diff --git a/CONTRIBUTORS.yaml b/CONTRIBUTORS.yaml
index 056c097c4d8fbb..a367ee1beb1b06 100644
--- a/CONTRIBUTORS.yaml
+++ b/CONTRIBUTORS.yaml
@@ -1377,6 +1377,11 @@ LeilyR:
name: Leily Rabbani
joined: 2018-09
+
+lenaarenot:
+ name: Lena Arent
+ joined: 2024-05
+
lilianarutaihwa:
name: Liliana Rutaihwa
joined: 2024-06
@@ -1385,6 +1390,7 @@ linzyelton:
name: Linzy Elton
joined: 2024-06
+
lgallegovillar:
name: Lorena Gallego Villar
joined: 2021-10
diff --git a/topics/microbiome/tutorials/visualisation-ampvis/data-library.yaml b/topics/microbiome/tutorials/visualisation-ampvis/data-library.yaml
new file mode 100644
index 00000000000000..eba74fe0ce38ff
--- /dev/null
+++ b/topics/microbiome/tutorials/visualisation-ampvis/data-library.yaml
@@ -0,0 +1,39 @@
+---
+destination:
+ type: library
+ name: GTN - Material
+ description: Galaxy Training Network Material
+ synopsis: Galaxy Training Network Material. See https://training.galaxyproject.org
+items:
+- name: Metagenomics
+ description: Training material for visualisation methods on amplicon data with ampvis2
+ items:
+ - name: Divers and Adaptable Visualisations of Metabarcoding Data Using ampvis2
+ items:
+ - name: 'DOI: 10.5281/zenodo.12591715'
+ description: latest
+ items:
+ - url: MiDAS_otushort_table.tsv
+ src: url
+ ext: auto
+ info: https://zenodo.org/records/12591715
+ - url: MiDAS_metadata.tsv
+ src: url
+ ext: auto
+ info: https://zenodo.org/records/12591715
+ - url: MiDAS_taxtable.tsv
+ src: url
+ ext: auto
+ info: https://zenodo.org/records/12591715
+ - name: 'DOI: 10.5281/zenodo.10362755'
+ items:
+ - url: BIOMARCS_ASV_tables.xlsx
+ src: url
+ ext: auto
+ info: https://zenodo.org/records/10362755
+ - name: 'DOI: 10.5281/zenodo.7020318'
+ items:
+ - url: closed_otu_table_mc2_w_tax_0.00005_rarefied12000_filtered.biom
+ src: url
+ ext: auto
+ info: https://zenodo.org/records/7020318
\ No newline at end of file
diff --git a/topics/microbiome/tutorials/visualisation-ampvis/faqs/index.md b/topics/microbiome/tutorials/visualisation-ampvis/faqs/index.md
new file mode 100644
index 00000000000000..0821925a241f05
--- /dev/null
+++ b/topics/microbiome/tutorials/visualisation-ampvis/faqs/index.md
@@ -0,0 +1,5 @@
+---
+layout: faq-page
+redirect_from:
+- /topics/metagenomics/tutorials/visualisation-ampvis/faqs/index
+---
diff --git a/topics/microbiome/tutorials/visualisation-ampvis/images/all_data.png b/topics/microbiome/tutorials/visualisation-ampvis/images/all_data.png
new file mode 100644
index 00000000000000..95dcfa147f89c8
Binary files /dev/null and b/topics/microbiome/tutorials/visualisation-ampvis/images/all_data.png differ
diff --git a/topics/microbiome/tutorials/visualisation-ampvis/images/boxplot_other.png b/topics/microbiome/tutorials/visualisation-ampvis/images/boxplot_other.png
new file mode 100644
index 00000000000000..70a0b5c363a97f
Binary files /dev/null and b/topics/microbiome/tutorials/visualisation-ampvis/images/boxplot_other.png differ
diff --git a/topics/microbiome/tutorials/visualisation-ampvis/images/boxplot_period.png b/topics/microbiome/tutorials/visualisation-ampvis/images/boxplot_period.png
new file mode 100644
index 00000000000000..166b3d3309cb3c
Binary files /dev/null and b/topics/microbiome/tutorials/visualisation-ampvis/images/boxplot_period.png differ
diff --git a/topics/microbiome/tutorials/visualisation-ampvis/images/choose_parameters.png b/topics/microbiome/tutorials/visualisation-ampvis/images/choose_parameters.png
new file mode 100644
index 00000000000000..79fe2428840c0b
Binary files /dev/null and b/topics/microbiome/tutorials/visualisation-ampvis/images/choose_parameters.png differ
diff --git a/topics/microbiome/tutorials/visualisation-ampvis/images/heatmap_gr_by_plant.png b/topics/microbiome/tutorials/visualisation-ampvis/images/heatmap_gr_by_plant.png
new file mode 100644
index 00000000000000..686e6c8bf15dd5
Binary files /dev/null and b/topics/microbiome/tutorials/visualisation-ampvis/images/heatmap_gr_by_plant.png differ
diff --git a/topics/microbiome/tutorials/visualisation-ampvis/images/heatmap_gr_by_plant_new.png b/topics/microbiome/tutorials/visualisation-ampvis/images/heatmap_gr_by_plant_new.png
new file mode 100644
index 00000000000000..0e8b4156c00793
Binary files /dev/null and b/topics/microbiome/tutorials/visualisation-ampvis/images/heatmap_gr_by_plant_new.png differ
diff --git a/topics/microbiome/tutorials/visualisation-ampvis/images/heatmap_gr_by_year.png b/topics/microbiome/tutorials/visualisation-ampvis/images/heatmap_gr_by_year.png
new file mode 100644
index 00000000000000..9885eae3208cd7
Binary files /dev/null and b/topics/microbiome/tutorials/visualisation-ampvis/images/heatmap_gr_by_year.png differ
diff --git a/topics/microbiome/tutorials/visualisation-ampvis/images/heatmap_no_group.png b/topics/microbiome/tutorials/visualisation-ampvis/images/heatmap_no_group.png
new file mode 100644
index 00000000000000..0a41c610786011
Binary files /dev/null and b/topics/microbiome/tutorials/visualisation-ampvis/images/heatmap_no_group.png differ
diff --git a/topics/microbiome/tutorials/visualisation-ampvis/images/heatmap_no_group_new.png b/topics/microbiome/tutorials/visualisation-ampvis/images/heatmap_no_group_new.png
new file mode 100644
index 00000000000000..c4d5f86a2beb87
Binary files /dev/null and b/topics/microbiome/tutorials/visualisation-ampvis/images/heatmap_no_group_new.png differ
diff --git a/topics/microbiome/tutorials/visualisation-ampvis/images/heatmap_no_group_total.png b/topics/microbiome/tutorials/visualisation-ampvis/images/heatmap_no_group_total.png
new file mode 100644
index 00000000000000..45ed21b38b9236
Binary files /dev/null and b/topics/microbiome/tutorials/visualisation-ampvis/images/heatmap_no_group_total.png differ
diff --git a/topics/microbiome/tutorials/visualisation-ampvis/images/heatmap_plant_period.png b/topics/microbiome/tutorials/visualisation-ampvis/images/heatmap_plant_period.png
new file mode 100644
index 00000000000000..a2e7f5752853b8
Binary files /dev/null and b/topics/microbiome/tutorials/visualisation-ampvis/images/heatmap_plant_period.png differ
diff --git a/topics/microbiome/tutorials/visualisation-ampvis/images/heatmap_plant_period_new.png b/topics/microbiome/tutorials/visualisation-ampvis/images/heatmap_plant_period_new.png
new file mode 100644
index 00000000000000..3334f052c6bb00
Binary files /dev/null and b/topics/microbiome/tutorials/visualisation-ampvis/images/heatmap_plant_period_new.png differ
diff --git a/topics/microbiome/tutorials/visualisation-ampvis/images/heatmap_year_period.png b/topics/microbiome/tutorials/visualisation-ampvis/images/heatmap_year_period.png
new file mode 100644
index 00000000000000..2c376bc74b35a8
Binary files /dev/null and b/topics/microbiome/tutorials/visualisation-ampvis/images/heatmap_year_period.png differ
diff --git a/topics/microbiome/tutorials/visualisation-ampvis/images/heatmap_year_period_new.png b/topics/microbiome/tutorials/visualisation-ampvis/images/heatmap_year_period_new.png
new file mode 100644
index 00000000000000..d3a137b1373e22
Binary files /dev/null and b/topics/microbiome/tutorials/visualisation-ampvis/images/heatmap_year_period_new.png differ
diff --git a/topics/microbiome/tutorials/visualisation-ampvis/images/meta.png b/topics/microbiome/tutorials/visualisation-ampvis/images/meta.png
new file mode 100644
index 00000000000000..7630120b3469dc
Binary files /dev/null and b/topics/microbiome/tutorials/visualisation-ampvis/images/meta.png differ
diff --git a/topics/microbiome/tutorials/visualisation-ampvis/images/meta_row.png b/topics/microbiome/tutorials/visualisation-ampvis/images/meta_row.png
new file mode 100644
index 00000000000000..b2b70bbcdd10b9
Binary files /dev/null and b/topics/microbiome/tutorials/visualisation-ampvis/images/meta_row.png differ
diff --git a/topics/microbiome/tutorials/visualisation-ampvis/images/ordination_cca_hellinger.png b/topics/microbiome/tutorials/visualisation-ampvis/images/ordination_cca_hellinger.png
new file mode 100644
index 00000000000000..c27e2df4507930
Binary files /dev/null and b/topics/microbiome/tutorials/visualisation-ampvis/images/ordination_cca_hellinger.png differ
diff --git a/topics/microbiome/tutorials/visualisation-ampvis/images/ordination_pca.png b/topics/microbiome/tutorials/visualisation-ampvis/images/ordination_pca.png
new file mode 100644
index 00000000000000..5b7bdcbffbfbf0
Binary files /dev/null and b/topics/microbiome/tutorials/visualisation-ampvis/images/ordination_pca.png differ
diff --git a/topics/microbiome/tutorials/visualisation-ampvis/images/ordination_pca_date.png b/topics/microbiome/tutorials/visualisation-ampvis/images/ordination_pca_date.png
new file mode 100644
index 00000000000000..3259c83dcbc91e
Binary files /dev/null and b/topics/microbiome/tutorials/visualisation-ampvis/images/ordination_pca_date.png differ
diff --git a/topics/microbiome/tutorials/visualisation-ampvis/images/otu.png b/topics/microbiome/tutorials/visualisation-ampvis/images/otu.png
new file mode 100644
index 00000000000000..8435d3bcca71b8
Binary files /dev/null and b/topics/microbiome/tutorials/visualisation-ampvis/images/otu.png differ
diff --git a/topics/microbiome/tutorials/visualisation-ampvis/images/overview.png b/topics/microbiome/tutorials/visualisation-ampvis/images/overview.png
new file mode 100644
index 00000000000000..211a06af5137f6
Binary files /dev/null and b/topics/microbiome/tutorials/visualisation-ampvis/images/overview.png differ
diff --git a/topics/microbiome/tutorials/visualisation-ampvis/images/rarefaction.png b/topics/microbiome/tutorials/visualisation-ampvis/images/rarefaction.png
new file mode 100644
index 00000000000000..80269bb6a806dd
Binary files /dev/null and b/topics/microbiome/tutorials/visualisation-ampvis/images/rarefaction.png differ
diff --git a/topics/microbiome/tutorials/visualisation-ampvis/images/rarefaction_without.png b/topics/microbiome/tutorials/visualisation-ampvis/images/rarefaction_without.png
new file mode 100644
index 00000000000000..8aafe582f574f3
Binary files /dev/null and b/topics/microbiome/tutorials/visualisation-ampvis/images/rarefaction_without.png differ
diff --git a/topics/microbiome/tutorials/visualisation-ampvis/images/select_datasets.png b/topics/microbiome/tutorials/visualisation-ampvis/images/select_datasets.png
new file mode 100644
index 00000000000000..6bc762700de069
Binary files /dev/null and b/topics/microbiome/tutorials/visualisation-ampvis/images/select_datasets.png differ
diff --git a/topics/microbiome/tutorials/visualisation-ampvis/images/taxa.png b/topics/microbiome/tutorials/visualisation-ampvis/images/taxa.png
new file mode 100644
index 00000000000000..a5b981b01d5a5a
Binary files /dev/null and b/topics/microbiome/tutorials/visualisation-ampvis/images/taxa.png differ
diff --git a/topics/microbiome/tutorials/visualisation-ampvis/images/timeseries.png b/topics/microbiome/tutorials/visualisation-ampvis/images/timeseries.png
new file mode 100644
index 00000000000000..ecbdb81d543f5a
Binary files /dev/null and b/topics/microbiome/tutorials/visualisation-ampvis/images/timeseries.png differ
diff --git a/topics/microbiome/tutorials/visualisation-ampvis/images/upload_biom.png b/topics/microbiome/tutorials/visualisation-ampvis/images/upload_biom.png
new file mode 100644
index 00000000000000..78dcf82bbd1058
Binary files /dev/null and b/topics/microbiome/tutorials/visualisation-ampvis/images/upload_biom.png differ
diff --git a/topics/microbiome/tutorials/visualisation-ampvis/tutorial.bib b/topics/microbiome/tutorials/visualisation-ampvis/tutorial.bib
new file mode 100644
index 00000000000000..4e261721a20f4d
--- /dev/null
+++ b/topics/microbiome/tutorials/visualisation-ampvis/tutorial.bib
@@ -0,0 +1,72 @@
+
+# This is the bibliography file for your tutorial.
