-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathfluid_simulator.py
354 lines (292 loc) · 13.3 KB
/
fluid_simulator.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
import taichi as ti
import utils
from utils import *
from mgpcg import MGPCGPoissonSolver
from pressure_project import PressureProjectStrategy
from level_set import FastSweepingLevelSet
from volume_control import PressureProjectWithVolumeControlStrategy
from functools import reduce
import time
import numpy as np
ti.init(arch=ti.cuda, kernel_profiler=False, device_memory_GB=4.0)
ADVECT_REDISTANCE = 0
MARKERS = 1
FAST_SWEEPING_METHOD = 0
FAST_MARCHING_METHOD = 1
@ti.data_oriented
class FluidSimulator:
def __init__(self,
dim = 2,
res = (128, 128),
dt = 1.25e-2,
substeps = 1,
dx = 1.0,
rho = 1000.0,
gravity = [0, -9.8],
p0 = 1e-3,
real = float):
# ADVECT_REDISTANCE: advect the level-set with Semi-Lagrangian, then redistance it (Standard)
# MARKERS: advect markers with Semi-Lagrangian, then build the level-set from markers
self.solver_type = ADVECT_REDISTANCE
self.dim = dim
self.real = real
self.res = res
self.dx = dx
self.dt = dt
self.total_t = 0.0 # total simulation time
self.p0 = p0 # the standard atmospheric pressure
self.rho = rho # density
self.gravity = gravity # body force
self.substeps = substeps
# cell_type
self.cell_type = ti.field(dtype=ti.i32)
self.velocity = [ti.field(dtype=real) for _ in range(self.dim)] # MAC grid
self.velocity_backup = [ti.field(dtype=real) for _ in range(self.dim)] # backup / use as weight in apic update
self.pressure = ti.field(dtype=real)
# extrap utils
self.valid = ti.field(dtype=ti.i32)
self.valid_temp = ti.field(dtype=ti.i32)
# marker/apic particles
self.total_mk = ti.field(dtype=ti.i32, shape = ()) # total number of particles/markers
self.p_x = ti.Vector.field(dim, dtype=real) # positions
self.indices = ti.ijk if self.dim == 3 else ti.ij
self.p_per_axis = 2
self.ppc = self.p_per_axis ** dim
self.max_particles = reduce(lambda x, y : x * y, res) * (4 ** dim)
ti.root.dense(ti.i, self.max_particles).place(self.p_x)
ti.root.dense(self.indices, res).place(self.cell_type, self.pressure)
ti.root.dense(self.indices, [res[_] + 1 for _ in range(self.dim)]).place(self.valid, self.valid_temp)
for d in range(self.dim):
ti.root.dense(self.indices, [res[_] + (d == _) for _ in range(self.dim)]).place(self.velocity[d], self.velocity_backup[d])
# Level-Set
self.level_set = FastSweepingLevelSet(self.dim,
self.res,
self.dx,
self.real)
# MGPCG
self.n_mg_levels = 4
self.pre_and_post_smoothing = 2
self.bottom_smoothing = 10
self.iterations = 50
self.verbose = False
self.poisson_solver = MGPCGPoissonSolver(self.dim,
self.res,
self.n_mg_levels,
self.pre_and_post_smoothing,
self.bottom_smoothing,
self.real)
# Pressure Solve
self.ghost_fluid_method = False # Gibou et al. [GFCK02]
self.volume_control = False
if self.volume_control:
self.strategy = PressureProjectWithVolumeControlStrategy(self.dim,
self.velocity,
self.ghost_fluid_method,
self.level_set.phi,
self.p0,
self.level_set,
self.dt) # [Losasso et al. 2008]
else:
self.strategy = PressureProjectStrategy(self.dim,
self.velocity,
self.ghost_fluid_method,
self.level_set.phi,
self.p0)
@ti.func
def is_valid(self, I):
return all(I >= 0) and all(I < self.res)
@ti.func
def is_fluid(self, I):
return self.is_valid(I) and self.cell_type[I] == utils.FLUID
@ti.func
def is_solid(self, I):
