diff --git a/.cirrus.yml b/.cirrus.yml new file mode 100644 index 0000000000000..1ba9315f0a651 --- /dev/null +++ b/.cirrus.yml @@ -0,0 +1,293 @@ +env: + WIDEMUL: auto + STATICPRECOMPUTATION: yes + ECMULTGENPRECISION: auto + ASM: no + BUILD: check + WITH_VALGRIND: yes + EXTRAFLAGS: + HOST: + ECDH: no + RECOVERY: no + SCHNORRSIG: no + EXPERIMENTAL: no + CTIMETEST: yes + BENCH: yes + TEST_ITERS: + BENCH_ITERS: 2 + MAKEFLAGS: -j2 + +cat_logs_snippet: &CAT_LOGS + always: + cat_tests_log_script: + - cat tests.log || true + cat_exhaustive_tests_log_script: + - cat exhaustive_tests.log || true + cat_valgrind_ctime_test_log_script: + - cat valgrind_ctime_test.log || true + cat_bench_log_script: + - cat bench.log || true + on_failure: + cat_config_log_script: + - cat config.log || true + cat_test_env_script: + - cat test_env.log || true + cat_ci_env_script: + - env + +merge_base_script_snippet: &MERGE_BASE + merge_base_script: + - if [ "$CIRRUS_PR" = "" ]; then exit 0; fi + - git fetch $CIRRUS_REPO_CLONE_URL $CIRRUS_BASE_BRANCH + - git config --global user.email "ci@ci.ci" + - git config --global user.name "ci" + - git merge FETCH_HEAD # Merge base to detect silent merge conflicts + +task: + name: "x86_64: Linux (Debian stable)" + container: + dockerfile: ci/linux-debian.Dockerfile + # Reduce number of CPUs to be able to do more builds in parallel. + cpu: 1 + # More than enough for our scripts. + memory: 1G + matrix: &ENV_MATRIX + - env: {WIDEMUL: int64, RECOVERY: yes} + - env: {WIDEMUL: int64, ECDH: yes, EXPERIMENTAL: yes, SCHNORRSIG: yes} + - env: {WIDEMUL: int128} + - env: {WIDEMUL: int128, RECOVERY: yes, EXPERIMENTAL: yes, SCHNORRSIG: yes} + - env: {WIDEMUL: int128, ECDH: yes, EXPERIMENTAL: yes, SCHNORRSIG: yes} + - env: {WIDEMUL: int128, ASM: x86_64} + - env: { RECOVERY: yes, EXPERIMENTAL: yes, SCHNORRSIG: yes} + - env: { STATICPRECOMPUTATION: no} + - env: {BUILD: distcheck, WITH_VALGRIND: no, CTIMETEST: no, BENCH: no} + - env: {CPPFLAGS: -DDETERMINISTIC} + - env: {CFLAGS: -O0, CTIMETEST: no} + - env: { ECMULTGENPRECISION: 2 } + - env: { ECMULTGENPRECISION: 8 } + matrix: + - env: + CC: gcc + - env: + CC: clang + << : *MERGE_BASE + test_script: + - ./ci/cirrus.sh + << : *CAT_LOGS + +task: + name: "i686: Linux (Debian stable)" + container: + dockerfile: ci/linux-debian.Dockerfile + cpu: 1 + memory: 1G + env: + HOST: i686-linux-gnu + ECDH: yes + RECOVERY: yes + EXPERIMENTAL: yes + SCHNORRSIG: yes + matrix: + - env: + CC: i686-linux-gnu-gcc + - env: + CC: clang --target=i686-pc-linux-gnu -isystem /usr/i686-linux-gnu/include + test_script: + - ./ci/cirrus.sh + << : *CAT_LOGS + +task: + name: "x86_64: macOS Catalina" + macos_instance: + image: catalina-base + env: + HOMEBREW_NO_AUTO_UPDATE: 1 + HOMEBREW_NO_INSTALL_CLEANUP: 1 + # Cirrus gives us a fixed number of 12 virtual CPUs. Not that we even have that many jobs at the moment... + MAKEFLAGS: -j13 + matrix: + << : *ENV_MATRIX + matrix: + - env: + CC: gcc-9 + - env: + CC: clang + # Update Command Line Tools + # Uncomment this if the Command Line Tools on the CirrusCI macOS image are too old to brew valgrind. + # See https://apple.stackexchange.com/a/195963 for the implementation. + ## update_clt_script: + ## - system_profiler SPSoftwareDataType + ## - touch /tmp/.com.apple.dt.CommandLineTools.installondemand.in-progress + ## - |- + ## PROD=$(softwareupdate -l | grep "*.*Command Line" | tail -n 1 | awk -F"*" '{print $2}' | sed -e 's/^ *//' | sed 's/Label: //g' | tr -d '\n') + ## # For debugging + ## - softwareupdate -l && echo "PROD: $PROD" + ## - softwareupdate -i "$PROD" --verbose + ## - rm /tmp/.com.apple.dt.CommandLineTools.installondemand.in-progress + ## + brew_valgrind_pre_script: + - brew config + - brew tap --shallow LouisBrunner/valgrind + # Fetch valgrind source but don't build it yet. + - brew fetch --HEAD LouisBrunner/valgrind/valgrind + brew_valgrind_cache: + # This is $(brew --cellar valgrind) but command substition does not work here. + folder: /usr/local/Cellar/valgrind + # Rebuild cache if ... + fingerprint_script: + # ... macOS version changes: + - sw_vers + # ... brew changes: + - brew config + # ... valgrind changes: + - git -C "$(brew --cache)/valgrind--git" rev-parse HEAD + populate_script: + # If there's no hit in the cache, build and install valgrind. + - brew install --HEAD LouisBrunner/valgrind/valgrind + brew_valgrind_post_script: + # If we have restored valgrind from the cache, tell brew to create symlink to the PATH. + # If we haven't restored from cached (and just run brew install), this is a no-op. + - brew link valgrind + brew_script: + - brew install automake libtool gcc@9 + << : *MERGE_BASE + test_script: + - ./ci/cirrus.sh + << : *CAT_LOGS + +task: + name: "s390x (big-endian): Linux (Debian stable, QEMU)" + container: + dockerfile: ci/linux-debian.Dockerfile + cpu: 1 + memory: 1G + env: + WRAPPER_CMD: qemu-s390x + TEST_ITERS: 16 + HOST: s390x-linux-gnu + WITH_VALGRIND: no + ECDH: yes + RECOVERY: yes + EXPERIMENTAL: yes + SCHNORRSIG: yes + CTIMETEST: no + << : *MERGE_BASE + test_script: + # https://sourceware.org/bugzilla/show_bug.cgi?id=27008 + - rm /etc/ld.so.cache + - ./ci/cirrus.sh + << : *CAT_LOGS + +task: + name: "ARM32: Linux (Debian stable, QEMU)" + container: + dockerfile: ci/linux-debian.Dockerfile + cpu: 1 + memory: 1G + env: + WRAPPER_CMD: qemu-arm + TEST_ITERS: 16 + HOST: arm-linux-gnueabihf + WITH_VALGRIND: no + ECDH: yes + RECOVERY: yes + EXPERIMENTAL: yes + SCHNORRSIG: yes + CTIMETEST: no + matrix: + - env: {} + - env: {ASM: arm} + << : *MERGE_BASE + test_script: + - ./ci/cirrus.sh + << : *CAT_LOGS + +task: + name: "ARM64: Linux (Debian stable, QEMU)" + container: + dockerfile: ci/linux-debian.Dockerfile + cpu: 1 + memory: 1G + env: + WRAPPER_CMD: qemu-aarch64 + TEST_ITERS: 16 + HOST: aarch64-linux-gnu + WITH_VALGRIND: no + ECDH: yes + RECOVERY: yes + EXPERIMENTAL: yes + SCHNORRSIG: yes + CTIMETEST: no + << : *MERGE_BASE + test_script: + - ./ci/cirrus.sh + << : *CAT_LOGS + +task: + name: "x86_64 (mingw32-w64): Windows (Debian stable, Wine)" + container: + dockerfile: ci/linux-debian.Dockerfile + cpu: 1 + memory: 1G + env: + WRAPPER_CMD: wine64-stable + TEST_ITERS: 16 + HOST: x86_64-w64-mingw32 + WITH_VALGRIND: no + ECDH: yes + RECOVERY: yes + EXPERIMENTAL: yes + SCHNORRSIG: yes + CTIMETEST: no + << : *MERGE_BASE + test_script: + - ./ci/cirrus.sh + << : *CAT_LOGS + +# Sanitizers +task: + container: + dockerfile: ci/linux-debian.Dockerfile + cpu: 1 + memory: 1G + env: + ECDH: yes + RECOVERY: yes + EXPERIMENTAL: yes + SCHNORRSIG: yes + CTIMETEST: no + EXTRAFLAGS: "--disable-openssl-tests" + matrix: + - name: "Valgrind (memcheck)" + env: + # The `--error-exitcode` is required to make the test fail if valgrind found errors, otherwise it'll return 0 (https://www.valgrind.org/docs/manual/manual-core.html) + WRAPPER_CMD: "valgrind --error-exitcode=42" + TEST_ITERS: 16 + - name: "UBSan, ASan, LSan" + env: + CFLAGS: "-fsanitize=undefined,address" + CFLAGS_FOR_BUILD: "-fsanitize=undefined,address" + UBSAN_OPTIONS: "print_stacktrace=1:halt_on_error=1" + ASAN_OPTIONS: "strict_string_checks=1:detect_stack_use_after_return=1:detect_leaks=1" + LSAN_OPTIONS: "use_unaligned=1" + TEST_ITERS: 32 + # Try to cover many configurations with just a tiny matrix. + matrix: + - env: + ASM: auto + STATICPRECOMPUTATION: yes + - env: + ASM: no + STATICPRECOMPUTATION: no + ECMULTGENPRECISION: 2 + matrix: + - env: + CC: clang + - env: + HOST: i686-linux-gnu + CC: i686-linux-gnu-gcc + << : *MERGE_BASE + test_script: + - ./ci/cirrus.sh + << : *CAT_LOGS + diff --git a/.gitignore b/.gitignore index 55d325aeefa9c..b62055a39bc77 100644 --- a/.gitignore +++ b/.gitignore @@ -1,14 +1,15 @@ bench_inv bench_ecdh bench_ecmult +bench_schnorrsig bench_sign bench_verify -bench_schnorr_verify bench_recover bench_internal tests exhaustive_tests gen_context +valgrind_ctime_test *.exe *.so *.a @@ -30,6 +31,16 @@ libtool *.lo *.o *~ +*.log +*.trs + +coverage/ +coverage.html +coverage.*.html +*.gcda +*.gcno +*.gcov + src/libsecp256k1-config.h src/libsecp256k1-config.h.in src/ecmult_static_context.h diff --git a/.travis.yml b/.travis.yml deleted file mode 100644 index c4154e9a898cd..0000000000000 --- a/.travis.yml +++ /dev/null @@ -1,69 +0,0 @@ -language: c -sudo: false -addons: - apt: - packages: libgmp-dev -compiler: - - clang - - gcc -cache: - directories: - - src/java/guava/ -env: - global: - - FIELD=auto BIGNUM=auto SCALAR=auto ENDOMORPHISM=no STATICPRECOMPUTATION=yes ASM=no BUILD=check EXTRAFLAGS= HOST= ECDH=no RECOVERY=no EXPERIMENTAL=no JNI=no - - GUAVA_URL=https://search.maven.org/remotecontent?filepath=com/google/guava/guava/18.0/guava-18.0.jar GUAVA_JAR=src/java/guava/guava-18.0.jar - matrix: - - SCALAR=32bit RECOVERY=yes - - SCALAR=32bit FIELD=32bit ECDH=yes EXPERIMENTAL=yes - - SCALAR=64bit - - FIELD=64bit RECOVERY=yes - - FIELD=64bit ENDOMORPHISM=yes - - FIELD=64bit ENDOMORPHISM=yes ECDH=yes EXPERIMENTAL=yes - - FIELD=64bit ASM=x86_64 - - FIELD=64bit ENDOMORPHISM=yes ASM=x86_64 - - FIELD=32bit ENDOMORPHISM=yes - - BIGNUM=no - - BIGNUM=no ENDOMORPHISM=yes RECOVERY=yes EXPERIMENTAL=yes - - BIGNUM=no STATICPRECOMPUTATION=no - - BUILD=distcheck - - EXTRAFLAGS=CPPFLAGS=-DDETERMINISTIC - - EXTRAFLAGS=CFLAGS=-O0 - - BUILD=check-java JNI=yes ECDH=yes EXPERIMENTAL=yes -matrix: - fast_finish: true - include: - - compiler: clang - env: HOST=i686-linux-gnu ENDOMORPHISM=yes - addons: - apt: - packages: - - gcc-multilib - - libgmp-dev:i386 - - compiler: clang - env: HOST=i686-linux-gnu - addons: - apt: - packages: - - gcc-multilib - - compiler: gcc - env: HOST=i686-linux-gnu ENDOMORPHISM=yes - addons: - apt: - packages: - - gcc-multilib - - compiler: gcc - env: HOST=i686-linux-gnu - addons: - apt: - packages: - - gcc-multilib - - libgmp-dev:i386 -before_install: mkdir -p `dirname $GUAVA_JAR` -install: if [ ! -f $GUAVA_JAR ]; then wget $GUAVA_URL -O $GUAVA_JAR; fi -before_script: ./autogen.sh -script: - - if [ -n "$HOST" ]; then export USE_HOST="--host=$HOST"; fi - - if [ "x$HOST" = "xi686-linux-gnu" ]; then export CC="$CC -m32"; fi - - ./configure --enable-experimental=$EXPERIMENTAL --enable-endomorphism=$ENDOMORPHISM --with-field=$FIELD --with-bignum=$BIGNUM --with-scalar=$SCALAR --enable-ecmult-static-precomputation=$STATICPRECOMPUTATION --enable-module-ecdh=$ECDH --enable-module-recovery=$RECOVERY --enable-jni=$JNI $EXTRAFLAGS $USE_HOST && make -j2 $BUILD -os: linux diff --git a/Makefile.am b/Makefile.am index 01fd0cd6de39e..23b29281df882 100644 --- a/Makefile.am +++ b/Makefile.am @@ -1,13 +1,8 @@ ACLOCAL_AMFLAGS = -I build-aux/m4 lib_LTLIBRARIES = libsecp256k1.la -if USE_JNI -JNI_LIB = libsecp256k1_jni.la -noinst_LTLIBRARIES = $(JNI_LIB) -else -JNI_LIB = -endif include_HEADERS = include/secp256k1.h +include_HEADERS += include/secp256k1_preallocated.h noinst_HEADERS = noinst_HEADERS += src/scalar.h noinst_HEADERS += src/scalar_4x64.h @@ -19,8 +14,6 @@ noinst_HEADERS += src/scalar_8x32_impl.h noinst_HEADERS += src/scalar_low_impl.h noinst_HEADERS += src/group.h noinst_HEADERS += src/group_impl.h -noinst_HEADERS += src/num_gmp.h -noinst_HEADERS += src/num_gmp_impl.h noinst_HEADERS += src/ecdsa.h noinst_HEADERS += src/ecdsa_impl.h noinst_HEADERS += src/eckey.h @@ -31,19 +24,21 @@ noinst_HEADERS += src/ecmult_const.h noinst_HEADERS += src/ecmult_const_impl.h noinst_HEADERS += src/ecmult_gen.h noinst_HEADERS += src/ecmult_gen_impl.h -noinst_HEADERS += src/num.h -noinst_HEADERS += src/num_impl.h noinst_HEADERS += src/field_10x26.h noinst_HEADERS += src/field_10x26_impl.h noinst_HEADERS += src/field_5x52.h noinst_HEADERS += src/field_5x52_impl.h noinst_HEADERS += src/field_5x52_int128_impl.h noinst_HEADERS += src/field_5x52_asm_impl.h -noinst_HEADERS += src/java/org_bitcoin_NativeSecp256k1.h -noinst_HEADERS += src/java/org_bitcoin_Secp256k1Context.h +noinst_HEADERS += src/modinv32.h +noinst_HEADERS += src/modinv32_impl.h +noinst_HEADERS += src/modinv64.h +noinst_HEADERS += src/modinv64_impl.h +noinst_HEADERS += src/assumptions.h noinst_HEADERS += src/util.h noinst_HEADERS += src/scratch.h noinst_HEADERS += src/scratch_impl.h +noinst_HEADERS += src/selftest.h noinst_HEADERS += src/testrand.h noinst_HEADERS += src/testrand_impl.h noinst_HEADERS += src/hash.h @@ -73,32 +68,41 @@ endif endif libsecp256k1_la_SOURCES = src/secp256k1.c -libsecp256k1_la_CPPFLAGS = -DSECP256K1_BUILD -I$(top_srcdir)/include -I$(top_srcdir)/src $(SECP_INCLUDES) -libsecp256k1_la_LIBADD = $(JNI_LIB) $(SECP_LIBS) $(COMMON_LIB) +libsecp256k1_la_CPPFLAGS = -I$(top_srcdir)/include -I$(top_srcdir)/src $(SECP_INCLUDES) +libsecp256k1_la_LIBADD = $(SECP_LIBS) $(COMMON_LIB) -libsecp256k1_jni_la_SOURCES = src/java/org_bitcoin_NativeSecp256k1.c src/java/org_bitcoin_Secp256k1Context.c -libsecp256k1_jni_la_CPPFLAGS = -DSECP256K1_BUILD $(JNI_INCLUDES) +if VALGRIND_ENABLED +libsecp256k1_la_CPPFLAGS += -DVALGRIND +endif noinst_PROGRAMS = if USE_BENCHMARK noinst_PROGRAMS += bench_verify bench_sign bench_internal bench_ecmult bench_verify_SOURCES = src/bench_verify.c bench_verify_LDADD = libsecp256k1.la $(SECP_LIBS) $(SECP_TEST_LIBS) $(COMMON_LIB) +# SECP_TEST_INCLUDES are only used here for CRYPTO_CPPFLAGS +bench_verify_CPPFLAGS = $(SECP_TEST_INCLUDES) bench_sign_SOURCES = src/bench_sign.c bench_sign_LDADD = libsecp256k1.la $(SECP_LIBS) $(SECP_TEST_LIBS) $(COMMON_LIB) bench_internal_SOURCES = src/bench_internal.c bench_internal_LDADD = $(SECP_LIBS) $(COMMON_LIB) -bench_internal_CPPFLAGS = -DSECP256K1_BUILD $(SECP_INCLUDES) +bench_internal_CPPFLAGS = $(SECP_INCLUDES) bench_ecmult_SOURCES = src/bench_ecmult.c bench_ecmult_LDADD = $(SECP_LIBS) $(COMMON_LIB) -bench_ecmult_CPPFLAGS = -DSECP256K1_BUILD $(SECP_INCLUDES) +bench_ecmult_CPPFLAGS = $(SECP_INCLUDES) endif TESTS = if USE_TESTS noinst_PROGRAMS += tests tests_SOURCES = src/tests.c -tests_CPPFLAGS = -DSECP256K1_BUILD -I$(top_srcdir)/src -I$(top_srcdir)/include $(SECP_INCLUDES) $(SECP_TEST_INCLUDES) +tests_CPPFLAGS = -I$(top_srcdir)/src -I$(top_srcdir)/include $(SECP_INCLUDES) $(SECP_TEST_INCLUDES) +if VALGRIND_ENABLED +tests_CPPFLAGS += -DVALGRIND +noinst_PROGRAMS += valgrind_ctime_test +valgrind_ctime_test_SOURCES = src/valgrind_ctime_test.c +valgrind_ctime_test_LDADD = libsecp256k1.la $(SECP_LIBS) $(COMMON_LIB) +endif if !ENABLE_COVERAGE tests_CPPFLAGS += -DVERIFY endif @@ -110,56 +114,25 @@ endif if USE_EXHAUSTIVE_TESTS noinst_PROGRAMS += exhaustive_tests exhaustive_tests_SOURCES = src/tests_exhaustive.c -exhaustive_tests_CPPFLAGS = -DSECP256K1_BUILD -I$(top_srcdir)/src $(SECP_INCLUDES) +exhaustive_tests_CPPFLAGS = -I$(top_srcdir)/src $(SECP_INCLUDES) if !ENABLE_COVERAGE exhaustive_tests_CPPFLAGS += -DVERIFY endif -exhaustive_tests_LDADD = $(SECP_LIBS) +exhaustive_tests_LDADD = $(SECP_LIBS) $(COMMON_LIB) exhaustive_tests_LDFLAGS = -static TESTS += exhaustive_tests endif -JAVAROOT=src/java -JAVAORG=org/bitcoin -JAVA_GUAVA=$(srcdir)/$(JAVAROOT)/guava/guava-18.0.jar -CLASSPATH_ENV=CLASSPATH=$(JAVA_GUAVA) -JAVA_FILES= \ - $(JAVAROOT)/$(JAVAORG)/NativeSecp256k1.java \ - $(JAVAROOT)/$(JAVAORG)/NativeSecp256k1Test.java \ - $(JAVAROOT)/$(JAVAORG)/NativeSecp256k1Util.java \ - $(JAVAROOT)/$(JAVAORG)/Secp256k1Context.java - -if USE_JNI - -$(JAVA_GUAVA): - @echo Guava is missing. Fetch it via: \ - wget https://search.maven.org/remotecontent?filepath=com/google/guava/guava/18.0/guava-18.0.jar -O $(@) - @false - -.stamp-java: $(JAVA_FILES) - @echo Compiling $^ - $(AM_V_at)$(CLASSPATH_ENV) javac $^ - @touch $@ - -if USE_TESTS - -check-java: libsecp256k1.la $(JAVA_GUAVA) .stamp-java - $(AM_V_at)java -Djava.library.path="./:./src:./src/.libs:.libs/" -cp "$(JAVA_GUAVA):$(JAVAROOT)" $(JAVAORG)/NativeSecp256k1Test - -endif -endif - if USE_ECMULT_STATIC_PRECOMPUTATION -CPPFLAGS_FOR_BUILD +=-I$(top_srcdir) -CFLAGS_FOR_BUILD += -Wall -Wextra -Wno-unused-function +CPPFLAGS_FOR_BUILD +=-I$(top_srcdir) -I$(builddir)/src gen_context_OBJECTS = gen_context.o gen_context_BIN = gen_context$(BUILD_EXEEXT) -gen_%.o: src/gen_%.c - $(CC_FOR_BUILD) $(CPPFLAGS_FOR_BUILD) $(CFLAGS_FOR_BUILD) -c $< -o $@ +gen_%.o: src/gen_%.c src/libsecp256k1-config.h + $(CC_FOR_BUILD) $(DEFS) $(CPPFLAGS_FOR_BUILD) $(CFLAGS_FOR_BUILD) -c $< -o $@ $(gen_context_BIN): $(gen_context_OBJECTS) - $(CC_FOR_BUILD) $^ -o $@ + $(CC_FOR_BUILD) $(CFLAGS_FOR_BUILD) $(LDFLAGS_FOR_BUILD) $^ -o $@ $(libsecp256k1_la_OBJECTS): src/ecmult_static_context.h $(tests_OBJECTS): src/ecmult_static_context.h @@ -169,10 +142,10 @@ $(bench_ecmult_OBJECTS): src/ecmult_static_context.h src/ecmult_static_context.h: $(gen_context_BIN) ./$(gen_context_BIN) -CLEANFILES = $(gen_context_BIN) src/ecmult_static_context.h $(JAVAROOT)/$(JAVAORG)/*.class .stamp-java +CLEANFILES = $(gen_context_BIN) src/ecmult_static_context.h endif -EXTRA_DIST = autogen.sh src/gen_context.c src/basic-config.h $(JAVA_FILES) +EXTRA_DIST = autogen.sh src/gen_context.c src/basic-config.h if ENABLE_MODULE_ECDH include src/modules/ecdh/Makefile.am.include @@ -181,3 +154,11 @@ endif if ENABLE_MODULE_RECOVERY include src/modules/recovery/Makefile.am.include endif + +if ENABLE_MODULE_EXTRAKEYS +include src/modules/extrakeys/Makefile.am.include +endif + +if ENABLE_MODULE_SCHNORRSIG +include src/modules/schnorrsig/Makefile.am.include +endif diff --git a/README.md b/README.md index 8cd344ea81232..182c29d9ce5ef 100644 --- a/README.md +++ b/README.md @@ -1,19 +1,25 @@ libsecp256k1 ============ -[![Build Status](https://travis-ci.org/bitcoin-core/secp256k1.svg?branch=master)](https://travis-ci.org/bitcoin-core/secp256k1) +[![Build Status](https://api.cirrus-ci.com/github/bitcoin-core/secp256k1.svg?branch=master)](https://cirrus-ci.com/github/bitcoin-core/secp256k1) -Optimized C library for EC operations on curve secp256k1. +Optimized C library for ECDSA signatures and secret/public key operations on curve secp256k1. -This library is a work in progress and is being used to research best practices. Use at your own risk. +This library is intended to be the highest quality publicly available library for cryptography on the secp256k1 curve. However, the primary focus of its development has been for usage in the Bitcoin system and usage unlike Bitcoin's may be less well tested, verified, or suffer from a less well thought out interface. Correct usage requires some care and consideration that the library is fit for your application's purpose. Features: * secp256k1 ECDSA signing/verification and key generation. -* Adding/multiplying private/public keys. -* Serialization/parsing of private keys, public keys, signatures. -* Constant time, constant memory access signing and pubkey generation. -* Derandomized DSA (via RFC6979 or with a caller provided function.) +* Additive and multiplicative tweaking of secret/public keys. +* Serialization/parsing of secret keys, public keys, signatures. +* Constant time, constant memory access signing and public key generation. +* Derandomized ECDSA (via RFC6979 or with a caller provided function.) * Very efficient implementation. +* Suitable for embedded systems. +* Optional module for public key recovery. +* Optional module for ECDH key exchange. +* Optional module for Schnorr signatures according to [BIP-340](https://github.com/bitcoin/bips/blob/master/bip-0340.mediawiki) (experimental). + +Experimental features have not received enough scrutiny to satisfy the standard of quality of this library but are made available for testing and review by the community. The APIs of these features should not be considered stable. Implementation details ---------------------- @@ -23,16 +29,17 @@ Implementation details * Extensive testing infrastructure. * Structured to facilitate review and analysis. * Intended to be portable to any system with a C89 compiler and uint64_t support. + * No use of floating types. * Expose only higher level interfaces to minimize the API surface and improve application security. ("Be difficult to use insecurely.") * Field operations * Optimized implementation of arithmetic modulo the curve's field size (2^256 - 0x1000003D1). * Using 5 52-bit limbs (including hand-optimized assembly for x86_64, by Diederik Huys). - * Using 10 26-bit limbs. - * Field inverses and square roots using a sliding window over blocks of 1s (by Peter Dettman). + * Using 10 26-bit limbs (including hand-optimized assembly for 32-bit ARM, by Wladimir J. van der Laan). * Scalar operations * Optimized implementation without data-dependent branches of arithmetic modulo the curve's order. * Using 4 64-bit limbs (relying on __int128 support in the compiler). * Using 8 32-bit limbs. +* Modular inverses (both field elements and scalars) based on [safegcd](https://gcd.cr.yp.to/index.html) with some modifications, and a variable-time variant (by Peter Dettman). * Group operations * Point addition formula specifically simplified for the curve equation (y^2 = x^3 + 7). * Use addition between points in Jacobian and affine coordinates where possible. @@ -42,12 +49,14 @@ Implementation details * Use wNAF notation for point multiplicands. * Use a much larger window for multiples of G, using precomputed multiples. * Use Shamir's trick to do the multiplication with the public key and the generator simultaneously. - * Optionally (off by default) use secp256k1's efficiently-computable endomorphism to split the P multiplicand into 2 half-sized ones. + * Use secp256k1's efficiently-computable endomorphism to split the P multiplicand into 2 half-sized ones. * Point multiplication for signing * Use a precomputed table of multiples of powers of 16 multiplied with the generator, so general multiplication becomes a series of additions. - * Access the table with branch-free conditional moves so memory access is uniform. - * No data-dependent branches - * The precomputed tables add and eventually subtract points for which no known scalar (private key) is known, preventing even an attacker with control over the private key used to control the data internally. + * Intended to be completely free of timing sidechannels for secret-key operations (on reasonable hardware/toolchains) + * Access the table with branch-free conditional moves so memory access is uniform. + * No data-dependent branches + * Optional runtime blinding which attempts to frustrate differential power analysis. + * The precomputed tables add and eventually subtract points for which no known scalar (secret key) is known, preventing even an attacker with control over the secret key used to control the data internally. Build steps ----------- @@ -57,5 +66,41 @@ libsecp256k1 is built using autotools: $ ./autogen.sh $ ./configure $ make - $ ./tests + $ make check $ sudo make install # optional + +Exhaustive tests +----------- + + $ ./exhaustive_tests + +With valgrind, you might need to increase the max stack size: + + $ valgrind --max-stackframe=2500000 ./exhaustive_tests + +Test coverage +----------- + +This library aims to have full coverage of the reachable lines and branches. + +To create a test coverage report, configure with `--enable-coverage` (use of GCC is necessary): + + $ ./configure --enable-coverage + +Run the tests: + + $ make check + +To create a report, `gcovr` is recommended, as it includes branch coverage reporting: + + $ gcovr --exclude 'src/bench*' --print-summary + +To create a HTML report with coloured and annotated source code: + + $ mkdir -p coverage + $ gcovr --exclude 'src/bench*' --html --html-details -o coverage/coverage.html + +Reporting a vulnerability +------------ + +See [SECURITY.md](SECURITY.md) diff --git a/SECURITY.md b/SECURITY.md new file mode 100644 index 0000000000000..0e4d588030274 --- /dev/null +++ b/SECURITY.md @@ -0,0 +1,15 @@ +# Security Policy + +## Reporting a Vulnerability + +To report security issues send an email to secp256k1-security@bitcoincore.org (not for support). + +The following keys may be used to communicate sensitive information to developers: + +| Name | Fingerprint | +|------|-------------| +| Pieter Wuille | 133E AC17 9436 F14A 5CF1 B794 860F EB80 4E66 9320 | +| Andrew Poelstra | 699A 63EF C17A D3A9 A34C FFC0 7AD0 A91C 40BD 0091 | +| Tim Ruffing | 09E0 3F87 1092 E40E 106E 902B 33BC 86AB 80FF 5516 | + +You can import a key by running the following command with that individual’s fingerprint: `gpg --recv-keys ""` Ensure that you put quotes around fingerprints containing spaces. diff --git a/TODO b/TODO deleted file mode 100644 index a300e1c5eb9b1..0000000000000 --- a/TODO +++ /dev/null @@ -1,3 +0,0 @@ -* Unit tests for fieldelem/groupelem, including ones intended to - trigger fieldelem's boundary cases. -* Complete constant-time operations for signing/keygen diff --git a/build-aux/m4/ax_jni_include_dir.m4 b/build-aux/m4/ax_jni_include_dir.m4 deleted file mode 100644 index cdc78d87d48b0..0000000000000 --- a/build-aux/m4/ax_jni_include_dir.m4 +++ /dev/null @@ -1,145 +0,0 @@ -# =========================================================================== -# https://www.gnu.org/software/autoconf-archive/ax_jni_include_dir.html -# =========================================================================== -# -# SYNOPSIS -# -# AX_JNI_INCLUDE_DIR -# -# DESCRIPTION -# -# AX_JNI_INCLUDE_DIR finds include directories needed for compiling -# programs using the JNI interface. -# -# JNI include directories are usually in the Java distribution. This is -# deduced from the value of $JAVA_HOME, $JAVAC, or the path to "javac", in -# that order. When this macro completes, a list of directories is left in -# the variable JNI_INCLUDE_DIRS. -# -# Example usage follows: -# -# AX_JNI_INCLUDE_DIR -# -# for JNI_INCLUDE_DIR in $JNI_INCLUDE_DIRS -# do -# CPPFLAGS="$CPPFLAGS -I$JNI_INCLUDE_DIR" -# done -# -# If you want to force a specific compiler: -# -# - at the configure.in level, set JAVAC=yourcompiler before calling -# AX_JNI_INCLUDE_DIR -# -# - at the configure level, setenv JAVAC -# -# Note: This macro can work with the autoconf M4 macros for Java programs. -# This particular macro is not part of the original set of macros. -# -# LICENSE -# -# Copyright (c) 2008 Don Anderson -# -# Copying and distribution of this file, with or without modification, are -# permitted in any medium without royalty provided the copyright notice -# and this notice are preserved. This file is offered as-is, without any -# warranty. - -#serial 14 - -AU_ALIAS([AC_JNI_INCLUDE_DIR], [AX_JNI_INCLUDE_DIR]) -AC_DEFUN([AX_JNI_INCLUDE_DIR],[ - -JNI_INCLUDE_DIRS="" - -if test "x$JAVA_HOME" != x; then - _JTOPDIR="$JAVA_HOME" -else - if test "x$JAVAC" = x; then - JAVAC=javac - fi - AC_PATH_PROG([_ACJNI_JAVAC], [$JAVAC], [no]) - if test "x$_ACJNI_JAVAC" = xno; then - AC_MSG_WARN([cannot find JDK; try setting \$JAVAC or \$JAVA_HOME]) - fi - _ACJNI_FOLLOW_SYMLINKS("$_ACJNI_JAVAC") - _JTOPDIR=`echo "$_ACJNI_FOLLOWED" | sed -e 's://*:/:g' -e 's:/[[^/]]*$::'` -fi - -case "$host_os" in - darwin*) # Apple Java headers are inside the Xcode bundle. - macos_version=$(sw_vers -productVersion | sed -n -e 's/^@<:@0-9@:>@*.