+#
+# To add bibliography (bibtex) entries here, follow these steps:
+# 1) Find the DOI for the article you want to cite
+# 2) Go to https://doi2bib.org and fill in the DOI
+# 3) Copy the resulting bibtex entry into this file
+#
+# To cite the example below, in your tutorial.md file
+# use {% cite Batut2018 %}
+#
+# If you want to cite an online resourse (website etc)
+# you can use the 'online' format (see below)
+#
+# You can remove the examples below
+
+@article{Andersen2018,
+ title = {ampvis2: an R package to analyse and visualise 16S rRNA amplicon data},
+ url = {http://dx.doi.org/10.1101/299537},
+ DOI = {10.1101/299537},
+ publisher = {Cold Spring Harbor Laboratory},
+ author = {Andersen, Kasper S. and Kirkegaard, Rasmus H. and Karst, Søren M. and Albertsen, Mads},
+ year = {2018},
+ month = apr
+}
+
+@online{ampvis-intro,
+ author = {Kasper Skytte Andersen},
+ title = {Introduction to ampvis2},
+ url = {https://kasperskytte.github.io/ampvis2/articles/ampvis2.html#heatmap},
+ urldate = {2024-06-11}
+}
+
+@article{DeGooijer2006,
+ title = {25 years of time series forecasting},
+ volume = {22},
+ ISSN = {0169-2070},
+ url = {http://dx.doi.org/10.1016/j.ijforecast.2006.01.001},
+ DOI = {10.1016/j.ijforecast.2006.01.001},
+ number = {3},
+ journal = {International Journal of Forecasting},
+ publisher = {Elsevier BV},
+ author = {De Gooijer, Jan G. and Hyndman, Rob J.},
+ year = {2006},
+ month = jan,
+ pages = {443–473}
+}
+
+@article{Gotelli2001,
+ title = {Quantifying biodiversity: procedures and pitfalls in the measurement and comparison of species richness},
+ volume = {4},
+ ISSN = {1461-0248},
+ url = {http://dx.doi.org/10.1046/j.1461-0248.2001.00230.x},
+ DOI = {10.1046/j.1461-0248.2001.00230.x},
+ number = {4},
+ journal = {Ecology Letters},
+ publisher = {Wiley},
+ author = {Gotelli, Nicholas J. and Colwell, Robert K.},
+ year = {2001},
+ month = jul,
+ pages = {379–391}
+}
+
+@article{Dueholm2019,
+ title = {Generation of comprehensive ecosystems-specific reference databases with species-level resolution by high-throughput full-length 16S rRNA gene sequencing and automated taxonomy assignment (AutoTax)},
+ url = {http://dx.doi.org/10.1101/672873},
+ DOI = {10.1101/672873},
+ publisher = {Cold Spring Harbor Laboratory},
+ author = {Dueholm, Morten Simonsen and Andersen, Kasper Skytte and McIlroy, Simon Jon and Kristensen, Jannie Munk and Yashiro, Erika and Karst, Søren Michael and Albertsen, Mads and Nielsen, Per Halkjær},
+ year = {2019},
+ month = jun
+}
\ No newline at end of file
diff --git a/topics/microbiome/tutorials/visualisation-ampvis/tutorial.md b/topics/microbiome/tutorials/visualisation-ampvis/tutorial.md
new file mode 100644
index 00000000000000..e1e8d0ebd39a61
--- /dev/null
+++ b/topics/microbiome/tutorials/visualisation-ampvis/tutorial.md
@@ -0,0 +1,987 @@
+---
+layout: tutorial_hands_on
+
+
+title: Divers and Adaptable Visualisations of Metabarcoding Data Using ampvis2
+level: Intermediate
+zenodo_link: https://zenodo.org/records/12591715
+zenodo_link2: "https://zenodo.org/records/10362755"
+questions:
+- How can the plots be adapted to suit the research data?
+- How can the data be filtered to show only significant information?
+- How can multiple visualisation methods be compared?
+- How can numerical and categorical metadata be used for amplicon visualisation?
+objectives:
+- Use heatmap workflow to analyse and visualise amplicon data
+- Use ungrouped or grouped data or grouped data with facets
+- Use ordination plot, or boxplot, or rarefaction curve, or timeseries
+time_estimation: 2H
+key_points:
+- Using various visualisation methods can present data from different perspectives
+- With sufficient metadata, the data can be visualised in relation to different groups and facets
+contributors:
+- lenaarenot
+- paulzierep
+
+---
+
+
+
+
+Microbiome analysis using amplicon sequencing is central to many ecological studies {% cite Andersen2018 %}.
+This method is crucial for identifying microorganisms within an ecosystem or engineered system, as understanding which
+microorganisms are present is key to comprehending the communities and their functions. After sequencing, the amplicons
+can be processed as exact amplicon sequence variants (ASVs) or clustered into operational taxonomic units (OTUs) based on
+sequence identity {% cite Dueholm2019 %}.
+
+Visualising amplicon data is essential for interpreting the complex relationships within microbial communities. It allows
+researchers to explore patterns of diversity, abundance, and ecological interactions. Various tools can be used for this purpose,
+such as FISH-based visualisation (fluorescence in situ hybridisation), Usearch for mapping sequences, or R for analysis and
+visualisation with packages like ggplot2. Among these tools, ampvis2 stands out for its ability to handle large datasets and
+provide a range of visualisation options tailored to microbial ecology, making it a wide-ranging choice for many researchers {% cite Dueholm2019 %}.
+
+If amplicon data and an OTU table have already been generated, the data are ready for visualisation. This tutorial can be followed
+either by using your own data or by downloading the dataset used here to proceed step-by-step.
+
+These OTU tables can be generated using various tools on Galaxy:
+> Generate OTU or ASV table with one of this tools
+>
+> 1. Use one of this mothur tools: {% tool [Cluster](toolshed.g2.bx.psu.edu%2Frepos%2Fiuc%2Fmothur_cluster%2Fmothur_cluster%2F1.39.5.0) %} or {% tool [Hcluster](toolshed.g2.bx.psu.edu%2Frepos%2Fiuc%2Fmothur_hcluster%2Fmothur_hcluster%2F1.36.1.0&version=latest) %}
+>
+> 2. {% tool [LotuS2](toolshed.g2.bx.psu.edu/repos/earlhaminst/lotus2/lotus2/2.32+galaxy0) %}
+>
+> 3. {% tool [qiime2 fragment-insertion classify-otus-experimental](toolshed.g2.bx.psu.edu%2Frepos%2Fq2d2%2Fqiime2__fragment_insertion__classify_otus_experimental%2Fqiime2__fragment_insertion__classify_otus_experimental%2F2024.5.0%2Bq2galaxy.2024.5.0&version=latest) %}
+>
+> >
+> > Alternatively, you can generate an ASV table, which functions similarly to an OTU table and is also accepted in ampvis_load.
+> >
+> > ASVs, with their higher phylogenetic resolution, are often preferred over OTUs because they provide sub-genus and sub-species
+ classification. However, without taxonomic assignment, ASVs are difficult to compare with other studies. Additionally,
+ linking microbial identity to functions using ASVs may not yield sufficient results. {% cite Dueholm2019 %}.
+> {: .comment}
+>
+> 4. {% tool [dada2: makeSequenceTable](toolshed.g2.bx.psu.edu%2Frepos%2Fiuc%2Fdada2_makesequencetable%2Fdada2_makeSequenceTable%2F1.30.0%2Bgalaxy0&version=latest) %}
+>
+> >
+> > The Galaxy Training Network provides nice tutorials on this topic, such as [Building an amplicon sequence variant (ASV) table from 16S data using DADA2](https://training.galaxyproject.org/training-material/topics/microbiome/tutorials/dada-16S/tutorial.html)
+> {: .comment}
+>
+> 5. Additionally, you can use abundance tables generated by tools like [Kraken2](https://training.galaxyproject.org/training-material/topics/microbiome/tutorials/dada-16S/tutorial.html)
+ and [MetaPhlAn](https://training.galaxyproject.org/training-material/topics/microbiome/tutorials/taxonomic-profiling/tutorial.html)
+ for visualisation in ampvis2, instead of OTU tables. These abundance tables provide an alternative approach for microbial analysis.
+>
+{: .tip}
+
+# Plotting options with ampvis2
+First of all you can put your data into
+- {% tool [rarefaction curve](toolshed.g2.bx.psu.edu/repos/iuc/ampvis2_rarecurve/ampvis2_rarecurve/2.8.9+galaxy0) %}
+
+to explore species richness. Then you can input your data into {% tool [subsets](toolshed.g2.bx.psu.edu/repos/iuc/ampvis2_subset_samples/ampvis2_subset_samples/2.8.9+galaxy0) %} and finally create:
+- {% tool [heatmap](toolshed.g2.bx.psu.edu/repos/iuc/ampvis2_heatmap/ampvis2_heatmap/2.8.9+galaxy0) %}
+- {% tool [boxplot](toolshed.g2.bx.psu.edu/repos/iuc/ampvis2_boxplot/ampvis2_boxplot/2.8.9+galaxy0) %}
+- {% tool [ordination plot](toolshed.g2.bx.psu.edu/repos/iuc/ampvis2_ordinate/ampvis2_ordinate/2.8.9+galaxy0) %}
+- {% tool [timeseries plot](toolshed.g2.bx.psu.edu/repos/iuc/ampvis2_timeseries/ampvis2_timeseries/2.8.9+galaxy0) %}
+
+Most of these visualisation methods are described in
+[Introduction to ampvis2](https://kasperskytte.github.io/ampvis2/articles/ampvis2.html#heatmap).
+![overview of visualisation methods](./images/overview.png
+"Overview of posible visualisation methods (taken from: Introduction to ampvis2 by Kasper Skytte Andersen)")
+
+Your data need to be in an acceptable format for the ampvis_load tool. The tool
+requires an OTU table and accepts the following formats:
+- _phyloseq_
+- _biom_
+- _dada2_sequencetable_
+- _tabular_
+
+The OTU table is the only mandatory input for ampvis_load, but you can also input:
+- _sample_metadata_ (in _tabular_ or _tsv_ formats)
+- _taxonomy_table_ (in _tabular_ format)
+- _fasta_file_ (in _fasta_ format)
+- _phylogenetic_tree_ (in _newick_ format)
+- as well as various combinations thereof.
+
+>
+> - If you work without taxonomy table, ampvis wouldn't be able to visualise taxonomy hierarchy and other options might be missing
+{: .comment}
+
+## Upload .biom file; create a phyloseq file
+
+* Both biom and phyloseq files are mentioned here for completeness
+
+* Either biom or phyloseq files can be used as input for all of the visualisation methods presented in this tutorial (though not demonstrated in this tutorial)
+
+* Use your own biom dataset or select one online, and upload it to Galaxy (as described in **Use Case 1**)
+
+> How the Upload should look like
+>
+> Make sure to select "biom2" instead of "Auto-detect".
+>
+> ![Select biom](./images/upload_biom.png "Make sure to select "biom2" like shown on the picture")
+>
+{: .details}
+
+* You can create a phylosec object using these tools:
+
+> Create phyloseq
+>
+> 1. {% tool [Create phyloseq object](toolshed.g2.bx.psu.edu/repos/iuc/phyloseq_from_biom/phyloseq_from_biom/1.46.0+galaxy0) %} with the following parameters:
+> - {% icon param-file %} *"BIOM file"*: `output` (Input dataset)
+>
+> 2. {% tool [ampvis2 load](toolshed.g2.bx.psu.edu/repos/iuc/ampvis2_load/ampvis2_load/2.8.6+galaxy1) %} with the following parameters:
+> - {% icon param-file %} *"OTU table"*: `output` (output of **Create phyloseq object** {% icon tool %})
+>
+{: .hands_on}
+
+
+In this tutorial all visualisations are demonstrated by using a combination of 3 inputs:
+OTU table, sample metadata and taxonomy table, all in _tabular_ format.
+
+
+>
+>
+> In this tutorial, the following topics will be covered:
+>
+> 1. TOC
+> {:toc}
+>
+{: .agenda}
+
+This tutorial has 2 versions:
+- A short version, running prebuilt workflows
+- A long version, going step-by-step
+
+{% include _includes/cyoa-choices.html option1="Short Version" option2="Long Version" default="Short-Version" %}
+
+# Use Case 1: Load your own data and create a Rarefaction Curve
+
+As first exploration of your data, you can start with rarefaction curve.
+Rarefaction curves are a refined version of accumulation curves. They help visualise
+the number of species (species richness) in your samples by showing the average number
+of species observed as more samples are added. This method pools all the samples
+together and calculates the mean species richness for different sample sizes, resulting
+in a smooth curve. Rarefaction curves are particularly useful for comparing different datasets,
+as they provide a standard way to assess species richness regardless of sample size differences {% cite Gotelli2001 %}.
+>
+> - For this part 'raw' data is required; it should not be normalised
+> - A different dataset was used for this section compared to the rest of the tutorial
+{: .comment}
+
+## Get Data
+If you don't use your own dataset, you can also go to **Zenodo** and find a dataset to download.
+We looked for a dataset marked "open" and used the following:
+
+> Data Upload
+>
+> 1. Create a new history for this tutorial
+> 2. Import the files from [Zenodo]({{ page.zenodo_link2 }}) or a data library:
+> ```text
+> {{ page.zenodo_link2 }}/files/BIOMARCS_ASV_tables.xlsx
+> ```
+>
+> {% snippet faqs/galaxy/datasets_import_via_link.md %}
+>
+> {% snippet faqs/galaxy/datasets_import_from_data_library.md %}
+>
+> 3. Rename the datasets
+> 4. Check that the datatype
+>
+> {% snippet faqs/galaxy/datasets_change_datatype.md datatype="datatypes" %}
+>
+> 5. Add to each database a tag corresponding to ...
+>
+> {% snippet faqs/galaxy/datasets_add_tag.md %}
+>
+{: .hands_on}
+
+There are 2 datasets available: **"V4-18S"** and **"COI"**, with **"COI"** being used here.
+
+### Sub-step: Generate **Uploadable Datasets from Downloaded Excel Sheet**
+All data (OTU, metadata and tax table) that needs to be uploaded to Galaxy separately is combined in one excel sheet and looks like this...
+![data to separate](./images/all_data.png
+"OTU, metadata and tax table is combined in one sheet and needs to be separated")
+
+> Generate separated datasets for Galaxy upload
+>
+> 1. For OTU table:
+> - Keep the sample names in the first row
+> - Keep the asv+number in the first column
+> - The first cell (A1) needs to reed ASV or OTU
+>
+> > Attention!
+> >
+> > Make sure sample names have no blank spaces
+> {: .comment}
+>
+> > How it will look like
+> >
+> > After separeting OTUs from the main data sheet it will look like this...
+> >
+> >![separated OTU table](./images/otu.png "Separated OTU table")
+> {: .details}
+>
+> 2. For metadata table:
+> - Copy the metadata (marked in blue) and the sample names to a new sheet
+>
+> > How it will look like
+> >
+> > The copied set of metadata will look like this...
+> >
+> >![copied metadata](./images/meta_row.png "Copied set of metadata")
+> {: .details}
+>
+> - Transpose the dataset and copy to a new sheet
+> - Remove blank spaces from sample names
+>
+> > How it will look like
+> >
+> > The transposed set of metadata will look like this...
+> >
+> >![transposed metadata](./images/meta.png "Transposed metadata")
+> {: .details}
+>
+> 3. For tax table:
+> - Keep the asv+number in the first column
+> - Keep the last column "lineage"
+> - Split the "lineage"-column by the delimeter __semicolon__
+> - Give all columns a name
+>
+> > How it will look like
+> >
+> > After separeting the taxa into diferent columns and renaming, it will look like this...
+> >
+> >![separated and renamed tax table](./images/taxa.png "Separated and renamed tax table")
+> {: .details}
+>
+> 4. Save all 3 data sheets separately
+>
+> 5. Convert to tsv format
+> - Use any free available tool online to convert xlsx to tsv
+>
+{: .hands_on}
+
+
+>
+>
+> 1. Why do you need to ensure that sample names have no blank spaces in the OTU table?
+> 2. Why don't you use the metadata in its original untransposed form?
+>
+> >
+> >
+> > 1. Many bioinformatics tools assume that sample names are continuous strings, and spaces can be
+interpreted as delimiters or end-of-string characters, leading to incorrect data parsing or analysis failures.
