forked from bitcoin/bitcoin
-
Notifications
You must be signed in to change notification settings - Fork 4
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Add exhaustive test for extrakeys and schnorrsig
- Loading branch information
Showing
5 changed files
with
290 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,3 +1,4 @@ | ||
include_HEADERS += include/secp256k1_extrakeys.h | ||
noinst_HEADERS += src/modules/extrakeys/tests_impl.h | ||
noinst_HEADERS += src/modules/extrakeys/tests_exhaustive_impl.h | ||
noinst_HEADERS += src/modules/extrakeys/main_impl.h |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,68 @@ | ||
/********************************************************************** | ||
* Copyright (c) 2020 Pieter Wuille * | ||
* Distributed under the MIT software license, see the accompanying * | ||
* file COPYING or http://www.opensource.org/licenses/mit-license.php.* | ||
**********************************************************************/ | ||
|
||
#ifndef _SECP256K1_MODULE_EXTRAKEYS_TESTS_EXHAUSTIVE_ | ||
#define _SECP256K1_MODULE_EXTRAKEYS_TESTS_EXHAUSTIVE_ | ||
|
||
#include "src/modules/extrakeys/main_impl.h" | ||
#include "include/secp256k1_extrakeys.h" | ||
|
||
static void test_exhaustive_extrakeys(const secp256k1_context *ctx, const secp256k1_ge* group) { | ||
secp256k1_keypair keypair[EXHAUSTIVE_TEST_ORDER - 1]; | ||
secp256k1_pubkey pubkey[EXHAUSTIVE_TEST_ORDER - 1]; | ||
secp256k1_xonly_pubkey xonly_pubkey[EXHAUSTIVE_TEST_ORDER - 1]; | ||
int parities[EXHAUSTIVE_TEST_ORDER - 1]; | ||
unsigned char xonly_pubkey_bytes[EXHAUSTIVE_TEST_ORDER - 1][32]; | ||
int i; | ||
|
||
for (i = 1; i < EXHAUSTIVE_TEST_ORDER; i++) { | ||
secp256k1_fe fe; | ||
secp256k1_scalar scalar_i; | ||
unsigned char buf[33]; | ||
int parity; | ||
|
||
secp256k1_scalar_set_int(&scalar_i, i); | ||
secp256k1_scalar_get_b32(buf, &scalar_i); | ||
|
||
/* Construct pubkey and keypair. */ | ||
CHECK(secp256k1_keypair_create(ctx, &keypair[i - 1], buf)); | ||
CHECK(secp256k1_ec_pubkey_create(ctx, &pubkey[i - 1], buf)); | ||
|
||
/* Construct serialized xonly_pubkey from keypair. */ | ||
CHECK(secp256k1_keypair_xonly_pub(ctx, &xonly_pubkey[i - 1], &parities[i - 1], &keypair[i - 1])); | ||
CHECK(secp256k1_xonly_pubkey_serialize(ctx, xonly_pubkey_bytes[i - 1], &xonly_pubkey[i - 1])); | ||
|
||
/* Parse the xonly_pubkey back and verify it matches the previously serialized value. */ | ||
CHECK(secp256k1_xonly_pubkey_parse(ctx, &xonly_pubkey[i - 1], xonly_pubkey_bytes[i - 1])); | ||
CHECK(secp256k1_xonly_pubkey_serialize(ctx, buf, &xonly_pubkey[i - 1])); | ||
CHECK(memcmp(xonly_pubkey_bytes[i - 1], buf, 32) == 0); | ||
|
||
/* Construct the xonly_pubkey from the pubkey, and verify it matches the same. */ | ||
CHECK(secp256k1_xonly_pubkey_from_pubkey(ctx, &xonly_pubkey[i - 1], &parity, &pubkey[i - 1])); | ||
CHECK(parity == parities[i - 1]); | ||
CHECK(secp256k1_xonly_pubkey_serialize(ctx, buf, &xonly_pubkey[i - 1])); | ||
CHECK(memcmp(xonly_pubkey_bytes[i - 1], buf, 32) == 0); | ||
|
||
/* Compare the xonly_pubkey bytes against the precomputed group. */ | ||