\(@<:@0-9@:>@*\).@<:@0-9@:>@*/\1/p') - if @<:@ "$macos_version" -gt "7" @:>@; then - _JTOPDIR="$(xcrun --show-sdk-path)/System/Library/Frameworks/JavaVM.framework" - _JINC="$_JTOPDIR/Headers" - else - _JTOPDIR="/System/Library/Frameworks/JavaVM.framework" - _JINC="$_JTOPDIR/Headers" - fi - ;; - *) _JINC="$_JTOPDIR/include";; -esac -_AS_ECHO_LOG([_JTOPDIR=$_JTOPDIR]) -_AS_ECHO_LOG([_JINC=$_JINC]) - -# On Mac OS X 10.6.4, jni.h is a symlink: -# /System/Library/Frameworks/JavaVM.framework/Versions/Current/Headers/jni.h -# -> ../../CurrentJDK/Headers/jni.h. -AC_CACHE_CHECK(jni headers, ac_cv_jni_header_path, -[ - if test -f "$_JINC/jni.h"; then - ac_cv_jni_header_path="$_JINC" - JNI_INCLUDE_DIRS="$JNI_INCLUDE_DIRS $ac_cv_jni_header_path" - else - _JTOPDIR=`echo "$_JTOPDIR" | sed -e 's:/[[^/]]*$::'` - if test -f "$_JTOPDIR/include/jni.h"; then - ac_cv_jni_header_path="$_JTOPDIR/include" - JNI_INCLUDE_DIRS="$JNI_INCLUDE_DIRS $ac_cv_jni_header_path" - else - ac_cv_jni_header_path=none - fi - fi -]) - -# get the likely subdirectories for system specific java includes -case "$host_os" in -bsdi*) _JNI_INC_SUBDIRS="bsdos";; -freebsd*) _JNI_INC_SUBDIRS="freebsd";; -darwin*) _JNI_INC_SUBDIRS="darwin";; -linux*) _JNI_INC_SUBDIRS="linux genunix";; -osf*) _JNI_INC_SUBDIRS="alpha";; -solaris*) _JNI_INC_SUBDIRS="solaris";; -mingw*) _JNI_INC_SUBDIRS="win32";; -cygwin*) _JNI_INC_SUBDIRS="win32";; -*) _JNI_INC_SUBDIRS="genunix";; -esac - -if test "x$ac_cv_jni_header_path" != "xnone"; then - # add any subdirectories that are present - for JINCSUBDIR in $_JNI_INC_SUBDIRS - do - if test -d "$_JTOPDIR/include/$JINCSUBDIR"; then - JNI_INCLUDE_DIRS="$JNI_INCLUDE_DIRS $_JTOPDIR/include/$JINCSUBDIR" - fi - done -fi -]) - -# _ACJNI_FOLLOW_SYMLINKS -# Follows symbolic links on , -# finally setting variable _ACJNI_FOLLOWED -# ---------------------------------------- -AC_DEFUN([_ACJNI_FOLLOW_SYMLINKS],[ -# find the include directory relative to the javac executable -_cur="$1" -while ls -ld "$_cur" 2>/dev/null | grep " -> " >/dev/null; do - AC_MSG_CHECKING([symlink for $_cur]) - _slink=`ls -ld "$_cur" | sed 's/.* -> //'` - case "$_slink" in - /*) _cur="$_slink";; - # 'X' avoids triggering unwanted echo options. - *) _cur=`echo "X$_cur" | sed -e 's/^X//' -e 's:[[^/]]*$::'`"$_slink";; - esac - AC_MSG_RESULT([$_cur]) -done -_ACJNI_FOLLOWED="$_cur" -])# _ACJNI diff --git a/build-aux/m4/ax_prog_cc_for_build.m4 b/build-aux/m4/ax_prog_cc_for_build.m4 index 77fd346a79a6f..7bcbf3200cfa2 100644 --- a/build-aux/m4/ax_prog_cc_for_build.m4 +++ b/build-aux/m4/ax_prog_cc_for_build.m4 @@ -1,5 +1,5 @@ # =========================================================================== -# http://www.gnu.org/software/autoconf-archive/ax_prog_cc_for_build.html +# https://www.gnu.org/software/autoconf-archive/ax_prog_cc_for_build.html # =========================================================================== # # SYNOPSIS diff --git a/build-aux/m4/bitcoin_secp.m4 b/build-aux/m4/bitcoin_secp.m4 index 3b3975cbdda81..e57888ca18968 100644 --- a/build-aux/m4/bitcoin_secp.m4 +++ b/build-aux/m4/bitcoin_secp.m4 @@ -1,8 +1,3 @@ -dnl libsecp25k1 helper checks -AC_DEFUN([SECP_INT128_CHECK],[ -has_int128=$ac_cv_type___int128 -]) - dnl escape "$0x" below using the m4 quadrigaph @S|@, and escape it again with a \ for the shell. AC_DEFUN([SECP_64BIT_ASM_CHECK],[ AC_MSG_CHECKING(for x86_64 assembly availability) @@ -38,31 +33,52 @@ AC_DEFUN([SECP_OPENSSL_CHECK],[ fi if test x"$has_libcrypto" = x"yes" && test x"$has_openssl_ec" = x; then AC_MSG_CHECKING(for EC functions in libcrypto) + CPPFLAGS_TEMP="$CPPFLAGS" + CPPFLAGS="$CRYPTO_CPPFLAGS $CPPFLAGS" AC_COMPILE_IFELSE([AC_LANG_PROGRAM([[ + #include #include #include #include ]],[[ - EC_KEY *eckey = EC_KEY_new_by_curve_name(NID_secp256k1); - ECDSA_sign(0, NULL, 0, NULL, NULL, eckey); + # if OPENSSL_VERSION_NUMBER < 0x10100000L + void ECDSA_SIG_get0(const ECDSA_SIG *sig, const BIGNUM **pr, const BIGNUM **ps) {(void)sig->r; (void)sig->s;} + # endif + + unsigned int zero = 0; + const unsigned char *zero_ptr = (unsigned char*)&zero; + EC_KEY_free(EC_KEY_new_by_curve_name(NID_secp256k1)); + EC_KEY *eckey = EC_KEY_new(); + EC_GROUP *group = EC_GROUP_new_by_curve_name(NID_secp256k1); + EC_KEY_set_group(eckey, group); + ECDSA_sign(0, NULL, 0, NULL, &zero, eckey); ECDSA_verify(0, NULL, 0, NULL, 0, eckey); + o2i_ECPublicKey(&eckey, &zero_ptr, 0); + d2i_ECPrivateKey(&eckey, &zero_ptr, 0); + EC_KEY_check_key(eckey); EC_KEY_free(eckey); + EC_GROUP_free(group); ECDSA_SIG *sig_openssl; sig_openssl = ECDSA_SIG_new(); + d2i_ECDSA_SIG(&sig_openssl, &zero_ptr, 0); + i2d_ECDSA_SIG(sig_openssl, NULL); + ECDSA_SIG_get0(sig_openssl, NULL, NULL); ECDSA_SIG_free(sig_openssl); + const BIGNUM *bignum = BN_value_one(); + BN_is_negative(bignum); + BN_num_bits(bignum); + if (sizeof(zero) >= BN_num_bytes(bignum)) { + BN_bn2bin(bignum, (unsigned char*)&zero); + } ]])],[has_openssl_ec=yes],[has_openssl_ec=no]) AC_MSG_RESULT([$has_openssl_ec]) + CPPFLAGS="$CPPFLAGS_TEMP" fi ]) -dnl -AC_DEFUN([SECP_GMP_CHECK],[ -if test x"$has_gmp" != x"yes"; then +AC_DEFUN([SECP_VALGRIND_CHECK],[ +if test x"$has_valgrind" != x"yes"; then CPPFLAGS_TEMP="$CPPFLAGS" - CPPFLAGS="$GMP_CPPFLAGS $CPPFLAGS" - LIBS_TEMP="$LIBS" - LIBS="$GMP_LIBS $LIBS" - AC_CHECK_HEADER(gmp.h,[AC_CHECK_LIB(gmp, __gmpz_init,[has_gmp=yes; GMP_LIBS="$GMP_LIBS -lgmp"; AC_DEFINE(HAVE_LIBGMP,1,[Define this symbol if libgmp is installed])])]) - CPPFLAGS="$CPPFLAGS_TEMP" - LIBS="$LIBS_TEMP" + CPPFLAGS="$VALGRIND_CPPFLAGS $CPPFLAGS" + AC_CHECK_HEADER([valgrind/memcheck.h], [has_valgrind=yes; AC_DEFINE(HAVE_VALGRIND,1,[Define this symbol if valgrind is installed])]) fi ]) diff --git a/ci/cirrus.sh b/ci/cirrus.sh new file mode 100755 index 0000000000000..27db1e6779fa6 --- /dev/null +++ b/ci/cirrus.sh @@ -0,0 +1,71 @@ +#!/bin/sh + +set -e +set -x + +export LC_ALL=C + +env >> test_env.log + +$CC -v || true +valgrind --version || true + +./autogen.sh + +./configure \ + --enable-experimental="$EXPERIMENTAL" \ + --with-test-override-wide-multiply="$WIDEMUL" --with-asm="$ASM" \ + --enable-ecmult-static-precomputation="$STATICPRECOMPUTATION" --with-ecmult-gen-precision="$ECMULTGENPRECISION" \ + --enable-module-ecdh="$ECDH" --enable-module-recovery="$RECOVERY" \ + --enable-module-schnorrsig="$SCHNORRSIG" \ + --with-valgrind="$WITH_VALGRIND" \ + --host="$HOST" $EXTRAFLAGS + +# We have set "-j" in MAKEFLAGS. +make + +# Print information about binaries so that we can see that the architecture is correct +file *tests* || true +file bench_* || true +file .libs/* || true + +# This tells `make check` to wrap test invocations. +export LOG_COMPILER="$WRAPPER_CMD" + +# This limits the iterations in the tests and benchmarks. +export SECP256K1_TEST_ITERS="$TEST_ITERS" +export SECP256K1_BENCH_ITERS="$BENCH_ITERS" + +make "$BUILD" + +if [ "$BENCH" = "yes" ] +then + # Using the local `libtool` because on macOS the system's libtool has nothing to do with GNU libtool + EXEC='./libtool --mode=execute' + if [ -n "$WRAPPER_CMD" ] + then + EXEC="$EXEC $WRAPPER_CMD" + fi + { + $EXEC ./bench_ecmult + $EXEC ./bench_internal + $EXEC ./bench_sign + $EXEC ./bench_verify + } >> bench.log 2>&1 + if [ "$RECOVERY" = "yes" ] + then + $EXEC ./bench_recover >> bench.log 2>&1 + fi + if [ "$ECDH" = "yes" ] + then + $EXEC ./bench_ecdh >> bench.log 2>&1 + fi + if [ "$SCHNORRSIG" = "yes" ] + then + $EXEC ./bench_schnorrsig >> bench.log 2>&1 + fi +fi +if [ "$CTIMETEST" = "yes" ] +then + ./libtool --mode=execute valgrind --error-exitcode=42 ./valgrind_ctime_test > valgrind_ctime_test.log 2>&1 +fi diff --git a/ci/linux-debian.Dockerfile b/ci/linux-debian.Dockerfile new file mode 100644 index 0000000000000..e06c816686534 --- /dev/null +++ b/ci/linux-debian.Dockerfile @@ -0,0 +1,22 @@ +FROM debian:stable + +RUN dpkg --add-architecture i386 +RUN dpkg --add-architecture s390x +RUN dpkg --add-architecture armhf +RUN dpkg --add-architecture arm64 +RUN apt-get update + +# dkpg-dev: to make pkg-config work in cross-builds +# llvm: for llvm-symbolizer, which is used by clang's UBSan for symbolized stack traces +RUN apt-get install --no-install-recommends --no-upgrade -y \ + git ca-certificates \ + make automake libtool pkg-config dpkg-dev valgrind qemu-user \ + gcc clang llvm libc6-dbg \ + gcc-i686-linux-gnu libc6-dev-i386-cross libc6-dbg:i386 libubsan1:i386 libasan5:i386 \ + gcc-s390x-linux-gnu libc6-dev-s390x-cross libc6-dbg:s390x \ + gcc-arm-linux-gnueabihf libc6-dev-armhf-cross libc6-dbg:armhf \ + gcc-aarch64-linux-gnu libc6-dev-arm64-cross libc6-dbg:arm64 \ + wine gcc-mingw-w64-x86-64 + +# Run a dummy command in wine to make it set up configuration +RUN wine64-stable xcopy || true diff --git a/configure.ac b/configure.ac index 68c45a56f0aa0..1ed991afa7714 100644 --- a/configure.ac +++ b/configure.ac @@ -7,9 +7,14 @@ AH_TOP([#ifndef LIBSECP256K1_CONFIG_H]) AH_TOP([#define LIBSECP256K1_CONFIG_H]) AH_BOTTOM([#endif /*LIBSECP256K1_CONFIG_H*/]) AM_INIT_AUTOMAKE([foreign subdir-objects]) + +# Set -g if CFLAGS are not already set, which matches the default autoconf +# behavior (see PROG_CC in the Autoconf manual) with the exception that we don't +# set -O2 here because we set it in any case (see further down). +: ${CFLAGS="-g"} LT_INIT -dnl make the compilation flags quiet unless V=1 is used +# Make the compilation flags quiet unless V=1 is used. m4_ifdef([AM_SILENT_RULES], [AM_SILENT_RULES([yes])]) PKG_PROG_PKG_CONFIG @@ -17,13 +22,16 @@ PKG_PROG_PKG_CONFIG AC_PATH_TOOL(AR, ar) AC_PATH_TOOL(RANLIB, ranlib) AC_PATH_TOOL(STRIP, strip) -AX_PROG_CC_FOR_BUILD - -if test "x$CFLAGS" = "x"; then - CFLAGS="-g" -fi +# Save definition of AC_PROG_CC because AM_PROG_CC_C_O in automake<=1.13 will +# redefine AC_PROG_CC to exit with an error, which avoids the user calling it +# accidently and screwing up the effect of AM_PROG_CC_C_O. However, we'll need +# AC_PROG_CC later on in AX_PROG_CC_FOR_BUILD, where its usage is fine, and +# we'll carefully make sure not to call AC_PROG_CC anywhere else. +m4_copy([AC_PROG_CC], [saved_AC_PROG_CC]) AM_PROG_CC_C_O +# Restore AC_PROG_CC +m4_rename_force([saved_AC_PROG_CC], [AC_PROG_CC]) AC_PROG_CC_C89 if test x"$ac_cv_prog_cc_c89" = x"no"; then @@ -36,24 +44,23 @@ case $host_os in if test x$cross_compiling != xyes; then AC_PATH_PROG([BREW],brew,) if test x$BREW != x; then - dnl These Homebrew packages may be keg-only, meaning that they won't be found - dnl in expected paths because they may conflict with system files. Ask - dnl Homebrew where each one is located, then adjust paths accordingly. - + # These Homebrew packages may be keg-only, meaning that they won't be found + # in expected paths because they may conflict with system files. Ask + # Homebrew where each one is located, then adjust paths accordingly. openssl_prefix=`$BREW --prefix openssl 2>/dev/null` - gmp_prefix=`$BREW --prefix gmp 2>/dev/null` + valgrind_prefix=`$BREW --prefix valgrind 2>/dev/null` if test x$openssl_prefix != x; then PKG_CONFIG_PATH="$openssl_prefix/lib/pkgconfig:$PKG_CONFIG_PATH" export PKG_CONFIG_PATH + CRYPTO_CPPFLAGS="-I$openssl_prefix/include" fi - if test x$gmp_prefix != x; then - GMP_CPPFLAGS="-I$gmp_prefix/include" - GMP_LIBS="-L$gmp_prefix/lib" + if test x$valgrind_prefix != x; then + VALGRIND_CPPFLAGS="-I$valgrind_prefix/include" fi else AC_PATH_PROG([PORT],port,) - dnl if homebrew isn't installed and macports is, add the macports default paths - dnl as a last resort. + # If homebrew isn't installed and macports is, add the macports default paths + # as a last resort. if test x$PORT != x; then CPPFLAGS="$CPPFLAGS -isystem /opt/local/include" LDFLAGS="$LDFLAGS -L/opt/local/lib" @@ -63,11 +70,11 @@ case $host_os in ;; esac -CFLAGS="$CFLAGS -W" +CFLAGS="-W $CFLAGS" -warn_CFLAGS="-std=c89 -pedantic -Wall -Wextra -Wcast-align -Wnested-externs -Wshadow -Wstrict-prototypes -Wno-unused-function -Wno-long-long -Wno-overlength-strings" +warn_CFLAGS="-std=c89 -pedantic -Wall -Wextra -Wcast-align -Wnested-externs -Wshadow -Wstrict-prototypes -Wundef -Wno-unused-function -Wno-long-long -Wno-overlength-strings" saved_CFLAGS="$CFLAGS" -CFLAGS="$CFLAGS $warn_CFLAGS" +CFLAGS="$warn_CFLAGS $CFLAGS" AC_MSG_CHECKING([if ${CC} supports ${warn_CFLAGS}]) AC_COMPILE_IFELSE([AC_LANG_SOURCE([[char foo;]])], [ AC_MSG_RESULT([yes]) ], @@ -76,7 +83,16 @@ AC_COMPILE_IFELSE([AC_LANG_SOURCE([[char foo;]])], ]) saved_CFLAGS="$CFLAGS" -CFLAGS="$CFLAGS -fvisibility=hidden" +CFLAGS="-Wconditional-uninitialized $CFLAGS" +AC_MSG_CHECKING([if ${CC} supports -Wconditional-uninitialized]) +AC_COMPILE_IFELSE([AC_LANG_SOURCE([[char foo;]])], + [ AC_MSG_RESULT([yes]) ], + [ AC_MSG_RESULT([no]) + CFLAGS="$saved_CFLAGS" + ]) + +saved_CFLAGS="$CFLAGS" +CFLAGS="-fvisibility=hidden $CFLAGS" AC_MSG_CHECKING([if ${CC} supports -fvisibility=hidden]) AC_COMPILE_IFELSE([AC_LANG_SOURCE([[char foo;]])], [ AC_MSG_RESULT([yes]) ], @@ -84,115 +100,123 @@ AC_COMPILE_IFELSE([AC_LANG_SOURCE([[char foo;]])], CFLAGS="$saved_CFLAGS" ]) +### +### Define config arguments +### + AC_ARG_ENABLE(benchmark, - AS_HELP_STRING([--enable-benchmark],[compile benchmark (default is yes)]), + AS_HELP_STRING([--enable-benchmark],[compile benchmark [default=yes]]), [use_benchmark=$enableval], [use_benchmark=yes]) AC_ARG_ENABLE(coverage, - AS_HELP_STRING([--enable-coverage],[enable compiler flags to support kcov coverage analysis]), + AS_HELP_STRING([--enable-coverage],[enable compiler flags to support kcov coverage analysis [default=no]]), [enable_coverage=$enableval], [enable_coverage=no]) AC_ARG_ENABLE(tests, - AS_HELP_STRING([--enable-tests],[compile tests (default is yes)]), + AS_HELP_STRING([--enable-tests],[compile tests [default=yes]]), [use_tests=$enableval], [use_tests=yes]) AC_ARG_ENABLE(openssl_tests, - AS_HELP_STRING([--enable-openssl-tests],[enable OpenSSL tests, if OpenSSL is available (default is auto)]), + AS_HELP_STRING([--enable-openssl-tests],[enable OpenSSL tests [default=auto]]), [enable_openssl_tests=$enableval], [enable_openssl_tests=auto]) AC_ARG_ENABLE(experimental, - AS_HELP_STRING([--enable-experimental],[allow experimental configure options (default is no)]), + AS_HELP_STRING([--enable-experimental],[allow experimental configure options [default=no]]), [use_experimental=$enableval], [use_experimental=no]) AC_ARG_ENABLE(exhaustive_tests, - AS_HELP_STRING([--enable-exhaustive-tests],[compile exhaustive tests (default is yes)]), + AS_HELP_STRING([--enable-exhaustive-tests],[compile exhaustive tests [default=yes]]), [use_exhaustive_tests=$enableval], [use_exhaustive_tests=yes]) -AC_ARG_ENABLE(endomorphism, - AS_HELP_STRING([--enable-endomorphism],[enable endomorphism (default is no)]), - [use_endomorphism=$enableval], - [use_endomorphism=no]) - AC_ARG_ENABLE(ecmult_static_precomputation, - AS_HELP_STRING([--enable-ecmult-static-precomputation],[enable precomputed ecmult table for signing (default is yes)]), + AS_HELP_STRING([--enable-ecmult-static-precomputation],[enable precomputed ecmult table for signing [default=auto]]), [use_ecmult_static_precomputation=$enableval], [use_ecmult_static_precomputation=auto]) AC_ARG_ENABLE(module_ecdh, - AS_HELP_STRING([--enable-module-ecdh],[enable ECDH shared secret computation (experimental)]), + AS_HELP_STRING([--enable-module-ecdh],[enable ECDH shared secret computation]), [enable_module_ecdh=$enableval], [enable_module_ecdh=no]) AC_ARG_ENABLE(module_recovery, - AS_HELP_STRING([--enable-module-recovery],[enable ECDSA pubkey recovery module (default is no)]), + AS_HELP_STRING([--enable-module-recovery],[enable ECDSA pubkey recovery module [default=no]]), [enable_module_recovery=$enableval], [enable_module_recovery=no]) -AC_ARG_ENABLE(jni, - AS_HELP_STRING([--enable-jni],[enable libsecp256k1_jni (default is no)]), - [use_jni=$enableval], - [use_jni=no]) - -AC_ARG_WITH([field], [AS_HELP_STRING([--with-field=64bit|32bit|auto], -[Specify Field Implementation. Default is auto])],[req_field=$withval], [req_field=auto]) - -AC_ARG_WITH([bignum], [AS_HELP_STRING([--with-bignum=gmp|no|auto], -[Specify Bignum Implementation. Default is auto])],[req_bignum=$withval], [req_bignum=auto]) - -AC_ARG_WITH([scalar], [AS_HELP_STRING([--with-scalar=64bit|32bit|auto], -[Specify scalar implementation. Default is auto])],[req_scalar=$withval], [req_scalar=auto]) - -AC_ARG_WITH([asm], [AS_HELP_STRING([--with-asm=x86_64|arm|no|auto] -[Specify assembly optimizations to use. Default is auto (experimental: arm)])],[req_asm=$withval], [req_asm=auto]) - -AC_CHECK_TYPES([__int128]) - -AC_MSG_CHECKING([for __builtin_expect]) -AC_COMPILE_IFELSE([AC_LANG_SOURCE([[void myfunc() {__builtin_expect(0,0);}]])], - [ AC_MSG_RESULT([yes]);AC_DEFINE(HAVE_BUILTIN_EXPECT,1,[Define this symbol if __builtin_expect is available]) ], - [ AC_MSG_RESULT([no]) - ]) - -if test x"$enable_coverage" = x"yes"; then - AC_DEFINE(COVERAGE, 1, [Define this symbol to compile out all VERIFY code]) - CFLAGS="$CFLAGS -O0 --coverage" - LDFLAGS="--coverage" +AC_ARG_ENABLE(module_extrakeys, + AS_HELP_STRING([--enable-module-extrakeys],[enable extrakeys module (experimental)]), + [enable_module_extrakeys=$enableval], + [enable_module_extrakeys=no]) + +AC_ARG_ENABLE(module_schnorrsig, + AS_HELP_STRING([--enable-module-schnorrsig],[enable schnorrsig module (experimental)]), + [enable_module_schnorrsig=$enableval], + [enable_module_schnorrsig=no]) + +AC_ARG_ENABLE(external_default_callbacks, + AS_HELP_STRING([--enable-external-default-callbacks],[enable external default callback functions [default=no]]), + [use_external_default_callbacks=$enableval], + [use_external_default_callbacks=no]) + +# Test-only override of the (autodetected by the C code) "widemul" setting. +# Legal values are int64 (for [u]int64_t), int128 (for [unsigned] __int128), and auto (the default). +AC_ARG_WITH([test-override-wide-multiply], [] ,[set_widemul=$withval], [set_widemul=auto]) + +AC_ARG_WITH([asm], [AS_HELP_STRING([--with-asm=x86_64|arm|no|auto], +[assembly optimizations to use (experimental: arm) [default=auto]])],[req_asm=$withval], [req_asm=auto]) + +AC_ARG_WITH([ecmult-window], [AS_HELP_STRING([--with-ecmult-window=SIZE|auto], +[window size for ecmult precomputation for verification, specified as integer in range [2..24].] +[Larger values result in possibly better performance at the cost of an exponentially larger precomputed table.] +[The table will store 2^(SIZE-1) * 64 bytes of data but can be larger in memory due to platform-specific padding and alignment.] +["auto" is a reasonable setting for desktop machines (currently 15). [default=auto]] +)], +[req_ecmult_window=$withval], [req_ecmult_window=auto]) + +AC_ARG_WITH([ecmult-gen-precision], [AS_HELP_STRING([--with-ecmult-gen-precision=2|4|8|auto], +[Precision bits to tune the precomputed table size for signing.] +[The size of the table is 32kB for 2 bits, 64kB for 4 bits, 512kB for 8 bits of precision.] +[A larger table size usually results in possible faster signing.] +["auto" is a reasonable setting for desktop machines (currently 4). [default=auto]] +)], +[req_ecmult_gen_precision=$withval], [req_ecmult_gen_precision=auto]) + +AC_ARG_WITH([valgrind], [AS_HELP_STRING([--with-valgrind=yes|no|auto], +[Build with extra checks for running inside Valgrind [default=auto]] +)], +[req_valgrind=$withval], [req_valgrind=auto]) + +### +### Handle config options (except for modules) +### + +if test x"$req_valgrind" = x"no"; then + enable_valgrind=no else - CFLAGS="$CFLAGS -O3" -fi - -if test x"$use_ecmult_static_precomputation" != x"no"; then - save_cross_compiling=$cross_compiling - cross_compiling=no - TEMP_CC="$CC" - CC="$CC_FOR_BUILD" - AC_MSG_CHECKING([native compiler: ${CC_FOR_BUILD}]) - AC_RUN_IFELSE( - [AC_LANG_PROGRAM([], [return 0])], - [working_native_cc=yes], - [working_native_cc=no],[dnl]) - CC="$TEMP_CC" - cross_compiling=$save_cross_compiling - - if test x"$working_native_cc" = x"no"; then - set_precomp=no - if test x"$use_ecmult_static_precomputation" = x"yes"; then - AC_MSG_ERROR([${CC_FOR_BUILD} does not produce working binaries. Please set CC_FOR_BUILD]) - else - AC_MSG_RESULT([${CC_FOR_BUILD} does not produce working binaries. Please set CC_FOR_BUILD]) + SECP_VALGRIND_CHECK + if test x"$has_valgrind" != x"yes"; then + if test x"$req_valgrind" = x"yes"; then + AC_MSG_ERROR([Valgrind support explicitly requested but valgrind/memcheck.h header not available]) fi + enable_valgrind=no else - AC_MSG_RESULT([ok]) - set_precomp=yes + enable_valgrind=yes fi +fi +AM_CONDITIONAL([VALGRIND_ENABLED],[test "$enable_valgrind" = "yes"]) + +if test x"$enable_coverage" = x"yes"; then + AC_DEFINE(COVERAGE, 1, [Define this symbol to compile out all VERIFY code]) + CFLAGS="-O0 --coverage $CFLAGS" + LDFLAGS="--coverage $LDFLAGS" else - set_precomp=no + CFLAGS="-O2 $CFLAGS" fi if test x"$req_asm" = x"auto"; then @@ -222,90 +246,7 @@ else esac fi -if test x"$req_field" = x"auto"; then - if test x"set_asm" = x"x86_64"; then - set_field=64bit - fi - if test x"$set_field" = x; then - SECP_INT128_CHECK - if test x"$has_int128" = x"yes"; then - set_field=64bit - fi - fi - if test x"$set_field" = x; then - set_field=32bit - fi -else - set_field=$req_field - case $set_field in - 64bit) - if test x"$set_asm" != x"x86_64"; then - SECP_INT128_CHECK - if test x"$has_int128" != x"yes"; then - AC_MSG_ERROR([64bit field explicitly requested but neither __int128 support or x86_64 assembly available]) - fi - fi - ;; - 32bit) - ;; - *) - AC_MSG_ERROR([invalid field implementation selection]) - ;; - esac -fi - -if test x"$req_scalar" = x"auto"; then - SECP_INT128_CHECK - if test x"$has_int128" = x"yes"; then - set_scalar=64bit - fi - if test x"$set_scalar" = x; then - set_scalar=32bit - fi -else - set_scalar=$req_scalar - case $set_scalar in - 64bit) - SECP_INT128_CHECK - if test x"$has_int128" != x"yes"; then - AC_MSG_ERROR([64bit scalar explicitly requested but __int128 support not available]) - fi - ;; - 32bit) - ;; - *) - AC_MSG_ERROR([invalid scalar implementation selected]) - ;; - esac -fi - -if test x"$req_bignum" = x"auto"; then - SECP_GMP_CHECK - if test x"$has_gmp" = x"yes"; then - set_bignum=gmp - fi - - if test x"$set_bignum" = x; then - set_bignum=no - fi -else - set_bignum=$req_bignum - case $set_bignum in - gmp) - SECP_GMP_CHECK - if test x"$has_gmp" != x"yes"; then - AC_MSG_ERROR([gmp bignum explicitly requested but libgmp not available]) - fi - ;; - no) - ;; - *) - AC_MSG_ERROR([invalid bignum implementation selection]) - ;; - esac -fi - -# select assembly optimization +# Select assembly optimization use_external_asm=no case $set_asm in @@ -322,56 +263,70 @@ no) ;; esac -# select field implementation -case $set_field in -64bit) - AC_DEFINE(USE_FIELD_5X52, 1, [Define this symbol to use the FIELD_5X52 implementation]) +if test x"$use_external_asm" = x"yes"; then + AC_DEFINE(USE_EXTERNAL_ASM, 1, [Define this symbol if an external (non-inline) assembly implementation is used]) +fi + + +# Select wide multiplication implementation +case $set_widemul in +int128) + AC_DEFINE(USE_FORCE_WIDEMUL_INT128, 1, [Define this symbol to force the use of the (unsigned) __int128 based wide multiplication implementation]) ;; -32bit) - AC_DEFINE(USE_FIELD_10X26, 1, [Define this symbol to use the FIELD_10X26 implementation]) +int64) + AC_DEFINE(USE_FORCE_WIDEMUL_INT64, 1, [Define this symbol to force the use of the (u)int64_t based wide multiplication implementation]) + ;; +auto) ;; *) - AC_MSG_ERROR([invalid field implementation]) + AC_MSG_ERROR([invalid wide multiplication implementation]) ;; esac -# select bignum implementation -case $set_bignum in -gmp) - AC_DEFINE(HAVE_LIBGMP, 1, [Define this symbol if libgmp is installed]) - AC_DEFINE(USE_NUM_GMP, 1, [Define this symbol to use the gmp implementation for num]) - AC_DEFINE(USE_FIELD_INV_NUM, 1, [Define this symbol to use the num-based field inverse implementation]) - AC_DEFINE(USE_SCALAR_INV_NUM, 1, [Define this symbol to use the num-based scalar inverse implementation]) - ;; -no) - AC_DEFINE(USE_NUM_NONE, 1, [Define this symbol to use no num implementation]) - AC_DEFINE(USE_FIELD_INV_BUILTIN, 1, [Define