+> > 2. You need the sample names as a column. Bioinformatics tools expect the metadata to be organised such that
+each metadata attribute has its own column.
+> >
+> {: .solution}
+>
+{: .question}
+
+## Rarefaction Curve
+You can generate the rarefaction curve directly using the ampvis_load tool, or you can do so with subsets.
+Subsets allow you to filter the data, focusing on specific parts that are relevant to a particular research question.
+
+Follow this workflow to create a rarefaction curve directly from ampvis_load.
+
+> Create a rarefaction curve
+>
+> 1. **Import the workflow** into Galaxy
+> - Copy the URL (e.g. via right-click) of [this workflow]({{ site.baseurl }}{{ page.dir }}workflows/ampvis2_rarefaction_v1.0.ga) or download it to your computer
+> - Import the workflow into Galaxy
+>
+> {% snippet faqs/galaxy/workflows_import.md %}
+>
+> 2. Run **Workflow: (without subsempling)** {% icon workflow %} using the following parameters
+> - *"Step size"*: `5`
+> - *"Color curves by"*: `sample_id`
+> - *"Scales of the facets"*: `Free scale`
+>
+> {% snippet faqs/galaxy/workflows_run.md %}
+>
+{: .hands_on}
+
+
+
+> Rarefaction curve workflow steps
+>
+> 1. {% tool [ampvis2 load](toolshed.g2.bx.psu.edu/repos/iuc/ampvis2_load/ampvis2_load/2.8.6+galaxy1) %} with the following parameters:
+> - {% icon param-file %} *"OTU table"*: `output` (Input dataset)
+> - {% icon param-file %} *"Sample metadata"*: `output` (Input dataset)
+> - {% icon param-file %} *"Taxonomy table"*: `output` (Input dataset)
+>
+> 2. {% tool [ampvis2 rarefaction curve](toolshed.g2.bx.psu.edu/repos/iuc/ampvis2_rarecurve/ampvis2_rarecurve/2.8.6+galaxy1) %} with the following parameters:
+> - {% icon param-file %} *"Ampvis2 RDS dataset"*: `ampvis` (output of **ampvis2 load** {% icon tool %})
+> - {% icon param-file %} *"Metadata list"*: `metadata_list_out` (output of **ampvis2 load** {% icon tool %})
+> - *"Step size"*: `5`
+> - *"Color curves by"*: `sample_id`
+> - *"Scales of the facets"*: `Free scale`
+>
+{: .hands_on}
+
+
+Unfortunately multiple parameter selection is not possible at the time of the publication of this tutorial and
+the workflow can not be prepared and and executed all at once. Therefore, both tools, **ampvis load** and **ampvis subset samples**,
+must be run first before proceeding with the remaining workflow that includes the visualisation tools.
+
+### **ampvis2 load**
+
+> Create ampvis2_load datasets
+>
+> Run {% tool [ampvis2 load](toolshed.g2.bx.psu.edu/repos/iuc/ampvis2_load/ampvis2_load/2.8.9+galaxy0) %}
+>
+{: .hands_on}
+
+
+
+> Create ampvis2_load datasets
+>
+> 1. {% tool [ampvis2 load](toolshed.g2.bx.psu.edu/repos/iuc/ampvis2_load/ampvis2_load/2.8.6+galaxy1) %} with the following parameters:
+> - {% icon param-file %} *"OTU table"*: `output` (Input dataset)
+> - {% icon param-file %} *"Sample metadata"*: `output` (Input dataset)
+> - {% icon param-file %} *"Taxonomy table"*: `output` (Input dataset)
+>
+{: .hands_on}
+
+
+You will need the output of **ampvis2 load** as input for **ampvis2 subset samples**.
+
+### **ampvis2 subset samples**
+
+> Create subsamples datasets
+>
+> Run {% tool [ampvis2 subset samples](toolshed.g2.bx.psu.edu/repos/iuc/ampvis2_subset_samples/ampvis2_subset_samples/2.8.9+galaxy0) %} using the following parameters
+> - *"Metadata variable"*: `sample_id`
+> - *"Metadata value(s)"*: `COI-B1b COI-B2a COI-B3 COI-B4 COI-B5 COI-B6 COI-B7 COI-B8 COI-B9 COI-B10 COI-B11 COI-B12 COI-B13 COI-B14 COI-B15 COI-B16 COI-B17 COI-B18 COI-B19 COI-B20 COI-B21 COI-B22 COI-B23`
+>
+{: .hands_on}
+
+
+
+> Create subsamples datasets
+>
+> 1. {% tool [ampvis2 subset samples](toolshed.g2.bx.psu.edu/repos/iuc/ampvis2_subset_samples/ampvis2_subset_samples/2.8.6+galaxy1) %} with the following parameters:
+> - {% icon param-file %} *"Ampvis2 RDS dataset"*: `output` (Input dataset)
+> - {% icon param-file %} *"Metadata list"*: `output` (Input dataset)
+> - *"Metadata variable"*: `sample_id`
+> - *"Metadata value(s)"*: `COI-B1b COI-B2a COI-B3 COI-B4 COI-B5 COI-B6 COI-B7 COI-B8 COI-B9 COI-B10 COI-B11 COI-B12 COI-B13 COI-B14 COI-B15 COI-B16 COI-B17 COI-B18 COI-B19 COI-B20 COI-B21 COI-B22 COI-B23`
+>
+{: .hands_on}
+
+
+Now you can use the output of **ampvis2 subset samples** as input for the rarefaction curve.
+
+> Select the right dataset to continue
+>
+> If you are not sure how to select the right datasets, you can scroll down to use case 2, find the details box with the same name as this one
+and look at the picture how it was selected there.
+>
+{: .details}
+
+
+> Create a rarefaction curve
+>
+> Run {% tool [ampvis2 rarefaction curve](toolshed.g2.bx.psu.edu/repos/iuc/ampvis2_rarecurve/ampvis2_rarecurve/2.8.9+galaxy0) %}
+>
+{: .hands_on}
+
+
+
+> Rarefaction curve workflow steps
+>
+> 1. {% tool [ampvis2 rarefaction curve](toolshed.g2.bx.psu.edu/repos/iuc/ampvis2_rarecurve/ampvis2_rarecurve/2.8.6+galaxy1) %} with the following parameters:
+> - {% icon param-file %} *"Ampvis2 RDS dataset"*: `ampvis` (output of **ampvis2 subset samples** {% icon tool %})
+> - {% icon param-file %} *"Metadata list"*: `metadata_list_out` (output of **ampvis2 subset samples** {% icon tool %})
+> - *"Step size"*: `5`
+> - *"Color curves by"*: `sample_id`
+> - *"Scales of the facets"*: `Free scale`
+>
+{: .hands_on}
+
+
+> How it will look like
+>
+> The result of the rarefaction curve indicates that the sample __"COI-B2b"__ has the highest richness, with over 150 observed OTUs,
+whereas the other samples have fewer than 50 observed OTUs.
+>
+>![Result of the rarefaction curve](./images/rarefaction.png "Result of the rarefaction curve")
+{: .details}
+
+>
+>
+> 1. If you run the workflow with subset on Galaxy and use the following metadata for the subset:
+ metadata variable = sample_id and metadata values = (select all possible samples).
+ What is the difference from the rarefaction curve you generated in the workflow without subsets?
+> 2. If you consider the output of the rarefaction curve before, one sample has a high curve and the rest are close to each other.
+ Can you make the rest more "visible"?
+>
+> >
+> >
+> > 1. There is no difference;, it's the same output
+> > 2. Yes, if you run the workflow (with subsets) and select all samples except of __"COI-B2b"__
+> >
+> > > How it will look like
+> > >
+> > > Result of this rarefaction curve.
+> > >
+> > >![Result of this rarefaction curve](./images/rarefaction_without.png "Result of the rarefaction curve without "COI-B2b" ")
+> > >
+> > {: .details}
+> >
+> {: .solution}
+>
+{: .question}
+
+# Use Case 2: Heatmap, Ordination Plot or Boxploot
+
+To create a heatmap, ordination plot, or boxplot you can continue with your dataset or use the same as shown in the next sections.
+
+>
+> - In this section normalised data are used and a different dataset than for the rarefaction curve, as this dataset has more metadata
+> - However, this normalised data cannot be use for rarefaction analysis, which requires raw data. Rarefaction analysis
+examines the distribution of sequencing depth across samples by counting the number of observed species or OTUs.
+Normalised data loses information about the original sequencing depth, making it impossible to accurately evaluate species richness.
+{: .comment}
+
+## Get Data
+
+> Data Upload
+>
+> Import the files from [Zenodo]({{ page.zenodo_link }}) or a data library:
+>
+> ```text
+> {{ page.zenodo_link }}/files/MiDAS_otushort_table.tsv
+> {{ page.zenodo_link }}/files/MiDAS_metadata.tsv
+> {{ page.zenodo_link }}/files/MiDAS_taxtable.tsv
+> ```
+>
+{: .hands_on}
+
+![Running the workflow](./images/choose_parameters.png "Running the workflow, choose the right datasets and mandatory parameters")
+
+## Create datasets
+First you will need to run these 2 tools ampvis2_load and after that ampvis2_subset. Here is how to run the tools:
+### **ampvis2 load**
+
+> Create ampvis2_load datasets
+>
+> Run {% tool [ampvis2 load](toolshed.g2.bx.psu.edu/repos/iuc/ampvis2_load/ampvis2_load/2.8.9+galaxy0) %}
+>
+{: .hands_on}
+
+
+
+> Create ampvis2_load datasets
+>
+> 1. {% tool [ampvis2 load](toolshed.g2.bx.psu.edu/repos/iuc/ampvis2_load/ampvis2_load/2.8.6+galaxy1) %} with the following parameters:
+> - {% icon param-file %} *"OTU table"*: `output` (Input dataset)
+> - {% icon param-file %} *"Sample metadata"*: `output` (Input dataset)
+> - {% icon param-file %} *"Taxonomy table"*: `output` (Input dataset)
+>
+{: .hands_on}
+
+
+You will need the output of **ampvis2 load** as input for **ampvis2 subset samples**.
+
+### **ampvis2 subset samples**
+
+> Create subsamples datasets
+>
+> Run {% tool [ampvis2 subset samples](toolshed.g2.bx.psu.edu/repos/iuc/ampvis2_subset_samples/ampvis2_subset_samples/2.8.9+galaxy0) %} using the following parameters
+> - *"Metadata variable"*: `Plant`
+> - *"Metadata value(s)"*: `Aalborg East & Aalborg West`
+>
+{: .hands_on}
+
+
+
+> Create subsamples datasets
+>
+> 1. {% tool [ampvis2 subset samples](toolshed.g2.bx.psu.edu/repos/iuc/ampvis2_subset_samples/ampvis2_subset_samples/2.8.6+galaxy1) %} with the following parameters:
+> - {% icon param-file %} *"Ampvis2 RDS dataset"*: `output` (Input dataset)
+> - {% icon param-file %} *"Metadata list"*: `output` (Input dataset)
+> - *"Metadata variable"*: `Plant`
+> - *"Metadata value(s)"*: `Aalborg East & Aalborg West`
+>
+{: .hands_on}
+
+
+Now you can use the output of **ampvis2 subset samples** as input for the rest of use case 2 and for use case 3.
+
+> Select the right dataset to continue
+>
+> Select the datasets from **ampvis2 subset samples** output. Also you will need to select parameters to group (and facet)
+the heatmaps. You will find these parameters listed under the corresponding heatmap sections.
+>
+>![select dataset](./images/select_datasets.png "Select the datasets from **ampvis2 subset samples** output")
+>
+{: .details}
+
+## Heatmaps
+Heatmaps show relationships between 2 variables ploted on 2 axis and colour intensity representing the abundance of taxa in
+relation to what it was ploted to, like sample, specific plant or year ([A complete guide to heatmaps](https://www.atlassian.com/data/charts/heatmap-complete-guide)).
+
+Now, the data can be used to create subsets and generate ungrouped or grouped outputs, including those with facets.
+The subsets are based on variables that are define and are available in the metadata {% cite Andersen2018 %}.
+
+### Heatmap (ungrouped)
+Follow this workflow to create a simple heatmap without grouping or faceting data.
+
+> Create a simple heatmap
+>
+> Import and Run [this workflow]({{ site.baseurl }}{{ page.dir }}workflows/ampvis2_heatmap__ordination__boxplot.ga) {% icon workflow %}
+>
+{: .hands_on}
+
+
+
+> Create a simple heatmap
+>
+> 1. {% tool [ampvis2 heatmap](toolshed.g2.bx.psu.edu/repos/iuc/ampvis2_heatmap/ampvis2_heatmap/2.8.6+galaxy1) %} with the following parameters:
+> - {% icon param-file %} *"Ampvis2 RDS dataset"*: `output` (Input dataset)
+> - {% icon param-file %} *"Metadata list"*: `output` (Input dataset)
+> - *"The taxonomic level to aggregate the OTUs"*: `Phylum`
+> - *"Limit the number of shown taxa"*: `Select a number of taxa to show`
+> - *"Plot the values on the heatmap"*: `Yes`
+> - *"Color missing values with the lowest color in the scale"*: `Yes`
+> - *"Sort heatmap by most abundant taxa"*: `No`
+> - *"Show functional information about the Genus-level OTUs"*: `No`
+>
+{: .hands_on}
+
+
+> How it will look like
+>
+> Heatmap showing ungrouped data, where each sample is plotted against the identified Phyla.
+The colour intensity represents the abundance of each Phylum within the samples. The last line shows the remaining taxa.
+>
+>![Result of the heatmap](./images/heatmap_no_group_new.png "Result of the heatmap")
+>
+> >
+> >
+> > Difault pdf output is generating a compressed picture, to make it more visible click on heatmap, go to "output optionts"
+ open it and input a different plot width or height.
+> >
+> {: .comment}
+>
+>![Result of the heatmap with 20 cm plot width](./images/heatmap_no_group_total.png "Result of the heatmap with 20 cm plot width")
+{: .details}
+
+> Play around with options of output
+>
+> * Choose a different **The taxonomic level to aggregate the OTUs**, in the Tutorial **Phylum** was used, but you might have different preferences
+> * Use **Additional taxonomic level(s) to display** to show more taxa on the plot
+> * Select **Plot the values on the heatmap** as **No** to generate a legend for the heatmap, or as **YES** to have the values insede the heatmap
+> * Set **Display sum of remaining taxa** to **YES** to have the sum as last row on your plot
+>
+{: .tip}
+
+### Heatmap (grouped)
+Subsampling is used to standardise the dataset by reducing it to a manageable size, often resulting in the removal of rare taxa.
+Grouping involves aggregating data based on specific criteria, which simplifies the heatmap by reducing complexity and noise.
+As a result, the community structure of the microbiome becomes clearer and easier to interpret.