return not self.is_valid(I) or self.cell_type[I] == utils.SOLID
@ti.func
def is_air(self, I):
return self.is_valid(I) and self.cell_type[I] == utils.AIR
@ti.func
def vel_interp(self, pos):
v = ti.Vector.zero(self.real, self.dim)
for k in ti.static(range(self.dim)):
v[k] = utils.sample(self.velocity[k], pos / self.dx - 0.5 * (1 - ti.Vector.unit(self.dim, k)))
return v
@ti.kernel
def advect_markers(self, dt : ti.f32):
for p in range(self.total_mk[None]):
midpos = self.p_x[p] + self.vel_interp(self.p_x[p]) * (0.5 * dt)
self.p_x[p] += self.vel_interp(midpos) * dt
@ti.kernel
def apply_markers(self):
for I in ti.grouped(self.cell_type):
if self.cell_type[I] != utils.SOLID:
self.cell_type[I] = utils.AIR
for I in ti.grouped(self.cell_type):
if self.cell_type[I] != utils.SOLID and self.level_set.phi[I] <= 0:
self.cell_type[I] = utils.FLUID
@ti.kernel
def add_gravity(self, dt : ti.f32):
for k in ti.static(range(self.dim)):
if ti.static(self.gravity[k] != 0):
g = self.gravity[k]
for I in ti.grouped(self.velocity[k]):
self.velocity[k][I] += g * dt
@ti.kernel
def enforce_boundary(self):
for I in ti.grouped(self.cell_type):
if self.cell_type[I] == utils.SOLID:
for k in ti.static(range(self.dim)):
self.velocity[k][I] = 0
self.velocity[k][I + ti.Vector.unit(self.dim, k)] = 0
def solve_pressure(self, dt, strategy):
strategy.scale_A = dt / (self.rho * self.dx * self.dx)
strategy.scale_b = 1 / self.dx
start1 = time.perf_counter()
self.poisson_solver.reinitialize(self.cell_type, strategy)
end1 = time.perf_counter()
start2 = time.perf_counter()
self.poisson_solver.solve(self.iterations, self.verbose)
end2 = time.perf_counter()
print(f'\033[33minit cost {end1 - start1}s, solve cost {end2 - start2}s\033[0m')
self.pressure.copy_from(self.poisson_solver.x)
@ti.kernel
def apply_pressure(self, dt : ti.f32):
scale = dt / (self.rho * self.dx)
for k in ti.static(range(self.dim)):
for I in ti.grouped(self.cell_type):
I_1 = I - ti.Vector.unit(self.dim, k)
if self.is_fluid(I_1) or self.is_fluid(I):
if self.is_solid(I_1) or self.is_solid(I): self.velocity[k][I] = 0
# FLuid-Air
elif self.is_air(I):
if ti.static(self.ghost_fluid_method):
c = (self.level_set.phi[I_1] - self.level_set.phi[I]) / self.level_set.phi[I_1]
self.velocity[k][I] -= scale * (self.p0 - self.pressure[I_1]) * min(c, 1e3) # # limit the coefficient
else: self.velocity[k][I] -= scale * (self.p0 - self.pressure[I_1])
# Air-Fluid
elif self.is_air(I_1):
if ti.static(self.ghost_fluid_method):
c = (self.level_set.phi[I] - self.level_set.phi[I_1]) / self.level_set.phi[I]
self.velocity[k][I] -= scale * (self.pressure[I] - self.p0) * min(c, 1e3)
else: self.velocity[k][I] -= scale * (self.pressure[I] - self.p0)
# Fluid-Fluid
else: self.velocity[k][I] -= scale * (self.pressure[I] - self.pressure[I_1])
@ti.func
def advect(self, I, dst, src, offset, dt):
pos = (I + offset) * self.dx
midpos = pos - self.vel_interp(pos) * (0.5 * dt)
p0 = pos - self.vel_interp(midpos) * dt
dst[I] = utils.sample(src, p0 / self.dx - offset)
@ti.kernel
def advect_quantity(self, dt : ti.f32):
if ti.static(self.solver_type == ADVECT_REDISTANCE):
for I in ti.grouped(self.level_set.phi):
self.advect(I, self.level_set.phi_temp, self.level_set.phi, 0.5, dt)
for k in ti.static(range(self.dim)):
offset = 0.5 * (1 - ti.Vector.unit(self.dim, k))
for I in ti.grouped(self.velocity_backup[k]):
self.advect(I, self.velocity_backup[k], self.velocity[k], offset, dt)