this symbol to use the native field inverse implementation]) - AC_DEFINE(USE_SCALAR_INV_BUILTIN, 1, [Define this symbol to use the native scalar inverse implementation]) +# Set ecmult window size +if test x"$req_ecmult_window" = x"auto"; then + set_ecmult_window=15 +else + set_ecmult_window=$req_ecmult_window +fi + +error_window_size=['window size for ecmult precomputation not an integer in range [2..24] or "auto"'] +case $set_ecmult_window in +''|*[[!0-9]]*) + # no valid integer + AC_MSG_ERROR($error_window_size) ;; *) - AC_MSG_ERROR([invalid bignum implementation]) + if test "$set_ecmult_window" -lt 2 -o "$set_ecmult_window" -gt 24 ; then + # not in range + AC_MSG_ERROR($error_window_size) + fi + AC_DEFINE_UNQUOTED(ECMULT_WINDOW_SIZE, $set_ecmult_window, [Set window size for ecmult precomputation]) ;; esac -#select scalar implementation -case $set_scalar in -64bit) - AC_DEFINE(USE_SCALAR_4X64, 1, [Define this symbol to use the 4x64 scalar implementation]) - ;; -32bit) - AC_DEFINE(USE_SCALAR_8X32, 1, [Define this symbol to use the 8x32 scalar implementation]) +# Set ecmult gen precision +if test x"$req_ecmult_gen_precision" = x"auto"; then + set_ecmult_gen_precision=4 +else + set_ecmult_gen_precision=$req_ecmult_gen_precision +fi + +case $set_ecmult_gen_precision in +2|4|8) + AC_DEFINE_UNQUOTED(ECMULT_GEN_PREC_BITS, $set_ecmult_gen_precision, [Set ecmult gen precision bits]) ;; *) - AC_MSG_ERROR([invalid scalar implementation]) + AC_MSG_ERROR(['ecmult gen precision not 2, 4, 8 or "auto"']) ;; esac if test x"$use_tests" = x"yes"; then SECP_OPENSSL_CHECK - if test x"$has_openssl_ec" = x"yes"; then - if test x"$enable_openssl_tests" != x"no"; then + if test x"$enable_openssl_tests" != x"no" && test x"$has_openssl_ec" = x"yes"; then + enable_openssl_tests=yes AC_DEFINE(ENABLE_OPENSSL_TESTS, 1, [Define this symbol if OpenSSL EC functions are available]) - SECP_TEST_INCLUDES="$SSL_CFLAGS $CRYPTO_CFLAGS" + SECP_TEST_INCLUDES="$SSL_CFLAGS $CRYPTO_CFLAGS $CRYPTO_CPPFLAGS" SECP_TEST_LIBS="$CRYPTO_LIBS" case $host in @@ -379,54 +334,106 @@ if test x"$use_tests" = x"yes"; then SECP_TEST_LIBS="$SECP_TEST_LIBS -lgdi32" ;; esac - fi else if test x"$enable_openssl_tests" = x"yes"; then AC_MSG_ERROR([OpenSSL tests requested but OpenSSL with EC support is not available]) fi + enable_openssl_tests=no fi else if test x"$enable_openssl_tests" = x"yes"; then AC_MSG_ERROR([OpenSSL tests requested but tests are not enabled]) fi + enable_openssl_tests=no fi -if test x"$use_jni" != x"no"; then - AX_JNI_INCLUDE_DIR - have_jni_dependencies=yes - if test x"$enable_module_ecdh" = x"no"; then - have_jni_dependencies=no - fi - if test "x$JNI_INCLUDE_DIRS" = "x"; then - have_jni_dependencies=no - fi - if test "x$have_jni_dependencies" = "xno"; then - if test x"$use_jni" = x"yes"; then - AC_MSG_ERROR([jni support explicitly requested but headers/dependencies were not found. Enable ECDH and try again.]) +if test x"$enable_valgrind" = x"yes"; then + SECP_INCLUDES="$SECP_INCLUDES $VALGRIND_CPPFLAGS" +fi + +# Handle static precomputation (after everything which modifies CFLAGS and friends) +if test x"$use_ecmult_static_precomputation" != x"no"; then + if test x"$cross_compiling" = x"no"; then + set_precomp=yes + if test x"${CC_FOR_BUILD+x}${CFLAGS_FOR_BUILD+x}${CPPFLAGS_FOR_BUILD+x}${LDFLAGS_FOR_BUILD+x}" != x; then + AC_MSG_WARN([CC_FOR_BUILD, CFLAGS_FOR_BUILD, CPPFLAGS_FOR_BUILD, and/or LDFLAGS_FOR_BUILD is set but ignored because we are not cross-compiling.]) fi - AC_MSG_WARN([jni headers/dependencies not found. jni support disabled]) - use_jni=no + # If we're not cross-compiling, simply use the same compiler for building the static precompation code. + CC_FOR_BUILD="$CC" + CFLAGS_FOR_BUILD="$CFLAGS" + CPPFLAGS_FOR_BUILD="$CPPFLAGS" + LDFLAGS_FOR_BUILD="$LDFLAGS" else - use_jni=yes - for JNI_INCLUDE_DIR in $JNI_INCLUDE_DIRS; do - JNI_INCLUDES="$JNI_INCLUDES -I$JNI_INCLUDE_DIR" - done + AX_PROG_CC_FOR_BUILD + + # Temporarily switch to an environment for the native compiler + save_cross_compiling=$cross_compiling + cross_compiling=no + SAVE_CC="$CC" + CC="$CC_FOR_BUILD" + SAVE_CFLAGS="$CFLAGS" + CFLAGS="$CFLAGS_FOR_BUILD" + SAVE_CPPFLAGS="$CPPFLAGS" + CPPFLAGS="$CPPFLAGS_FOR_BUILD" + SAVE_LDFLAGS="$LDFLAGS" + LDFLAGS="$LDFLAGS_FOR_BUILD" + + warn_CFLAGS_FOR_BUILD="-Wall -Wextra -Wno-unused-function" + saved_CFLAGS="$CFLAGS" + CFLAGS="$warn_CFLAGS_FOR_BUILD $CFLAGS" + AC_MSG_CHECKING([if native ${CC_FOR_BUILD} supports ${warn_CFLAGS_FOR_BUILD}]) + AC_COMPILE_IFELSE([AC_LANG_SOURCE([[char foo;]])], + [ AC_MSG_RESULT([yes]) ], + [ AC_MSG_RESULT([no]) + CFLAGS="$saved_CFLAGS" + ]) + + AC_MSG_CHECKING([for working native compiler: ${CC_FOR_BUILD}]) + AC_RUN_IFELSE( + [AC_LANG_PROGRAM([], [])], + [working_native_cc=yes], + [working_native_cc=no],[:]) + + CFLAGS_FOR_BUILD="$CFLAGS" + + # Restore the environment + cross_compiling=$save_cross_compiling + CC="$SAVE_CC" + CFLAGS="$SAVE_CFLAGS" + CPPFLAGS="$SAVE_CPPFLAGS" + LDFLAGS="$SAVE_LDFLAGS" + + if test x"$working_native_cc" = x"no"; then + AC_MSG_RESULT([no]) + set_precomp=no + m4_define([please_set_for_build], [Please set CC_FOR_BUILD, CFLAGS_FOR_BUILD, CPPFLAGS_FOR_BUILD, and/or LDFLAGS_FOR_BUILD.]) + if test x"$use_ecmult_static_precomputation" = x"yes"; then + AC_MSG_ERROR([native compiler ${CC_FOR_BUILD} does not produce working binaries. please_set_for_build]) + else + AC_MSG_WARN([Disabling statically generated ecmult table because the native compiler ${CC_FOR_BUILD} does not produce working binaries. please_set_for_build]) + fi + else + AC_MSG_RESULT([yes]) + set_precomp=yes + fi fi -fi - -if test x"$set_bignum" = x"gmp"; then - SECP_LIBS="$SECP_LIBS $GMP_LIBS" - SECP_INCLUDES="$SECP_INCLUDES $GMP_CPPFLAGS" -fi -if test x"$use_endomorphism" = x"yes"; then - AC_DEFINE(USE_ENDOMORPHISM, 1, [Define this symbol to use endomorphism optimization]) + AC_SUBST(CC_FOR_BUILD) + AC_SUBST(CFLAGS_FOR_BUILD) + AC_SUBST(CPPFLAGS_FOR_BUILD) + AC_SUBST(LDFLAGS_FOR_BUILD) +else + set_precomp=no fi if test x"$set_precomp" = x"yes"; then AC_DEFINE(USE_ECMULT_STATIC_PRECOMPUTATION, 1, [Define this symbol to use a statically generated ecmult table]) fi +### +### Handle module options +### + if test x"$enable_module_ecdh" = x"yes"; then AC_DEFINE(ENABLE_MODULE_ECDH, 1, [Define this symbol to enable the ECDH module]) fi @@ -435,42 +442,50 @@ if test x"$enable_module_recovery" = x"yes"; then AC_DEFINE(ENABLE_MODULE_RECOVERY, 1, [Define this symbol to enable the ECDSA pubkey recovery module]) fi -AC_C_BIGENDIAN() +if test x"$enable_module_schnorrsig" = x"yes"; then + AC_DEFINE(ENABLE_MODULE_SCHNORRSIG, 1, [Define this symbol to enable the schnorrsig module]) + enable_module_extrakeys=yes +fi -if test x"$use_external_asm" = x"yes"; then - AC_DEFINE(USE_EXTERNAL_ASM, 1, [Define this symbol if an external (non-inline) assembly implementation is used]) +# Test if extrakeys is set after the schnorrsig module to allow the schnorrsig +# module to set enable_module_extrakeys=yes +if test x"$enable_module_extrakeys" = x"yes"; then + AC_DEFINE(ENABLE_MODULE_EXTRAKEYS, 1, [Define this symbol to enable the extrakeys module]) +fi + +if test x"$use_external_default_callbacks" = x"yes"; then + AC_DEFINE(USE_EXTERNAL_DEFAULT_CALLBACKS, 1, [Define this symbol if an external implementation of the default callbacks is used]) fi -AC_MSG_NOTICE([Using static precomputation: $set_precomp]) -AC_MSG_NOTICE([Using assembly optimizations: $set_asm]) -AC_MSG_NOTICE([Using field implementation: $set_field]) -AC_MSG_NOTICE([Using bignum implementation: $set_bignum]) -AC_MSG_NOTICE([Using scalar implementation: $set_scalar]) -AC_MSG_NOTICE([Using endomorphism optimizations: $use_endomorphism]) -AC_MSG_NOTICE([Building benchmarks: $use_benchmark]) -AC_MSG_NOTICE([Building for coverage analysis: $enable_coverage]) -AC_MSG_NOTICE([Building ECDH module: $enable_module_ecdh]) -AC_MSG_NOTICE([Building ECDSA pubkey recovery module: $enable_module_recovery]) -AC_MSG_NOTICE([Using jni: $use_jni]) +### +### Check for --enable-experimental if necessary +### if test x"$enable_experimental" = x"yes"; then AC_MSG_NOTICE([******]) AC_MSG_NOTICE([WARNING: experimental build]) AC_MSG_NOTICE([Experimental features do not have stable APIs or properties, and may not be safe for production use.]) - AC_MSG_NOTICE([Building ECDH module: $enable_module_ecdh]) + AC_MSG_NOTICE([Building extrakeys module: $enable_module_extrakeys]) + AC_MSG_NOTICE([Building schnorrsig module: $enable_module_schnorrsig]) AC_MSG_NOTICE([******]) else - if test x"$enable_module_ecdh" = x"yes"; then - AC_MSG_ERROR([ECDH module is experimental. Use --enable-experimental to allow.]) + if test x"$enable_module_extrakeys" = x"yes"; then + AC_MSG_ERROR([extrakeys module is experimental. Use --enable-experimental to allow.]) + fi + if test x"$enable_module_schnorrsig" = x"yes"; then + AC_MSG_ERROR([schnorrsig module is experimental. Use --enable-experimental to allow.]) fi if test x"$set_asm" = x"arm"; then AC_MSG_ERROR([ARM assembly optimization is experimental. Use --enable-experimental to allow.]) fi fi +### +### Generate output +### + AC_CONFIG_HEADERS([src/libsecp256k1-config.h]) AC_CONFIG_FILES([Makefile libsecp256k1.pc]) -AC_SUBST(JNI_INCLUDES) AC_SUBST(SECP_INCLUDES) AC_SUBST(SECP_LIBS) AC_SUBST(SECP_TEST_LIBS) @@ -482,13 +497,48 @@ AM_CONDITIONAL([USE_BENCHMARK], [test x"$use_benchmark" = x"yes"]) AM_CONDITIONAL([USE_ECMULT_STATIC_PRECOMPUTATION], [test x"$set_precomp" = x"yes"]) AM_CONDITIONAL([ENABLE_MODULE_ECDH], [test x"$enable_module_ecdh" = x"yes"]) AM_CONDITIONAL([ENABLE_MODULE_RECOVERY], [test x"$enable_module_recovery" = x"yes"]) -AM_CONDITIONAL([USE_JNI], [test x"$use_jni" == x"yes"]) +AM_CONDITIONAL([ENABLE_MODULE_EXTRAKEYS], [test x"$enable_module_extrakeys" = x"yes"]) +AM_CONDITIONAL([ENABLE_MODULE_SCHNORRSIG], [test x"$enable_module_schnorrsig" = x"yes"]) AM_CONDITIONAL([USE_EXTERNAL_ASM], [test x"$use_external_asm" = x"yes"]) AM_CONDITIONAL([USE_ASM_ARM], [test x"$set_asm" = x"arm"]) -dnl make sure nothing new is exported so that we don't break the cache +# Make sure nothing new is exported so that we don't break the cache. PKGCONFIG_PATH_TEMP="$PKG_CONFIG_PATH" unset PKG_CONFIG_PATH PKG_CONFIG_PATH="$PKGCONFIG_PATH_TEMP" AC_OUTPUT + +echo +echo "Build Options:" +echo " with ecmult precomp = $set_precomp" +echo " with external callbacks = $use_external_default_callbacks" +echo " with benchmarks = $use_benchmark" +echo " with tests = $use_tests" +echo " with openssl tests = $enable_openssl_tests" +echo " with coverage = $enable_coverage" +echo " module ecdh = $enable_module_ecdh" +echo " module recovery = $enable_module_recovery" +echo " module extrakeys = $enable_module_extrakeys" +echo " module schnorrsig = $enable_module_schnorrsig" +echo +echo " asm = $set_asm" +echo " ecmult window size = $set_ecmult_window" +echo " ecmult gen prec. bits = $set_ecmult_gen_precision" +# Hide test-only options unless they're used. +if test x"$set_widemul" != xauto; then +echo " wide multiplication = $set_widemul" +fi +echo +echo " valgrind = $enable_valgrind" +echo " CC = $CC" +echo " CFLAGS = $CFLAGS" +echo " CPPFLAGS = $CPPFLAGS" +echo " LDFLAGS = $LDFLAGS" +echo +if test x"$set_precomp" = x"yes"; then +echo " CC_FOR_BUILD = $CC_FOR_BUILD" +echo " CFLAGS_FOR_BUILD = $CFLAGS_FOR_BUILD" +echo " CPPFLAGS_FOR_BUILD = $CPPFLAGS_FOR_BUILD" +echo " LDFLAGS_FOR_BUILD = $LDFLAGS_FOR_BUILD" +fi diff --git a/contrib/lax_der_parsing.c b/contrib/lax_der_parsing.c index 5b141a99481c7..885a817169a5d 100644 --- a/contrib/lax_der_parsing.c +++ b/contrib/lax_der_parsing.c @@ -1,11 +1,10 @@ -/********************************************************************** - * Copyright (c) 2015 Pieter Wuille * - * Distributed under the MIT software license, see the accompanying * - * file COPYING or http://www.opensource.org/licenses/mit-license.php.* - **********************************************************************/ +/*********************************************************************** + * Copyright (c) 2015 Pieter Wuille * + * Distributed under the MIT software license, see the accompanying * + * file COPYING or https://www.opensource.org/licenses/mit-license.php.* + ***********************************************************************/ #include -#include #include "lax_der_parsing.h" @@ -32,7 +31,7 @@ int ecdsa_signature_parse_der_lax(const secp256k1_context* ctx, secp256k1_ecdsa_ lenbyte = input[pos++]; if (lenbyte & 0x80) { lenbyte -= 0x80; - if (pos + lenbyte > inputlen) { + if (lenbyte > inputlen - pos) { return 0; } pos += lenbyte; @@ -51,7 +50,7 @@ int ecdsa_signature_parse_der_lax(const secp256k1_context* ctx, secp256k1_ecdsa_ lenbyte = input[pos++]; if (lenbyte & 0x80) { lenbyte -= 0x80; - if (pos + lenbyte > inputlen) { + if (lenbyte > inputlen - pos) { return 0; } while (lenbyte > 0 && input[pos] == 0) { @@ -89,7 +88,7 @@ int ecdsa_signature_parse_der_lax(const secp256k1_context* ctx, secp256k1_ecdsa_ lenbyte = input[pos++]; if (lenbyte & 0x80) { lenbyte -= 0x80; - if (pos + lenbyte > inputlen) { + if (lenbyte > inputlen - pos) { return 0; } while (lenbyte > 0 && input[pos] == 0) { @@ -112,7 +111,6 @@ int ecdsa_signature_parse_der_lax(const secp256k1_context* ctx, secp256k1_ecdsa_ return 0; } spos = pos; - pos += slen; /* Ignore leading zeroes in R */ while (rlen > 0 && input[rpos] == 0) { diff --git a/contrib/lax_der_parsing.h b/contrib/lax_der_parsing.h index 7eaf63bf6a0ee..034a38e6a0e1d 100644 --- a/contrib/lax_der_parsing.h +++ b/contrib/lax_der_parsing.h @@ -1,8 +1,8 @@ -/********************************************************************** - * Copyright (c) 2015 Pieter Wuille * - * Distributed under the MIT software license, see the accompanying * - * file COPYING or http://www.opensource.org/licenses/mit-license.php.* - **********************************************************************/ +/*********************************************************************** + * Copyright (c) 2015 Pieter Wuille * + * Distributed under the MIT software license, see the accompanying * + * file COPYING or https://www.opensource.org/licenses/mit-license.php.* + ***********************************************************************/ /**** * Please do not link this file directly. It is not part of the libsecp256k1 @@ -51,7 +51,13 @@ #ifndef SECP256K1_CONTRIB_LAX_DER_PARSING_H #define SECP256K1_CONTRIB_LAX_DER_PARSING_H +/* #include secp256k1.h only when it hasn't been included yet. + This enables this file to be #included directly in other project + files (such as tests.c) without the need to set an explicit -I flag, + which would be necessary to locate secp256k1.h. */ +#ifndef SECP256K1_H #include +#endif #ifdef __cplusplus extern "C" { diff --git a/contrib/lax_der_privatekey_parsing.c b/contrib/lax_der_privatekey_parsing.c index c2e63b4b8d7b3..372e84ea4eb04 100644 --- a/contrib/lax_der_privatekey_parsing.c +++ b/contrib/lax_der_privatekey_parsing.c @@ -1,11 +1,10 @@ -/********************************************************************** - * Copyright (c) 2014, 2015 Pieter Wuille * - * Distributed under the MIT software license, see the accompanying * - * file COPYING or http://www.opensource.org/licenses/mit-license.php.* - **********************************************************************/ +/*********************************************************************** + * Copyright (c) 2014, 2015 Pieter Wuille * + * Distributed under the MIT software license, see the accompanying * + * file COPYING or https://www.opensource.org/licenses/mit-license.php.* + ***********************************************************************/ #include -#include #include "lax_der_privatekey_parsing.h" diff --git a/contrib/lax_der_privatekey_parsing.h b/contrib/lax_der_privatekey_parsing.h index fece261fb9ed2..1a8ad8ae0c3b0 100644 --- a/contrib/lax_der_privatekey_parsing.h +++ b/contrib/lax_der_privatekey_parsing.h @@ -1,8 +1,8 @@ -/********************************************************************** - * Copyright (c) 2014, 2015 Pieter Wuille * - * Distributed under the MIT software license, see the accompanying * - * file COPYING or http://www.opensource.org/licenses/mit-license.php.* - **********************************************************************/ +/*********************************************************************** + * Copyright (c) 2014, 2015 Pieter Wuille * + * Distributed under the MIT software license, see the accompanying * + * file COPYING or https://www.opensource.org/licenses/mit-license.php.* + ***********************************************************************/ /**** * Please do not link this file directly. It is not part of the libsecp256k1 @@ -28,7 +28,13 @@ #ifndef SECP256K1_CONTRIB_BER_PRIVATEKEY_H #define SECP256K1_CONTRIB_BER_PRIVATEKEY_H +/* #include secp256k1.h only when it hasn't been included yet. + This enables this file to be #included directly in other project + files (such as tests.c) without the need to set an explicit -I flag, + which would be necessary to locate secp256k1.h. */ +#ifndef SECP256K1_H #include +#endif #ifdef __cplusplus extern "C" { diff --git a/doc/safegcd_implementation.md b/doc/safegcd_implementation.md new file mode 100644 index 0000000000000..3ae556f9a7240 --- /dev/null +++ b/doc/safegcd_implementation.md @@ -0,0 +1,765 @@ +# The safegcd implementation in libsecp256k1 explained + +This document explains the modular inverse implementation in the `src/modinv*.h` files. It is based +on the paper +["Fast constant-time gcd computation and modular inversion"](https://gcd.cr.yp.to/papers.html#safegcd) +by Daniel J. Bernstein and Bo-Yin Yang. The references below are for the Date: 2019.04.13 version. + +The actual implementation is in C of course, but for demonstration purposes Python3 is used here. +Most implementation aspects and optimizations are explained, except those that depend on the specific +number representation used in the C code. + +## 1. Computing the Greatest Common Divisor (GCD) using divsteps + +The algorithm from the paper (section 11), at a very high level, is this: + +```python +def gcd(f, g): + """Compute the GCD of an odd integer f and another integer g.""" + assert f & 1 # require f to be odd + delta = 1 # additional state variable + while g != 0: + assert f & 1 # f will be odd in every iteration + if delta > 0 and g & 1: + delta, f, g = 1 - delta, g, (g - f) // 2 + elif g & 1: + delta, f, g = 1 + delta, f, (g + f) // 2 + else: + delta, f, g = 1 + delta, f, (g ) // 2 + return abs(f) +``` + +It computes the greatest common divisor of an odd integer *f* and any integer *g*. Its inner loop +keeps rewriting the variables *f* and *g* alongside a state variable *δ* that starts at *1*, until +*g=0* is reached. At that point, *|f|* gives the GCD. Each of the transitions in the loop is called a +"division step" (referred to as divstep in what follows). + +For example, *gcd(21, 14)* would be computed as: +- Start with *δ=1 f=21 g=14* +- Take the third branch: *δ=2 f=21 g=7* +- Take the first branch: *δ=-1 f=7 g=-7* +- Take the second branch: *δ=0 f=7 g=0* +- The answer *|f| = 7*. + +Why it works: +- Divsteps can be decomposed into two steps (see paragraph 8.2 in the paper): + - (a) If *g* is odd, replace *(f,g)* with *(g,g-f)* or (f,g+f), resulting in an even *g*. + - (b) Replace *(f,g)* with *(f,g/2)* (where *g* is guaranteed to be even). +- Neither of those two operations change the GCD: + - For (a), assume *gcd(f,g)=c*, then it must be the case that *f=a c* and *g=b c* for some integers *a* + and *b*. As *(g,g-f)=(b c,(b-a)c)* and *(f,f+g)=(a c,(a+b)c)*, the result clearly still has + common factor *c*. Reasoning in the other direction shows that no common factor can be added by + doing so either. + - For (b), we know that *f* is odd, so *gcd(f,g)* clearly has no factor *2*, and we can remove + it from *g*. +- The algorithm will eventually converge to *g=0*. This is proven in the paper (see theorem G.3). +- It follows that eventually we find a final value *f'* for which *gcd(f,g) = gcd(f',0)*. As the + gcd of *f'* and *0* is *|f'|* by definition, that is our answer. + +Compared to more [traditional GCD algorithms](https://en.wikipedia.org/wiki/Euclidean_algorithm), this one has the property of only ever looking at +the low-order bits of the variables to decide the next steps, and being easy to make +constant-time (in more low-level languages than Python). The *δ* parameter is necessary to +guide the algorithm towards shrinking the numbers' magnitudes without explicitly needing to look +at high order bits. + +Properties that will become important later: +- Performing more divsteps than needed is not a problem, as *f* does not change anymore after *g=0*. +- Only even numbers are divided by *2*. This means that when reasoning about it algebraically we + do not need to worry about rounding. +- At every point during the algorithm's execution the next *N* steps only depend on the bottom *N* + bits of *f* and *g*, and on *δ*. + + +## 2. From GCDs to modular inverses + +We want an algorithm to compute the inverse *a* of *x* modulo *M*, i.e. the number a such that *a x=1 +mod M*. This inverse only exists if the GCD of *x* and *M* is *1*, but that is always the case if *M* is +prime and *0 < x < M*. In what follows, assume that the modular inverse exists. +It turns out this inverse can be computed as a side effect of computing the GCD by keeping track +of how the internal variables can be written as linear combinations of the inputs at every step +(see the [extended Euclidean algorithm](https://en.wikipedia.org/wiki/Extended_Euclidean_algorithm)). +Since the GCD is *1*, such an algorithm will compute numbers *a* and *b* such that a x + b M = 1*. +Taking that expression *mod M* gives *a x mod M = 1*, and we see that *a* is the modular inverse of *x +mod M*. + +A similar approach can be used to calculate modular inverses using the divsteps-based GCD +algorithm shown above, if the modulus *M* is odd. To do so, compute *gcd(f=M,g=x)*, while keeping +track of extra variables *d* and *e*, for which at every step *d = f/x (mod M)* and *e = g/x (mod M)*. +*f/x* here means the number which multiplied with *x* gives *f mod M*. As *f* and *g* are initialized to *M* +and *x* respectively, *d* and *e* just start off being *0* (*M/x mod M = 0/x mod M = 0*) and *1* (*x/x mod M += 1*). + +```python +def div2(M, x): + """Helper routine to compute x/2 mod M (where M is odd).""" + assert M & 1 + if x & 1: # If x is odd, make it even by adding M. + x += M + # x must be even now, so a clean division by 2 is possible. + return x // 2 + +def modinv(M, x): + """Compute the inverse of x mod M (given that it exists, and M is odd).""" + assert M & 1 + delta, f, g, d, e = 1, M, x, 0, 1 + while g != 0: + # Note that while division by two for f and g is only ever done on even inputs, this is + # not true for d and e, so we need the div2 helper function. + if delta > 0 and g & 1: + delta, f, g, d, e = 1 - delta, g, (g - f) // 2, e, div2(M, e - d) + elif g & 1: + delta, f, g, d, e = 1 + delta, f, (g + f) // 2, d, div2(M, e + d) + else: + delta, f, g, d, e = 1 + delta, f, (g ) // 2, d, div2(M, e ) + # Verify that the invariants d=f/x mod M, e=g/x mod M are maintained. + assert f % M == (d * x) % M + assert g % M == (e * x) % M + assert f == 1 or f == -1 # |f| is the GCD, it must be 1 + # Because of invariant d = f/x (mod M), 1/x = d/f (mod M). As |f|=1, d/f = d*f. + return (d * f) % M +``` + +Also note that this approach to track *d* and *e* throughout the computation to determine the inverse +is different from the paper. There (see paragraph 12.1 in the paper) a transition matrix for the +entire computation is determined (see section 3 below) and the inverse is computed from that. +The approach here avoids the need for 2x2 matrix multiplications of various sizes, and appears to +be faster at the level of optimization we're able to do in C. + + +## 3. Batching multiple divsteps + +Every divstep can be expressed as a matrix multiplication, applying a transition matrix *(1/2 t)* +to both vectors *[f, g]* and *[d, e]* (see paragraph 8.1 in the paper): + +``` + t = [ u, v ] + [ q, r ] + + [ out_f ] = (1/2 * t) * [ in_f ] + [ out_g ] = [ in_g ] + + [ out_d ] = (1/2 * t) * [ in_d ] (mod M) + [ out_e ] [ in_e ] +``` + +where *(u, v, q, r)* is *(0, 2, -1, 1)*, *(2, 0, 1, 1)*, or *(2, 0, 0, 1)*, depending on which branch is +taken. As above, the resulting *f* and *g* are always integers. + +Performing multiple divsteps corresponds to a multiplication with the product of all the +individual divsteps' transition matrices. As each transition matrix consists of integers +divided by *2*, the product of these matrices will consist of integers divided by *2N* (see also +theorem 9.2 in the paper). These divisions are expensive when updating *d* and *e*, so we delay +them: we compute the integer coefficients of the combined transition matrix scaled by *2N*, and +do one division by *2N* as a final step: + +```python +def divsteps_n_matrix(delta, f, g): + """Compute delta and transition matrix t after N divsteps (multiplied by 2^N).""" + u, v, q, r = 1, 0, 0, 1 # start with identity matrix + for _ in range(N): + if delta > 0 and g & 1: + delta, f, g, u, v, q, r = 1 - delta, g, (g - f) // 2, 2*q, 2*r, q-u, r-v + elif g & 1: + delta, f, g, u, v, q, r = 1 + delta, f, (g + f) // 2, 2*u, 2*v, q+u, r+v + else: + delta, f, g, u, v, q, r = 1 + delta, f, (g ) // 2, 2*u, 2*v, q , r + return