+
+We used 2 different subsets of metadata to focus on specific aspects of the data:
+- 1) **Plant-based subset**: In this subset, the metadata variable chosen was Plant, with the metadata values being
+Aalborg East and Aalborg West. This subset focuses on comparing the two different plant locations. The data were
+grouped according to the variable Plant, which allows us to examine how the microbial communities differ between these two locations
+- 2) **Seasonal subset**: The second subset focused on the Period variable, with the metadata values being Winter and Summer.
+This subset was grouped by Year and aims to explore how microbial communities vary between the two seasons
+
+Follow this workflow to create a heatmap by grouping the data.
+
+> Create a heatmap by grouping the data
+>
+> Import and Run [this workflow]({{ site.baseurl }}{{ page.dir }}workflows/ampvis2_heatmap__ordination__boxplot.ga) {% icon workflow %} using the following parameters
+> - *"Group samples"*: `Plant` (Option 1) or
+> - *"Group samples"*: `Year` (Option 2)
+>
+{: .hands_on}
+
+
+
+
+> Create a heatmap by grouping the data
+>
+> 1. {% tool [ampvis2 heatmap](toolshed.g2.bx.psu.edu/repos/iuc/ampvis2_heatmap/ampvis2_heatmap/2.8.6+galaxy1) %} with the following parameters:
+> - {% icon param-file %} *"Ampvis2 RDS dataset"*: `output` (Input dataset)
+> - {% icon param-file %} *"Metadata list"*: `output` (Input dataset)
+> - *"Group samples"*: `Plant` (Option 1) or `Year` (Option 2)
+> - *"The taxonomic level to aggregate the OTUs"*: `Phylum`
+> - *"Limit the number of shown taxa"*: `Select a number of taxa to show`
+> - *"Plot the values on the heatmap"*: `Yes`
+> - *"Color missing values with the lowest color in the scale"*: `Yes`
+> - *"Sort heatmap by most abundant taxa"*: `No`
+> - *"Show functional information about the Genus-level OTUs"*: `No`
+>
+{: .hands_on}
+
+
+> How it will look like
+>
+> Result of the first metadata subset heatmap created with grouped by Plant data. To see the difference, one is ploted with
+values inside the heatmap itself and the other with a legend instead.
+>
+>![Result of the heatmap](./images/heatmap_gr_by_plant.png "Result of the heatmap created with grouped by _Plant_ with values inside the heatmap")
+>
+>![Result of the heatmap](./images/heatmap_gr_by_plant_new.png "Result of the heatmap created with grouped by _Plant_ with a legend")
+>
+> Result of the second metadata subset heatmap created with grouped by Year data.
+>
+>![Result of the heatmap](./images/heatmap_gr_by_year.png "Result of the heatmap created with grouped by _Year_" and also showing additional taxa")
+{: .details}
+
+>
+>
+> 1. Can you create a heatmap that shows only the first and the last year of data collection?
+> 2. Can you create a heatmap using the following settings: metadata variable = Year and
+ metadata value = Date plus grouped by = Year?
+>
+> >
+> >
+> > 1. Yes, with the following settings: metadata variable = Year,
+ metadata values = 2006 & 2015, grouped by = Year
+> > 2. No, the metadata values must correspond to the metadata variable options
+> >
+> {: .solution}
+>
+{: .question}
+
+### Heatmap (grouped with facets)
+We used 2 different metadata subsets:
+- 1) Metadata used for this subset: metadata variable = Plant, metadata values = Aalborg East & Aalborg West,
+ grouped by = Plant, facet by = Period
+- 2) Metadata used for this subset: metadata variable = Period, metadata values = Winter & Summer,
+ grouped by = Year, facet by = Period
+
+Follow this workflow to create a heatmap by grouping and faceting the data.
+
+> Create a heatmap by grouping and faceting the data
+>
+> Import and Run [this workflow]({{ site.baseurl }}{{ page.dir }}workflows/ampvis2_heatmap__ordination__boxplot.ga) {% icon workflow %} using the following parameters
+> - *"Group samples"*: `Plant` (Option 1) or `Year` (Option 2)
+> - *"Facet the samples"*: `Period`
+>
+{: .hands_on}
+
+
+
+
+> Create a heatmap by grouping and faceting the data
+>
+> 1. {% tool [ampvis2 heatmap](toolshed.g2.bx.psu.edu/repos/iuc/ampvis2_heatmap/ampvis2_heatmap/2.8.6+galaxy1) %} with the following parameters:
+> - {% icon param-file %} *"Ampvis2 RDS dataset"*: `output` (Input dataset)
+> - {% icon param-file %} *"Metadata list"*: `output` (Input dataset)
+> - *"Group samples"*: `Plant` (Option 1) or `Year` (Option 2)
+> - *"Facet the samples"*: `Period`
+> - *"The taxonomic level to aggregate the OTUs"*: `Phylum`
+> - *"Limit the number of shown taxa"*: `Select a number of taxa to show`
+> - *"Plot the values on the heatmap"*: `Yes`
+> - *"Color missing values with the lowest color in the scale"*: `Yes`
+> - *"Sort heatmap by most abundant taxa"*: `No`
+> - *"Show functional information about the Genus-level OTUs"*: `No`
+>
+{: .hands_on}
+
+
+> How it will look like
+>
+> Result of the first metadata subset heatmap created with grouped by Plant data and facet by Period.
+>
+>![Result of the heatmap](./images/heatmap_plant_period.png "Result of the heatmap created with grouped by _Plant_ and facet by _Period_ ")
+>
+> Result of the second metadata subset heatmap created with grouped by Year data and facet by Period.
+>
+>![Result of the heatmap](./images/heatmap_year_period_new.png "Result of the heatmap created with grouped by _Year_ and facet by _Period_ ")
+>
+{: .details}
+
+## Ordination Plots
+Ordination techniques are needed to plot a multidimensional dataset onto a lower-dimensional space. In ecological datasets, similar
+samples and species are plotted close to each other, while dissimilar samples and species will be found far apart. The dimensions
+on the ordination plot represent enviromental gradients and describe the relationship between species patterns and environmental
+gradient ([Introduction to ordination](https://ourcodingclub.github.io/tutorials/ordination/)).
+
+We can now use our data, generate subsets, and create different plots by applying various ordination methods.
+As with heatmaps, the subsets are based on variables that are defined and are available in the metadata {% cite Andersen2018 %}.
+
+
+### Ordination Method: PCA
+PCA (Principal Component Analysis) is an unconstrained ordination technique and a common reduction technique to linear dimensionality
+([MDAnalysis User Guide](https://userguide.mdanalysis.org/stable/examples/analysis/reduced_dimensions/pca.html)).
+
+Follow this workflow to create a simple ordination plot.
+
+> Create a simple ordination plot
+>
+> Import and Run [this workflow]({{ site.baseurl }}{{ page.dir }}workflows/ampvis2_heatmap__ordination__boxplot.ga) {% icon workflow %}
+>
+{: .hands_on}
+
+
+
+> Create a simple ordination plot
+>
+> 1. {% tool [ampvis2 ordination plot](toolshed.g2.bx.psu.edu/repos/iuc/ampvis2_ordinate/ampvis2_ordinate/2.8.6+galaxy1) %} with the following parameters:
+> - {% icon param-file %} *"Ampvis2 RDS dataset"*: `output` (Input dataset)
+> - {% icon param-file %} *"Metadata list"*: `output` (Input dataset)
+> - *"Ordination method"*: `(PCA) Principal Components Analysis`
+> - *"Color sample points by"*: `Plant`
+> - *"Label Frame by"*: `Plant`
+> - *"Plot species points"*: `No`
+>
+{: .hands_on}
+
+
+> How it will look like
+>
+> Result of the ordination plot created with the PCA method. Samples and species with the most similarities in the plant
+Aalborg East are closer together on the plot, same for Aalborg West plant.
+>
+>![Result of the ordiantion plot](./images/ordination_pca.png "Result of the ordination plot created with the PCA method")
+{: .details}
+
+### Ordination Method: PCA plus Trajectory
+Using the PCA method, the analysis can be improved by adding a trajectory. This allows the samples
+to be visualised following a path over the time points at which they were collected.
+
+Follow this workflow to create an ordination plot with trajectory.
+
+> Create an ordination plot with trajectory
+>
+> Import and Run [this workflow]({{ site.baseurl }}{{ page.dir }}workflows/ampvis2_heatmap__ordination__boxplot.ga) {% icon workflow %} using the following parameters
+> - *"Make a trajectory between sample points by"*: `Date`
+>
+{: .hands_on}
+
+
+
+> Create an ordination plot with trajectory
+>
+> 1. {% tool [ampvis2 ordination plot](toolshed.g2.bx.psu.edu/repos/iuc/ampvis2_ordinate/ampvis2_ordinate/2.8.6+galaxy1) %} with the following parameters:
+> - {% icon param-file %} *"Ampvis2 RDS dataset"*: `output` (Input dataset)
+> - {% icon param-file %} *"Metadata list"*: `output` (Input dataset)
+> - *"Ordination method"*: `(PCA) Principal Components Analysis`
+> - *"Color sample points by"*: `Plant`
+> - *"Frame the sample points with a polygon by"*: `Plant`
+> - *"Label Frame by"*: `Plant`
+> - *"Make a trajectory between sample points by"*: `Date`
+> - *"Plot species points"*: `No`
+>
+{: .hands_on}
+
+
+> How it will look like
+>
+> Result of the ordination plot created with the PCA method plus using the trajectory date. The points are connected in the order they
+were sampled.
+>
+>![Result of the ordiantion plot](./images/ordination_pca_date.png "Result of the ordination plot created with the PCA method plus using the trajectory date")
+{: .details}
+
+>
+>
+> Does it make sense to run the following settings: metadata variable = Period and metadata values = Winter & Summer?
+>
+> >
+> >
+> > No, you will get a very messy bundle of colours.
+> >
+> {: .solution}
+>
+{: .question}
+
+### Ordination Method: CCA
+CCA (Canonical Correspondance Analysis) is a constrained ordination technique derived form CA (Correspondance Analysis) and is
+prefered for most ecological data. CCA maximises the correlation between samples and species scores ([Ordination Methods](https://ordination.okstate.edu/overview.html)).
+Hellinger transformation is a modified species profile computed from Euclidean distances, organised into a matrix of
+Hellinger distances. Hellinger distances are used to measure clustering or ordination of species abundance ([Ordination](https://www.numericalecology.com/Reprints/Legendre_Ordination_chapter_in_Palaeolimnology_book_2012.pdf)).
+
+Follow this workflow to create an ordination plot with the CCA method and the Hellinger transformation.
+
+> Create an ordination plot with trajectory
+>
+> Import and Run [this workflow]({{ site.baseurl }}{{ page.dir }}workflows/ampvis2_heatmap__ordination__boxplot.ga) {% icon workflow %} using the following parameters
+> - *"Ordination method"*: `(CCA) Canonical Correspondence Analysis (considered the constrained version of CA)`
+> - *"Transforms the abundances before ordination"*: `square root of method = "total" (hellinger)`
+> - *"Constrain analysis by"*: `Period`
+>
+{: .hands_on}
+
+
+
+> Create an ordination plot with transformation
+>
+> 1. {% tool [ampvis2 ordination plot](toolshed.g2.bx.psu.edu/repos/iuc/ampvis2_ordinate/ampvis2_ordinate/2.8.6+galaxy1) %} with the following parameters:
+> - {% icon param-file %} *"Ampvis2 RDS dataset"*: `output` (Input dataset)
+> - {% icon param-file %} *"Metadata list"*: `output` (Input dataset)
+> - *"Ordination method"*: `(CCA) Canonical Correspondence Analysis (considered the constrained version of CA)`
+> - *"Transforms the abundances before ordination"*: `square root of method = "total" (hellinger)`
+> - *"Constrain analysis by"*: `Period`
+> - *"Color sample points by"*: `Period`
+> - *"Shape sample points by"*: `Plant`
+> - *"Frame the sample points with a polygon by"*: `Date`
+> - *"Label Frame by"*: `Period`
+> - *"Plot species points"*: `No`
+>
+{: .hands_on}
+
+
+> How it will look like
+>
+> The result of the ordination plot created using the CCA method and the Hellinger transformation shows the correlation between taxa and
+seasons in the plants Aalborg East and Aalborg West.
+>
+>![Result of the ordiantion plot](./images/ordination_cca_hellinger.png "Result of the ordination plot created with the CCA method and the Hellinger transformation")
+{: .details}
+
+>
+>
+> If you use the CCA ordination method with the following settings: metadata variable = Period and metadata values = Winter & Summer.
+ What do you need to remove from pre-selected parameters to keep the ordination plot stays readable?
+>
+> >
+> >
+> > When you expand the ordination plot set in your history, you see options for colour, shape, frame, and label by. Select colour by _Period_
+and frame by _Period_ and deselect the other mentioned options above, so they read _"Nothing_ _selected"_ .
+> >
+> {: .solution}
+>
+{: .question}
+
+## Boxplot
+Boxplots are used to provide high-level information at a glance and make comparisons between mulpiple groups very easy, as they offer
+general information about data symmetry, skew, variance and outliers ([A complete guide to box plots](https://www.atlassian.com/data/charts/box-plot-complete-guide)).
+
+As with heatmaps, the subsets are based on variables that are defined and are available in the metadata {% cite Andersen2018 %}.
+
+
+> Create a boxplot
+>
+> Import and Run [this workflow]({{ site.baseurl }}{{ page.dir }}workflows/ampvis2_heatmap__ordination__boxplot.ga) {% icon workflow %} using the following parameters
+> - *"Group samples"*: `Period`
+> - *"Limit the number of shown taxa"*: `Select a number of taxa to show`
+> - *"Number of taxa to show"*: `5`
+>
+{: .hands_on}
+
+
+
+> Create a boxplot
+>
+> 1. {% tool [ampvis2 boxplot](toolshed.g2.bx.psu.edu/repos/iuc/ampvis2_boxplot/ampvis2_boxplot/2.8.6+galaxy1) %} with the following parameters:
+> - {% icon param-file %} *"Ampvis2 RDS dataset"*: `output` (Input dataset)
+> - {% icon param-file %} *"Metadata list"*: `output` (Input dataset)
+> - *"Group samples"*: `Period`
+> - *"The taxonomic level to aggregate the OTUs"*: `Phylum`
+> - *"Limit the number of shown taxa"*: `Select a number of taxa to show`
+> - *"Number of taxa to show"*: `5`
+>
+{: .hands_on}
+
+
+> How it will look like
+>
+> Result of the boxplot grouped by Period.
+>
+>![Result of the boxplot](./images/boxplot_period.png "Result of the boxplot grouped by Period")
+{: .details}
+
+> Create a different boxplot
+>
+> * Set metadata variable = Period and metadata values = Summer & Winter
+>
+> > How it will look like
+> >
+> > Result of this boxplot.
+> >
+> > ![Result of the boxplot](./images/boxplot_other.png "Result of this boxplot")
+> >
+> {: .details}
+>
+{: .tip}
+
+>
+>
+> 1. Can you create an output where only odd years are considered?
+> 2. Do you need to change any pre-selected parameter for question 1?