secp256k1_fe_set_b32(&fe, xonly_pubkey_bytes[i - 1]); | ||
CHECK(secp256k1_fe_equal_var(&fe, &group[i].x)); | ||
|
||
/* Check the parity against the precomputed group. */ | ||
fe = group[i].y; | ||
secp256k1_fe_normalize_var(&fe); | ||
CHECK(secp256k1_fe_is_odd(&fe) == parities[i - 1]); | ||
|
||
/* Verify that the higher half is identical to the lower half mirrored. */ | ||
if (i > EXHAUSTIVE_TEST_ORDER / 2) { | ||
CHECK(memcmp(xonly_pubkey_bytes[i - 1], xonly_pubkey_bytes[EXHAUSTIVE_TEST_ORDER - i - 1], 32) == 0); | ||
CHECK(parities[i - 1] == 1 - parities[EXHAUSTIVE_TEST_ORDER - i - 1]); | ||
} | ||
} | ||
|
||
/* TODO: keypair/xonly_pubkey tweak tests */ | ||
} | ||
|
||
#endif |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,206 @@ | ||
/********************************************************************** | ||
* Copyright (c) 2020 Pieter Wuille * | ||
* Distributed under the MIT software license, see the accompanying * | ||
* file COPYING or http://www.opensource.org/licenses/mit-license.php.* | ||
**********************************************************************/ | ||
|
||
#ifndef _SECP256K1_MODULE_SCHNORRSIG_TESTS_EXHAUSTIVE_ | ||
#define _SECP256K1_MODULE_SCHNORRSIG_TESTS_EXHAUSTIVE_ | ||
|
||
#include "include/secp256k1_schnorrsig.h" | ||
#include "src/modules/schnorrsig/main_impl.h" | ||
|
||
static const unsigned char invalid_pubkey_bytes[][32] = { | ||
/* 0 */ | ||
{ | ||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, | ||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 | ||
}, | ||
/* 2 */ | ||
{ | ||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, | ||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2 | ||
}, | ||
/* order */ | ||
{ | ||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, | ||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, | ||
((EXHAUSTIVE_TEST_ORDER + 0UL) >> 24) & 0xFF, | ||
((EXHAUSTIVE_TEST_ORDER + 0UL) >> 16) & 0xFF, | ||
((EXHAUSTIVE_TEST_ORDER + 0UL) >> 8) & 0xFF, | ||
(EXHAUSTIVE_TEST_ORDER + 0UL) & 0xFF | ||
}, | ||
/* order + 1 */ | ||
{ | ||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, | ||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, | ||
((EXHAUSTIVE_TEST_ORDER + 1UL) >> 24) & 0xFF, | ||
((EXHAUSTIVE_TEST_ORDER + 1UL) >> 16) & 0xFF, | ||
((EXHAUSTIVE_TEST_ORDER + 1UL) >> 8) & 0xFF, | ||
(EXHAUSTIVE_TEST_ORDER + 1UL) & 0xFF | ||
}, | ||
/* field size */ | ||
{ | ||
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, | ||
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFE, 0xFF, 0xFF, 0xFC, 0x2F | ||
}, | ||
/* field size + 1 (note that 1 is legal) */ | ||
{ | ||
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, | ||
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFE, 0xFF, 0xFF, 0xFC, 0x30 | ||
}, | ||
/* 2^256 - 1 */ | ||
{ | ||
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, | ||
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF | ||
} | ||
}; | ||
|
||
#define NUM_INVALID_KEYS (sizeof(invalid_pubkey_bytes) / sizeof(invalid_pubkey_bytes[0])) | ||
|
||
static int secp256k1_hardened_nonce_function_smallint(unsigned char *nonce32, const unsigned char *msg32, | ||