delta, (u, v, q, r) +``` + +As the branches in the divsteps are completely determined by the bottom *N* bits of *f* and *g*, this +function to compute the transition matrix only needs to see those bottom bits. Furthermore all +intermediate results and outputs fit in *(N+1)*-bit numbers (unsigned for *f* and *g*; signed for *u*, *v*, +*q*, and *r*) (see also paragraph 8.3 in the paper). This means that an implementation using 64-bit +integers could set *N=62* and compute the full transition matrix for 62 steps at once without any +big integer arithmetic at all. This is the reason why this algorithm is efficient: it only needs +to update the full-size *f*, *g*, *d*, and *e* numbers once every *N* steps. + +We still need functions to compute: + +``` + [ out_f ] = (1/2^N * [ u, v ]) * [ in_f ] + [ out_g ] ( [ q, r ]) [ in_g ] + + [ out_d ] = (1/2^N * [ u, v ]) * [ in_d ] (mod M) + [ out_e ] ( [ q, r ]) [ in_e ] +``` + +Because the divsteps transformation only ever divides even numbers by two, the result of *t [f,g]* is always even. When *t* is a composition of *N* divsteps, it follows that the resulting *f* +and *g* will be multiple of *2N*, and division by *2N* is simply shifting them down: + +```python +def update_fg(f, g, t): + """Multiply matrix t/2^N with [f, g].""" + u, v, q, r = t + cf, cg = u*f + v*g, q*f + r*g + # (t / 2^N) should cleanly apply to [f,g] so the result of t*[f,g] should have N zero + # bottom bits. + assert cf % 2**N == 0 + assert cg % 2**N == 0 + return cf >> N, cg >> N +``` + +The same is not true for *d* and *e*, and we need an equivalent of the `div2` function for division by *2N mod M*. +This is easy if we have precomputed *1/M mod 2N* (which always exists for odd *M*): + +```python +def div2n(M, Mi, x): + """Compute x/2^N mod M, given Mi = 1/M mod 2^N.""" + assert (M * Mi) % 2**N == 1 + # Find a factor m such that m*M has the same bottom N bits as x. We want: + # (m * M) mod 2^N = x mod 2^N + # <=> m mod 2^N = (x / M) mod 2^N + # <=> m mod 2^N = (x * Mi) mod 2^N + m = (Mi * x) % 2**N + # Subtract that multiple from x, cancelling its bottom N bits. + x -= m * M + # Now a clean division by 2^N is possible. + assert x % 2**N == 0 + return (x >> N) % M + +def update_de(d, e, t, M, Mi): + """Multiply matrix t/2^N with [d, e], modulo M.""" + u, v, q, r = t + cd, ce = u*d + v*e, q*d + r*e + return div2n(M, Mi, cd), div2n(M, Mi, ce) +``` + +With all of those, we can write a version of `modinv` that performs *N* divsteps at once: + +```python3 +def modinv(M, Mi, x): + """Compute the modular inverse of x mod M, given Mi=1/M mod 2^N.""" + assert M & 1 + delta, f, g, d, e = 1, M, x, 0, 1 + while g != 0: + # Compute the delta and transition matrix t for the next N divsteps (this only needs + # (N+1)-bit signed integer arithmetic). + delta, t = divsteps_n_matrix(delta, f % 2**N, g % 2**N) + # Apply the transition matrix t to [f, g]: + f, g = update_fg(f, g, t) + # Apply the transition matrix t to [d, e]: + d, e = update_de(d, e, t, M, Mi) + return (d * f) % M +``` + +This means that in practice we'll always perform a multiple of *N* divsteps. This is not a problem +because once *g=0*, further divsteps do not affect *f*, *g*, *d*, or *e* anymore (only *δ* keeps +increasing). For variable time code such excess iterations will be mostly optimized away in later +sections. + + +## 4. Avoiding modulus operations + +So far, there are two places where we compute a remainder of big numbers modulo *M*: at the end of +`div2n` in every `update_de`, and at the very end of `modinv` after potentially negating *d* due to the +sign of *f*. These are relatively expensive operations when done generically. + +To deal with the modulus operation in `div2n`, we simply stop requiring *d* and *e* to be in range +*[0,M)* all the time. Let's start by inlining `div2n` into `update_de`, and dropping the modulus +operation at the end: + +```python +def update_de(d, e, t, M, Mi): + """Multiply matrix t/2^N with [d, e] mod M, given Mi=1/M mod 2^N.""" + u, v, q, r = t + cd, ce = u*d + v*e, q*d + r*e + # Cancel out bottom N bits of cd and ce. + md = -((Mi * cd) % 2**N) + me = -((Mi * ce) % 2**N) + cd += md * M + ce += me * M + # And cleanly divide by 2**N. + return cd >> N, ce >> N +``` + +Let's look at bounds on the ranges of these numbers. It can be shown that *|u|+|v|* and *|q|+|r|* +never exceed *2N* (see paragraph 8.3 in the paper), and thus a multiplication with *t* will have +outputs whose absolute values are at most *2N* times the maximum absolute input value. In case the +inputs *d* and *e* are in *(-M,M)*, which is certainly true for the initial values *d=0* and *e=1* assuming +*M > 1*, the multiplication results in numbers in range *(-2NM,2NM)*. Subtracting less than *2N* +times *M* to cancel out *N* bits brings that up to *(-2N+1M,2NM)*, and +dividing by *2N* at the end takes it to *(-2M,M)*. Another application of `update_de` would take that +to *(-3M,2M)*, and so forth. This progressive expansion of the variables' ranges can be +counteracted by incrementing *d* and *e* by *M* whenever they're negative: + +```python + ... + if d < 0: + d += M + if e < 0: + e += M + cd, ce = u*d + v*e, q*d + r*e + # Cancel out bottom N bits of cd and ce. + ... +``` + +With inputs in *(-2M,M)*, they will first be shifted into range *(-M,M)*, which means that the +output will again be in *(-2M,M)*, and this remains the case regardless of how many `update_de` +invocations there are. In what follows, we will try to make this more efficient. + +Note that increasing *d* by *M* is equal to incrementing *cd* by *u M* and *ce* by *q M*. Similarly, +increasing *e* by *M* is equal to incrementing *cd* by *v M* and *ce* by *r M*. So we could instead write: + +```python + ... + cd, ce = u*d + v*e, q*d + r*e + # Perform the equivalent of incrementing d, e by M when they're negative. + if d < 0: + cd += u*M + ce += q*M + if e < 0: + cd += v*M + ce += r*M + # Cancel out bottom N bits of cd and ce. + md = -((Mi * cd) % 2**N) + me = -((Mi * ce) % 2**N) + cd += md * M + ce += me * M + ... +``` + +Now note that we have two steps of corrections to *cd* and *ce* that add multiples of *M*: this +increment, and the decrement that cancels out bottom bits. The second one depends on the first +one, but they can still be efficiently combined by only computing the bottom bits of *cd* and *ce* +at first, and using that to compute the final *md*, *me* values: + +```python +def update_de(d, e, t, M, Mi): + """Multiply matrix t/2^N with [d, e], modulo M.""" + u, v, q, r = t + md, me = 0, 0 + # Compute what multiples of M to add to cd and ce. + if d < 0: + md += u + me += q + if e < 0: + md += v + me += r + # Compute bottom N bits of t*[d,e] + M*[md,me]. + cd, ce = (u*d + v*e + md*M) % 2**N, (q*d + r*e + me*M) % 2**N + # Correct md and me such that the bottom N bits of t*[d,e] + M*[md,me] are zero. + md -= (Mi * cd) % 2**N + me -= (Mi * ce) % 2**N + # Do the full computation. + cd, ce = u*d + v*e + md*M, q*d + r*e + me*M + # And cleanly divide by 2**N. + return cd >> N, ce >> N +``` + +One last optimization: we can avoid the *md M* and *me M* multiplications in the bottom bits of *cd* +and *ce* by moving them to the *md* and *me* correction: + +```python + ... + # Compute bottom N bits of t*[d,e]. + cd, ce = (u*d + v*e) % 2**N, (q*d + r*e) % 2**N + # Correct md and me such that the bottom N bits of t*[d,e]+M*[md,me] are zero. + # Note that this is not the same as {md = (-Mi * cd) % 2**N} etc. That would also result in N + # zero bottom bits, but isn't guaranteed to be a reduction of [0,2^N) compared to the + # previous md and me values, and thus would violate our bounds analysis. + md -= (Mi*cd + md) % 2**N + me -= (Mi*ce + me) % 2**N + ... +``` + +The resulting function takes *d* and *e* in range *(-2M,M)* as inputs, and outputs values in the same +range. That also means that the *d* value at the end of `modinv` will be in that range, while we want +a result in *[0,M)*. To do that, we need a normalization function. It's easy to integrate the +conditional negation of *d* (based on the sign of *f*) into it as well: + +```python +def normalize(sign, v, M): + """Compute sign*v mod M, where v is in range (-2*M,M); output in [0,M).""" + assert sign == 1 or sign == -1 + # v in (-2*M,M) + if v < 0: + v += M + # v in (-M,M). Now multiply v with sign (which can only be 1 or -1). + if sign == -1: + v = -v + # v in (-M,M) + if v < 0: + v += M + # v in [0,M) + return v +``` + +And calling it in `modinv` is simply: + +```python + ... + return normalize(f, d, M) +``` + + +## 5. Constant-time operation + +The primary selling point of the algorithm is fast constant-time operation. What code flow still +depends on the input data so far? + +- the number of iterations of the while *g ≠ 0* loop in `modinv` +- the branches inside `divsteps_n_matrix` +- the sign checks in `update_de` +- the sign checks in `normalize` + +To make the while loop in `modinv` constant time it can be replaced with a constant number of +iterations. The paper proves (Theorem 11.2) that *741* divsteps are sufficient for any *256*-bit +inputs, and [safegcd-bounds](https://github.com/sipa/safegcd-bounds) shows that the slightly better bound *724* is +sufficient even. Given that every loop iteration performs *N* divsteps, it will run a total of +*⌈724/N⌉* times. + +To deal with the branches in `divsteps_n_matrix` we will replace them with constant-time bitwise +operations (and hope the C compiler isn't smart enough to turn them back into branches; see +`valgrind_ctime_test.c` for automated tests that this isn't the case). To do so, observe that a +divstep can be written instead as (compare to the inner loop of `gcd` in section 1). + +```python + x = -f if delta > 0 else f # set x equal to (input) -f or f + if g & 1: + g += x # set g to (input) g-f or g+f + if delta > 0: + delta = -delta + f += g # set f to (input) g (note that g was set to g-f before) + delta += 1 + g >>= 1 +``` + +To convert the above to bitwise operations, we rely on a trick to negate conditionally: per the +definition of negative numbers in two's complement, (*-v == ~v + 1*) holds for every number *v*. As +*-1* in two's complement is all *1* bits, bitflipping can be expressed as xor with *-1*. It follows +that *-v == (v ^ -1) - (-1)*. Thus, if we have a variable *c* that takes on values *0* or *-1*, then +*(v ^ c) - c* is *v* if *c=0* and *-v* if *c=-1*. + +Using this we can write: + +```python + x = -f if delta > 0 else f +``` + +in constant-time form as: + +```python + c1 = (-delta) >> 63 + # Conditionally negate f based on c1: + x = (f ^ c1) - c1 +``` + +To use that trick, we need a helper mask variable *c1* that resolves the condition *δ>0* to *-1* +(if true) or *0* (if false). We compute *c1* using right shifting, which is equivalent to dividing by +the specified power of *2* and rounding down (in Python, and also in C under the assumption of a typical two's complement system; see +`assumptions.h` for tests that this is the case). Right shifting by *63* thus maps all +numbers in range *[-263,0)* to *-1*, and numbers in range *[0,263)* to *0*. + +Using the facts that *x&0=0* and *x&(-1)=x* (on two's complement systems again), we can write: + +```python + if g & 1: + g += x +``` + +as: + +```python + # Compute c2=0 if g is even and c2=-1 if g is odd. + c2 = -(g & 1) + # This masks out x if g is even, and leaves x be if g is odd. + g += x & c2 +``` + +Using the conditional negation trick again we can write: + +```python + if g & 1: + if delta > 0: + delta = -delta +``` + +as: + +```python + # Compute c3=-1 if g is odd and delta>0, and 0 otherwise. + c3 = c1 & c2 + # Conditionally negate delta based on c3: + delta = (delta ^ c3) - c3 +``` + +Finally: + +```python + if g & 1: + if delta > 0: + f += g +``` + +becomes: + +```python + f += g & c3 +``` + +It turns out that this can be implemented more efficiently by applying the substitution +*η=-δ*. In this representation, negating *δ* corresponds to negating *η*, and incrementing +*δ* corresponds to decrementing *η*. This allows us to remove the negation in the *c1* +computation: + +```python + # Compute a mask c1 for eta < 0, and compute the conditional negation x of f: + c1 = eta >> 63 + x = (f ^ c1) - c1 + # Compute a mask c2 for odd g, and conditionally add x to g: + c2 = -(g & 1) + g += x & c2 + # Compute a mask c for (eta < 0) and odd (input) g, and use it to conditionally negate eta, + # and add g to f: + c3 = c1 & c2 + eta = (eta ^ c3) - c3 + f += g & c3 + # Incrementing delta corresponds to decrementing eta. + eta -= 1 + g >>= 1 +``` + +A variant of divsteps with better worst-case performance can be used instead: starting *δ* at +*1/2* instead of *1*. This reduces the worst case number of iterations to *590* for *256*-bit inputs +(which can be shown using convex hull analysis). In this case, the substitution *ζ=-(δ+1/2)* +is used instead to keep the variable integral. Incrementing *δ* by *1* still translates to +decrementing *ζ* by *1*, but negating *δ* now corresponds to going from *ζ* to *-(ζ+1)*, or +*~ζ*. Doing that conditionally based on *c3* is simply: + +```python + ... + c3 = c1 & c2 + zeta ^= c3 + ... +``` + +By replacing the loop in `divsteps_n_matrix` with a variant of the divstep code above (extended to +also apply all *f* operations to *u*, *v* and all *g* operations to *q*, *r*), a constant-time version of +`divsteps_n_matrix` is obtained. The full code will be in section 7. + +These bit fiddling tricks can also be used to make the conditional negations and additions in +`update_de` and `normalize` constant-time. + + +## 6. Variable-time optimizations + +In section 5, we modified the `divsteps_n_matrix` function (and a few others) to be constant time. +Constant time operations are only necessary when computing modular inverses of secret data. In +other cases, it slows down calculations unnecessarily. In this section, we will construct a +faster non-constant time `divsteps_n_matrix` function. + +To do so, first consider yet another way of writing the inner loop of divstep operations in +`gcd` from section 1. This decomposition is also explained in the paper in section 8.2. We use +the original version with initial *δ=1* and *η=-δ* here. + +```python +for _ in range(N): + if g & 1 and eta < 0: + eta, f, g = -eta, g, -f + if g & 1: + g += f + eta -= 1 + g >>= 1 +``` + +Whenever *g* is even, the loop only shifts *g* down and decreases *η*. When *g* ends in multiple zero +bits, these iterations can be consolidated into one step. This requires counting the bottom zero +bits efficiently, which is possible on most platforms; it is abstracted here as the function +`count_trailing_zeros`. + +```python +def count_trailing_zeros(v): + """For a non-zero value v, find z such that v=(d<>= zeros + i -= zeros + if i == 0: + break + # We know g is odd now + if eta < 0: + eta, f, g = -eta, g, -f + g += f + # g is even now, and the eta decrement and g shift will happen in the next loop. +``` + +We can now remove multiple bottom *0* bits from *g* at once, but still need a full iteration whenever +there is a bottom *1* bit. In what follows, we will get rid of multiple *1* bits simultaneously as +well. + +Observe that as long as *η ≥ 0*, the loop does not modify *f*. Instead, it cancels out bottom +bits of *g* and shifts them out, and decreases *η* and *i* accordingly - interrupting only when *η* +becomes negative, or when *i* reaches *0*. Combined, this is equivalent to adding a multiple of *f* to +*g* to cancel out multiple bottom bits, and then shifting them out. + +It is easy to find what that multiple is: we want a number *w* such that *g+w f* has a few bottom +zero bits. If that number of bits is *L*, we want *g+w f mod 2L = 0*, or *w = -g/f mod 2L*. Since *f* +is odd, such a *w* exists for any *L*. *L* cannot be more than *i* steps (as we'd finish the loop before +doing more) or more than *η+1* steps (as we'd run `eta, f, g = -eta, g, f` at that point), but +apart from that, we're only limited by the complexity of computing *w*. + +This code demonstrates how to cancel up to 4 bits per step: + +```python +NEGINV16 = [15, 5, 3, 9, 7, 13, 11, 1] # NEGINV16[n//2] = (-n)^-1 mod 16, for odd n +i = N +while True: + zeros = min(i, count_trailing_zeros(g)) + eta -= zeros + g >>= zeros + i -= zeros + if i == 0: + break + # We know g is odd now + if eta < 0: + eta, f, g = -eta, g, f + # Compute limit on number of bits to cancel + limit = min(min(eta + 1, i), 4) + # Compute w = -g/f mod 2**limit, using the table value for -1/f mod 2**4. Note that f is + # always odd, so its inverse modulo a power of two always exists. + w = (g * NEGINV16[(f & 15) // 2]) % (2**limit) + # As w = -g/f mod (2**limit), g+w*f mod 2**limit = 0 mod 2**limit. + g += w * f + assert g % (2**limit) == 0 + # The next iteration will now shift out at least limit bottom zero bits from g. +``` + +By using a bigger table more bits can be cancelled at once. The table can also be implemented +as a formula. Several formulas are known for computing modular inverses modulo powers of two; +some can be found in Hacker's Delight second edition by Henry S. Warren, Jr. pages 245-247. +Here we need the negated modular inverse, which is a simple transformation of those: + +- Instead of a 3-bit table: + - *-f* or *f ^ 6* +- Instead of a 4-bit table: + - *1 - f(f + 1)* + - *-(f + (((f + 1) & 4) << 1))* +- For larger tables the following technique can be used: if *w=-1/f mod 2L*, then *w(w f+2)* is + *-1/f mod 22L*. This allows extending the previous formulas (or tables). In particular we + have this 6-bit function (based on the 3-bit function above): + - *f(f2 - 2)* + +This loop, again extended to also handle *u*, *v*, *q*, and *r* alongside *f* and *g*, placed in +`divsteps_n_matrix`, gives a significantly faster, but non-constant time version. + + +## 7. Final Python version + +All together we need the following functions: + +- A way to compute the transition matrix in constant time, using the `divsteps_n_matrix` function + from section 2, but with its loop replaced by a variant of the constant-time divstep from + section 5, extended to handle *u*, *v*, *q*, *r*: + +```python +def divsteps_n_matrix(zeta, f, g): + """Compute zeta and transition matrix t after N divsteps (multiplied by 2^N).""" + u, v, q, r = 1, 0, 0, 1 # start with identity matrix + for _ in range(N): + c1 = zeta >> 63 + # Compute x, y, z as conditionally-negated versions of f, u, v. + x, y, z = (f ^ c1) - c1, (u ^ c1) - c1, (v ^ c1) - c1 + c2 = -(g & 1) + # Conditionally add x, y, z to g, q, r. + g, q, r = g + (x & c2), q + (y & c2), r + (z & c2) + c1 &= c2 # reusing c1 here for the earlier c3 variable + zeta = (zeta ^ c1) - 1 # inlining the unconditional zeta decrement here + # Conditionally add g, q, r to f, u, v. + f, u, v = f + (g & c1), u + (q & c1), v + (r & c1) + # When shifting g down, don't shift q, r, as we construct a transition matrix multiplied + # by 2^N. Instead, shift f's coefficients u and v up. + g, u, v = g >> 1, u << 1, v << 1 + return zeta, (u, v, q, r) +``` + +- The functions to update *f* and *g*, and *d* and *e*, from section 2 and section 4, with the constant-time + changes to `update_de` from section 5: + +```python +def update_fg(f, g, t): + """Multiply matrix t/2^N with [f, g].""" + u, v, q, r = t + cf, cg = u*f + v*g, q*f + r*g + return cf >> N, cg >> N + +def update_de(d, e, t, M, Mi): + """Multiply matrix t/2^N with [d, e], modulo M.""" + u, v, q, r = t + d_sign, e_sign = d >> 257, e >> 257 + md, me = (u & d_sign) + (v & e_sign), (q & d_sign) + (r & e_sign) + cd, ce = (u*d + v*e) % 2**N, (q*d + r*e) % 2**N + md -= (Mi*cd + md) % 2**N + me -= (Mi*ce + me) % 2**N + cd, ce = u*d + v*e + M*md, q*d + r*e + M*me + return cd >> N, ce >> N +``` + +- The `normalize` function from section 4, made constant time as well: + +```python +def normalize(sign, v, M): + """Compute sign*v mod M, where v in (-2*M,M); output in [0,M).""" + v_sign = v >> 257 + # Conditionally add M to v. + v += M & v_sign + c = (sign - 1) >> 1 + # Conditionally negate v. + v = (v ^ c) - c + v_sign = v >> 257 + # Conditionally add M to v again. + v += M & v_sign + return v +``` + +- And finally the `modinv` function too, adapted to use *ζ* instead of *δ*, and using the fixed + iteration count from section 5: + +```python +def modinv(M, Mi, x): + """Compute the modular inverse of x mod M, given Mi=1/M mod 2^N.""" + zeta, f, g, d, e = -1, M, x, 0, 1 + for _ in range((590 + N - 1) // N): + zeta, t = divsteps_n_matrix(zeta, f % 2**N, g % 2**N) + f, g = update_fg(f, g, t) + d, e = update_de(d, e, t, M, Mi) + return normalize(f, d, M) +``` + +- To get a variable time version, replace the `divsteps_n_matrix` function with one that uses the + divsteps loop from section 5, and a `modinv` version that calls it without the fixed iteration + count: + +```python +NEGINV16 = [15, 5, 3, 9, 7, 13, 11, 1] # NEGINV16[n//2] = (-n)^-1 mod 16, for odd n +def divsteps_n_matrix_var(eta, f, g): + """Compute eta and transition matrix t after N divsteps (multiplied by 2^N).""" + u, v, q, r = 1, 0, 0, 1 + i = N + while True: + zeros = min(i, count_trailing_zeros(g)) + eta, i = eta - zeros, i - zeros + g, u, v = g >> zeros, u << zeros, v << zeros + if i == 0: + break + if eta < 0: + eta, f, u, v, g, q, r = -eta, g, q, r, -f, -u, -v + limit = min(min(eta + 1, i), 4) + w = (g * NEGINV16[(f & 15) // 2]) % (2**limit) + g, q, r = g + w*f, q + w*u, r + w*v + return eta, (u, v, q, r) + +def modinv_var(M, Mi, x): + """Compute the modular inverse of x mod M, given Mi = 1/M mod 2^N.""" + eta, f, g, d, e = -1, M, x, 0, 1 + while g != 0: + eta, t = divsteps_n_matrix_var(eta, f % 2**N, g % 2**N) + f, g = update_fg(f, g, t) + d, e = update_de(d, e, t, M, Mi) + return normalize(f, d, Mi) +``` diff --git a/include/secp256k1.h b/include/secp256k1.h index 3c4a311a05681..7be7fd57233af 100644 --- a/include/secp256k1.h +++ b/include/secp256k1.h @@ -7,14 +7,16 @@ extern "C" { #include -/* These rules specify the order of arguments in API calls: +/* Unless explicitly stated all pointer arguments must not be NULL. + * + * The following rules specify the order of arguments in API calls: * * 1. Context pointers go first, followed by output arguments, combined * output/input arguments, and finally input-only arguments. - * 2. Array lengths always immediately the follow the argument whose length + * 2. Array lengths always immediately follow the argument whose length * they describe, even if this violates rule 1. * 3. Within the OUT/OUTIN/IN groups, pointers to data that is typically generated - * later go first. This means: signatures, public nonces, private nonces, + * later go first. This means: signatures, public nonces, secret nonces, * messages, public keys, secret keys, tweaks. * 4. Arguments that are not data pointers go last, from more complex to less * complex: function pointers, algorithm names, messages, void pointers, @@ -33,9 +35,10 @@ extern "C" { * verification). * * A constructed context can safely be used from multiple threads - * simultaneously, but API call that take a non-const pointer to a context + * simultaneously, but API calls that take a non-const pointer to a context * need exclusive access to it. In particular this is the case for - * secp256k1_context_destroy and secp256k1_context_randomize. + * secp256k1_context_destroy, secp256k1_context_preallocated_destroy, + * and secp256k1_context_randomize. * * Regarding randomization, either do it once at creation time (in which case * you do not need any locking for the other calls), or use a read-write lock. @@ -60,8 +63,9 @@ typedef struct secp256k1_scratch_space_struct secp256k1_scratch_space; * The exact representation of data inside is implementation defined and not * guaranteed to be portable between different platforms or versions. It is * however guaranteed to be 64 bytes in size, and can be safely copied/moved. - * If you need to convert to a format suitable for storage, transmission, or - * comparison, use secp256k1_ec_pubkey_serialize and secp256k1_ec_pubkey_parse. + * If you need to convert to a format suitable for storage or transmission, + * use secp256k1_ec_pubkey_serialize and secp256k1_ec_pubkey_parse. To + * compare keys, use secp256k1_ec_pubkey_cmp. */ typedef struct { unsigned char data[64]; @@ -126,6 +130,17 @@ typedef int (*secp256k1_nonce_function)( # define SECP256K1_INLINE inline # endif +/** When this header is used at build-time the SECP256K1_BUILD define needs to be set + * to correctly setup export attributes and nullness checks. This is normally done + * by secp256k1.c but to guard against this header being included before secp256k1.c + * has had a chance to set the define (e.g. via test harnesses that just includes + * secp256k1.c) we set SECP256K1_NO_BUILD when this header is processed without the + * BUILD define so this condition can be caught. + */ +#ifndef SECP256K1_BUILD +# define SECP256K1_NO_BUILD +#endif + #ifndef SECP256K1_API # if defined(_WIN32) # ifdef SECP256K1_BUILD @@ -133,7 +148,7 @@ typedef int (*secp256k1_nonce_function)( # else # define SECP256K1_API # endif -# elif defined(__GNUC__) && defined(SECP256K1_BUILD) +# elif defined(__GNUC__) && (__GNUC__ >= 4) && defined(SECP256K1_BUILD) # define SECP256K1_API __attribute__ ((visibility ("default"))) # else # define SECP256K1_API @@ -161,14 +176,17 @@ typedef int (*secp256k1_nonce_function)( /** The higher bits contain the actual data. Do not use directly. */ #define