+>
+> >
+> >
+> > 1. Yes, if you set metadata variable = Year and metadata values = 2007, 2009, 2011, 2013, 2015
+> > 2. Yes, set "group the sample" to _Year_
+> >
+> {: .solution}
+>
+{: .question}
+
+# Use Case 3: Time Series Plot
+
+Time series analysis is primarily known for forecasting. A time series can be viewed as
+an example of a random or stochastic process, which can be used to visualise seasonal
+differences {% cite DeGooijer2006 %}.
+
+In the dataset, and with the settings listed below, the temporal evolution of the 3 most common microorganisms in the plants
+Aalborg East and Aalborg West can be observed over the entire data collection period.
+
+## Create a Time Series Plot
+Like in use case 2, you will need the ampvis2_load datasets as well as ampvis2_subset datasets to start of.
+
+So, in the same history where you created heatmaps, ordination plots and boxplots with the **metadata variable**: _Plant_ and
+**metadata value(s)**: _Aalborg_ _East_ & _Aalborg_ _West_ , select the right datasets and follow this workflow to create a time series plot.
+
+
+> Create a boxplot
+>
+> Import and Run [this workflow]({{ site.baseurl }}{{ page.dir }}workflows/ampvis2_timeseries_v1.0.ga) {% icon workflow %} using the following parameters
+> - *"Time variable"*: `Date`
+> - *"Limit the number of shown taxa"*: `Select a number of taxa to show`
+> - *"Number of taxa to show"*: `3`
+>
+{: .hands_on}
+
+
+
+> Create a time series plot
+>
+> 1. {% tool [ampvis2 timeseries plot](toolshed.g2.bx.psu.edu/repos/iuc/ampvis2_timeseries/ampvis2_timeseries/2.8.6+galaxy1) %} with the following parameters:
+> - {% icon param-file %} *"Ampvis2 RDS dataset"*: `output` (Input dataset)
+> - {% icon param-file %} *"Metadata list"*: `output` (Input dataset)
+> - *"Time variable"*: `Date`
+> - *"The taxonomic level to aggregate the OTUs"*: `Phylum`
+> - *"Limit the number of shown taxa"*: `Select a number of taxa to show`
+> - *"Number of taxa to show"*: `3`
+>
+{: .hands_on}
+
+
+
+> How it will look like
+>
+> Result of the time series plot.
+>
+>![Result of the time series plot](./images/timeseries.png "Result of the time series plot")
+{: .details}
+
+>
+>
+> 1. If you run the following settings: metadata variable = Period and metadata values = Winter & Summer.
+ Do you need to change the time variable in the pre-selected parameters?
+> 2. Can you adjust the settings to separate the 3 curves into distinct curves for each period, corresponding to the shown Phylum?
+>
+> >
+> >
+> > 1. No, _Date_ is still the only possible option
+> > 2. Yes, you can separate the curves by expanding the time series set in the history and running it again with "group the sample by" _Period_
+> >
+> {: .solution}
+>
+{: .question}
+
+
+# Conclusion
+This tutorial has equipped you with essential skills for visualising and interpreting microbiome data using ampvis2.
+By exploring diverse visualisation methods and leveraging metadata effectively, you've learned how to gain valuable insights
+from complex datasets. Don't hesitate to explore further in Galaxy's toolbox for additional data manipulation tools and
+continue refining your analysis techniques to enhance your research capabilities.
+
+Happy exploring!
\ No newline at end of file
diff --git a/topics/microbiome/tutorials/visualisation-ampvis/workflows/ampvis2_from_biom_to_phyloseq_.ga b/topics/microbiome/tutorials/visualisation-ampvis/workflows/ampvis2_from_biom_to_phyloseq_.ga
new file mode 100644
index 00000000000000..ff16429be12f7a
--- /dev/null
+++ b/topics/microbiome/tutorials/visualisation-ampvis/workflows/ampvis2_from_biom_to_phyloseq_.ga
@@ -0,0 +1,138 @@
+{
+ "a_galaxy_workflow": "true",
+ "annotation": "",
+ "comments": [],
+ "format-version": "0.1",
+ "name": "ampvis2 from biom to phyloseq ",
+ "steps": {
+ "0": {
+ "annotation": "",
+ "content_id": null,
+ "errors": null,
+ "id": 0,
+ "input_connections": {},
+ "inputs": [
+ {
+ "description": "",
+ "name": "BIOM"
+ }
+ ],
+ "label": "BIOM",
+ "name": "Input dataset",
+ "outputs": [],
+ "position": {
+ "left": 0.0,
+ "top": 94.49999869127782
+ },
+ "tool_id": null,
+ "tool_state": "{\"optional\": false, \"tag\": null}",
+ "tool_version": null,
+ "type": "data_input",
+ "uuid": "69495045-dfea-4bad-9f6c-1000186bcf49",
+ "when": null,
+ "workflow_outputs": []
+ },
+ "1": {
+ "annotation": "",
+ "content_id": "toolshed.g2.bx.psu.edu/repos/iuc/phyloseq_from_biom/phyloseq_from_biom/1.46.0+galaxy0",
+ "errors": null,
+ "id": 1,
+ "input_connections": {
+ "BIOMfilename": {
+ "id": 0,
+ "output_name": "output"
+ }
+ },
+ "inputs": [
+ {
+ "description": "runtime parameter for tool Create phyloseq object",
+ "name": "BIOMfilename"
+ },
+ {
+ "description": "runtime parameter for tool Create phyloseq object",
+ "name": "refseqfilename"
+ },
+ {
+ "description": "runtime parameter for tool Create phyloseq object",
+ "name": "treefilename"
+ }
+ ],
+ "label": null,
+ "name": "Create phyloseq object",
+ "outputs": [
+ {
+ "name": "output",
+ "type": "phyloseq"
+ }
+ ],
+ "position": {
+ "left": 265.96875,
+ "top": 81.49999869127782
+ },
+ "post_job_actions": {},
+ "tool_id": "toolshed.g2.bx.psu.edu/repos/iuc/phyloseq_from_biom/phyloseq_from_biom/1.46.0+galaxy0",
+ "tool_shed_repository": {
+ "changeset_revision": "c0101c72b8af",
+ "name": "phyloseq_from_biom",
+ "owner": "iuc",
+ "tool_shed": "toolshed.g2.bx.psu.edu"
+ },
+ "tool_state": "{\"BIOMfilename\": {\"__class__\": \"RuntimeValue\"}, \"parseFunction\": \"parse_taxonomy_default\", \"refseqfilename\": {\"__class__\": \"RuntimeValue\"}, \"treefilename\": {\"__class__\": \"RuntimeValue\"}, \"__page__\": null, \"__rerun_remap_job_id__\": null}",
+ "tool_version": "1.46.0+galaxy0",
+ "type": "tool",
+ "uuid": "41ee549a-f268-4bd4-b198-60b949008b8b",
+ "when": null,
+ "workflow_outputs": []
+ },
+ "2": {
+ "annotation": "",
+ "content_id": "toolshed.g2.bx.psu.edu/repos/iuc/ampvis2_load/ampvis2_load/2.8.6+galaxy1",
+ "errors": null,
+ "id": 2,
+ "input_connections": {
+ "otutable": {
+ "id": 1,
+ "output_name": "output"
+ }
+ },
+ "inputs": [],
+ "label": null,
+ "name": "ampvis2 load",
+ "outputs": [
+ {
+ "name": "ampvis",
+ "type": "ampvis2"
+ },
+ {
+ "name": "metadata_list_out",
+ "type": "tabular"
+ },
+ {
+ "name": "taxonomy_list_out",
+ "type": "tabular"
+ }
+ ],
+ "position": {
+ "left": 571.2968704025355,
+ "top": 0
+ },
+ "post_job_actions": {},
+ "tool_id": "toolshed.g2.bx.psu.edu/repos/iuc/ampvis2_load/ampvis2_load/2.8.6+galaxy1",
+ "tool_shed_repository": {
+ "changeset_revision": "3481feabc54e",
+ "name": "ampvis2_load",
+ "owner": "iuc",
+ "tool_shed": "toolshed.g2.bx.psu.edu"
+ },
+ "tool_state": "{\"asv_otu_col_empty\": false, \"asv_sequences\": false, \"fasta\": {\"__class__\": \"ConnectedValue\"}, \"guess_column_types\": true, \"metadata\": {\"__class__\": \"ConnectedValue\"}, \"otutable\": {\"__class__\": \"ConnectedValue\"}, \"pruneSingletons\": false, \"taxonomy\": {\"__class__\": \"ConnectedValue\"}, \"tree\": {\"__class__\": \"ConnectedValue\"}, \"write_lists\": [\"tax\", \"metadata\"], \"__page__\": null, \"__rerun_remap_job_id__\": null}",
+ "tool_version": "2.8.6+galaxy1",
+ "type": "tool",
+ "uuid": "bebcdf75-ebca-4508-a652-4a64abf0c89d",
+ "when": null,
+ "workflow_outputs": []
+ }
+ },
+ "tags": [],
+ "uuid": "d1320204-6f33-48cf-8da7-10203a4ceefa",
+ "version": 3
+}
\ No newline at end of file
diff --git a/topics/microbiome/tutorials/visualisation-ampvis/workflows/ampvis2_from_biom_to_phyloseq_.ga:Zone.Identifier b/topics/microbiome/tutorials/visualisation-ampvis/workflows/ampvis2_from_biom_to_phyloseq_.ga:Zone.Identifier
new file mode 100644
index 00000000000000..e69de29bb2d1d6
diff --git a/topics/microbiome/tutorials/visualisation-ampvis/workflows/ampvis2_heatmap__ordination__boxplot.ga b/topics/microbiome/tutorials/visualisation-ampvis/workflows/ampvis2_heatmap__ordination__boxplot.ga
new file mode 100644
index 00000000000000..7352b999a13287
--- /dev/null
+++ b/topics/microbiome/tutorials/visualisation-ampvis/workflows/ampvis2_heatmap__ordination__boxplot.ga
@@ -0,0 +1,472 @@
+{
+ "a_galaxy_workflow": "true",
+ "annotation": "",
+ "comments": [],
+ "format-version": "0.1",
+ "name": "ampvis2_heatmap__ordination__boxplot",
+ "report": {
+ "markdown": "\n# Workflow Execution Report\n\n## Workflow Inputs\n```galaxy\ninvocation_inputs()\n```\n\n## Workflow Outputs\n```galaxy\ninvocation_outputs()\n```\n\n## Workflow\n```galaxy\nworkflow_display()\n```\n"
+ },
+ "steps": {
+ "0": {
+ "annotation": "",
+ "content_id": null,
+ "errors": null,
+ "id": 0,
+ "input_connections": {},
+ "inputs": [
+ {
+ "description": "",
+ "name": "ampvis2 subset dataset"
+ }
+ ],
+ "label": "ampvis2 subset dataset",
+ "name": "Input dataset",
+ "outputs": [],
+ "position": {
+ "left": 0,
+ "top": 339.5332127176606
+ },
+ "tool_id": null,
+ "tool_state": "{\"optional\": false, \"tag\": null}",
+ "tool_version": null,
+ "type": "data_input",
+ "uuid": "97f0ffe8-d37b-4cff-9ebe-10bc746f1136",
+ "when": null,
+ "workflow_outputs": []
+ },
+ "1": {
+ "annotation": "",
+ "content_id": null,
+ "errors": null,
+ "id": 1,
+ "input_connections": {},
+ "inputs": [
+ {
+ "description": "",
+ "name": "ampvis2 subset metadata list"
+ }
+ ],
+ "label": "ampvis2 subset metadata list",
+ "name": "Input dataset",
+ "outputs": [],
+ "position": {
+ "left": 6.274830313235384,
+ "top": 453.13455664257873
+ },
+ "tool_id": null,
+ "tool_state": "{\"optional\": false, \"tag\": null}",
+ "tool_version": null,
+ "type": "data_input",
+ "uuid": "fa0286fc-5429-47a1-8f54-1a33f63d5edd",
+ "when": null,
+ "workflow_outputs": []
+ },
+ "2": {
+ "annotation": "",
+ "content_id": null,
+ "errors": null,
+ "id": 2,
+ "input_connections": {},
+ "inputs": [
+ {
+ "description": "",
+ "name": "group by (needs to be selected by user)"
+ }
+ ],
+ "label": "group by (needs to be selected by user)",
+ "name": "Input parameter",
+ "outputs": [],
+ "position": {
+ "left": 86.9585007055093,
+ "top": 836.9854059156114
+ },
+ "tool_id": null,
+ "tool_state": "{\"parameter_type\": \"text\", \"optional\": false}",
+ "tool_version": null,
+ "type": "parameter_input",
+ "uuid": "229a9926-22b0-49d3-85e4-562a2ba047af",
+ "when": null,
+ "workflow_outputs": []
+ },
+ "3": {
+ "annotation": "",
+ "content_id": null,
+ "errors": null,
+ "id": 3,
+ "input_connections": {},
+ "inputs": [
+ {
+ "description": "",
+ "name": "facet (needs to be selected by user)"
+ }
+ ],
+ "label": "facet (needs to be selected by user)",
+ "name": "Input parameter",
+ "outputs": [],
+ "position": {
+ "left": 87.29200181992039,
+ "top": 936.2267523871355
+ },
+ "tool_id": null,
+ "tool_state": "{\"parameter_type\": \"text\", \"optional\": false}",
+ "tool_version": null,
+ "type": "parameter_input",
+ "uuid": "bc00f09d-4818-4190-8c3e-d2959379b592",
+ "when": null,
+ "workflow_outputs": []
+ },
+ "4": {
+ "annotation": "",
+ "content_id": null,
+ "errors": null,
+ "id": 4,
+ "input_connections": {},
+ "inputs": [
+ {
+ "description": "",
+ "name": "grouped by (needs to be selected by user)"
+ }
+ ],
+ "label": "grouped by (needs to be selected by user)",
+ "name": "Input parameter",
+ "outputs": [],
+ "position": {
