-
Notifications
You must be signed in to change notification settings - Fork 0
/
countSquares.py
61 lines (56 loc) · 1.56 KB
/
countSquares.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
"""
Given a m * n matrix of ones and zeros, return how many square submatrices have all ones.
Example 1:
Input: matrix =
[
[0,1,1,1],
[1,1,1,1],
[0,1,1,1]
]
Output: 15
Explanation:
There are 10 squares of side 1.
There are 4 squares of side 2.
There is 1 square of side 3.
Total number of squares = 10 + 4 + 1 = 15.
Example 2:
Input: matrix =
[
[1,0,1],
[1,1,0],
[1,1,0]
]
Output: 7
Explanation:
There are 6 squares of side 1.
There is 1 square of side 2.
Total number of squares = 6 + 1 = 7.
Constraints:
1 <= arr.length <= 300
1 <= arr[0].length <= 300
0 <= arr[i][j] <= 1
"""
from typing import List
class Solution:
def countSquares(self, matrix: List[List[int]]) -> int:
# Get the dimensions of the matrix
rows, cols = len(matrix), len(matrix[0])
# Initialize the count of squares
count = 0
# Iterate over the matrix
for i in range(rows):
for j in range(cols):
# If the element is 1
if matrix[i][j] == 1:
# If the element is in the first row or first column
if i == 0 or j == 0:
count += 1
else:
# Get the minimum of the left, top and diagonal elements
matrix[i][j] = min(matrix[i-1][j], matrix[i][j-1], matrix[i-1][j-1]) + 1
count += matrix[i][j]
return count
# Test Cases
s = Solution()
print(s.countSquares([[0,1,1,1],[1,1,1,1],[0,1,1,1]]) == 15)
print(s.countSquares([[1,0,1],[1,1,0],[1,1,0]]) == 7)