SECP256K1_FLAGS_BIT_CONTEXT_VERIFY (1 << 8) #define SECP256K1_FLAGS_BIT_CONTEXT_SIGN (1 << 9) +#define SECP256K1_FLAGS_BIT_CONTEXT_DECLASSIFY (1 << 10) #define SECP256K1_FLAGS_BIT_COMPRESSION (1 << 8) -/** Flags to pass to secp256k1_context_create. */ +/** Flags to pass to secp256k1_context_create, secp256k1_context_preallocated_size, and + * secp256k1_context_preallocated_create. */ #define SECP256K1_CONTEXT_VERIFY (SECP256K1_FLAGS_TYPE_CONTEXT | SECP256K1_FLAGS_BIT_CONTEXT_VERIFY) #define SECP256K1_CONTEXT_SIGN (SECP256K1_FLAGS_TYPE_CONTEXT | SECP256K1_FLAGS_BIT_CONTEXT_SIGN) +#define SECP256K1_CONTEXT_DECLASSIFY (SECP256K1_FLAGS_TYPE_CONTEXT | SECP256K1_FLAGS_BIT_CONTEXT_DECLASSIFY) #define SECP256K1_CONTEXT_NONE (SECP256K1_FLAGS_TYPE_CONTEXT) -/** Flag to pass to secp256k1_ec_pubkey_serialize and secp256k1_ec_privkey_export. */ +/** Flag to pass to secp256k1_ec_pubkey_serialize. */ #define SECP256K1_EC_COMPRESSED (SECP256K1_FLAGS_TYPE_COMPRESSION | SECP256K1_FLAGS_BIT_COMPRESSION) #define SECP256K1_EC_UNCOMPRESSED (SECP256K1_FLAGS_TYPE_COMPRESSION) @@ -179,7 +197,18 @@ typedef int (*secp256k1_nonce_function)( #define SECP256K1_TAG_PUBKEY_HYBRID_EVEN 0x06 #define SECP256K1_TAG_PUBKEY_HYBRID_ODD 0x07 -/** Create a secp256k1 context object. +/** A simple secp256k1 context object with no precomputed tables. These are useful for + * type serialization/parsing functions which require a context object to maintain + * API consistency, but currently do not require expensive precomputations or dynamic + * allocations. + */ +SECP256K1_API extern const secp256k1_context *secp256k1_context_no_precomp; + +/** Create a secp256k1 context object (in dynamically allocated memory). + * + * This function uses malloc to allocate memory. It is guaranteed that malloc is + * called at most once for every call of this function. If you need to avoid dynamic + * memory allocation entirely, see the functions in secp256k1_preallocated.h. * * Returns: a newly created context object. * In: flags: which parts of the context to initialize. @@ -190,7 +219,11 @@ SECP256K1_API secp256k1_context* secp256k1_context_create( unsigned int flags ) SECP256K1_WARN_UNUSED_RESULT; -/** Copies a secp256k1 context object. +/** Copy a secp256k1 context object (into dynamically allocated memory). + * + * This function uses malloc to allocate memory. It is guaranteed that malloc is + * called at most once for every call of this function. If you need to avoid dynamic + * memory allocation entirely, see the functions in secp256k1_preallocated.h. * * Returns: a newly created context object. * Args: ctx: an existing context to copy (cannot be NULL) @@ -199,10 +232,18 @@ SECP256K1_API secp256k1_context* secp256k1_context_clone( const secp256k1_context* ctx ) SECP256K1_ARG_NONNULL(1) SECP256K1_WARN_UNUSED_RESULT; -/** Destroy a secp256k1 context object. +/** Destroy a secp256k1 context object (created in dynamically allocated memory). * * The context pointer may not be used afterwards. - * Args: ctx: an existing context to destroy (cannot be NULL) + * + * The context to destroy must have been created using secp256k1_context_create + * or secp256k1_context_clone. If the context has instead been created using + * secp256k1_context_preallocated_create or secp256k1_context_preallocated_clone, the + * behaviour is undefined. In that case, secp256k1_context_preallocated_destroy must + * be used instead. + * + * Args: ctx: an existing context to destroy, constructed using + * secp256k1_context_create or secp256k1_context_clone */ SECP256K1_API void secp256k1_context_destroy( secp256k1_context* ctx @@ -222,11 +263,28 @@ SECP256K1_API void secp256k1_context_destroy( * to cause a crash, though its return value and output arguments are * undefined. * + * When this function has not been called (or called with fn==NULL), then the + * default handler will be used. The library provides a default handler which + * writes the message to stderr and calls abort. This default handler can be + * replaced at link time if the preprocessor macro + * USE_EXTERNAL_DEFAULT_CALLBACKS is defined, which is the case if the build + * has been configured with --enable-external-default-callbacks. Then the + * following two symbols must be provided to link against: + * - void secp256k1_default_illegal_callback_fn(const char* message, void* data); + * - void secp256k1_default_error_callback_fn(const char* message, void* data); + * The library can call these default handlers even before a proper callback data + * pointer could have been set using secp256k1_context_set_illegal_callback or + * secp256k1_context_set_error_callback, e.g., when the creation of a context + * fails. In this case, the corresponding default handler will be called with + * the data pointer argument set to NULL. + * * Args: ctx: an existing context object (cannot be NULL) * In: fun: a pointer to a function to call when an illegal argument is - * passed to the API, taking a message and an opaque pointer - * (NULL restores a default handler that calls abort). + * passed to the API, taking a message and an opaque pointer. + * (NULL restores the default handler.) * data: the opaque pointer to pass to fun above. + * + * See also secp256k1_context_set_error_callback. */ SECP256K1_API void secp256k1_context_set_illegal_callback( secp256k1_context* ctx, @@ -246,9 +304,12 @@ SECP256K1_API void secp256k1_context_set_illegal_callback( * * Args: ctx: an existing context object (cannot be NULL) * In: fun: a pointer to a function to call when an internal error occurs, - * taking a message and an opaque pointer (NULL restores a default - * handler that calls abort). + * taking a message and an opaque pointer (NULL restores the + * default handler, see secp256k1_context_set_illegal_callback + * for details). * data: the opaque pointer to pass to fun above. + * + * See also secp256k1_context_set_illegal_callback. */ SECP256K1_API void secp256k1_context_set_error_callback( secp256k1_context* ctx, @@ -260,21 +321,24 @@ SECP256K1_API void secp256k1_context_set_error_callback( * * Returns: a newly created scratch space. * Args: ctx: an existing context object (cannot be NULL) - * In: max_size: maximum amount of memory to allocate + * In: size: amount of memory to be available as scratch space. Some extra + * (<100 bytes) will be allocated for extra accounting. */ SECP256K1_API SECP256K1_WARN_UNUSED_RESULT secp256k1_scratch_space* secp256k1_scratch_space_create( const secp256k1_context* ctx, - size_t max_size + size_t size ) SECP256K1_ARG_NONNULL(1); /** Destroy a secp256k1 scratch space. * * The pointer may not be used afterwards. - * Args: scratch: space to destroy + * Args: ctx: a secp256k1 context object. + * scratch: space to destroy */ SECP256K1_API void secp256k1_scratch_space_destroy( + const secp256k1_context* ctx, secp256k1_scratch_space* scratch -); +) SECP256K1_ARG_NONNULL(1); /** Parse a variable-length public key into the pubkey object. * @@ -320,6 +384,21 @@ SECP256K1_API int secp256k1_ec_pubkey_serialize( unsigned int flags ) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3) SECP256K1_ARG_NONNULL(4); +/** Compare two public keys using lexicographic (of compressed serialization) order + * + * Returns: <0 if the first public key is less than the second + * >0 if the first public key is greater than the second + * 0 if the two public keys are equal + * Args: ctx: a secp256k1 context object. + * In: pubkey1: first public key to compare + * pubkey2: second public key to compare + */ +SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_ec_pubkey_cmp( + const secp256k1_context* ctx, + const secp256k1_pubkey* pubkey1, + const secp256k1_pubkey* pubkey2 +) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3); + /** Parse an ECDSA signature in compact (64 bytes) format. * * Returns: 1 when the signature could be parsed, 0 otherwise. @@ -402,7 +481,14 @@ SECP256K1_API int secp256k1_ecdsa_signature_serialize_compact( * 0: incorrect or unparseable signature * Args: ctx: a secp256k1 context object, initialized for verification. * In: sig: the signature being verified (cannot be NULL) - * msg32: the 32-byte message hash being verified (cannot be NULL) + * msghash32: the 32-byte message hash being verified (cannot be NULL). + * The verifier must make sure to apply a cryptographic + * hash function to the message by itself and not accept an + * msghash32 value directly. Otherwise, it would be easy to + * create a "valid" signature without knowledge of the + * secret key. See also + * https://bitcoin.stackexchange.com/a/81116/35586 for more + * background on this topic. * pubkey: pointer to an initialized public key to verify with (cannot be NULL) * * To avoid accepting malleable signatures, only ECDSA signatures in lower-S @@ -417,7 +503,7 @@ SECP256K1_API int secp256k1_ecdsa_signature_serialize_compact( SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_ecdsa_verify( const secp256k1_context* ctx, const secp256k1_ecdsa_signature *sig, - const unsigned char *msg32, + const unsigned char *msghash32, const secp256k1_pubkey *pubkey ) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3) SECP256K1_ARG_NONNULL(4); @@ -481,13 +567,13 @@ SECP256K1_API extern const secp256k1_nonce_function secp256k1_nonce_function_def /** Create an ECDSA signature. * * Returns: 1: signature created - * 0: the nonce generation function failed, or the private key was invalid. - * Args: ctx: pointer to a context object, initialized for signing (cannot be NULL) - * Out: sig: pointer to an array where the signature will be placed (cannot be NULL) - * In: msg32: the 32-byte message hash being signed (cannot be NULL) - * seckey: pointer to a 32-byte secret key (cannot be NULL) - * noncefp:pointer to a nonce generation function. If NULL, secp256k1_nonce_function_default is used - * ndata: pointer to arbitrary data used by the nonce generation function (can be NULL) + * 0: the nonce generation function failed, or the secret key was invalid. + * Args: ctx: pointer to a context object, initialized for signing (cannot be NULL) + * Out: sig: pointer to an array where the signature will be placed (cannot be NULL) + * In: msghash32: the 32-byte message hash being signed (cannot be NULL) + * seckey: pointer to a 32-byte secret key (cannot be NULL) + * noncefp: pointer to a nonce generation function. If NULL, secp256k1_nonce_function_default is used + * ndata: pointer to arbitrary data used by the nonce generation function (can be NULL) * * The created signature is always in lower-S form. See * secp256k1_ecdsa_signature_normalize for more details. @@ -495,13 +581,18 @@ SECP256K1_API extern const secp256k1_nonce_function secp256k1_nonce_function_def SECP256K1_API int secp256k1_ecdsa_sign( const secp256k1_context* ctx, secp256k1_ecdsa_signature *sig, - const unsigned char *msg32, + const unsigned char *msghash32, const unsigned char *seckey, secp256k1_nonce_function noncefp, const void *ndata ) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3) SECP256K1_ARG_NONNULL(4); /** Verify an ECDSA secret key. + * + * A secret key is valid if it is not 0 and less than the secp256k1 curve order + * when interpreted as an integer (most significant byte first). The + * probability of choosing a 32-byte string uniformly at random which is an + * invalid secret key is negligible. * * Returns: 1: secret key is valid * 0: secret key is invalid @@ -519,7 +610,7 @@ SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_ec_seckey_verify( * 0: secret was invalid, try again * Args: ctx: pointer to a context object, initialized for signing (cannot be NULL) * Out: pubkey: pointer to the created public key (cannot be NULL) - * In: seckey: pointer to a 32-byte private key (cannot be NULL) + * In: seckey: pointer to a 32-byte secret key (cannot be NULL) */ SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_ec_pubkey_create( const secp256k1_context* ctx, @@ -527,12 +618,24 @@ SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_ec_pubkey_create( const unsigned char *seckey ) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3); -/** Negates a private key in place. +/** Negates a secret key in place. * - * Returns: 1 always - * Args: ctx: pointer to a context object - * In/Out: seckey: pointer to the 32-byte private key to be negated (cannot be NULL) + * Returns: 0 if the given secret key is invalid according to + * secp256k1_ec_seckey_verify. 1 otherwise + * Args: ctx: pointer to a context object + * In/Out: seckey: pointer to the 32-byte secret key to be negated. If the + * secret key is invalid according to + * secp256k1_ec_seckey_verify, this function returns 0 and + * seckey will be set to some unspecified value. (cannot be + * NULL) */ +SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_ec_seckey_negate( + const secp256k1_context* ctx, + unsigned char *seckey +) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2); + +/** Same as secp256k1_ec_seckey_negate, but DEPRECATED. Will be removed in + * future versions. */ SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_ec_privkey_negate( const secp256k1_context* ctx, unsigned char *seckey @@ -549,66 +652,102 @@ SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_ec_pubkey_negate( secp256k1_pubkey *pubkey ) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2); -/** Tweak a private key by adding tweak to it. - * Returns: 0 if the tweak was out of range (chance of around 1 in 2^128 for - * uniformly random 32-byte arrays, or if the resulting private key - * would be invalid (only when the tweak is the complement of the - * private key). 1 otherwise. - * Args: ctx: pointer to a context object (cannot be NULL). - * In/Out: seckey: pointer to a 32-byte private key. - * In: tweak: pointer to a 32-byte tweak. - */ +/** Tweak a secret key by adding tweak to it. + * + * Returns: 0 if the arguments are invalid or the resulting secret key would be + * invalid (only when the tweak is the negation of the secret key). 1 + * otherwise. + * Args: ctx: pointer to a context object (cannot be NULL). + * In/Out: seckey: pointer to a 32-byte secret key. If the secret key is + * invalid according to secp256k1_ec_seckey_verify, this + * function returns 0. seckey will be set to some unspecified + * value if this function returns 0. (cannot be NULL) + * In: tweak32: pointer to a 32-byte tweak. If the tweak is invalid according to + * secp256k1_ec_seckey_verify, this function returns 0. For + * uniformly random 32-byte arrays the chance of being invalid + * is negligible (around 1 in 2^128) (cannot be NULL). + */ +SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_ec_seckey_tweak_add( + const secp256k1_context* ctx, + unsigned char *seckey, + const unsigned char *tweak32 +) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3); + +/** Same as secp256k1_ec_seckey_tweak_add, but DEPRECATED. Will be removed in + * future versions. */ SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_ec_privkey_tweak_add( const secp256k1_context* ctx, unsigned char *seckey, - const unsigned char *tweak + const unsigned char *tweak32 ) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3); /** Tweak a public key by adding tweak times the generator to it. - * Returns: 0 if the tweak was out of range (chance of around 1 in 2^128 for - * uniformly random 32-byte arrays, or if the resulting public key - * would be invalid (only when the tweak is the complement of the - * corresponding private key). 1 otherwise. - * Args: ctx: pointer to a context object initialized for validation + * + * Returns: 0 if the arguments are invalid or the resulting public key would be + * invalid (only when the tweak is the negation of the corresponding + * secret key). 1 otherwise. + * Args: ctx: pointer to a context object initialized for validation * (cannot be NULL). - * In/Out: pubkey: pointer to a public key object. - * In: tweak: pointer to a 32-byte tweak. + * In/Out: pubkey: pointer to a public key object. pubkey will be set to an + * invalid value if this function returns 0 (cannot be NULL). + * In: tweak32: pointer to a 32-byte tweak. If the tweak is invalid according to + * secp256k1_ec_seckey_verify, this function returns 0. For + * uniformly random 32-byte arrays the chance of being invalid + * is negligible (around 1 in 2^128) (cannot be NULL). */ SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_ec_pubkey_tweak_add( const secp256k1_context* ctx, secp256k1_pubkey *pubkey, - const unsigned char *tweak + const unsigned char *tweak32 ) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3); -/** Tweak a private key by multiplying it by a tweak. - * Returns: 0 if the tweak was out of range (chance of around 1 in 2^128 for - * uniformly random 32-byte arrays, or equal to zero. 1 otherwise. - * Args: ctx: pointer to a context object (cannot be NULL). - * In/Out: seckey: pointer to a 32-byte private key. - * In: tweak: pointer to a 32-byte tweak. +/** Tweak a secret key by multiplying it by a tweak. + * + * Returns: 0 if the arguments are invalid. 1 otherwise. + * Args: ctx: pointer to a context object (cannot be NULL). + * In/Out: seckey: pointer to a 32-byte secret key. If the secret key is + * invalid according to secp256k1_ec_seckey_verify, this + * function returns 0. seckey will be set to some unspecified + * value if this function returns 0. (cannot be NULL) + * In: tweak32: pointer to a 32-byte tweak. If the tweak is invalid according to + * secp256k1_ec_seckey_verify, this function returns 0. For + * uniformly random 32-byte arrays the chance of being invalid + * is negligible (around 1 in 2^128) (cannot be NULL). */ +SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_ec_seckey_tweak_mul( + const secp256k1_context* ctx, + unsigned char *seckey, + const unsigned char *tweak32 +) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3); + +/** Same as secp256k1_ec_seckey_tweak_mul, but DEPRECATED. Will be removed in + * future versions. */ SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_ec_privkey_tweak_mul( const secp256k1_context* ctx, unsigned char *seckey, - const unsigned char *tweak + const unsigned char *tweak32 ) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3); /** Tweak a public key by multiplying it by a tweak value. - * Returns: 0 if the tweak was out of range (chance of around 1 in 2^128 for - * uniformly random 32-byte arrays, or equal to zero. 1 otherwise. - * Args: ctx: pointer to a context object initialized for validation - * (cannot be NULL). - * In/Out: pubkey: pointer to a public key obkect. - * In: tweak: pointer to a 32-byte tweak. + * + * Returns: 0 if the arguments are invalid. 1 otherwise. + * Args: ctx: pointer to a context object initialized for validation + * (cannot be NULL). + * In/Out: pubkey: pointer to a public key object. pubkey will be set to an + * invalid value if this function returns 0 (cannot be NULL). + * In: tweak32: pointer to a 32-byte tweak. If the tweak is invalid according to + * secp256k1_ec_seckey_verify, this function returns 0. For + * uniformly random 32-byte arrays the chance of being invalid + * is negligible (around 1 in 2^128) (cannot be NULL). */ SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_ec_pubkey_tweak_mul( const secp256k1_context* ctx, secp256k1_pubkey *pubkey, - const unsigned char *tweak + const unsigned char *tweak32 ) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3); /** Updates the context randomization to protect against side-channel leakage. - * Returns: 1: randomization successfully updated + * Returns: 1: randomization successfully updated or nothing to randomize * 0: error * Args: ctx: pointer to a context object (cannot be NULL) * In: seed32: pointer to a 32-byte random seed (NULL resets to initial state) @@ -623,8 +762,14 @@ SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_ec_pubkey_tweak_mul( * that it does not affect function results, but shields against attacks which * rely on any input-dependent behaviour. * + * This function has currently an effect only on contexts initialized for signing + * because randomization is currently used only for signing. However, this is not + * guaranteed and may change in the future. It is safe to call this function on + * contexts not initialized for signing; then it will have no effect and return 1. + * * You should call this after secp256k1_context_create or - * secp256k1_context_clone, and may call this repeatedly afterwards. + * secp256k1_context_clone (and secp256k1_context_preallocated_create or + * secp256k1_context_clone, resp.), and you may call this repeatedly afterwards. */ SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_context_randomize( secp256k1_context* ctx, @@ -632,6 +777,7 @@ SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_context_randomize( ) SECP256K1_ARG_NONNULL(1); /** Add a number of public keys together. + * * Returns: 1: the sum of the public keys is valid. * 0: the sum of the public keys is not valid. * Args: ctx: pointer to a context object @@ -647,6 +793,31 @@ SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_ec_pubkey_combine( size_t n ) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3); +/** Compute a tagged hash as defined in BIP-340. + * + * This is useful for creating a message hash and achieving domain separation + * through an application-specific tag. This function returns + * SHA256(SHA256(tag)||SHA256(tag)||msg). Therefore, tagged hash + * implementations optimized for a specific tag can precompute the SHA256 state + * after hashing the tag hashes. + * + * Returns 0 if the arguments are invalid and 1 otherwise. + * Args: ctx: pointer to a context object + * Out: hash32: pointer to a 32-byte array to store the resulting hash + * In: tag: pointer to an array containing the tag + * taglen: length of the tag array + * msg: pointer to an array containing the message + * msglen: length of the message array + */ +SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_tagged_sha256( + const secp256k1_context* ctx, + unsigned char *hash32, + const unsigned char *tag, + size_t taglen, + const unsigned char *msg, + size_t msglen +) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3) SECP256K1_ARG_NONNULL(5); + #ifdef __cplusplus } #endif diff --git a/include/secp256k1_ecdh.h b/include/secp256k1_ecdh.h index df5fde235c7b9..4058e9c0436dd 100644 --- a/include/secp256k1_ecdh.h +++ b/include/secp256k1_ecdh.h @@ -7,43 +7,50 @@ extern "C" { #endif -/** A pointer to a function that applies hash function to a point +/** A pointer to a function that hashes an EC point to obtain an ECDH secret * - * Returns: 1 if a point was successfully hashed. 