+ "left": 606.1530517278978,
+ "top": 810.1169421897727
+ },
+ "tool_id": null,
+ "tool_state": "{\"parameter_type\": \"text\", \"optional\": false}",
+ "tool_version": null,
+ "type": "parameter_input",
+ "uuid": "af75951d-f0f6-4c97-841e-6b16e3d29a28",
+ "when": null,
+ "workflow_outputs": []
+ },
+ "5": {
+ "annotation": "",
+ "content_id": "toolshed.g2.bx.psu.edu/repos/iuc/ampvis2_boxplot/ampvis2_boxplot/2.8.6+galaxy1",
+ "errors": null,
+ "id": 5,
+ "input_connections": {
+ "data": {
+ "id": 0,
+ "output_name": "output"
+ },
+ "metadata_list": {
+ "id": 1,
+ "output_name": "output"
+ }
+ },
+ "inputs": [],
+ "label": null,
+ "name": "ampvis2 boxplot",
+ "outputs": [
+ {
+ "name": "plot",
+ "type": "pdf"
+ }
+ ],
+ "position": {
+ "left": 365.0167662436121,
+ "top": 4.84375
+ },
+ "post_job_actions": {},
+ "tool_id": "toolshed.g2.bx.psu.edu/repos/iuc/ampvis2_boxplot/ampvis2_boxplot/2.8.6+galaxy1",
+ "tool_shed_repository": {
+ "changeset_revision": "b4c6f8741989",
+ "name": "ampvis2_boxplot",
+ "owner": "iuc",
+ "tool_shed": "toolshed.g2.bx.psu.edu"
+ },
+ "tool_state": "{\"adjust_zero\": null, \"data\": {\"__class__\": \"ConnectedValue\"}, \"group_by\": \"Period\", \"metadata_list\": {\"__class__\": \"ConnectedValue\"}, \"normalise\": false, \"output_options\": {\"out_format\": \"pdf\", \"plot_width\": null, \"plot_height\": null}, \"plot_flip\": false, \"plot_log\": false, \"plot_type\": \"boxplot\", \"point_size\": \"1\", \"sort_by\": \"median\", \"tax_add\": null, \"tax_aggregate\": \"Phylum\", \"tax_empty\": \"best\", \"tax_show_cond\": {\"tax_show_sel\": \"number\", \"__current_case__\": 0, \"tax_show\": \"5\"}, \"__page__\": null, \"__rerun_remap_job_id__\": null}",
+ "tool_version": "2.8.6+galaxy1",
+ "type": "tool",
+ "uuid": "d9e0f05c-728c-4e93-8ef5-80947eebc79e",
+ "when": null,
+ "workflow_outputs": []
+ },
+ "6": {
+ "annotation": "with PCA",
+ "content_id": "toolshed.g2.bx.psu.edu/repos/iuc/ampvis2_ordinate/ampvis2_ordinate/2.8.6+galaxy1",
+ "errors": null,
+ "id": 6,
+ "input_connections": {
+ "data": {
+ "id": 0,
+ "output_name": "output"
+ },
+ "metadata_list": {
+ "id": 1,
+ "output_name": "output"
+ }
+ },
+ "inputs": [],
+ "label": "ampvis2 ordination plot with PCA",
+ "name": "ampvis2 ordination plot",
+ "outputs": [
+ {
+ "name": "plot",
+ "type": "pdf"
+ }
+ ],
+ "position": {
+ "left": 708.1648092449271,
+ "top": 0
+ },
+ "post_job_actions": {},
+ "tool_id": "toolshed.g2.bx.psu.edu/repos/iuc/ampvis2_ordinate/ampvis2_ordinate/2.8.6+galaxy1",
+ "tool_shed_repository": {
+ "changeset_revision": "811df76f4f26",
+ "name": "ampvis2_ordinate",
+ "owner": "iuc",
+ "tool_shed": "toolshed.g2.bx.psu.edu"
+ },
+ "tool_state": "{\"data\": {\"__class__\": \"ConnectedValue\"}, \"envfit_factor\": null, \"envfit_numeric\": null, \"envfit_signif_level\": \"0.005\", \"filter_species\": \"0.1\", \"metadata_list\": {\"__class__\": \"ConnectedValue\"}, \"opacity\": \"0.8\", \"output_options\": {\"out_format\": \"pdf\", \"plot_width\": null, \"plot_height\": null}, \"output_screeplot\": false, \"print_caption\": false, \"repel_labels\": false, \"sample_color_by\": \"Plant\", \"sample_colorframe\": null, \"sample_colorframe_label\": \"Plant\", \"sample_label_by\": null, \"sample_shape_by\": null, \"sample_trajectory\": null, \"sample_trajectory_group\": null, \"species_plot_cond\": {\"species_plot\": \"FALSE\", \"__current_case__\": 1}, \"tax_empty\": \"best\", \"type_cond\": {\"type\": \"PCA\", \"__current_case__\": 0, \"transform\": \"none\"}, \"__page__\": null, \"__rerun_remap_job_id__\": null}",
+ "tool_version": "2.8.6+galaxy1",
+ "type": "tool",
+ "uuid": "14a03b66-3579-43dd-bd70-e88ec988a1c4",
+ "when": null,
+ "workflow_outputs": []
+ },
+ "7": {
+ "annotation": "",
+ "content_id": "toolshed.g2.bx.psu.edu/repos/iuc/ampvis2_ordinate/ampvis2_ordinate/2.8.6+galaxy1",
+ "errors": null,
+ "id": 7,
+ "input_connections": {
+ "data": {
+ "id": 0,
+ "output_name": "output"
+ },
+ "metadata_list": {
+ "id": 1,
+ "output_name": "output"
+ }
+ },
+ "inputs": [],
+ "label": "ampvis2 ordination plot with PCA and Trajectory",
+ "name": "ampvis2 ordination plot",
+ "outputs": [
+ {
+ "name": "plot",
+ "type": "pdf"
+ }
+ ],
+ "position": {
+ "left": 984.6204143561732,
+ "top": 71.4478882586549
+ },
+ "post_job_actions": {},
+ "tool_id": "toolshed.g2.bx.psu.edu/repos/iuc/ampvis2_ordinate/ampvis2_ordinate/2.8.6+galaxy1",
+ "tool_shed_repository": {
+ "changeset_revision": "811df76f4f26",
+ "name": "ampvis2_ordinate",
+ "owner": "iuc",
+ "tool_shed": "toolshed.g2.bx.psu.edu"
+ },
+ "tool_state": "{\"data\": {\"__class__\": \"ConnectedValue\"}, \"envfit_factor\": null, \"envfit_numeric\": null, \"envfit_signif_level\": \"0.005\", \"filter_species\": \"0.1\", \"metadata_list\": {\"__class__\": \"ConnectedValue\"}, \"opacity\": \"0.8\", \"output_options\": {\"out_format\": \"pdf\", \"plot_width\": null, \"plot_height\": null}, \"output_screeplot\": false, \"print_caption\": false, \"repel_labels\": false, \"sample_color_by\": \"Plant\", \"sample_colorframe\": \"Plant\", \"sample_colorframe_label\": \"Plant\", \"sample_label_by\": null, \"sample_shape_by\": null, \"sample_trajectory\": \"Date\", \"sample_trajectory_group\": null, \"species_plot_cond\": {\"species_plot\": \"FALSE\", \"__current_case__\": 1}, \"tax_empty\": \"best\", \"type_cond\": {\"type\": \"PCA\", \"__current_case__\": 0, \"transform\": \"none\"}, \"__page__\": null, \"__rerun_remap_job_id__\": null}",
+ "tool_version": "2.8.6+galaxy1",
+ "type": "tool",
+ "uuid": "04d33590-8aac-4545-adb3-37d118c425b2",
+ "when": null,
+ "workflow_outputs": []
+ },
+ "8": {
+ "annotation": "",
+ "content_id": "toolshed.g2.bx.psu.edu/repos/iuc/ampvis2_ordinate/ampvis2_ordinate/2.8.6+galaxy1",
+ "errors": null,
+ "id": 8,
+ "input_connections": {
+ "data": {
+ "id": 0,
+ "output_name": "output"
+ },
+ "metadata_list": {
+ "id": 1,
+ "output_name": "output"
+ }
+ },
+ "inputs": [
+ {
+ "description": "runtime parameter for tool ampvis2 ordination plot",
+ "name": "data"
+ },
+ {
+ "description": "runtime parameter for tool ampvis2 ordination plot",
+ "name": "metadata_list"
+ }
+ ],
+ "label": "ampvis2 ordination plot with CCA and Hellinger",
+ "name": "ampvis2 ordination plot",
+ "outputs": [
+ {
+ "name": "plot",
+ "type": "pdf"
+ }
+ ],
+ "position": {
+ "left": 1020.6648092449271,
+ "top": 266.640625
+ },
+ "post_job_actions": {},
+ "tool_id": "toolshed.g2.bx.psu.edu/repos/iuc/ampvis2_ordinate/ampvis2_ordinate/2.8.6+galaxy1",
+ "tool_shed_repository": {
+ "changeset_revision": "811df76f4f26",
+ "name": "ampvis2_ordinate",
+ "owner": "iuc",
+ "tool_shed": "toolshed.g2.bx.psu.edu"
+ },
+ "tool_state": "{\"data\": {\"__class__\": \"RuntimeValue\"}, \"envfit_factor\": null, \"envfit_numeric\": null, \"envfit_signif_level\": \"0.005\", \"filter_species\": \"0.1\", \"metadata_list\": {\"__class__\": \"RuntimeValue\"}, \"opacity\": \"0.8\", \"output_options\": {\"out_format\": \"pdf\", \"plot_width\": null, \"plot_height\": null}, \"output_screeplot\": false, \"print_caption\": false, \"repel_labels\": false, \"sample_color_by\": \"Period\", \"sample_colorframe\": \"Date\", \"sample_colorframe_label\": \"Period\", \"sample_label_by\": null, \"sample_shape_by\": \"Plant\", \"sample_trajectory\": null, \"sample_trajectory_group\": null, \"species_plot_cond\": {\"species_plot\": \"FALSE\", \"__current_case__\": 1}, \"tax_empty\": \"best\", \"type_cond\": {\"type\": \"CCA\", \"__current_case__\": 3, \"transform\": \"hellinger\", \"constrain\": [\"Period\"]}, \"__page__\": null, \"__rerun_remap_job_id__\": null}",
+ "tool_version": "2.8.6+galaxy1",
+ "type": "tool",
+ "uuid": "b31e50c3-5476-4405-a486-b55dba42417b",
+ "when": null,
+ "workflow_outputs": []
+ },
+ "9": {
+ "annotation": "",
+ "content_id": "toolshed.g2.bx.psu.edu/repos/iuc/ampvis2_heatmap/ampvis2_heatmap/2.8.6+galaxy1",
+ "errors": null,
+ "id": 9,
+ "input_connections": {
+ "data": {
+ "id": 0,
+ "output_name": "output"
+ },
+ "metadata_list": {
+ "id": 1,
+ "output_name": "output"
+ }
+ },
+ "inputs": [],
+ "label": null,
+ "name": "ampvis2 heatmap",
+ "outputs": [
+ {
+ "name": "plot",
+ "type": "pdf"
+ }
+ ],
+ "position": {
+ "left": 1040.039809244927,
+ "top": 465.875
+ },
+ "post_job_actions": {},
+ "tool_id": "toolshed.g2.bx.psu.edu/repos/iuc/ampvis2_heatmap/ampvis2_heatmap/2.8.6+galaxy1",
+ "tool_shed_repository": {
+ "changeset_revision": "14695ae019be",
+ "name": "ampvis2_heatmap",
+ "owner": "iuc",
+ "tool_shed": "toolshed.g2.bx.psu.edu"
+ },
+ "tool_state": "{\"data\": {\"__class__\": \"ConnectedValue\"}, \"facet_by\": null, \"group_by\": null, \"max_abundance\": null, \"measure\": \"mean\", \"metadata_list\": {\"__class__\": \"ConnectedValue\"}, \"min_abundance\": \"0.1\", \"normalise\": true, \"normalise_by\": null, \"output_options\": {\"out_format\": \"pdf\", \"plot_width\": null, \"plot_height\": null}, \"plot_colorscale\": \"log10\", \"plot_functions_cond\": {\"plot_functions_sel\": \"no\", \"__current_case__\": 0}, \"plot_na\": true, \"plot_values_cond\": {\"plot_values\": \"TRUE\", \"__current_case__\": 0, \"plot_values_size\": \"4\"}, \"scale_by\": null, \"showRemainingTaxa\": false, \"sort_by_cond\": {\"sort_by_sel\": \"no\", \"__current_case__\": 0}, \"tax_add\": null, \"tax_aggregate\": \"Phylum\", \"tax_empty\": \"best\", \"tax_show_cond\": {\"tax_show_sel\": \"number\", \"__current_case__\": 0, \"tax_show\": \"10\"}, \"__page__\": null, \"__rerun_remap_job_id__\": null}",
+ "tool_version": "2.8.6+galaxy1",
+ "type": "tool",
+ "uuid": "5ee5c7b7-0c0c-4e2c-a995-99a76ca7c133",
+ "when": null,
+ "workflow_outputs": []
+ },
+ "10": {
+ "annotation": "",
+ "content_id": "toolshed.g2.bx.psu.edu/repos/iuc/ampvis2_heatmap/ampvis2_heatmap/2.8.6+galaxy1",
+ "errors": null,
+ "id": 10,
+ "input_connections": {
+ "data": {
+ "id": 0,
+ "output_name": "output"
+ },
+ "facet_by": {
+ "id": 3,
+ "output_name": "output"
+ },
+ "group_by": {
+ "id": 2,
+ "output_name": "output"
+ },
+ "metadata_list": {
+ "id": 1,
+ "output_name": "output"
+ }
+ },
+ "inputs": [],
+ "label": null,
+ "name": "ampvis2 heatmap",
+ "outputs": [
+ {
+ "name": "plot",
+ "type": "pdf"
+ }
+ ],
+ "position": {
+ "left": 388.63735993746934,
+ "top": 741.8776078280075
+ },
+ "post_job_actions": {},
+ "tool_id": "toolshed.g2.bx.psu.edu/repos/iuc/ampvis2_heatmap/ampvis2_heatmap/2.8.6+galaxy1",
+ "tool_shed_repository": {
+ "changeset_revision": "14695ae019be",
+ "name": "ampvis2_heatmap",
+ "owner": "iuc",
+ "tool_shed": "toolshed.g2.bx.psu.edu"
+ },
+ "tool_state": "{\"data\": {\"__class__\": \"ConnectedValue\"}, \"facet_by\": {\"__class__\": \"ConnectedValue\"}, \"group_by\": {\"__class__\": \"ConnectedValue\"}, \"max_abundance\": null, \"measure\": \"mean\", \"metadata_list\": {\"__class__\": \"ConnectedValue\"}, \"min_abundance\": \"0.1\", \"normalise\": true, \"normalise_by\": null, \"output_options\": {\"out_format\": \"pdf\", \"plot_width\": null, \"plot_height\": null}, \"plot_colorscale\": \"log10\", \"plot_functions_cond\": {\"plot_functions_sel\": \"no\", \"__current_case__\": 0}, \"plot_na\": true, \"plot_values_cond\": {\"plot_values\": \"TRUE\", \"__current_case__\": 0, \"plot_values_size\": \"4\"}, \"scale_by\": null, \"showRemainingTaxa\": false, \"sort_by_cond\": {\"sort_by_sel\": \"no\", \"__current_case__\": 0}, \"tax_add\": null, \"tax_aggregate\": \"Phylum\", \"tax_empty\": \"best\", \"tax_show_cond\": {\"tax_show_sel\": \"number\", \"__current_case__\": 0, \"tax_show\": \"10\"}, \"__page__\": null, \"__rerun_remap_job_id__\": null}",