const unsigned char *key32, const unsigned char *xonly_pk32, | ||
const unsigned char *algo16, void* data) { | ||
secp256k1_scalar s; | ||
int *idata = data; | ||
(void)msg32; | ||
(void)key32; | ||
(void)xonly_pk32; | ||
(void)algo16; | ||
secp256k1_scalar_set_int(&s, *idata); | ||
secp256k1_scalar_get_b32(nonce32, &s); | ||
return 1; | ||
} | ||
|
||
static void test_exhaustive_schnorrsig_verify(const secp256k1_context *ctx, const secp256k1_xonly_pubkey* pubkeys, unsigned char (*xonly_pubkey_bytes)[32], const int* parities) { | ||
int d; | ||
uint64_t iter = 0; | ||
/* Iterate over the possible public keys to verify against (through their corresponding DL d). */ | ||
for (d = 1; d <= EXHAUSTIVE_TEST_ORDER / 2; ++d) { | ||
int actual_d; | ||
unsigned k; | ||
unsigned char pk32[32]; | ||
memcpy(pk32, xonly_pubkey_bytes[d - 1], 32); | ||
actual_d = parities[d - 1] ? EXHAUSTIVE_TEST_ORDER - d : d; | ||
/* Iterate over the possible valid first 32 bytes in the signature, through their corresponding DL k. | ||
Values above EXHAUSTIVE_TEST_ORDER/2 refer to the entries in invalid_pubkey_bytes. */ | ||
for (k = 1; k <= EXHAUSTIVE_TEST_ORDER / 2 + NUM_INVALID_KEYS; ++k) { | ||
unsigned char sig64[64]; | ||
int actual_k = -1; | ||
int e_done[EXHAUSTIVE_TEST_ORDER] = {0}; | ||
int e_count_done = 0; | ||
if (skip_section(&iter)) continue; | ||
if (k <= EXHAUSTIVE_TEST_ORDER / 2) { | ||
memcpy(sig64, xonly_pubkey_bytes[k - 1], 32); | ||
actual_k = parities[k - 1] ? EXHAUSTIVE_TEST_ORDER - k : k; | ||
} else { | ||
memcpy(sig64, invalid_pubkey_bytes[k - 1 - EXHAUSTIVE_TEST_ORDER / 2], 32); | ||
} | ||
/* Randomly generate messages until all challenges have been hit. */ | ||
while (e_count_done < EXHAUSTIVE_TEST_ORDER) { | ||
secp256k1_scalar e; | ||
unsigned char msg32[32]; | ||
secp256k1_rand256(msg32); | ||
secp256k1_schnorrsig_challenge(&e, sig64, msg32, pk32); | ||
/* Only do work if we hit a challenge we haven't tried before. */ | ||
if (!e_done[e]) { | ||
/* Iterate over the possible valid last 32 bytes in the signature. | ||
0..order=that s value; order+1=random bytes */ | ||
int count_valid = 0, s; | ||
for (s = 0; s <= EXHAUSTIVE_TEST_ORDER + 1; ++s) { | ||
int expect_valid, valid; | ||
if (s <= EXHAUSTIVE_TEST_ORDER) { | ||
secp256k1_scalar s_s; | ||
secp256k1_scalar_set_int(&s_s, s); | ||
secp256k1_scalar_get_b32(sig64 + 32, &s_s); | ||
expect_valid = actual_k != -1 && s != EXHAUSTIVE_TEST_ORDER && | ||
(s_s == (actual_k + actual_d * e) % EXHAUSTIVE_TEST_ORDER); | ||
} else { | ||
secp256k1_rand256(sig64 + 32); | ||
expect_valid = 0; | ||
} | ||
valid = secp256k1_schnorrsig_verify(ctx, sig64, msg32, &pubkeys[d - 1]); | ||
CHECK(valid == expect_valid); | ||
count_valid += valid; | ||
} | ||
/* Exactly one s value must verify, unless R is illegal. */ | ||
CHECK(count_valid == (actual_k != -1)); | ||
/* Don't retry other messages that result in the same challenge. */ | ||
e_done[e] = 1; | ||
++e_count_done; | ||
} | ||
} | ||
} | ||
} | ||
} | ||
|
||
static void test_exhaustive_schnorrsig_sign(const secp256k1_context *ctx, unsigned char (*xonly_pubkey_bytes)[32], const secp256k1_keypair* keypairs, const int* parities) { | ||