0 will cause ecdh to fail - * Out: output: pointer to an array to be filled by the function - * In: x: pointer to a 32-byte x coordinate - * y: pointer to a 32-byte y coordinate - * data: Arbitrary data pointer that is passed through + * Returns: 1 if the point was successfully hashed. + * 0 will cause secp256k1_ecdh to fail and return 0. + * Other return values are not allowed, and the behaviour of + * secp256k1_ecdh is undefined for other return values. + * Out: output: pointer to an array to be filled by the function + * In: x32: pointer to a 32-byte x coordinate + * y32: pointer to a 32-byte y coordinate + * data: arbitrary data pointer that is passed through */ typedef int (*secp256k1_ecdh_hash_function)( unsigned char *output, - const unsigned char *x, - const unsigned char *y, + const unsigned char *x32, + const unsigned char *y32, void *data ); -/** An implementation of SHA256 hash function that applies to compressed public key. */ +/** An implementation of SHA256 hash function that applies to compressed public key. + * Populates the output parameter with 32 bytes. */ SECP256K1_API extern const secp256k1_ecdh_hash_function secp256k1_ecdh_hash_function_sha256; -/** A default ecdh hash function (currently equal to secp256k1_ecdh_hash_function_sha256). */ +/** A default ECDH hash function (currently equal to secp256k1_ecdh_hash_function_sha256). + * Populates the output parameter with 32 bytes. */ SECP256K1_API extern const secp256k1_ecdh_hash_function secp256k1_ecdh_hash_function_default; /** Compute an EC Diffie-Hellman secret in constant time + * * Returns: 1: exponentiation was successful - * 0: scalar was invalid (zero or overflow) + * 0: scalar was invalid (zero or overflow) or hashfp returned 0 * Args: ctx: pointer to a context object (cannot be NULL) - * Out: output: pointer to an array to be filled by the function + * Out: output: pointer to an array to be filled by hashfp * In: pubkey: a pointer to a secp256k1_pubkey containing an * initialized public key - * privkey: a 32-byte scalar with which to multiply the point + * seckey: a 32-byte scalar with which to multiply the point * hashfp: pointer to a hash function. If NULL, secp256k1_ecdh_hash_function_sha256 is used - * data: Arbitrary data pointer that is passed through + * (in which case, 32 bytes will be written to output) + * data: arbitrary data pointer that is passed through to hashfp */ SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_ecdh( const secp256k1_context* ctx, unsigned char *output, const secp256k1_pubkey *pubkey, - const unsigned char *privkey, + const unsigned char *seckey, secp256k1_ecdh_hash_function hashfp, void *data ) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3) SECP256K1_ARG_NONNULL(4); diff --git a/include/secp256k1_extrakeys.h b/include/secp256k1_extrakeys.h new file mode 100644 index 0000000000000..0a37fb6b9d318 --- /dev/null +++ b/include/secp256k1_extrakeys.h @@ -0,0 +1,264 @@ +#ifndef SECP256K1_EXTRAKEYS_H +#define SECP256K1_EXTRAKEYS_H + +#include "secp256k1.h" + +#ifdef __cplusplus +extern "C" { +#endif + +/** Opaque data structure that holds a parsed and valid "x-only" public key. + * An x-only pubkey encodes a point whose Y coordinate is even. It is + * serialized using only its X coordinate (32 bytes). See BIP-340 for more + * information about x-only pubkeys. + * + * The exact representation of data inside is implementation defined and not + * guaranteed to be portable between different platforms or versions. It is + * however guaranteed to be 64 bytes in size, and can be safely copied/moved. + * If you need to convert to a format suitable for storage, transmission, use + * use secp256k1_xonly_pubkey_serialize and secp256k1_xonly_pubkey_parse. To + * compare keys, use secp256k1_xonly_pubkey_cmp. + */ +typedef struct { + unsigned char data[64]; +} secp256k1_xonly_pubkey; + +/** Opaque data structure that holds a keypair consisting of a secret and a + * public key. + * + * The exact representation of data inside is implementation defined and not + * guaranteed to be portable between different platforms or versions. It is + * however guaranteed to be 96 bytes in size, and can be safely copied/moved. + */ +typedef struct { + unsigned char data[96]; +} secp256k1_keypair; + +/** Parse a 32-byte sequence into a xonly_pubkey object. + * + * Returns: 1 if the public key was fully valid. + * 0 if the public key could not be parsed or is invalid. + * + * Args: ctx: a secp256k1 context object (cannot be NULL). + * Out: pubkey: pointer to a pubkey object. If 1 is returned, it is set to a + * parsed version of input. If not, it's set to an invalid value. + * (cannot be NULL). + * In: input32: pointer to a serialized xonly_pubkey (cannot be NULL) + */ +SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_xonly_pubkey_parse( + const secp256k1_context* ctx, + secp256k1_xonly_pubkey* pubkey, + const unsigned char *input32 +) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3); + +/** Serialize an xonly_pubkey object into a 32-byte sequence. + * + * Returns: 1 always. + * + * Args: ctx: a secp256k1 context object (cannot be NULL). + * Out: output32: a pointer to a 32-byte array to place the serialized key in + * (cannot be NULL). + * In: pubkey: a pointer to a secp256k1_xonly_pubkey containing an + * initialized public key (cannot be NULL). + */ +SECP256K1_API int secp256k1_xonly_pubkey_serialize( + const secp256k1_context* ctx, + unsigned char *output32, + const secp256k1_xonly_pubkey* pubkey +) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3); + +/** Compare two x-only public keys using lexicographic order + * + * Returns: <0 if the first public key is less than the second + * >0 if the first public key is greater than the second + * 0 if the two public keys are equal + * Args: ctx: a secp256k1 context object. + * In: pubkey1: first public key to compare + * pubkey2: second public key to compare + */ +SECP256K1_API int secp256k1_xonly_pubkey_cmp( + const secp256k1_context* ctx, + const secp256k1_xonly_pubkey* pk1, + const secp256k1_xonly_pubkey* pk2 +) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3); + +/** Converts a secp256k1_pubkey into a secp256k1_xonly_pubkey. + * + * Returns: 1 if the public key was successfully converted + * 0 otherwise + * + * Args: ctx: pointer to a context object (cannot be NULL) + * Out: xonly_pubkey: pointer to an x-only public key object for placing the + * converted public key (cannot be NULL) + * pk_parity: pointer to an integer that will be set to 1 if the point + * encoded by xonly_pubkey is the negation of the pubkey and + * set to 0 otherwise. (can be NULL) + * In: pubkey: pointer to a public key that is converted (cannot be NULL) + */ +SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_xonly_pubkey_from_pubkey( + const secp256k1_context* ctx, + secp256k1_xonly_pubkey *xonly_pubkey, + int *pk_parity, + const secp256k1_pubkey *pubkey +) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(4); + +/** Tweak an x-only public key by adding the generator multiplied with tweak32 + * to it. + * + * Note that the resulting point can not in general be represented by an x-only + * pubkey because it may have an odd Y coordinate. Instead, the output_pubkey + * is a normal secp256k1_pubkey. + * + * Returns: 0 if the arguments are invalid or the resulting public key would be + * invalid (only when the tweak is the negation of the corresponding + * secret key). 1 otherwise. + * + * Args: ctx: pointer to a context object initialized for verification + * (cannot be NULL) + * Out: output_pubkey: pointer to a public key to store the result. Will be set + * to an invalid value if this function returns 0 (cannot + * be NULL) + * In: internal_pubkey: pointer to an x-only pubkey to apply the tweak to. + * (cannot be NULL). + * tweak32: pointer to a 32-byte tweak. If the tweak is invalid + * according to secp256k1_ec_seckey_verify, this function + * returns 0. For uniformly random 32-byte arrays the + * chance of being invalid is negligible (around 1 in + * 2^128) (cannot be NULL). + */ +SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_xonly_pubkey_tweak_add( + const secp256k1_context* ctx, + secp256k1_pubkey *output_pubkey, + const secp256k1_xonly_pubkey *internal_pubkey, + const unsigned char *tweak32 +) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3) SECP256K1_ARG_NONNULL(4); + +/** Checks that a tweaked pubkey is the result of calling + * secp256k1_xonly_pubkey_tweak_add with internal_pubkey and tweak32. + * + * The tweaked pubkey is represented by its 32-byte x-only serialization and + * its pk_parity, which can both be obtained by converting the result of + * tweak_add to a secp256k1_xonly_pubkey. + * + * Note that this alone does _not_ verify that the tweaked pubkey is a + * commitment. If the tweak is not chosen in a specific way, the tweaked pubkey + * can easily be the result of a different internal_pubkey and tweak. + * + * Returns: 0 if the arguments are invalid or the tweaked pubkey is not the + * result of tweaking the internal_pubkey with tweak32. 1 otherwise. + * Args: ctx: pointer to a context object initialized for verification + * (cannot be NULL) + * In: tweaked_pubkey32: pointer to a serialized xonly_pubkey (cannot be NULL) + * tweaked_pk_parity: the parity of the tweaked pubkey (whose serialization + * is passed in as tweaked_pubkey32). This must match the + * pk_parity value that is returned when calling + * secp256k1_xonly_pubkey with the tweaked pubkey, or + * this function will fail. + * internal_pubkey: pointer to an x-only public key object to apply the + * tweak to (cannot be NULL) + * tweak32: pointer to a 32-byte tweak (cannot be NULL) + */ +SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_xonly_pubkey_tweak_add_check( + const secp256k1_context* ctx, + const unsigned char *tweaked_pubkey32, + int tweaked_pk_parity, + const secp256k1_xonly_pubkey *internal_pubkey, + const unsigned char *tweak32 +) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(4) SECP256K1_ARG_NONNULL(5); + +/** Compute the keypair for a secret key. + * + * Returns: 1: secret was valid, keypair is ready to use + * 0: secret was invalid, try again with a different secret + * Args: ctx: pointer to a context object, initialized for signing (cannot be NULL) + * Out: keypair: pointer to the created keypair (cannot be NULL) + * In: seckey: pointer to a 32-byte secret key (cannot be NULL) + */ +SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_keypair_create( + const secp256k1_context* ctx, + secp256k1_keypair *keypair, + const unsigned char *seckey +) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3); + +/** Get the secret key from a keypair. + * + * Returns: 0 if the arguments are invalid. 1 otherwise. + * Args: ctx: pointer to a context object (cannot be NULL) + * Out: seckey: pointer to a 32-byte buffer for the secret key (cannot be NULL) + * In: keypair: pointer to a keypair (cannot be NULL) + */ +SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_keypair_sec( + const secp256k1_context* ctx, + unsigned char *seckey, + const secp256k1_keypair *keypair +) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3); + +/** Get the public key from a keypair. + * + * Returns: 0 if the arguments are invalid. 1 otherwise. + * Args: ctx: pointer to a context object (cannot be NULL) + * Out: pubkey: pointer to a pubkey object. If 1 is returned, it is set to + * the keypair public key. If not, it's set to an invalid value. + * (cannot be NULL) + * In: keypair: pointer to a keypair (cannot be NULL) + */ +SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_keypair_pub( + const secp256k1_context* ctx, + secp256k1_pubkey *pubkey, + const secp256k1_keypair *keypair +) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3); + +/** Get the x-only public key from a keypair. + * + * This is the same as calling secp256k1_keypair_pub and then + * secp256k1_xonly_pubkey_from_pubkey. + * + * Returns: 0 if the arguments are invalid. 1 otherwise. + * Args: ctx: pointer to a context object (cannot be NULL) + * Out: pubkey: pointer to an xonly_pubkey object. If 1 is returned, it is set + * to the keypair public key after converting it to an + * xonly_pubkey. If not, it's set to an invalid value (cannot be + * NULL). + * pk_parity: pointer to an integer that will be set to the pk_parity + * argument of secp256k1_xonly_pubkey_from_pubkey (can be NULL). + * In: keypair: pointer to a keypair (cannot be NULL) + */ +SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_keypair_xonly_pub( + const secp256k1_context* ctx, + secp256k1_xonly_pubkey *pubkey, + int *pk_parity, + const secp256k1_keypair *keypair +) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(4); + +/** Tweak a keypair by adding tweak32 to the secret key and updating the public + * key accordingly. + * + * Calling this function and then secp256k1_keypair_pub results in the same + * public key as calling secp256k1_keypair_xonly_pub and then + * secp256k1_xonly_pubkey_tweak_add. + * + * Returns: 0 if the arguments are invalid or the resulting keypair would be + * invalid (only when the tweak is the negation of the keypair's + * secret key). 1 otherwise. + * + * Args: ctx: pointer to a context object initialized for verification + * (cannot be NULL) + * In/Out: keypair: pointer to a keypair to apply the tweak to. Will be set to + * an invalid value if this function returns 0 (cannot be + * NULL). + * In: tweak32: pointer to a 32-byte tweak. If the tweak is invalid according + * to secp256k1_ec_seckey_verify, this function returns 0. For + * uniformly random 32-byte arrays the chance of being invalid + * is negligible (around 1 in 2^128) (cannot be NULL). + */ +SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_keypair_xonly_tweak_add( + const secp256k1_context* ctx, + secp256k1_keypair *keypair, + const unsigned char *tweak32 +) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3); + +#ifdef __cplusplus +} +#endif + +#endif /* SECP256K1_EXTRAKEYS_H */ diff --git a/include/secp256k1_preallocated.h b/include/secp256k1_preallocated.h new file mode 100644 index 0000000000000..a9ae15d5ae8d8 --- /dev/null +++ b/include/secp256k1_preallocated.h @@ -0,0 +1,128 @@ +#ifndef SECP256K1_PREALLOCATED_H +#define SECP256K1_PREALLOCATED_H + +#include "secp256k1.h" + +#ifdef __cplusplus +extern "C" { +#endif + +/* The module provided by this header file is intended for settings in which it + * is not possible or desirable to rely on dynamic memory allocation. It provides + * functions for creating, cloning, and destroying secp256k1 context objects in a + * contiguous fixed-size block of memory provided by the caller. + * + * Context objects created by functions in this module can be used like contexts + * objects created by functions in secp256k1.h, i.e., they can be passed to any + * API function that expects a context object (see secp256k1.h for details). The + * only exception is that context objects created by functions in this module + * must be destroyed using secp256k1_context_preallocated_destroy (in this + * module) instead of secp256k1_context_destroy (in secp256k1.h). + * + * It is guaranteed that functions in this module will not call malloc or its + * friends realloc, calloc, and free. + */ + +/** Determine the memory size of a secp256k1 context object to be created in + * caller-provided memory. + * + * The purpose of this function is to determine how much memory must be provided + * to secp256k1_context_preallocated_create. + * + * Returns: the required size of the caller-provided memory block + * In: flags: which parts of the context to initialize. + */ +SECP256K1_API size_t secp256k1_context_preallocated_size( + unsigned int flags +) SECP256K1_WARN_UNUSED_RESULT; + +/** Create a secp256k1 context object in caller-provided memory. + * + * The caller must provide a pointer to a rewritable contiguous block of memory + * of size at least secp256k1_context_preallocated_size(flags) bytes, suitably + * aligned to hold an object of any type. + * + * The block of memory is exclusively owned by the created context object during + * the lifetime of this context object, which begins with the call to this + * function and ends when a call to secp256k1_context_preallocated_destroy + * (which destroys the context object again) returns. During the lifetime of the + * context object, the caller is obligated not to access this block of memory, + * i.e., the caller may not read or write the memory, e.g., by copying the memory + * contents to a different location or trying to create a second context object + * in the memory. In simpler words, the prealloc pointer (or any pointer derived + * from it) should not be used during the lifetime of the context object. + * + * Returns: a newly created context object. + * In: prealloc: a pointer to a rewritable contiguous block of memory of + * size at least secp256k1_context_preallocated_size(flags) + * bytes, as detailed above (cannot be NULL) + * flags: which parts of the context to initialize. + * + * See also secp256k1_context_randomize (in secp256k1.h) + * and secp256k1_context_preallocated_destroy. + */ +SECP256K1_API secp256k1_context* secp256k1_context_preallocated_create( + void* prealloc, + unsigned int flags +) SECP256K1_ARG_NONNULL(1) SECP256K1_WARN_UNUSED_RESULT; + +/** Determine the memory size of a secp256k1 context object to be copied into + * caller-provided memory. + * + * Returns: the required size of the caller-provided memory block. + * In: ctx: an existing context to copy (cannot be NULL) + */ +SECP256K1_API size_t secp256k1_context_preallocated_clone_size( + const secp256k1_context* ctx +) SECP256K1_ARG_NONNULL(1) SECP256K1_WARN_UNUSED_RESULT; + +/** Copy a secp256k1 context object into caller-provided memory. + * + * The caller must provide a pointer to a rewritable contiguous block of memory + * of size at least secp256k1_context_preallocated_size(flags) bytes, suitably + * aligned to hold an object of any type. + * + * The block of memory is exclusively owned by the created context object during + * the lifetime of this context object, see the description of + * secp256k1_context_preallocated_create for details. + * + * Returns: a newly created context object. + * Args: ctx: an existing context to copy (cannot be NULL) + * In: prealloc: a pointer to a rewritable contiguous block of memory of + * size at least secp256k1_context_preallocated_size(flags) + * bytes, as detailed above (cannot be NULL) + */ +SECP256K1_API secp256k1_context* secp256k1_context_preallocated_clone( + const secp256k1_context* ctx, + void* prealloc +) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_WARN_UNUSED_RESULT; + +/** Destroy a secp256k1 context object that has been created in + * caller-provided memory. + * + * The context pointer may not be used afterwards. + * + * The context to destroy must have been created using + * secp256k1_context_preallocated_create or secp256k1_context_preallocated_clone. + * If the context has instead been created using secp256k1_context_create or + * secp256k1_context_clone, the behaviour is undefined. In that case, + * secp256k1_context_destroy must be used instead. + * + * If required, it is the responsibility of the caller to deallocate the block + * of memory properly after this function returns, e.g., by calling free on the + * preallocated pointer given to secp256k1_context_preallocated_create or + * secp256k1_context_preallocated_clone. + * + * Args: ctx: an existing context to destroy, constructed using + * secp256k1_context_preallocated_create or + * secp256k1_context_preallocated_clone (cannot be NULL) + */ +SECP256K1_API void secp256k1_context_preallocated_destroy( + secp256k1_context* ctx +); + +#ifdef __cplusplus +} +#endif + +#endif /* SECP256K1_PREALLOCATED_H */ diff --git a/include/secp256k1_recovery.h b/include/secp256k1_recovery.h index cf6c5ed7f5e3d..aa16532ce8614 100644 --- a/include/secp256k1_recovery.h +++ b/include/secp256k1_recovery.h @@ -70,18 +70,18 @@ SECP256K1_API int secp256k1_ecdsa_recoverable_signature_serialize_compact( /** Create a recoverable ECDSA signature. * * Returns: 1: signature created - * 0: the nonce generation function failed, or the private key was invalid. - * Args: ctx: pointer to a context object, initialized for signing (cannot be NULL) - * Out: sig: pointer to an array where the signature will be placed (cannot be NULL) - * In: msg32: the 32-byte message hash being signed (cannot be NULL) - * seckey: pointer to a 32-byte secret key (cannot be NULL) - * noncefp:pointer to a nonce generation function. If NULL, secp256k1_nonce_function_default is used - * ndata: pointer to arbitrary data used by the nonce generation function (can be NULL) + * 0: the nonce generation function failed, or the secret key was invalid. + * Args: ctx: pointer to a context object, initialized for signing (cannot be NULL) + * Out: sig: pointer to an array where the signature will be placed (cannot be NULL) + * In: msghash32: the 32-byte message hash being signed (cannot be NULL) + * seckey: pointer to a 32-byte secret key (cannot be NULL) + * noncefp: pointer to a nonce generation function. If NULL, secp256k1_nonce_function_default is used + * ndata: pointer to arbitrary data used by the nonce generation function (can be NULL) */ SECP256K1_API int secp256k1_ecdsa_sign_recoverable( const secp256k1_context* ctx, secp256k1_ecdsa_recoverable_signature *sig, - const unsigned char *msg32, + const unsigned char *msghash32, const unsigned char *seckey, secp256k1_nonce_function noncefp, const void *ndata @@ -91,16 +91,16 @@ SECP256K1_API int secp256k1_ecdsa_sign_recoverable( * * Returns: 1: public key successfully recovered (which guarantees a correct signature). * 0: otherwise. - * Args: ctx: pointer to a context object, initialized for verification (cannot be NULL) - * Out: pubkey: pointer to the recovered public key (cannot be NULL) - * In: sig: pointer to initialized signature that supports pubkey recovery (cannot be NULL) - * msg32: the 32-byte message hash assumed to be signed (cannot be NULL) + * Args: ctx: pointer to a context object, initialized for verification (cannot be NULL) + * Out: pubkey: pointer to the recovered public key (cannot be NULL) + * In: sig: pointer to initialized signature that supports pubkey recovery (cannot be NULL) + * msghash32: the 32-byte message hash assumed to be signed (cannot be NULL) */ SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_ecdsa_recover( const secp256k1_context* ctx, secp256k1_pubkey *pubkey, const secp256k1_ecdsa_recoverable_signature *sig, - const unsigned char *msg32 + const unsigned char *msghash32 ) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3) SECP256K1_ARG_NONNULL(4); #ifdef __cplusplus diff --git a/include/secp256k1_schnorrsig.h b/include/secp256k1_schnorrsig.h new file mode 100644 index 0000000000000..d68bba62ccf49 --- /dev/null +++ b/include/secp256k1_schnorrsig.h @@ -0,0 +1,170 @@ +#ifndef SECP256K1_SCHNORRSIG_H +#define SECP256K1_SCHNORRSIG_H + +#include "secp256k1.h" +#include "secp256k1_extrakeys.h" + +#ifdef __cplusplus +extern "C" { +#endif + +/** This module implements a variant of Schnorr signatures compliant with + * Bitcoin Improvement Proposal 340 "Schnorr Signatures for secp256k1" + * (https://github.com/bitcoin/bips/blob/master/bip-0340.mediawiki). + */ + +/** A pointer to a function to deterministically generate a nonce. + * + * Same as secp256k1_nonce function with the exception of accepting an + * additional pubkey argument and not requiring an attempt argument. The pubkey + * argument can protect signature schemes with key-prefixed challenge hash + * inputs against reusing the nonce when signing with the wrong precomputed + * pubkey. + * + * Returns: 1 if a nonce was successfully generated. 0 will cause signing to + * return an error. + * Out: nonce32: pointer to a 32-byte array to be filled by the function + * In: msg: the message being verified. Is NULL if and only if msglen + * is 0. + * msglen: the length of the message + * key32: pointer to a 32-byte secret key (will not be NULL) + * xonly_pk32: the 32-byte serialized xonly pubkey corresponding to key32 + * (will not be NULL) + * algo: pointer to an array describing the signature + * algorithm (will not be NULL) + * algolen: the length of the algo array + * data: arbitrary data pointer that is passed through + * + * Except for test cases, this function should compute some cryptographic hash of + * the message, the key, the pubkey, the algorithm description, and data. + */ +typedef int (*secp256k1_nonce_function_hardened)( + unsigned char *nonce32, + const unsigned char *msg, + size_t msglen, + const unsigned char *key32, + const unsigned char *xonly_pk32, + const unsigned char *algo, + size_t algolen, + void *data +); + +/** An implementation of the nonce generation function as defined in Bitcoin + * Improvement Proposal 340 "Schnorr Signatures for secp256k1" + * (https://github.com/bitcoin/bips/blob/master/bip-0340.mediawiki). + * + * If a data pointer is passed, it is assumed to be a pointer to 32 bytes of + * auxiliary random data as defined in BIP-340. If the data pointer is NULL, + * the nonce derivation procedure follows BIP-340 by setting the auxiliary + * random data to zero. The algo argument must be non-NULL, otherwise the + * function will fail and return 0. The hash will be tagged with algo. + * Therefore, to create BIP-340 compliant signatures, algo must be set to + * "BIP0340/nonce" and algolen to 13. + */ +SECP256K1_API extern const secp256k1_nonce_function_hardened secp256k1_nonce_function_bip340; + +/** Data structure that contains additional arguments for schnorrsig_sign_custom. + * + * A schnorrsig_extraparams structure object can be initialized correctly by + * setting it to SECP256K1_SCHNORRSIG_EXTRAPARAMS_INIT. + * + * Members: + * magic: set to SECP256K1_SCHNORRSIG_EXTRAPARAMS_MAGIC at initialization + * and has no other function than making sure the object is + * initialized. + * noncefp: pointer to a nonce generation function. If NULL, + * secp256k1_nonce_function_bip340 is used + * ndata: pointer to arbitrary data used by the nonce generation function + * (can be NULL). If it is non-NULL and + * secp256k1_nonce_function_bip340 is used, then ndata must be a + * pointer to 32-byte auxiliary randomness as per BIP-340. + */ +typedef struct { + unsigned char magic[4]; + secp256k1_nonce_function_hardened noncefp; + void* ndata; +} secp256k1_schnorrsig_extraparams; + +#define SECP256K1_SCHNORRSIG_EXTRAPARAMS_MAGIC "\xda\x6f\xb3\x8c" +#define SECP256K1_SCHNORRSIG_EXTRAPARAMS_INIT {\ + SECP256K1_SCHNORRSIG_EXTRAPARAMS_MAGIC,\ + NULL,\ + NULL\ +} + +/** Create a Schnorr signature. + * + * Does _not_ strictly follow BIP-340 because it does not verify the resulting + * signature. Instead, you can manually use secp256k1_schnorrsig_verify and + * abort if it fails. + * + * This function only signs 32-byte messages. If you have messages of a + * different size (or the same size but without a context-specific tag + * prefix), it is recommended to create a 32-byte message hash with + * secp256k1_tagged_sha256 and then sign the hash. Tagged hashing allows + * providing an context-specific tag for domain separation. This prevents + * signatures from being valid in multiple contexts by accident. + * + * Returns 1 on success, 0 on failure. + * Args: ctx: pointer to a context object, initialized for signing (cannot be NULL) + * Out: sig64: pointer to a 64-byte array to store the serialized signature (cannot be NULL) + * In: msg32: the 32-byte message being signed (cannot be NULL) + * keypair: pointer to an initialized keypair (cannot be NULL) + * aux_rand32: 32 bytes of fresh randomness. While recommended to provide + * this, it is only supplemental to security and can be NULL. See + * BIP-340 "Default Signing" for a full explanation of this + * argument and for guidance if randomness is expensive. + */ +SECP256K1_API int secp256k1_schnorrsig_sign( + const secp256k1_context* ctx, + unsigned char *sig64, + const unsigned char *msg32, + const secp256k1_keypair *keypair, + unsigned char *aux_rand32 +) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3) SECP256K1_ARG_NONNULL(4); + +/** Create a Schnorr signature with a more flexible API. + * + * Same arguments as secp256k1_schnorrsig_sign