+ "tool_version": "2.8.6+galaxy1",
+ "type": "tool",
+ "uuid": "add4cc8e-ee44-415e-ac2a-0f6e4928065f",
+ "when": null,
+ "workflow_outputs": []
+ },
+ "11": {
+ "annotation": "",
+ "content_id": "toolshed.g2.bx.psu.edu/repos/iuc/ampvis2_heatmap/ampvis2_heatmap/2.8.6+galaxy1",
+ "errors": null,
+ "id": 11,
+ "input_connections": {
+ "data": {
+ "id": 0,
+ "output_name": "output"
+ },
+ "group_by": {
+ "id": 4,
+ "output_name": "output"
+ },
+ "metadata_list": {
+ "id": 1,
+ "output_name": "output"
+ }
+ },
+ "inputs": [],
+ "label": null,
+ "name": "ampvis2 heatmap",
+ "outputs": [
+ {
+ "name": "plot",
+ "type": "pdf"
+ }
+ ],
+ "position": {
+ "left": 900.1529849374693,
+ "top": 658.7682328280075
+ },
+ "post_job_actions": {},
+ "tool_id": "toolshed.g2.bx.psu.edu/repos/iuc/ampvis2_heatmap/ampvis2_heatmap/2.8.6+galaxy1",
+ "tool_shed_repository": {
+ "changeset_revision": "14695ae019be",
+ "name": "ampvis2_heatmap",
+ "owner": "iuc",
+ "tool_shed": "toolshed.g2.bx.psu.edu"
+ },
+ "tool_state": "{\"data\": {\"__class__\": \"ConnectedValue\"}, \"facet_by\": null, \"group_by\": {\"__class__\": \"ConnectedValue\"}, \"max_abundance\": null, \"measure\": \"mean\", \"metadata_list\": {\"__class__\": \"ConnectedValue\"}, \"min_abundance\": \"0.1\", \"normalise\": true, \"normalise_by\": null, \"output_options\": {\"out_format\": \"pdf\", \"plot_width\": null, \"plot_height\": null}, \"plot_colorscale\": \"log10\", \"plot_functions_cond\": {\"plot_functions_sel\": \"no\", \"__current_case__\": 0}, \"plot_na\": true, \"plot_values_cond\": {\"plot_values\": \"TRUE\", \"__current_case__\": 0, \"plot_values_size\": \"4\"}, \"scale_by\": null, \"showRemainingTaxa\": false, \"sort_by_cond\": {\"sort_by_sel\": \"no\", \"__current_case__\": 0}, \"tax_add\": null, \"tax_aggregate\": \"Phylum\", \"tax_empty\": \"best\", \"tax_show_cond\": {\"tax_show_sel\": \"number\", \"__current_case__\": 0, \"tax_show\": \"10\"}, \"__page__\": null, \"__rerun_remap_job_id__\": null}",
+ "tool_version": "2.8.6+galaxy1",
+ "type": "tool",
+ "uuid": "5a3c3553-48b1-4674-9724-10ec78426240",
+ "when": null,
+ "workflow_outputs": []
+ }
+ },
+ "tags": [],
+ "uuid": "11de18e6-d25c-486f-92b1-19dcc6f4b987",
+ "version": 3
+}
\ No newline at end of file
diff --git a/topics/microbiome/tutorials/visualisation-ampvis/workflows/ampvis2_heatmap__ordination__boxplot.ga:Zone.Identifier b/topics/microbiome/tutorials/visualisation-ampvis/workflows/ampvis2_heatmap__ordination__boxplot.ga:Zone.Identifier
new file mode 100644
index 00000000000000..e69de29bb2d1d6
diff --git a/topics/microbiome/tutorials/visualisation-ampvis/workflows/ampvis2_rarefaction_v1.0_.ga b/topics/microbiome/tutorials/visualisation-ampvis/workflows/ampvis2_rarefaction_v1.0_.ga
new file mode 100644
index 00000000000000..289562c5b9fe6b
--- /dev/null
+++ b/topics/microbiome/tutorials/visualisation-ampvis/workflows/ampvis2_rarefaction_v1.0_.ga
@@ -0,0 +1,209 @@
+{
+ "a_galaxy_workflow": "true",
+ "annotation": "",
+ "comments": [],
+ "format-version": "0.1",
+ "name": "ampvis2 rarefaction v1.0 ",
+ "steps": {
+ "0": {
+ "annotation": "",
+ "content_id": null,
+ "errors": null,
+ "id": 0,
+ "input_connections": {},
+ "inputs": [
+ {
+ "description": "",
+ "name": "OTU table"
+ }
+ ],
+ "label": "OTU table",
+ "name": "Input dataset",
+ "outputs": [],
+ "position": {
+ "left": 0.5,
+ "top": 2.0515721756576766
+ },
+ "tool_id": null,
+ "tool_state": "{\"optional\": false, \"format\": [\"tabular\"], \"tag\": null}",
+ "tool_version": null,
+ "type": "data_input",
+ "uuid": "1830ae55-c685-40ae-aae6-3465127792e1",
+ "when": null,
+ "workflow_outputs": []
+ },
+ "1": {
+ "annotation": "",
+ "content_id": null,
+ "errors": null,
+ "id": 1,
+ "input_connections": {},
+ "inputs": [
+ {
+ "description": "",
+ "name": "metadata"
+ }
+ ],
+ "label": "metadata",
+ "name": "Input dataset",
+ "outputs": [],
+ "position": {
+ "left": 0,
+ "top": 85.5
+ },
+ "tool_id": null,
+ "tool_state": "{\"optional\": false, \"format\": [\"tabular\"], \"tag\": null}",
+ "tool_version": null,
+ "type": "data_input",
+ "uuid": "dfad58bd-bccd-484d-b7ec-e4df7dc66b8c",
+ "when": null,
+ "workflow_outputs": []
+ },
+ "2": {
+ "annotation": "",
+ "content_id": null,
+ "errors": null,
+ "id": 2,
+ "input_connections": {},
+ "inputs": [
+ {
+ "description": "",
+ "name": "taxonomy table"
+ }
+ ],
+ "label": "taxonomy table",
+ "name": "Input dataset",
+ "outputs": [],
+ "position": {
+ "left": 0,
+ "top": 169.5
+ },
+ "tool_id": null,
+ "tool_state": "{\"optional\": false, \"format\": [\"tabular\"], \"tag\": null}",
+ "tool_version": null,
+ "type": "data_input",
+ "uuid": "b189fb82-8c91-4a69-85a2-c3ecf51db0a1",
+ "when": null,
+ "workflow_outputs": []
+ },
+ "3": {
+ "annotation": "",
+ "content_id": "toolshed.g2.bx.psu.edu/repos/iuc/ampvis2_load/ampvis2_load/2.8.6+galaxy1",
+ "errors": null,
+ "id": 3,
+ "input_connections": {
+ "metadata": {
+ "id": 1,
+ "output_name": "output"
+ },
+ "otutable": {
+ "id": 0,
+ "output_name": "output"
+ },
+ "taxonomy": {
+ "id": 2,
+ "output_name": "output"
+ }
+ },
+ "inputs": [
+ {
+ "description": "runtime parameter for tool ampvis2 load",
+ "name": "fasta"
+ },
+ {
+ "description": "runtime parameter for tool ampvis2 load",
+ "name": "tree"
+ }
+ ],
+ "label": null,
+ "name": "ampvis2 load",
+ "outputs": [
+ {
+ "name": "ampvis",
+ "type": "ampvis2"
+ },
+ {
+ "name": "metadata_list_out",
+ "type": "tabular"
+ },
+ {
+ "name": "taxonomy_list_out",
+ "type": "tabular"
+ }
+ ],
+ "position": {
+ "left": 302.85948278283536,
+ "top": 0
+ },
+ "post_job_actions": {},
+ "tool_id": "toolshed.g2.bx.psu.edu/repos/iuc/ampvis2_load/ampvis2_load/2.8.6+galaxy1",
+ "tool_shed_repository": {
+ "changeset_revision": "3481feabc54e",
+ "name": "ampvis2_load",
+ "owner": "iuc",
+ "tool_shed": "toolshed.g2.bx.psu.edu"
+ },
+ "tool_state": "{\"asv_otu_col_empty\": false, \"asv_sequences\": false, \"fasta\": {\"__class__\": \"RuntimeValue\"}, \"guess_column_types\": true, \"metadata\": {\"__class__\": \"ConnectedValue\"}, \"otutable\": {\"__class__\": \"ConnectedValue\"}, \"pruneSingletons\": false, \"taxonomy\": {\"__class__\": \"ConnectedValue\"}, \"tree\": {\"__class__\": \"RuntimeValue\"}, \"write_lists\": [\"tax\", \"metadata\"], \"__page__\": null, \"__rerun_remap_job_id__\": null}",
+ "tool_version": "2.8.6+galaxy1",
+ "type": "tool",
+ "uuid": "6f696fd0-9a28-4c0c-83cc-d001acc84ea8",
+ "when": null,
+ "workflow_outputs": []
+ },
+ "4": {
+ "annotation": "",
+ "content_id": "toolshed.g2.bx.psu.edu/repos/iuc/ampvis2_rarecurve/ampvis2_rarecurve/2.8.6+galaxy1",
+ "errors": null,
+ "id": 4,
+ "input_connections": {
+ "data": {
+ "id": 3,
+ "output_name": "ampvis"
+ },
+ "metadata_list": {
+ "id": 3,
+ "output_name": "metadata_list_out"
+ }
+ },
+ "inputs": [
+ {
+ "description": "runtime parameter for tool ampvis2 rarefaction curve",
+ "name": "data"
+ },
+ {
+ "description": "runtime parameter for tool ampvis2 rarefaction curve",
+ "name": "metadata_list"
+ }
+ ],
+ "label": null,
+ "name": "ampvis2 rarefaction curve",
+ "outputs": [
+ {
+ "name": "plot",
+ "type": "pdf"
+ }
+ ],
+ "position": {
+ "left": 632,
+ "top": 60
+ },
+ "post_job_actions": {},
+ "tool_id": "toolshed.g2.bx.psu.edu/repos/iuc/ampvis2_rarecurve/ampvis2_rarecurve/2.8.6+galaxy1",
+ "tool_shed_repository": {
+ "changeset_revision": "2e69edaaa834",
+ "name": "ampvis2_rarecurve",
+ "owner": "iuc",
+ "tool_shed": "toolshed.g2.bx.psu.edu"
+ },
+ "tool_state": "{\"color_by\": \"sample_id\", \"data\": {\"__class__\": \"RuntimeValue\"}, \"facet_by\": null, \"facet_scales\": \"free\", \"metadata_list\": {\"__class__\": \"RuntimeValue\"}, \"output_options\": {\"out_format\": \"pdf\", \"plot_width\": null, \"plot_height\": null}, \"stepsize\": \"5\", \"__page__\": null, \"__rerun_remap_job_id__\": null}",
+ "tool_version": "2.8.6+galaxy1",
+ "type": "tool",
+ "uuid": "ae0467e5-f509-4887-b4a0-a4df2f59ff32",
+ "when": null,
+ "workflow_outputs": []
+ }
+ },
+ "tags": [],
+ "uuid": "2c2c0854-8051-4db5-b8ed-e489d20d70ef",
+ "version": 7
+}
\ No newline at end of file
diff --git a/topics/microbiome/tutorials/visualisation-ampvis/workflows/ampvis2_rarefaction_v1.0_.ga:Zone.Identifier b/topics/microbiome/tutorials/visualisation-ampvis/workflows/ampvis2_rarefaction_v1.0_.ga:Zone.Identifier
new file mode 100644
index 00000000000000..e69de29bb2d1d6
diff --git a/topics/microbiome/tutorials/visualisation-ampvis/workflows/ampvis2_timeseries_v1.0.ga b/topics/microbiome/tutorials/visualisation-ampvis/workflows/ampvis2_timeseries_v1.0.ga
new file mode 100644
index 00000000000000..6ab91064cbeb7d
--- /dev/null
+++ b/topics/microbiome/tutorials/visualisation-ampvis/workflows/ampvis2_timeseries_v1.0.ga
@@ -0,0 +1,112 @@
+{
+ "a_galaxy_workflow": "true",
+ "annotation": "",
+ "comments": [],
+ "format-version": "0.1",
+ "name": "ampvis2 timeseries v1.0",
+ "report": {
+ "markdown": "\n# Workflow Execution Report\n\n## Workflow Inputs\n```galaxy\ninvocation_inputs()\n```\n\n## Workflow Outputs\n```galaxy\ninvocation_outputs()\n```\n\n## Workflow\n```galaxy\nworkflow_display()\n```\n"
+ },
+ "steps": {
+ "0": {
+ "annotation": "",
+ "content_id": null,
+ "errors": null,
+ "id": 0,
+ "input_connections": {},
+ "inputs": [
+ {
+ "description": "",
+ "name": "ampvis2 subset dataset"
+ }
+ ],
+ "label": "ampvis2 subset dataset",
+ "name": "Input dataset",
+ "outputs": [],
+ "position": {
+ "left": 0.0,
+ "top": 0.0
+ },
+ "tool_id": null,
+ "tool_state": "{\"optional\": false, \"tag\": null}",
+ "tool_version": null,
+ "type": "data_input",
+ "uuid": "c50ba9d5-1508-43af-93e6-d085571fc44a",
+ "when": null,
+ "workflow_outputs": []
+ },
+ "1": {
+ "annotation": "",
+ "content_id": null,
+ "errors": null,
+ "id": 1,
+ "input_connections": {},
+ "inputs": [
+ {
+ "description": "",
+ "name": "ampvis2 subset metadata list"
+ }
+ ],
+ "label": "ampvis2 subset metadata list",
+ "name": "Input dataset",
+ "outputs": [],
+ "position": {
+ "left": 0.0,
+ "top": 140.0
+ },
+ "tool_id": null,
+ "tool_state": "{\"optional\": false, \"tag\": null}",
+ "tool_version": null,
+ "type": "data_input",
+ "uuid": "cf185fd0-d8e0-4a69-9a20-ef7d9ee50a95",
+ "when": null,
+ "workflow_outputs": []
+ },
+ "2": {
+ "annotation": "",
+ "content_id": "toolshed.g2.bx.psu.edu/repos/iuc/ampvis2_timeseries/ampvis2_timeseries/2.8.6+galaxy1",
+ "errors": null,
+ "id": 2,
+ "input_connections": {
+ "data": {
+ "id": 0,
+ "output_name": "output"
+ },
+ "metadata_list": {
+ "id": 1,
+ "output_name": "output"
+ }
+ },
+ "inputs": [],
+ "label": null,
+ "name": "ampvis2 timeseries plot",
+ "outputs": [
+ {
+ "name": "plot",
+ "type": "pdf"
+ }
+ ],
+ "position": {
+ "left": 316.2500118987093,
+ "top": 36.46874980866437
+ },
+ "post_job_actions": {},