def update_quantity(self):
if ti.static(self.solver_type == ADVECT_REDISTANCE):
self.level_set.phi.copy_from(self.level_set.phi_temp)
for k in range(self.dim):
self.velocity[k].copy_from(self.velocity_backup[k])
@ti.kernel
def mark_valid(self, k : ti.template()):
for I in ti.grouped(self.velocity[k]):
# NOTE that the the air-liquid interface is valid
I_1 = I - ti.Vector.unit(self.dim, k)
if self.is_fluid(I_1) or self.is_fluid(I):
self.valid[I] = 1
else:
self.valid[I] = 0
@ti.kernel
def diffuse_quantity(self, dst : ti.template(), src : ti.template(), valid_dst : ti.template(), valid : ti.template()):
for I in ti.grouped(dst):
if valid[I] == 0:
tot = ti.cast(0, self.real)
cnt = 0
for offset in ti.static(ti.grouped(ti.ndrange(*((-1, 2), ) * self.dim))):
if valid[I + offset] == 1:
tot += src[I + offset]
cnt += 1
if cnt > 0:
dst[I] = tot / ti.cast(cnt, self.real)
valid_dst[I] = 1
def extrap_velocity(self):
for k in range(self.dim):
self.mark_valid(k)
for i in range(10):
self.velocity_backup[k].copy_from(self.velocity[k])
self.valid_temp.copy_from(self.valid)
self.diffuse_quantity(self.velocity[k], self.velocity_backup[k], self.valid, self.valid_temp)
def begin_substep(self, dt):
self.advect_markers(dt)
self.advect_quantity(dt)
self.update_quantity()
if self.solver_type == MARKERS:
self.level_set.build_from_markers(self.p_x, self.total_mk)
else:
self.level_set.redistance()
self.apply_markers()
self.enforce_boundary()
if self.verbose:
mks = max(np.max(self.velocity[0].to_numpy()), np.max(self.velocity[1].to_numpy()))
print(f'\033[36mMax advect velocity: {mks}\033[0m')
def end_substep(self, dt):
self.extrap_velocity()
self.enforce_boundary()
self.total_t += self.dt
def substep(self, dt):
self.begin_substep(dt)
self.add_gravity(dt)
self.enforce_boundary()
self.extrap_velocity()
self.enforce_boundary()
self.solve_pressure(dt, self.strategy)
if self.verbose:
prs = np.max(self.pressure.to_numpy())
print(f'\033[36mMax pressure: {prs}\033[0m')
self.apply_pressure(dt)
self.extrap_velocity()
self.enforce_boundary()
self.end_substep(dt)
def run(self, max_steps, visualizer, verbose = True):
self.verbose = verbose
step = 0
while step < max_steps or max_steps == -1:
print(f'Current progress: ({step} / {max_steps})')
for substep in range(self.substeps):
self.substep(self.dt)
visualizer.visualize(self)
step += 1
visualizer.end()
@ti.kernel
def init_boundary(self):
for I in ti.grouped(self.cell_type):
if any(I == 0) or any(I + 1 == self.res):
self.cell_type[I] = utils.SOLID
@ti.kernel
def init_markers(self):
self.total_mk[None] = 0
for I in ti.grouped(self.cell_type):
if self.cell_type[I] == utils.FLUID:
for offset in ti.static(ti.grouped(ti.ndrange(*((0, self.p_per_axis), ) * self.dim))):
num = ti.atomic_add(self.total_mk[None], 1)
self.p_x[num] = (I + (offset + [ti.random() for _ in ti.static(range(self.dim))]) / self.p_per_axis) * self.dx
@ti.kernel
def reinitialize(self):
for I in ti.grouped(ti.ndrange(* [self.res[_] for _ in range(self.dim)])):
self.cell_type[I] = 0
self.pressure[I] = 0
for k in ti.static(range(self.dim)):
I_1 = I + ti.Vector.unit(self.dim, k)
self.velocity[k][I] = 0
self.velocity[k][I_1] = 0
self.velocity_backup[k][I] = 0
self.velocity_backup[k][I_1] = 0
def initialize(self, initializer):
self.reinitialize()
self.cell_type.fill(utils.AIR)
initializer.init_scene(self)
self.init_boundary()
self.init_markers()