except that it allows signing + * variable length messages and accepts a pointer to an extraparams object that + * allows customizing signing by passing additional arguments. + * + * Creates the same signatures as schnorrsig_sign if msglen is 32 and the + * extraparams.ndata is the same as aux_rand32. + * + * In: msg: the message being signed. Can only be NULL if msglen is 0. + * msglen: length of the message + * extraparams: pointer to a extraparams object (can be NULL) + */ +SECP256K1_API int secp256k1_schnorrsig_sign_custom( + const secp256k1_context* ctx, + unsigned char *sig64, + const unsigned char *msg, + size_t msglen, + const secp256k1_keypair *keypair, + secp256k1_schnorrsig_extraparams *extraparams +) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(5); + +/** Verify a Schnorr signature. + * + * Returns: 1: correct signature + * 0: incorrect signature + * Args: ctx: a secp256k1 context object, initialized for verification. + * In: sig64: pointer to the 64-byte signature to verify (cannot be NULL) + * msg: the message being verified. Can only be NULL if msglen is 0. + * msglen: length of the message + * pubkey: pointer to an x-only public key to verify with (cannot be NULL) + */ +SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_schnorrsig_verify( + const secp256k1_context* ctx, + const unsigned char *sig64, + const unsigned char *msg, + size_t msglen, + const secp256k1_xonly_pubkey *pubkey +) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(5); + +#ifdef __cplusplus +} +#endif + +#endif /* SECP256K1_SCHNORRSIG_H */ diff --git a/libsecp256k1.pc.in b/libsecp256k1.pc.in index a0d006f1131f4..694e98eef51ea 100644 --- a/libsecp256k1.pc.in +++ b/libsecp256k1.pc.in @@ -8,6 +8,6 @@ Description: Optimized C library for EC operations on curve secp256k1 URL: https://github.com/bitcoin-core/secp256k1 Version: @PACKAGE_VERSION@ Cflags: -I${includedir} -Libs.private: @SECP_LIBS@ Libs: -L${libdir} -lsecp256k1 +Libs.private: @SECP_LIBS@ diff --git a/obj/.gitignore b/obj/.gitignore deleted file mode 100644 index e69de29bb2d1d..0000000000000 diff --git a/sage/gen_exhaustive_groups.sage b/sage/gen_exhaustive_groups.sage new file mode 100644 index 0000000000000..01d15dcdeac56 --- /dev/null +++ b/sage/gen_exhaustive_groups.sage @@ -0,0 +1,124 @@ +load("secp256k1_params.sage") + +orders_done = set() +results = {} +first = True +for b in range(1, P): + # There are only 6 curves (up to isomorphism) of the form y^2=x^3+B. Stop once we have tried all. + if len(orders_done) == 6: + break + + E = EllipticCurve(F, [0, b]) + print("Analyzing curve y^2 = x^3 + %i" % b) + n = E.order() + # Skip curves with an order we've already tried + if n in orders_done: + print("- Isomorphic to earlier curve") + continue + orders_done.add(n) + # Skip curves isomorphic to the real secp256k1 + if n.is_pseudoprime(): + print(" - Isomorphic to secp256k1") + continue + + print("- Finding subgroups") + + # Find what prime subgroups exist + for f, _ in n.factor(): + print("- Analyzing subgroup of order %i" % f) + # Skip subgroups of order >1000 + if f < 4 or f > 1000: + print(" - Bad size") + continue + + # Iterate over X coordinates until we find one that is on the curve, has order f, + # and for which curve isomorphism exists that maps it to X coordinate 1. + for x in range(1, P): + # Skip X coordinates not on the curve, and construct the full point otherwise. + if not E.is_x_coord(x): + continue + G = E.lift_x(F(x)) + + print(" - Analyzing (multiples of) point with X=%i" % x) + + # Skip points whose order is not a multiple of f. Project the point to have + # order f otherwise. + if (G.order() % f): + print(" - Bad order") + continue + G = G * (G.order() // f) + + # Find lambda for endomorphism. Skip if none can be found. + lam = None + for l in Integers(f)(1).nth_root(3, all=True): + if int(l)*G == E(BETA*G[0], G[1]): + lam = int(l) + break + if lam is None: + print(" - No endomorphism for this subgroup") + break + + # Now look for an isomorphism of the curve that gives this point an X + # coordinate equal to 1. + # If (x,y) is on y^2 = x^3 + b, then (a^2*x, a^3*y) is on y^2 = x^3 + a^6*b. + # So look for m=a^2=1/x. + m = F(1)/G[0] + if not m.is_square(): + print(" - No curve isomorphism maps it to a point with X=1") + continue + a = m.sqrt() + rb = a^6*b + RE = EllipticCurve(F, [0, rb]) + + # Use as generator twice the image of G under the above isormorphism. + # This means that generator*(1/2 mod f) will have X coordinate 1. + RG = RE(1, a^3*G[1]) * 2 + # And even Y coordinate. + if int(RG[1]) % 2: + RG = -RG + assert(RG.order() == f) + assert(lam*RG == RE(BETA*RG[0], RG[1])) + + # We have found curve RE:y^2=x^3+rb with generator RG of order f. Remember it + results[f] = {"b": rb, "G": RG, "lambda": lam} + print(" - Found solution") + break + + print("") + +print("") +print("") +print("/* To be put in src/group_impl.h: */") +first = True +for f in sorted(results.keys()): + b = results[f]["b"] + G = results[f]["G"] + print("# %s EXHAUSTIVE_TEST_ORDER == %i" % ("if" if first else "elif", f)) + first = False + print("static const secp256k1_ge secp256k1_ge_const_g = SECP256K1_GE_CONST(") + print(" 0x%08x, 0x%08x, 0x%08x, 0x%08x," % tuple((int(G[0]) >> (32 * (7 - i))) & 0xffffffff for i in range(4))) + print(" 0x%08x, 0x%08x, 0x%08x, 0x%08x," % tuple((int(G[0]) >> (32 * (7 - i))) & 0xffffffff for i in range(4, 8))) + print(" 0x%08x, 0x%08x, 0x%08x, 0x%08x," % tuple((int(G[1]) >> (32 * (7 - i))) & 0xffffffff for i in range(4))) + print(" 0x%08x, 0x%08x, 0x%08x, 0x%08x" % tuple((int(G[1]) >> (32 * (7 - i))) & 0xffffffff for i in range(4, 8))) + print(");") + print("static const secp256k1_fe secp256k1_fe_const_b = SECP256K1_FE_CONST(") + print(" 0x%08x, 0x%08x, 0x%08x, 0x%08x," % tuple((int(b) >> (32 * (7 - i))) & 0xffffffff for i in range(4))) + print(" 0x%08x, 0x%08x, 0x%08x, 0x%08x" % tuple((int(b) >> (32 * (7 - i))) & 0xffffffff for i in range(4, 8))) + print(");") +print("# else") +print("# error No known generator for the specified exhaustive test group order.") +print("# endif") + +print("") +print("") +print("/* To be put in src/scalar_impl.h: */") +first = True +for f in sorted(results.keys()): + lam = results[f]["lambda"] + print("# %s EXHAUSTIVE_TEST_ORDER == %i" % ("if" if first else "elif", f)) + first = False + print("# define EXHAUSTIVE_TEST_LAMBDA %i" % lam) +print("# else") +print("# error No known lambda for the specified exhaustive test group order.") +print("# endif") +print("") diff --git a/sage/gen_split_lambda_constants.sage b/sage/gen_split_lambda_constants.sage new file mode 100644 index 0000000000000..7d4359e0f6482 --- /dev/null +++ b/sage/gen_split_lambda_constants.sage @@ -0,0 +1,114 @@ +""" Generates the constants used in secp256k1_scalar_split_lambda. + +See the comments for secp256k1_scalar_split_lambda in src/scalar_impl.h for detailed explanations. +""" + +load("secp256k1_params.sage") + +def inf_norm(v): + """Returns the infinity norm of a vector.""" + return max(map(abs, v)) + +def gauss_reduction(i1, i2): + v1, v2 = i1.copy(), i2.copy() + while True: + if inf_norm(v2) < inf_norm(v1): + v1, v2 = v2, v1 + # This is essentially + # m = round((v1[0]*v2[0] + v1[1]*v2[1]) / (inf_norm(v1)**2)) + # (rounding to the nearest integer) without relying on floating point arithmetic. + m = ((v1[0]*v2[0] + v1[1]*v2[1]) + (inf_norm(v1)**2) // 2) // (inf_norm(v1)**2) + if m == 0: + return v1, v2 + v2[0] -= m*v1[0] + v2[1] -= m*v1[1] + +def find_split_constants_gauss(): + """Find constants for secp256k1_scalar_split_lamdba using gauss reduction.""" + (v11, v12), (v21, v22) = gauss_reduction([0, N], [1, int(LAMBDA)]) + + # We use related vectors in secp256k1_scalar_split_lambda. + A1, B1 = -v21, -v11 + A2, B2 = v22, -v21 + + return A1, B1, A2, B2 + +def find_split_constants_explicit_tof(): + """Find constants for secp256k1_scalar_split_lamdba using the trace of Frobenius. + + See Benjamin Smith: "Easy scalar decompositions for efficient scalar multiplication on + elliptic curves and genus 2 Jacobians" (https://eprint.iacr.org/2013/672), Example 2 + """ + assert P % 3 == 1 # The paper says P % 3 == 2 but that appears to be a mistake, see [10]. + assert C.j_invariant() == 0 + + t = C.trace_of_frobenius() + + c = Integer(sqrt((4*P - t**2)/3)) + A1 = Integer((t - c)/2 - 1) + B1 = c + + A2 = Integer((t + c)/2 - 1) + B2 = Integer(1 - (t - c)/2) + + # We use a negated b values in secp256k1_scalar_split_lambda. + B1, B2 = -B1, -B2 + + return A1, B1, A2, B2 + +A1, B1, A2, B2 = find_split_constants_explicit_tof() + +# For extra fun, use an independent method to recompute the constants. +assert (A1, B1, A2, B2) == find_split_constants_gauss() + +# PHI : Z[l] -> Z_n where phi(a + b*l) == a + b*lambda mod n. +def PHI(a,b): + return Z(a + LAMBDA*b) + +# Check that (A1, B1) and (A2, B2) are in the kernel of PHI. +assert PHI(A1, B1) == Z(0) +assert PHI(A2, B2) == Z(0) + +# Check that the parallelogram generated by (A1, A2) and (B1, B2) +# is a fundamental domain by containing exactly N points. +# Since the LHS is the determinant and N != 0, this also checks that +# (A1, A2) and (B1, B2) are linearly independent. By the previous +# assertions, (A1, A2) and (B1, B2) are a basis of the kernel. +assert A1*B2 - B1*A2 == N + +# Check that their components are short enough. +assert (A1 + A2)/2 < sqrt(N) +assert B1 < sqrt(N) +assert B2 < sqrt(N) + +G1 = round((2**384)*B2/N) +G2 = round((2**384)*(-B1)/N) + +def rnddiv2(v): + if v & 1: + v += 1 + return v >> 1 + +def scalar_lambda_split(k): + """Equivalent to secp256k1_scalar_lambda_split().""" + c1 = rnddiv2((k * G1) >> 383) + c2 = rnddiv2((k * G2) >> 383) + c1 = (c1 * -B1) % N + c2 = (c2 * -B2) % N + r2 = (c1 + c2) % N + r1 = (k + r2 * -LAMBDA) % N + return (r1, r2) + +# The result of scalar_lambda_split can depend on the representation of k (mod n). +SPECIAL = (2**383) // G2 + 1 +assert scalar_lambda_split(SPECIAL) != scalar_lambda_split(SPECIAL + N) + +print(' A1 =', hex(A1)) +print(' -B1 =', hex(-B1)) +print(' A2 =', hex(A2)) +print(' -B2 =', hex(-B2)) +print(' =', hex(Z(-B2))) +print(' -LAMBDA =', hex(-LAMBDA)) + +print(' G1 =', hex(G1)) +print(' G2 =', hex(G2)) diff --git a/sage/group_prover.sage b/sage/group_prover.sage index 8521f07999322..b200bfeae3d1c 100644 --- a/sage/group_prover.sage +++ b/sage/group_prover.sage @@ -42,7 +42,7 @@ # as we assume that all constraints in it are complementary with each other. # # Based on the sage verification scripts used in the Explicit-Formulas Database -# by Tanja Lange and others, see http://hyperelliptic.org/EFD +# by Tanja Lange and others, see https://hyperelliptic.org/EFD class fastfrac: """Fractions over rings.""" @@ -65,7 +65,7 @@ class fastfrac: return self.top in I and self.bot not in I def reduce(self,assumeZero): - zero = self.R.ideal(map(numerator, assumeZero)) + zero = self.R.ideal(list(map(numerator, assumeZero))) return fastfrac(self.R, zero.reduce(self.top)) / fastfrac(self.R, zero.reduce(self.bot)) def __add__(self,other): @@ -100,7 +100,7 @@ class fastfrac: """Multiply something else with a fraction.""" return self.__mul__(other) - def __div__(self,other): + def __truediv__(self,other): """Divide two fractions.""" if parent(other) == ZZ: return fastfrac(self.R,self.top,self.bot * other) @@ -108,6 +108,11 @@ class fastfrac: return fastfrac(self.R,self.top * other.bot,self.bot * other.top) return NotImplemented + # Compatibility wrapper for Sage versions based on Python 2 + def __div__(self,other): + """Divide two fractions.""" + return self.__truediv__(other) + def __pow__(self,other): """Compute a power of a fraction.""" if parent(other) == ZZ: @@ -175,7 +180,7 @@ class constraints: def conflicts(R, con): """Check whether any of the passed non-zero assumptions is implied by the zero assumptions""" - zero = R.ideal(map(numerator, con.zero)) + zero = R.ideal(list(map(numerator, con.zero))) if 1 in zero: return True # First a cheap check whether any of the individual nonzero terms conflict on @@ -195,7 +200,7 @@ def conflicts(R, con): def get_nonzero_set(R, assume): """Calculate a simple set of nonzero expressions""" - zero = R.ideal(map(numerator, assume.zero)) + zero = R.ideal(list(map(numerator, assume.zero))) nonzero = set() for nz in map(numerator, assume.nonzero): for (f,n) in nz.factor(): @@ -208,7 +213,7 @@ def get_nonzero_set(R, assume): def prove_nonzero(R, exprs, assume): """Check whether an expression is provably nonzero, given assumptions""" - zero = R.ideal(map(numerator, assume.zero)) + zero = R.ideal(list(map(numerator, assume.zero))) nonzero = get_nonzero_set(R, assume) expl = set() ok = True @@ -250,7 +255,7 @@ def prove_zero(R, exprs, assume): r, e = prove_nonzero(R, dict(map(lambda x: (fastfrac(R, x.bot, 1), exprs[x]), exprs)), assume) if not r: return (False, map(lambda x: "Possibly zero denominator: %s" % x, e)) - zero = R.ideal(map(numerator, assume.zero)) + zero = R.ideal(list(map(numerator, assume.zero))) nonzero = prod(x for x in assume.nonzero) expl = [] for expr in exprs: @@ -265,8 +270,8 @@ def describe_extra(R, assume, assumeExtra): """Describe what assumptions are added, given existing assumptions""" zerox = assume.zero.copy() zerox.update(assumeExtra.zero) - zero = R.ideal(map(numerator, assume.zero)) - zeroextra = R.ideal(map(numerator, zerox)) + zero = R.ideal(list(map(numerator, assume.zero))) + zeroextra = R.ideal(list(map(numerator, zerox))) nonzero = get_nonzero_set(R, assume) ret = set() # Iterate over the extra zero expressions diff --git a/sage/secp256k1.sage b/sage/prove_group_implementations.sage similarity index 100% rename from sage/secp256k1.sage rename to sage/prove_group_implementations.sage diff --git a/sage/secp256k1_params.sage b/sage/secp256k1_params.sage new file mode 100644 index 0000000000000..4e000726ed366 --- /dev/null +++ b/sage/secp256k1_params.sage @@ -0,0 +1,36 @@ +"""Prime order of finite field underlying secp256k1 (2^256 - 2^32 - 977)""" +P = 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFC2F + +"""Finite field underlying secp256k1""" +F = FiniteField(P) + +"""Elliptic curve secp256k1: y^2 = x^3 + 7""" +C = EllipticCurve([F(0), F(7)]) + +"""Base point of secp256k1""" +G = C.lift_x(0x79BE667EF9DCBBAC55A06295CE870B07029BFCDB2DCE28D959F2815B16F81798) + +"""Prime order of secp256k1""" +N = C.order() + +"""Finite field of scalars of secp256k1""" +Z = FiniteField(N) + +""" Beta value of secp256k1 non-trivial endomorphism: lambda * (x, y) = (beta * x, y)""" +BETA = F(2)^((P-1)/3) + +""" Lambda value of secp256k1 non-trivial endomorphism: lambda * (x, y) = (beta * x, y)""" +LAMBDA = Z(3)^((N-1)/3) + +assert is_prime(P) +assert is_prime(N) + +assert BETA != F(1) +assert BETA^3 == F(1) +assert BETA^2 + BETA + 1 == 0 + +assert LAMBDA != Z(1) +assert LAMBDA^3 == Z(1) +assert LAMBDA^2 + LAMBDA + 1 == 0 + +assert Integer(LAMBDA)*G == C(BETA*G[0], G[1]) diff --git a/sage/weierstrass_prover.sage b/sage/weierstrass_prover.sage index 03ef2ec901ea9..b770c6dafe2f0 100644 --- a/sage/weierstrass_prover.sage +++ b/sage/weierstrass_prover.sage @@ -175,24 +175,24 @@ laws_jacobian_weierstrass = { def check_exhaustive_jacobian_weierstrass(name, A, B, branches, formula, p): """Verify an implementation of addition of Jacobian points on a Weierstrass curve, by executing and validating the result for every possible addition in a prime field""" F = Integers(p) - print "Formula %s on Z%i:" % (name, p) + print("Formula %s on Z%i:" % (name, p)) points = [] - for x in xrange(0, p): - for y in xrange(0, p): + for x in range(0, p): + for y in range(0, p): point = affinepoint(F(x), F(y)) r, e = concrete_verify(on_weierstrass_curve(A, B, point)) if r: points.append(point) - for za in xrange(1, p): - for zb in xrange(1, p): + for za in range(1, p): + for zb in range(1, p): for pa in points: for pb in points: - for ia in xrange(2): - for ib in xrange(2): + for ia in range(2): + for ib in range(2): pA = jacobianpoint(pa.x * F(za)^2, pa.y * F(za)^3, F(za), ia) pB = jacobianpoint(pb.x * F(zb)^2, pb.y * F(zb)^3, F(zb), ib) - for branch in xrange(0, branches): + for branch in range(0, branches): assumeAssert, assumeBranch, pC = formula(branch, pA, pB) pC.X = F(pC.X) pC.Y = F(pC.Y) @@ -206,13 +206,13 @@ def check_exhaustive_jacobian_weierstrass(name, A, B, branches, formula, p): r, e = concrete_verify(assumeLaw) if r: if match: - print " multiple branches for (%s,%s,%s,%s) + (%s,%s,%s,%s)" % (pA.X, pA.Y, pA.Z, pA.Infinity, pB.X, pB.Y, pB.Z, pB.Infinity) + print(" multiple branches for (%s,%s,%s,%s) + (%s,%s,%s,%s)" % (pA.X, pA.Y, pA.Z, pA.Infinity, pB.X, pB.Y, pB.Z, pB.Infinity)) else: match = True r, e = concrete_verify(require) if not r: - print " failure in branch %i for (%s,%s,%s,%s) + (%s,%s,%s,%s) = (%s,%s,%s,%s): %s" % (branch, pA.X, pA.Y, pA.Z, pA.Infinity, pB.X, pB.Y, pB.Z, pB.Infinity, pC.X, pC.Y, pC.Z, pC.Infinity, e) - print + print(" failure in branch %i for (%s,%s,%s,%s) + (%s,%s,%s,%s) = (%s,%s,%s,%s): %s" % (branch, pA.X, pA.Y, pA.Z, pA.Infinity, pB.X, pB.Y, pB.Z, pB.Infinity, pC.X, pC.Y, pC.Z, pC.Infinity, e)) + print() def check_symbolic_function(R, assumeAssert, assumeBranch, f, A, B, pa, pb, pA, pB, pC): @@ -242,9 +242,9 @@ def check_symbolic_jacobian_weierstrass(name, A, B, branches, formula): for key in laws_jacobian_weierstrass: res[key] = [] - print ("Formula " + name + ":") + print("Formula " + name + ":") count = 0 - for branch in xrange(branches): + for branch in range(branches): assumeFormula, assumeBranch, pC = formula(branch, pA, pB) pC.X = lift(pC.X) pC.Y = lift(pC.Y) @@ -255,10 +255,10 @@ def check_symbolic_jacobian_weierstrass(name, A, B, branches, formula): res[key].append((check_symbolic_function(R, assumeFormula, assumeBranch, laws_jacobian_weierstrass[key], A, B, pa, pb, pA, pB, pC), branch)) for key in res: - print " %s:" % key + print(" %s:" % key) val = res[key] for x in val: if x[0] is not None: - print " branch %i: %s" % (x[1], x[0]) + print(" branch %i: %s" % (x[1], x[0])) - print + print() diff --git a/src/asm/field_10x26_arm.s b/src/asm/field_10x26_arm.s index 5a9cc3ffcfdaf..5f68cefc46cde 100644 --- a/src/asm/field_10x26_arm.s +++ b/src/asm/field_10x26_arm.s @@ -1,9 +1,9 @@ @ vim: set tabstop=8 softtabstop=8 shiftwidth=8 noexpandtab syntax=armasm: -/********************************************************************** - * Copyright (c) 2014 Wladimir J. van der Laan * - * Distributed under the MIT software license, see the accompanying * - * file COPYING or http://www.opensource.org/licenses/mit-license.php.* - **********************************************************************/ +/*********************************************************************** + * Copyright (c) 2014 Wladimir J. van der Laan * + * Distributed under the MIT software license, see the accompanying * + * file COPYING or https://www.opensource.org/licenses/mit-license.php.* + ***********************************************************************/ /* ARM implementation of field_10x26 inner loops. @@ -16,15 +16,9 @@ Note: */ .syntax unified - .arch armv7-a @ eabi attributes - see readelf -A - .eabi_attribute 8, 1 @ Tag_ARM_ISA_use = yes - .eabi_attribute 9, 0 @ Tag_Thumb_ISA_use = no - .eabi_attribute 10, 0 @ Tag_FP_arch = none .eabi_attribute 24, 1 @ Tag_ABI_align_needed = 8-byte .eabi_attribute 25, 1 @ Tag_ABI_align_preserved = 8-byte, except leaf SP - .eabi_attribute 30, 2 @ Tag_ABI_optimization_goals = Aggressive Speed - .eabi_attribute 34, 1 @ Tag_CPU_unaligned_access = v6 .text @ Field constants diff --git a/src/assumptions.h b/src/assumptions.h new file mode 100644 index 0000000000000..6dc527b288939 --- /dev/null +++ b/src/assumptions.h @@ -0,0 +1,80 @@ +/*********************************************************************** + * Copyright (c) 2020 Pieter Wuille * + * Distributed under the MIT software license, see the accompanying * + * file COPYING or https://www.opensource.org/licenses/mit-license.php.* + ***********************************************************************/ + +#ifndef SECP256K1_ASSUMPTIONS_H +#define SECP256K1_ASSUMPTIONS_H + +#include + +#include "util.h" + +/* This library, like most software, relies on a number of compiler implementation defined (but not undefined) + behaviours. Although the behaviours we require are essentially universal we test them specifically here to + reduce the odds of experiencing an unwelcome surprise. +*/ + +struct secp256k1_assumption_checker { + /* This uses a trick to implement a static assertion in C89: a type with an array of negative size is not + allowed. */ + int dummy_array[( + /* Bytes are 8 bits. */ + (CHAR_BIT == 8) && + + /* No integer promotion for uint32_t. This ensures that we can multiply uintXX_t values where XX >= 32 + without signed overflow, which would be undefined behaviour. */ + (UINT_MAX <= UINT32_MAX) && + + /* Conversions from unsigned to signed outside of the bounds of the signed type are + implementation-defined. Verify that they function as reinterpreting the lower + bits of the input in two's complement notation. Do this for conversions: + - from uint(N)_t to int(N)_t with negative result + - from uint(2N)_t to int(N)_t with negative result + - from int(2N)_t to int(N)_t with negative result + - from int(2N)_t to int(N)_t with positive result */ + + /* To int8_t. */ + ((int8_t)(uint8_t)0xAB == (int8_t)-(int8_t)0x55) && + ((int8_t)(uint16_t)0xABCD == (int8_t)-(int8_t)0x33) && + ((int8_t)(int16_t)(uint16_t)0xCDEF == (int8_t)(uint8_t)0xEF) && + ((int8_t)(int16_t)(uint16_t)0x9234 == (int8_t)(uint8_t)0x34) && + + /* To int16_t. */ + ((int16_t)(uint16_t)0xBCDE == (int16_t)-(int16_t)0x4322) && + ((int16_t)(uint32_t)0xA1B2C3D4 == (int16_t)-(int16_t)0x3C2C) && + ((int16_t)(int32_t)(uint32_t)0xC1D2E3F4 == (int16_t)(uint16_t)0xE3F4) && + ((int16_t)(int32_t)(uint32_t)0x92345678 == (int16_t)(uint16_t)0x5678) && + + /* To int32_t. */ + ((int32_t)(uint32_t)0xB2C3D4E5 == (int32_t)-(int32_t)0x4D3C2B1B) && + ((int32_t)(uint64_t)0xA123B456C789D012ULL == (int32_t)-(int32_t)0x38762FEE) && + ((int32_t)(int64_t)(uint64_t)0xC1D2E3F4A5B6C7D8ULL == (int32_t)(uint32_t)0xA5B6C7D8) && + ((int32_t)(int64_t)(uint64_t)0xABCDEF0123456789ULL == (int32_t)(uint32_t)0x23456789) && + + /* To int64_t. */ + ((int64_t)(uint64_t)0xB123C456D789E012ULL == (int64_t)-(int64_t)0x4EDC3BA928761FEEULL) && +#if defined(SECP256K1_WIDEMUL_INT128) + ((int64_t)(((uint128_t)0xA1234567B8901234ULL << 64) + 0xC5678901D2345678ULL) == (int64_t)-(int64_t)0x3A9876FE2DCBA988ULL) && + (((int64_t)(int128_t)(((uint128_t)0xB1C2D3E4F5A6B7C8ULL << 64) + 0xD9E0F1A2B3C4D5E6ULL)) == (int64_t)(uint64_t)0xD9E0F1A2B3C4D5E6ULL) && + (((int64_t)(int128_t)(((uint128_t)0xABCDEF0123456789ULL << 64) + 0x0123456789ABCDEFULL)) == (int64_t)(uint64_t)0x0123456789ABCDEFULL) && + + /* To int128_t. */ + ((int128_t)(((uint128_t)0xB1234567C8901234ULL << 64) + 0xD5678901E2345678ULL) == (int128_t)(-(int128_t)0x8E1648B3F50E80DCULL * 0x8E1648B3F50E80DDULL + 0x5EA688D5482F9464ULL)) && +#endif + + /* Right shift on negative signed values is implementation defined. Verify that it + acts as a right shift in two's complement with sign extension (i.e duplicating + the top bit into newly added bits). */ + ((((int8_t)0xE8) >> 2) == (int8_t)(uint8_t)0xFA) && + ((((int16_t)0xE9AC) >> 4) == (int16_t)(uint16_t)0xFE9A) && + ((((int32_t)0x937C918A) >> 9) == (int32_t)(uint32_t)0xFFC9BE48) && + ((((int64_t)0xA8B72231DF9CF4B9ULL) >> 19) == (int64_t)(uint64_t)0xFFFFF516E4463BF3ULL) && +#if defined(SECP256K1_WIDEMUL_INT128) + ((((int128_t)(((uint128_t)0xCD833A65684A0DBCULL << 64) + 0xB349312F71EA7637ULL)) >> 39) == (int128_t)(((uint128_t)0xFFFFFFFFFF9B0674ULL << 64) + 0xCAD0941B79669262ULL)) && +#endif + 1) * 2 - 1]; +}; + +#endif /* SECP256K1_ASSUMPTIONS_H */ diff --git a/src/basic-config.h b/src/basic-config.h index fc588061ca40c..6f7693cb8fd04 100644 --- a/src/basic-config.h +++ b/src/basic-config.h @@ -1,32 +1,16 @@ -/********************************************************************** - * Copyright (c) 2013, 2014 Pieter Wuille * - * Distributed under the MIT software license, see the accompanying * - * file COPYING or http://www.opensource.org/licenses/mit-license.php.* - **********************************************************************/ +/*********************************************************************** + * Copyright (c) 2013, 2014 Pieter Wuille * + * Distributed under the MIT software license, see the accompanying * + * file COPYING or https://www.opensource.org/licenses/mit-license.php.* + ***********************************************************************/ #ifndef SECP256K1_BASIC_CONFIG_H #define SECP256K1_BASIC_CONFIG_H #ifdef USE_BASIC_CONFIG -#undef USE_ASM_X86_64 -#undef USE_ENDOMORPHISM -#undef USE_FIELD_10X26 -#undef USE_FIELD_5X52 -#undef USE_FIELD_INV_BUILTIN -#undef USE_FIELD_INV_NUM -#undef USE_NUM_GMP -#undef USE_NUM_NONE -#undef USE_SCALAR_4X64 -#undef USE_SCALAR_8X32 -#undef USE_SCALAR_INV_BUILTIN -#undef USE_SCALAR_INV_NUM - -#define USE_NUM_NONE 1 -#define USE_FIELD_INV_BUILTIN 1 -#define USE_SCALAR_INV_BUILTIN 1 -#define USE_FIELD_10X26 1 -#define USE_SCALAR_8X32 1 +#define ECMULT_WINDOW_SIZE 15 +#define ECMULT_GEN_PREC_BITS 4 #endif /* USE_BASIC_CONFIG */ diff --git a/src/bench.h b/src/bench.h index 5b59783f68a95..63c55df44d059 100644 --- a/src/bench.h +++ b/src/bench.h @@ -1,51 +1,93 @@ -/********************************************************************** - * Copyright (c) 2014 Pieter Wuille * - * Distributed under the MIT software license, see the accompanying * - * file COPYING or http://www.opensource.org/licenses/mit-license.php.