+ "tool_id": "toolshed.g2.bx.psu.edu/repos/iuc/ampvis2_timeseries/ampvis2_timeseries/2.8.6+galaxy1",
+ "tool_shed_repository": {
+ "changeset_revision": "9de032723f5b",
+ "name": "ampvis2_timeseries",
+ "owner": "iuc",
+ "tool_shed": "toolshed.g2.bx.psu.edu"
+ },
+ "tool_state": "{\"data\": {\"__class__\": \"ConnectedValue\"}, \"group_by\": null, \"metadata_list\": {\"__class__\": \"ConnectedValue\"}, \"normalise\": true, \"output_options\": {\"out_format\": \"pdf\", \"plot_width\": null, \"plot_height\": null}, \"scales\": null, \"split\": false, \"tax_add\": null, \"tax_aggregate\": \"Phylum\", \"tax_empty\": \"best\", \"tax_show_cond\": {\"tax_show_sel\": \"number\", \"__current_case__\": 0, \"tax_show\": \"3\"}, \"time_variable\": \"Date\", \"__page__\": null, \"__rerun_remap_job_id__\": null}",
+ "tool_version": "2.8.6+galaxy1",
+ "type": "tool",
+ "uuid": "e147acaf-a067-4472-93c2-74fd944593c8",
+ "when": null,
+ "workflow_outputs": []
+ }
+ },
+ "tags": [],
+ "uuid": "4fadb6c3-26f1-4818-9e3a-0ddb203d7bf6",
+ "version": 9
+}
\ No newline at end of file
diff --git a/topics/microbiome/tutorials/visualisation-ampvis/workflows/ampvis2_timeseries_v1.0.ga:Zone.Identifier b/topics/microbiome/tutorials/visualisation-ampvis/workflows/ampvis2_timeseries_v1.0.ga:Zone.Identifier
new file mode 100644
index 00000000000000..e69de29bb2d1d6
diff --git a/topics/microbiome/tutorials/visualisation-ampvis/workflows/ampvis2_use_case_2_3.ga b/topics/microbiome/tutorials/visualisation-ampvis/workflows/ampvis2_use_case_2_3.ga
new file mode 100644
index 00000000000000..d8db00b77dd618
--- /dev/null
+++ b/topics/microbiome/tutorials/visualisation-ampvis/workflows/ampvis2_use_case_2_3.ga
@@ -0,0 +1,151 @@
+{
+ "a_galaxy_workflow": "true",
+ "annotation": "",
+ "comments": [],
+ "format-version": "0.1",
+ "name": "ampvis2_use_case_2+3",
+ "report": {
+ "markdown": "\n# Workflow Execution Report\n\n## Workflow Inputs\n```galaxy\ninvocation_inputs()\n```\n\n## Workflow Outputs\n```galaxy\ninvocation_outputs()\n```\n\n## Workflow\n```galaxy\nworkflow_display()\n```\n"
+ },
+ "steps": {
+ "0": {
+ "annotation": "",
+ "content_id": null,
+ "errors": null,
+ "id": 0,
+ "input_connections": {},
+ "inputs": [
+ {
+ "description": "",
+ "name": "OTU table"
+ }
+ ],
+ "label": "OTU table",
+ "name": "Input dataset",
+ "outputs": [],
+ "position": {
+ "left": 0,
+ "top": 2.0515721756576766
+ },
+ "tool_id": null,
+ "tool_state": "{\"optional\": false, \"format\": [\"tabular\"], \"tag\": null}",
+ "tool_version": null,
+ "type": "data_input",
+ "uuid": "ad72480f-eabe-4e3e-8d71-32f6eff08d1a",
+ "when": null,
+ "workflow_outputs": []
+ },
+ "1": {
+ "annotation": "",
+ "content_id": null,
+ "errors": null,
+ "id": 1,
+ "input_connections": {},
+ "inputs": [
+ {
+ "description": "",
+ "name": "metadata"
+ }
+ ],
+ "label": "metadata",
+ "name": "Input dataset",
+ "outputs": [],
+ "position": {
+ "left": 1.59385778283538,
+ "top": 98.00003051757815
+ },
+ "tool_id": null,
+ "tool_state": "{\"optional\": false, \"format\": [\"tabular\"], \"tag\": null}",
+ "tool_version": null,
+ "type": "data_input",
+ "uuid": "95d56ef9-2d27-49fa-a8bf-721ededb3983",
+ "when": null,
+ "workflow_outputs": []
+ },
+ "2": {
+ "annotation": "",
+ "content_id": null,
+ "errors": null,
+ "id": 2,
+ "input_connections": {},
+ "inputs": [
+ {
+ "description": "",
+ "name": "taxonomy table"
+ }
+ ],
+ "label": "taxonomy table",
+ "name": "Input dataset",
+ "outputs": [],
+ "position": {
+ "left": 2.34385778283538,
+ "top": 198.31253051757812
+ },
+ "tool_id": null,
+ "tool_state": "{\"optional\": false, \"format\": [\"tabular\"], \"tag\": null}",
+ "tool_version": null,
+ "type": "data_input",
+ "uuid": "67fa359a-86c5-4520-97d3-0b708b4c418d",
+ "when": null,
+ "workflow_outputs": []
+ },
+ "3": {
+ "annotation": "",
+ "content_id": "toolshed.g2.bx.psu.edu/repos/iuc/ampvis2_load/ampvis2_load/2.8.6+galaxy1",
+ "errors": null,
+ "id": 3,
+ "input_connections": {
+ "metadata": {
+ "id": 1,
+ "output_name": "output"
+ },
+ "otutable": {
+ "id": 0,
+ "output_name": "output"
+ },
+ "taxonomy": {
+ "id": 2,
+ "output_name": "output"
+ }
+ },
+ "inputs": [],
+ "label": null,
+ "name": "ampvis2 load",
+ "outputs": [
+ {
+ "name": "ampvis",
+ "type": "ampvis2"
+ },
+ {
+ "name": "metadata_list_out",
+ "type": "tabular"
+ },
+ {
+ "name": "taxonomy_list_out",
+ "type": "tabular"
+ }
+ ],
+ "position": {
+ "left": 302.35948278283536,
+ "top": 0
+ },
+ "post_job_actions": {},
+ "tool_id": "toolshed.g2.bx.psu.edu/repos/iuc/ampvis2_load/ampvis2_load/2.8.6+galaxy1",
+ "tool_shed_repository": {
+ "changeset_revision": "3481feabc54e",
+ "name": "ampvis2_load",
+ "owner": "iuc",
+ "tool_shed": "toolshed.g2.bx.psu.edu"
+ },
+ "tool_state": "{\"asv_otu_col_empty\": false, \"asv_sequences\": false, \"fasta\": {\"__class__\": \"ConnectedValue\"}, \"guess_column_types\": true, \"metadata\": {\"__class__\": \"ConnectedValue\"}, \"otutable\": {\"__class__\": \"ConnectedValue\"}, \"pruneSingletons\": false, \"taxonomy\": {\"__class__\": \"ConnectedValue\"}, \"tree\": {\"__class__\": \"ConnectedValue\"}, \"write_lists\": [\"tax\", \"metadata\"], \"__page__\": null, \"__rerun_remap_job_id__\": null}",
+ "tool_version": "2.8.6+galaxy1",
+ "type": "tool",
+ "uuid": "c83006ff-a282-400a-a55b-d577613124ae",
+ "when": null,
+ "workflow_outputs": []
+ }
+ },
+ "tags": [],
+ "uuid": "2e1fa317-b6dd-4d7c-8e11-09b20c09bb04",
+ "version": 1
+}
\ No newline at end of file
diff --git a/topics/microbiome/tutorials/visualisation-ampvis/workflows/ampvis2_use_case_2_3.ga:Zone.Identifier b/topics/microbiome/tutorials/visualisation-ampvis/workflows/ampvis2_use_case_2_3.ga:Zone.Identifier
new file mode 100644
index 00000000000000..e69de29bb2d1d6
diff --git a/topics/microbiome/tutorials/visualisation-ampvis/workflows/ampvis2_use_case_2_3_subset.ga b/topics/microbiome/tutorials/visualisation-ampvis/workflows/ampvis2_use_case_2_3_subset.ga
new file mode 100644
index 00000000000000..2c28c15efec6f0
--- /dev/null
+++ b/topics/microbiome/tutorials/visualisation-ampvis/workflows/ampvis2_use_case_2_3_subset.ga
@@ -0,0 +1,178 @@
+{
+ "a_galaxy_workflow": "true",
+ "annotation": "",
+ "comments": [],
+ "format-version": "0.1",
+ "name": "ampvis2_use_case_2+3_subset",
+ "report": {
+ "markdown": "\n# Workflow Execution Report\n\n## Workflow Inputs\n```galaxy\ninvocation_inputs()\n```\n\n## Workflow Outputs\n```galaxy\ninvocation_outputs()\n```\n\n## Workflow\n```galaxy\nworkflow_display()\n```\n"
+ },
+ "steps": {
+ "0": {
+ "annotation": "",
+ "content_id": null,
+ "errors": null,
+ "id": 0,
+ "input_connections": {},
+ "inputs": [
+ {
+ "description": "",
+ "name": "OTU table out of ampvis_load"
+ }
+ ],
+ "label": "OTU table out of ampvis_load",
+ "name": "Input dataset",
+ "outputs": [],
+ "position": {
+ "left": 0,
+ "top": 0
+ },
+ "tool_id": null,
+ "tool_state": "{\"optional\": false, \"tag\": null}",
+ "tool_version": null,
+ "type": "data_input",
+ "uuid": "1377c0c1-190f-4336-9bd9-299a8ab1f0ec",
+ "when": null,
+ "workflow_outputs": []
+ },
+ "1": {
+ "annotation": "",
+ "content_id": null,
+ "errors": null,
+ "id": 1,
+ "input_connections": {},
+ "inputs": [
+ {
+ "description": "",
+ "name": "metadata out of ampvis_load 2"
+ }
+ ],
+ "label": "metadata out of ampvis_load 2",
+ "name": "Input dataset",
+ "outputs": [],
+ "position": {
+ "left": 1,
+ "top": 96
+ },
+ "tool_id": null,
+ "tool_state": "{\"optional\": false, \"tag\": null}",
+ "tool_version": null,
+ "type": "data_input",
+ "uuid": "406b04ab-1738-4500-839c-24bf3ba5cdc2",
+ "when": null,
+ "workflow_outputs": []
+ },
+ "2": {
+ "annotation": "",
+ "content_id": null,
+ "errors": null,
+ "id": 2,
+ "input_connections": {},
+ "inputs": [
+ {
+ "description": "",
+ "name": "metadata variable (needs to be selected by user)"
+ }
+ ],
+ "label": "metadata variable (needs to be selected by user)",
+ "name": "Input parameter",
+ "outputs": [],
+ "position": {
+ "left": 13,
+ "top": 246.2682328280075
+ },
+ "tool_id": null,
+ "tool_state": "{\"parameter_type\": \"text\", \"optional\": false}",
+ "tool_version": null,
+ "type": "parameter_input",
+ "uuid": "b2cec148-918c-4638-ba6c-8d54439682f6",
+ "when": null,
+ "workflow_outputs": []
+ },
+ "3": {
+ "annotation": "",
+ "content_id": null,
+ "errors": null,
+ "id": 3,
+ "input_connections": {},
+ "inputs": [
+ {
+ "description": "",
+ "name": "metadata value(s) (needs to be selected by user)"
+ }
+ ],
+ "label": "metadata value(s) (needs to be selected by user)",
+ "name": "Input parameter",
+ "outputs": [],
+ "position": {
+ "left": 12,
+ "top": 370.2682328280075
+ },
+ "tool_id": null,
+ "tool_state": "{\"parameter_type\": \"text\", \"optional\": false}",
+ "tool_version": null,
+ "type": "parameter_input",
+ "uuid": "d26678bc-9bd9-4f2b-a8cd-abd0b4652bba",
+ "when": null,
+ "workflow_outputs": []
+ },
+ "4": {
+ "annotation": "",
+ "content_id": "toolshed.g2.bx.psu.edu/repos/iuc/ampvis2_subset_samples/ampvis2_subset_samples/2.8.6+galaxy1",
+ "errors": null,
+ "id": 4,
+ "input_connections": {
+ "data": {
+ "id": 0,
+ "output_name": "output"
+ },
+ "metadata_list": {
+ "id": 1,
+ "output_name": "output"
+ },
+ "vals": {
+ "id": 3,
+ "output_name": "output"
+ },
+ "var": {
+ "id": 2,
+ "output_name": "output"
+ }
+ },
+ "inputs": [],
+ "label": null,
+ "name": "ampvis2 subset samples",
+ "outputs": [
+ {
+ "name": "ampvis",
+ "type": "ampvis2"
+ },
+ {
+ "name": "metadata_list_out",
+ "type": "tabular"
+ }
+ ],
+ "position": {
+ "left": 331.5,
+ "top": 32.877607828007456
+ },
+ "post_job_actions": {},
+ "tool_id": "toolshed.g2.bx.psu.edu/repos/iuc/ampvis2_subset_samples/ampvis2_subset_samples/2.8.6+galaxy1",
+ "tool_shed_repository": {
+ "changeset_revision": "c8bfb923d7d4",
+ "name": "ampvis2_subset_samples",
+ "owner": "iuc",
+ "tool_shed": "toolshed.g2.bx.psu.edu"
+ },
+ "tool_state": "{\"data\": {\"__class__\": \"ConnectedValue\"}, \"invert\": false, \"metadata_list\": {\"__class__\": \"ConnectedValue\"}, \"minreads\": \"0\", \"normalise\": false, \"rarefy\": null, \"removeAbsents\": true, \"vals\": {\"__class__\": \"ConnectedValue\"}, \"var\": {\"__class__\": \"ConnectedValue\"}, \"__page__\": null, \"__rerun_remap_job_id__\": null}",
+ "tool_version": "2.8.6+galaxy1",
+ "type": "tool",
+ "uuid": "7b2dfc51-6974-499f-943c-b306a2e43fdf",
+ "when": null,
+ "workflow_outputs": []
+ }
+ },
+ "tags": [],
+ "uuid": "ff25038a-3574-497f-9acc-edc84be09490",
+ "version": 15
+}
\ No newline at end of file
diff --git a/topics/microbiome/tutorials/visualisation-ampvis/workflows/ampvis2_use_case_2_3_subset.ga:Zone.Identifier b/topics/microbiome/tutorials/visualisation-ampvis/workflows/ampvis2_use_case_2_3_subset.ga:Zone.Identifier
new file mode 100644
index 00000000000000..e69de29bb2d1d6
diff --git a/topics/microbiome/tutorials/visualisation-ampvis/workflows/index.md b/topics/microbiome/tutorials/visualisation-ampvis/workflows/index.md
new file mode 100644
index 00000000000000..adff51bc22144c
--- /dev/null
+++ b/topics/microbiome/tutorials/visualisation-ampvis/workflows/index.md
@@ -0,0 +1,5 @@
+---
+layout: workflow-list
+redirect_from:
+- /topics/metagenomics/tutorials/visualisation-ampvis/workflows/index
+---