int d, k; | ||
uint64_t iter = 0; | ||
/* Loop over keys. */ | ||
for (d = 1; d < EXHAUSTIVE_TEST_ORDER; ++d) { | ||
int actual_d = d; | ||
if (parities[d - 1]) actual_d = EXHAUSTIVE_TEST_ORDER - d; | ||
/* Loop over nonces. */ | ||
for (k = 1; k < EXHAUSTIVE_TEST_ORDER; ++k) { | ||
int e_done[EXHAUSTIVE_TEST_ORDER] = {0}; | ||
int e_count_done = 0; | ||
unsigned char msg32[32]; | ||
unsigned char sig64[64]; | ||
int actual_k = k; | ||
if (skip_section(&iter)) continue; | ||
if (parities[k - 1]) actual_k = EXHAUSTIVE_TEST_ORDER - k; | ||
/* Generate random messages until all challenges have been tried. */ | ||
while (e_count_done < EXHAUSTIVE_TEST_ORDER) { | ||
secp256k1_scalar e; | ||
secp256k1_rand256(msg32); | ||
secp256k1_schnorrsig_challenge(&e, xonly_pubkey_bytes[k - 1], msg32, xonly_pubkey_bytes[d - 1]); | ||
/* Only do work if we hit a challenge we haven't tried before. */ | ||
if (!e_done[e]) { | ||
secp256k1_scalar expected_s = (actual_k + e * actual_d) % EXHAUSTIVE_TEST_ORDER; | ||
unsigned char expected_s_bytes[32]; | ||
secp256k1_scalar_get_b32(expected_s_bytes, &expected_s); | ||
/* Invoke the real function to construct a signature. */ | ||
CHECK(secp256k1_schnorrsig_sign(ctx, sig64, msg32, &keypairs[d - 1], secp256k1_hardened_nonce_function_smallint, &k)); | ||
/* The first 32 bytes must match the xonly pubkey for the specified k. */ | ||
CHECK(memcmp(sig64, xonly_pubkey_bytes[k - 1], 32) == 0); | ||
/* The last 32 bytes must match the expected s value. */ | ||
CHECK(memcmp(sig64 + 32, expected_s_bytes, 32) == 0); | ||
/* Don't retry other messages that result in the same challenge. */ | ||
e_done[e] = 1; | ||
++e_count_done; | ||
} | ||
} | ||
} | ||
} | ||
} | ||
|
||
static void test_exhaustive_schnorrsig(const secp256k1_context *ctx) { | ||
secp256k1_keypair keypair[EXHAUSTIVE_TEST_ORDER - 1]; | ||
secp256k1_xonly_pubkey xonly_pubkey[EXHAUSTIVE_TEST_ORDER - 1]; | ||
int parity[EXHAUSTIVE_TEST_ORDER - 1]; | ||
unsigned char xonly_pubkey_bytes[EXHAUSTIVE_TEST_ORDER - 1][32]; | ||
unsigned i; | ||
|
||
/* Verify that all invalid_pubkey_bytes are actually invalid. */ | ||
for (i = 0; i < NUM_INVALID_KEYS; ++i) { | ||
secp256k1_xonly_pubkey pk; | ||
CHECK(!secp256k1_xonly_pubkey_parse(ctx, &pk, invalid_pubkey_bytes[i])); | ||
} | ||
|
||
/* Construct keypairs and xonly-pubkeys for the entire group. */ | ||
for (i = 1; i < EXHAUSTIVE_TEST_ORDER; ++i) { | ||
secp256k1_scalar scalar_i; | ||
unsigned char buf[32]; | ||
secp256k1_scalar_set_int(&scalar_i, i); | ||
secp256k1_scalar_get_b32(buf, &scalar_i); | ||
CHECK(secp256k1_keypair_create(ctx, &keypair[i - 1], buf)); | ||
CHECK(secp256k1_keypair_xonly_pub(ctx, &xonly_pubkey[i - 1], &parity[i - 1], &keypair[i - 1])); | ||
CHECK(secp256k1_xonly_pubkey_serialize(ctx, xonly_pubkey_bytes[i - 1], &xonly_pubkey[i - 1])); | ||
} | ||
|
||
test_exhaustive_schnorrsig_sign(ctx, xonly_pubkey_bytes, keypair, parity); | ||
test_exhaustive_schnorrsig_verify(ctx, xonly_pubkey, xonly_pubkey_bytes, parity); | ||
} | ||
|
||
#endif |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters