "fsaverage6", "fsaverage5", + or other freesurfer participant codes. + mapper : str + Type of mapper to go from volume to the native surface of the subject. + Just use `line_nearest` if in doubt. + subject_freesurfer : str or None + Freesurfer's subject name. If None, it will be the same as `subject`. + + Returns + ------- + data_projected : array (n_vertices,) or (n_samples, n_vertices) + The projected data. + + Notes + ----- + This function averages only non-NaN values. It should be equivalent to nanmean=True + in pycortex's quickflat. + """ + if data.ndim == 1: + axis = 0 + elif data.ndim == 2: + axis = 1 + else: + raise ValueError( + "This function works only with 1-dimensional or 2-dimensional arrays." + ) + if subject_freesurfer is None: + subject_freesurfer = subject + # Get pycortex's mapper to go from volume to fsnative + voxel2fsnative = cortex.get_mapper(subject, xfm_name, mapper).masks + mask = cortex.db.get_mask(subject, xfm_name, type=mask_name).ravel() + assert mask.sum() == data.shape[axis] + # Select only voxels in the thick mask + voxel2fsnative = [vfs[:, mask] for vfs in voxel2fsnative] + if target_surface == "native": + data_projected = nanproject(data, voxel2fsnative) + else: + fsnative2fsaverage = cortex.db.get_mri_surf2surf_matrix( + subject, "fiducial", fs_subj=subject_freesurfer, target_subj=target_surface + ) + # Compute projection from volume to fsaverage by combining + # voxel2fsnative -> fsnative2fsaverage + voxel2fsaverage = scipy.sparse.vstack( + [m1.dot(m2) for m1, m2 in zip(fsnative2fsaverage, voxel2fsnative)] + ) + # Project data + data_projected = nanproject(data, voxel2fsaverage) + return data_projected