* - **********************************************************************/ +/*********************************************************************** + * Copyright (c) 2014 Pieter Wuille * + * Distributed under the MIT software license, see the accompanying * + * file COPYING or https://www.opensource.org/licenses/mit-license.php.* + ***********************************************************************/ #ifndef SECP256K1_BENCH_H #define SECP256K1_BENCH_H +#include #include #include -#include #include "sys/time.h" -static double gettimedouble(void) { +static int64_t gettime_i64(void) { struct timeval tv; gettimeofday(&tv, NULL); - return tv.tv_usec * 0.000001 + tv.tv_sec; + return (int64_t)tv.tv_usec + (int64_t)tv.tv_sec * 1000000LL; } -void print_number(double x) { - double y = x; - int c = 0; - if (y < 0.0) { - y = -y; +#define FP_EXP (6) +#define FP_MULT (1000000LL) + +/* Format fixed point number. */ +void print_number(const int64_t x) { + int64_t x_abs, y; + int c, i, rounding; + size_t ptr; + char buffer[30]; + + if (x == INT64_MIN) { + /* Prevent UB. */ + printf("ERR"); + return; } - while (y > 0 && y < 100.0) { - y *= 10.0; + x_abs = x < 0 ? -x : x; + + /* Determine how many decimals we want to show (more than FP_EXP makes no + * sense). */ + y = x_abs; + c = 0; + while (y > 0LL && y < 100LL * FP_MULT && c < FP_EXP) { + y *= 10LL; c++; } - printf("%.*f", c, x); + + /* Round to 'c' decimals. */ + y = x_abs; + rounding = 0; + for (i = c; i < FP_EXP; ++i) { + rounding = (y % 10) >= 5; + y /= 10; + } + y += rounding; + + /* Format and print the number. */ + ptr = sizeof(buffer) - 1; + buffer[ptr] = 0; + if (c != 0) { + for (i = 0; i < c; ++i) { + buffer[--ptr] = '0' + (y % 10); + y /= 10; + } + buffer[--ptr] = '.'; + } + do { + buffer[--ptr] = '0' + (y % 10); + y /= 10; + } while (y != 0); + if (x < 0) { + buffer[--ptr] = '-'; + } + printf("%s", &buffer[ptr]); } -void run_benchmark(char *name, void (*benchmark)(void*), void (*setup)(void*), void (*teardown)(void*), void* data, int count, int iter) { +void run_benchmark(char *name, void (*benchmark)(void*, int), void (*setup)(void*), void (*teardown)(void*, int), void* data, int count, int iter) { int i; - double min = HUGE_VAL; - double sum = 0.0; - double max = 0.0; + int64_t min = INT64_MAX; + int64_t sum = 0; + int64_t max = 0; for (i = 0; i < count; i++) { - double begin, total; + int64_t begin, total; if (setup != NULL) { setup(data); } - begin = gettimedouble(); - benchmark(data); - total = gettimedouble() - begin; + begin = gettime_i64(); + benchmark(data, iter); + total = gettime_i64() - begin; if (teardown != NULL) { - teardown(data); + teardown(data, iter); } if (total < min) { min = total; @@ -56,11 +98,11 @@ void run_benchmark(char *name, void (*benchmark)(void*), void (*setup)(void*), v sum += total; } printf("%s: min ", name); - print_number(min * 1000000.0 / iter); + print_number(min * FP_MULT / iter); printf("us / avg "); - print_number((sum / count) * 1000000.0 / iter); + print_number(((sum * FP_MULT) / count) / iter); printf("us / max "); - print_number(max * 1000000.0 / iter); + print_number(max * FP_MULT / iter); printf("us\n"); } @@ -79,4 +121,13 @@ int have_flag(int argc, char** argv, char *flag) { return 0; } +int get_iters(int default_iters) { + char* env = getenv("SECP256K1_BENCH_ITERS"); + if (env) { + return strtol(env, NULL, 0); + } else { + return default_iters; + } +} + #endif /* SECP256K1_BENCH_H */ diff --git a/src/bench_ecdh.c b/src/bench_ecdh.c index c1dd5a6ac93c8..cb020d26b4d99 100644 --- a/src/bench_ecdh.c +++ b/src/bench_ecdh.c @@ -1,13 +1,13 @@ -/********************************************************************** - * Copyright (c) 2015 Pieter Wuille, Andrew Poelstra * - * Distributed under the MIT software license, see the accompanying * - * file COPYING or http://www.opensource.org/licenses/mit-license.php.* - **********************************************************************/ +/*********************************************************************** + * Copyright (c) 2015 Pieter Wuille, Andrew Poelstra * + * Distributed under the MIT software license, see the accompanying * + * file COPYING or https://www.opensource.org/licenses/mit-license.php.* + ***********************************************************************/ #include -#include "include/secp256k1.h" -#include "include/secp256k1_ecdh.h" +#include "../include/secp256k1.h" +#include "../include/secp256k1_ecdh.h" #include "util.h" #include "bench.h" @@ -28,20 +28,18 @@ static void bench_ecdh_setup(void* arg) { 0xa2, 0xba, 0xd1, 0x84, 0xf8, 0x83, 0xc6, 0x9f }; - /* create a context with no capabilities */ - data->ctx = secp256k1_context_create(SECP256K1_FLAGS_TYPE_CONTEXT); for (i = 0; i < 32; i++) { data->scalar[i] = i + 1; } CHECK(secp256k1_ec_pubkey_parse(data->ctx, &data->point, point, sizeof(point)) == 1); } -static void bench_ecdh(void* arg) { +static void bench_ecdh(void* arg, int iters) { int i; unsigned char res[32]; bench_ecdh_data *data = (bench_ecdh_data*)arg; - for (i = 0; i < 20000; i++) { + for (i = 0; i < iters; i++) { CHECK(secp256k1_ecdh(data->ctx, res, &data->point, data->scalar, NULL, NULL) == 1); } } @@ -49,6 +47,13 @@ static void bench_ecdh(void* arg) { int main(void) { bench_ecdh_data data; - run_benchmark("ecdh", bench_ecdh, bench_ecdh_setup, NULL, &data, 10, 20000); + int iters = get_iters(20000); + + /* create a context with no capabilities */ + data.ctx = secp256k1_context_create(SECP256K1_FLAGS_TYPE_CONTEXT); + + run_benchmark("ecdh", bench_ecdh, bench_ecdh_setup, NULL, &data, 10, iters); + + secp256k1_context_destroy(data.ctx); return 0; } diff --git a/src/bench_ecmult.c b/src/bench_ecmult.c index 52d0476a30ffb..68eff676edacc 100644 --- a/src/bench_ecmult.c +++ b/src/bench_ecmult.c @@ -1,24 +1,22 @@ -/********************************************************************** - * Copyright (c) 2017 Pieter Wuille * - * Distributed under the MIT software license, see the accompanying * - * file COPYING or http://www.opensource.org/licenses/mit-license.php.* - **********************************************************************/ +/*********************************************************************** + * Copyright (c) 2017 Pieter Wuille * + * Distributed under the MIT software license, see the accompanying * + * file COPYING or https://www.opensource.org/licenses/mit-license.php.* + ***********************************************************************/ #include -#include "include/secp256k1.h" +#include "secp256k1.c" +#include "../include/secp256k1.h" #include "util.h" #include "hash_impl.h" -#include "num_impl.h" #include "field_impl.h" #include "group_impl.h" #include "scalar_impl.h" #include "ecmult_impl.h" #include "bench.h" -#include "secp256k1.c" #define POINTS 32768 -#define ITERS 10000 typedef struct { /* Setup once in advance */ @@ -55,16 +53,16 @@ static int bench_callback(secp256k1_scalar* sc, secp256k1_ge* ge, size_t idx, vo return 1; } -static void bench_ecmult(void* arg) { +static void bench_ecmult(void* arg, int iters) { bench_data* data = (bench_data*)arg; - size_t count = data->count; int includes_g = data->includes_g; - size_t iters = 1 + ITERS / count; - size_t iter; + int iter; + int count = data->count; + iters = iters / data->count; for (iter = 0; iter < iters; ++iter) { - data->ecmult_multi(&data->ctx->ecmult_ctx, data->scratch, &data->output[iter], data->includes_g ? &data->scalars[data->offset1] : NULL, bench_callback, arg, count - includes_g); + data->ecmult_multi(&data->ctx->error_callback, &data->ctx->ecmult_ctx, data->scratch, &data->output[iter], data->includes_g ? &data->scalars[data->offset1] : NULL, bench_callback, arg, count - includes_g); data->offset1 = (data->offset1 + count) % POINTS; data->offset2 = (data->offset2 + count - 1) % POINTS; } @@ -76,10 +74,10 @@ static void bench_ecmult_setup(void* arg) { data->offset2 = (data->count * 0x7f6f537b + 0x6a1a8f49) % POINTS; } -static void bench_ecmult_teardown(void* arg) { +static void bench_ecmult_teardown(void* arg, int iters) { bench_data* data = (bench_data*)arg; - size_t iters = 1 + ITERS / data->count; - size_t iter; + int iter; + iters = iters / data->count; /* Verify the results in teardown, to avoid doing comparisons while benchmarking. */ for (iter = 0; iter < iters; ++iter) { secp256k1_gej tmp; @@ -104,10 +102,10 @@ static void generate_scalar(uint32_t num, secp256k1_scalar* scalar) { CHECK(!overflow); } -static void run_test(bench_data* data, size_t count, int includes_g) { +static void run_test(bench_data* data, size_t count, int includes_g, int num_iters) { char str[32]; static const secp256k1_scalar zero = SECP256K1_SCALAR_CONST(0, 0, 0, 0, 0, 0, 0, 0); - size_t iters = 1 + ITERS / count; + size_t iters = 1 + num_iters / count; size_t iter; data->count = count; @@ -130,7 +128,7 @@ static void run_test(bench_data* data, size_t count, int includes_g) { /* Run the benchmark. */ sprintf(str, includes_g ? "ecmult_%ig" : "ecmult_%i", (int)count); - run_benchmark(str, bench_ecmult, bench_ecmult_setup, bench_ecmult_teardown, data, 10, count * (1 + ITERS / count)); + run_benchmark(str, bench_ecmult, bench_ecmult_setup, bench_ecmult_teardown, data, 10, count * iters); } int main(int argc, char **argv) { @@ -139,6 +137,13 @@ int main(int argc, char **argv) { secp256k1_gej* pubkeys_gej; size_t scratch_size; + int iters = get_iters(10000); + + data.ctx = secp256k1_context_create(SECP256K1_CONTEXT_SIGN | SECP256K1_CONTEXT_VERIFY); + scratch_size = secp256k1_strauss_scratch_size(POINTS) + STRAUSS_SCRATCH_OBJECTS*16; + data.scratch = secp256k1_scratch_space_create(data.ctx, scratch_size); + data.ecmult_multi = secp256k1_ecmult_multi_var; + if (argc > 1) { if(have_flag(argc, argv, "pippenger_wnaf")) { printf("Using pippenger_wnaf:\n"); @@ -146,20 +151,24 @@ int main(int argc, char **argv) { } else if(have_flag(argc, argv, "strauss_wnaf")) { printf("Using strauss_wnaf:\n"); data.ecmult_multi = secp256k1_ecmult_strauss_batch_single; + } else if(have_flag(argc, argv, "simple")) { + printf("Using simple algorithm:\n"); + data.ecmult_multi = secp256k1_ecmult_multi_var; + secp256k1_scratch_space_destroy(data.ctx, data.scratch); + data.scratch = NULL; + } else { + fprintf(stderr, "%s: unrecognized argument '%s'.\n", argv[0], argv[1]); + fprintf(stderr, "Use 'pippenger_wnaf', 'strauss_wnaf', 'simple' or no argument to benchmark a combined algorithm.\n"); + return 1; } - } else { - data.ecmult_multi = secp256k1_ecmult_multi_var; } /* Allocate stuff */ - data.ctx = secp256k1_context_create(SECP256K1_CONTEXT_SIGN | SECP256K1_CONTEXT_VERIFY); - scratch_size = secp256k1_strauss_scratch_size(POINTS) + STRAUSS_SCRATCH_OBJECTS*16; - data.scratch = secp256k1_scratch_space_create(data.ctx, scratch_size); data.scalars = malloc(sizeof(secp256k1_scalar) * POINTS); data.seckeys = malloc(sizeof(secp256k1_scalar) * POINTS); data.pubkeys = malloc(sizeof(secp256k1_ge) * POINTS); - data.expected_output = malloc(sizeof(secp256k1_gej) * (ITERS + 1)); - data.output = malloc(sizeof(secp256k1_gej) * (ITERS + 1)); + data.expected_output = malloc(sizeof(secp256k1_gej) * (iters + 1)); + data.output = malloc(sizeof(secp256k1_gej) * (iters + 1)); /* Generate a set of scalars, and private/public keypairs. */ pubkeys_gej = malloc(sizeof(secp256k1_gej) * POINTS); @@ -172,20 +181,28 @@ int main(int argc, char **argv) { secp256k1_scalar_add(&data.seckeys[i], &data.seckeys[i - 1], &data.seckeys[i - 1]); } } - secp256k1_ge_set_all_gej_var(data.pubkeys, pubkeys_gej, POINTS, &data.ctx->error_callback); + secp256k1_ge_set_all_gej_var(data.pubkeys, pubkeys_gej, POINTS); free(pubkeys_gej); for (i = 1; i <= 8; ++i) { - run_test(&data, i, 1); + run_test(&data, i, 1, iters); } - for (p = 0; p <= 11; ++p) { - for (i = 9; i <= 16; ++i) { - run_test(&data, i << p, 1); + /* This is disabled with low count of iterations because the loop runs 77 times even with iters=1 + * and the higher it goes the longer the computation takes(more points) + * So we don't run this benchmark with low iterations to prevent slow down */ + if (iters > 2) { + for (p = 0; p <= 11; ++p) { + for (i = 9; i <= 16; ++i) { + run_test(&data, i << p, 1, iters); + } } } + + if (data.scratch != NULL) { + secp256k1_scratch_space_destroy(data.ctx, data.scratch); + } secp256k1_context_destroy(data.ctx); - secp256k1_scratch_space_destroy(data.scratch); free(data.scalars); free(data.pubkeys); free(data.seckeys); diff --git a/src/bench_internal.c b/src/bench_internal.c index 9c0a07fbbdd07..161b1c4a47666 100644 --- a/src/bench_internal.c +++ b/src/bench_internal.c @@ -1,28 +1,28 @@ -/********************************************************************** - * Copyright (c) 2014-2015 Pieter Wuille * - * Distributed under the MIT software license, see the accompanying * - * file COPYING or http://www.opensource.org/licenses/mit-license.php.* - **********************************************************************/ +/*********************************************************************** + * Copyright (c) 2014-2015 Pieter Wuille * + * Distributed under the MIT software license, see the accompanying * + * file COPYING or https://www.opensource.org/licenses/mit-license.php.* + ***********************************************************************/ #include -#include "include/secp256k1.h" +#include "secp256k1.c" +#include "../include/secp256k1.h" +#include "assumptions.h" #include "util.h" #include "hash_impl.h" -#include "num_impl.h" #include "field_impl.h" #include "group_impl.h" #include "scalar_impl.h" #include "ecmult_const_impl.h" #include "ecmult_impl.h" #include "bench.h" -#include "secp256k1.c" typedef struct { - secp256k1_scalar scalar_x, scalar_y; - secp256k1_fe fe_x, fe_y; - secp256k1_ge ge_x, ge_y; - secp256k1_gej gej_x, gej_y; + secp256k1_scalar scalar[2]; + secp256k1_fe fe[4]; + secp256k1_ge ge[2]; + secp256k1_gej gej[2]; unsigned char data[64]; int wnaf[256]; } bench_inv; @@ -30,338 +30,351 @@ typedef struct { void bench_setup(void* arg) { bench_inv *data = (bench_inv*)arg; - static const unsigned char init_x[32] = { - 0x02, 0x03, 0x05, 0x07, 0x0b, 0x0d, 0x11, 0x13, - 0x17, 0x1d, 0x1f, 0x25, 0x29, 0x2b, 0x2f, 0x35, - 0x3b, 0x3d, 0x43, 0x47, 0x49, 0x4f, 0x53, 0x59, - 0x61, 0x65, 0x67, 0x6b, 0x6d, 0x71, 0x7f, 0x83 - }; - - static const unsigned char init_y[32] = { - 0x82, 0x83, 0x85, 0x87, 0x8b, 0x8d, 0x81, 0x83, - 0x97, 0xad, 0xaf, 0xb5, 0xb9, 0xbb, 0xbf, 0xc5, - 0xdb, 0xdd, 0xe3, 0xe7, 0xe9, 0xef, 0xf3, 0xf9, - 0x11, 0x15, 0x17, 0x1b, 0x1d, 0xb1, 0xbf, 0xd3 + static const unsigned char init[4][32] = { + /* Initializer for scalar[0], fe[0], first half of data, the X coordinate of ge[0], + and the (implied affine) X coordinate of gej[0]. */ + { + 0x02, 0x03, 0x05, 0x07, 0x0b, 0x0d, 0x11, 0x13, + 0x17, 0x1d, 0x1f, 0x25, 0x29, 0x2b, 0x2f, 0x35, + 0x3b, 0x3d, 0x43, 0x47, 0x49, 0x4f, 0x53, 0x59, + 0x61, 0x65, 0x67, 0x6b, 0x6d, 0x71, 0x7f, 0x83 + }, + /* Initializer for scalar[1], fe[1], first half of data, the X coordinate of ge[1], + and the (implied affine) X coordinate of gej[1]. */ + { + 0x82, 0x83, 0x85, 0x87, 0x8b, 0x8d, 0x81, 0x83, + 0x97, 0xad, 0xaf, 0xb5, 0xb9, 0xbb, 0xbf, 0xc5, + 0xdb, 0xdd, 0xe3, 0xe7, 0xe9, 0xef, 0xf3, 0xf9, + 0x11, 0x15, 0x17, 0x1b, 0x1d, 0xb1, 0xbf, 0xd3 + }, + /* Initializer for fe[2] and the Z coordinate of gej[0]. */ + { + 0x3d, 0x2d, 0xef, 0xf4, 0x25, 0x98, 0x4f, 0x5d, + 0xe2, 0xca, 0x5f, 0x41, 0x3f, 0x3f, 0xce, 0x44, + 0xaa, 0x2c, 0x53, 0x8a, 0xc6, 0x59, 0x1f, 0x38, + 0x38, 0x23, 0xe4, 0x11, 0x27, 0xc6, 0xa0, 0xe7 + }, + /* Initializer for fe[3] and the Z coordinate of gej[1]. */ + { + 0xbd, 0x21, 0xa5, 0xe1, 0x13, 0x50, 0x73, 0x2e, + 0x52, 0x98, 0xc8, 0x9e, 0xab, 0x00, 0xa2, 0x68, + 0x43, 0xf5, 0xd7, 0x49, 0x80, 0x72, 0xa7, 0xf3, + 0xd7, 0x60, 0xe6, 0xab, 0x90, 0x92, 0xdf, 0xc5 + } }; - secp256k1_scalar_set_b32(&data->scalar_x, init_x, NULL); - secp256k1_scalar_set_b32(&data->scalar_y, init_y, NULL); - secp256k1_fe_set_b32(&data->fe_x, init_x); - secp256k1_fe_set_b32(&data->fe_y, init_y); - CHECK(secp256k1_ge_set_xo_var(&data->ge_x, &data->fe_x, 0)); - CHECK(secp256k1_ge_set_xo_var(&data->ge_y, &data->fe_y, 1)); - secp256k1_gej_set_ge(&data->gej_x, &data->ge_x); - secp256k1_gej_set_ge(&data->gej_y, &data->ge_y); - memcpy(data->data, init_x, 32); - memcpy(data->data + 32, init_y, 32); + secp256k1_scalar_set_b32(&data->scalar[0], init[0], NULL); + secp256k1_scalar_set_b32(&data->scalar[1], init[1], NULL); + secp256k1_fe_set_b32(&data->fe[0], init[0]); + secp256k1_fe_set_b32(&data->fe[1], init[1]); + secp256k1_fe_set_b32(&data->fe[2], init[2]); + secp256k1_fe_set_b32(&data->fe[3], init[3]); + CHECK(secp256k1_ge_set_xo_var(&data->ge[0], &data->fe[0], 0)); + CHECK(secp256k1_ge_set_xo_var(&data->ge[1], &data->fe[1], 1)); + secp256k1_gej_set_ge(&data->gej[0], &data->ge[0]); + secp256k1_gej_rescale(&data->gej[0], &data->fe[2]); + secp256k1_gej_set_ge(&data->gej[1], &data->ge[1]); + secp256k1_gej_rescale(&data->gej[1], &data->fe[3]); + memcpy(data->data, init[0], 32); + memcpy(data->data + 32, init[1], 32); } -void bench_scalar_add(void* arg) { - int i; +void bench_scalar_add(void* arg, int iters) { + int i, j = 0; bench_inv *data = (bench_inv*)arg; - for (i = 0; i < 2000000; i++) { - secp256k1_scalar_add(&data->scalar_x, &data->scalar_x, &data->scalar_y); + for (i = 0; i < iters; i++) { + j += secp256k1_scalar_add(&data->scalar[0], &data->scalar[0], &data->scalar[1]); } + CHECK(j <= iters); } -void bench_scalar_negate(void* arg) { +void bench_scalar_negate(void* arg, int iters) { int i; bench_inv *data = (bench_inv*)arg; - for (i = 0; i < 2000000; i++) { - secp256k1_scalar_negate(&data->scalar_x, &data->scalar_x); + for (i = 0; i < iters; i++) { + secp256k1_scalar_negate(&data->scalar[0], &data->scalar[0]); } } -void bench_scalar_sqr(void* arg) { +void bench_scalar_mul(void* arg, int iters) { int i; bench_inv *data = (bench_inv*)arg; - for (i = 0; i < 200000; i++) { - secp256k1_scalar_sqr(&data->scalar_x, &data->scalar_x); + for (i = 0; i < iters; i++) { + secp256k1_scalar_mul(&data->scalar[0], &data->scalar[0], &data->scalar[1]); } } -void bench_scalar_mul(void* arg) { - int i; +void bench_scalar_split(void* arg, int iters) { + int i, j = 0; bench_inv *data = (bench_inv*)arg; - for (i = 0; i < 200000; i++) { - secp256k1_scalar_mul(&data->scalar_x, &data->scalar_x, &data->scalar_y); + for (i = 0; i < iters; i++) { + secp256k1_scalar_split_lambda(&data->scalar[0], &data->scalar[1], &data->scalar[0]); + j += secp256k1_scalar_add(&data->scalar[0], &data->scalar[0], &data->scalar[1]); } + CHECK(j <= iters); } -#ifdef USE_ENDOMORPHISM -void bench_scalar_split(void* arg) { - int i; +void bench_scalar_inverse(void* arg, int iters) { + int i, j = 0; bench_inv *data = (bench_inv*)arg; - for (i = 0; i < 20000; i++) { - secp256k1_scalar l, r; - secp256k1_scalar_split_lambda(&l, &r, &data->scalar_x); - secp256k1_scalar_add(&data->scalar_x, &data->scalar_x, &data->scalar_y); + for (i = 0; i < iters; i++) { + secp256k1_scalar_inverse(&data->scalar[0], &data->scalar[0]); + j += secp256k1_scalar_add(&data->scalar[0], &data->scalar[0], &data->scalar[1]); } + CHECK(j <= iters); } -#endif -void bench_scalar_inverse(void* arg) { - int i; +void bench_scalar_inverse_var(void* arg, int iters) { + int i, j = 0; bench_inv *data = (bench_inv*)arg; - for (i = 0; i < 2000; i++) { - secp256k1_scalar_inverse(&data->scalar_x, &data->scalar_x); - secp256k1_scalar_add(&data->scalar_x, &data->scalar_x, &data->scalar_y); + for (i = 0; i < iters; i++) { + secp256k1_scalar_inverse_var(&data->scalar[0], &data->scalar[0]); + j += secp256k1_scalar_add(&data->scalar[0], &data->scalar[0], &data->scalar[1]); } + CHECK(j <= iters); } -void bench_scalar_inverse_var(void* arg) { +void bench_field_normalize(void* arg, int iters) { int i; bench_inv *data = (bench_inv*)arg; - for (i = 0; i < 2000; i++) { - secp256k1_scalar_inverse_var(&data->scalar_x, &data->scalar_x); - secp256k1_scalar_add(&data->scalar_x, &data->scalar_x, &data->scalar_y); + for (i = 0; i < iters; i++) { + secp256k1_fe_normalize(&data->fe[0]); } } -void bench_field_normalize(void* arg) { +void bench_field_normalize_weak(void* arg, int iters) { int i; bench_inv *data = (bench_inv*)arg; - for (i = 0; i < 2000000; i++) { - secp256k1_fe_normalize(&data->fe_x); + for (i = 0; i < iters; i++) { + secp256k1_fe_normalize_weak(&data->fe[0]); } } -void bench_field_normalize_weak(void* arg) { +void bench_field_mul(void* arg, int iters) { int i; bench_inv *data = (bench_inv*)arg; - for (i = 0; i < 2000000; i++) { - secp256k1_fe_normalize_weak(&data->fe_x); + for (i = 0; i < iters; i++) { + secp256k1_fe_mul(&data->fe[0], &data->fe[0], &data->fe[1]); } } -void bench_field_mul(void* arg) { +void bench_field_sqr(void* arg, int iters) { int i; bench_inv *data = (bench_inv*)arg; - for (i = 0; i < 200000; i++) { - secp256k1_fe_mul(&data->fe_x, &data->fe_x, &data->fe_y); + for (i = 0; i < iters; i++) { + secp256k1_fe_sqr(&data->fe[0], &data->fe[0]); } } -void bench_field_sqr(void* arg) { +void bench_field_inverse(void* arg, int iters) { int i; bench_inv *data = (bench_inv*)arg; - for (i = 0; i < 200000; i++) { - secp256k1_fe_sqr(&data->fe_x, &data->fe_x); + for (i = 0; i < iters; i++) { + secp256k1_fe_inv(&data->fe[0], &data->fe[0]); + secp256k1_fe_add(&data->fe[0], &data->fe[1]); } } -void bench_field_inverse(void* arg) { +void bench_field_inverse_var(void* arg, int iters) { int i; bench_inv *data = (bench_inv*)arg; - for (i = 0; i < 20000; i++) { - secp256k1_fe_inv(&data->fe_x, &data->fe_x); - secp256k1_fe_add(&data->fe_x, &data->fe_y); + for (i = 0; i < iters; i++) { + secp256k1_fe_inv_var(&data->fe[0], &data->fe[0]); + secp256k1_fe_add(&data->fe[0], &data->fe[1]); } } -void bench_field_inverse_var(void* arg) { - int i; +void bench_field_sqrt(void* arg, int iters) { + int i, j = 0; bench_inv *data = (bench_inv*)arg; + secp256k1_fe t; - for (i = 0; i < 20000; i++) { - secp256k1_fe_inv_var(&data->fe_x, &data->fe_x); - secp256k1_fe_add(&data->fe_x, &data->fe_y); + for (i = 0; i < iters; i++) { + t = data->fe[0]; + j += secp256k1_fe_sqrt(&data->fe[0], &t); + secp256k1_fe_add(&data->fe[0], &data->fe[1]); } + CHECK(j <= iters); } -void bench_field_sqrt(void* arg) { +void bench_group_double_var(void* arg, int iters) { int i; bench_inv *data = (bench_inv*)arg; - for (i = 0; i < 20000; i++) { - secp256k1_fe_sqrt(&data->fe_x, &data->fe_x); - secp256k1_fe_add(&data->fe_x, &data->fe_y); + for (i = 0; i < iters; i++) { + secp256k1_gej_double_var(&data->gej[0], &data->gej[0], NULL); } } -void bench_group_double_var(void* arg) { +void bench_group_add_var(void* arg, int iters) { int i; bench_inv *data = (bench_inv*)arg; - for (i = 0; i < 200000; i++) { - secp256k1_gej_double_var(&data->gej_x, &data->gej_x, NULL); + for (i = 0; i < iters; i++) { + secp256k1_gej_add_var(&data->gej[0], &data->gej[0], &data->gej[1], NULL); } } -void bench_group_add_var(void* arg) { +void bench_group_add_affine(void* arg, int iters) { int i; bench_inv *data = (bench_inv*)arg; - for (i = 0; i < 200000; i++) { - secp256k1_gej_add_var(&data->gej_x, &data->gej_x, &data->gej_y, NULL); + for (i = 0; i < iters; i++) { + secp256k1_gej_add_ge(&data->gej[0], &data->gej[0], &data->ge[1]); } } -void bench_group_add_affine(void* arg) { +void bench_group_add_affine_var(void* arg, int iters) { int i; bench_inv *data = (bench_inv*)arg; - for (i = 0; i < 200000; i++) { - secp256k1_gej_add_ge(&data->gej_x, &data->gej_x, &data->ge_y); + for (i = 0; i < iters; i++) { + secp256k1_gej_add_ge_var(&data->gej[0], &data->gej[0], &data->ge[1], NULL); } } -void bench_group_add_affine_var(void* arg) { +void bench_group_to_affine_var(void* arg, int iters) { int i; bench_inv *data = (bench_inv*)arg; - for (i = 0; i < 200000; i++) { - secp256k1_gej_add_ge_var(&data->gej_x, &data->gej_x, &data->ge_y, NULL); + for (i = 0; i < iters; ++i) { + secp256k1_ge_set_gej_var(&data->ge[1], &data->gej[0]); + /* Use the output affine X/Y coordinates to vary the input X/Y/Z coordinates. + Note that the resulting coordinates will generally not correspond to a point + on the curve, but this is not a problem for the code being benchmarked here. + Adding and normalizing have less overhead than EC operations (which could + guarantee the point remains on the curve). */ + secp256k1_fe_add(&data->gej[0].x, &data->ge[1].y); + secp256k1_fe_add(&data->gej[0].y, &data->fe[2]); + secp256k1_fe_add(&data->gej[0].z, &data->ge[1].x); + secp256k1_fe_normalize_var(&data->gej[0].x); + secp256k1_fe_normalize_var(&data->gej[0].y); + secp256k1_fe_normalize_var(&data->gej[0].z); } } -void bench_group_jacobi_var(void* arg) { - int i; +void bench_ecmult_wnaf(void* arg, int iters) { + int i, bits = 0, overflow = 0; bench_inv *data = (bench_inv*)arg; - for (i = 0; i < 20000; i++) { - secp256k1_gej_has_quad_y_var(&data->gej_x); + for (i = 0; i < iters; i++) { + bits += secp256k1_ecmult_wnaf(data->wnaf, 256, &data->scalar[0], WINDOW_A); + overflow += secp256k1_scalar_add(&data->scalar[0], &data->scalar[0], &data->scalar[1]); } + CHECK(overflow >= 0); + CHECK(bits <= 256*iters); } -void bench_ecmult_wnaf(void* arg) { - int i; +void bench_wnaf_const(void* arg, int iters) { + int i, bits = 0, overflow = 0; bench_inv *data = (bench_inv*)arg; - for (i = 0; i < 20000; i++) { - secp256k1_ecmult_wnaf(data->wnaf, 256, &data->scalar_x, WINDOW_A); - secp256k1_scalar_add(&data->scalar_x, &data->scalar_x, &data->scalar_y); + for (i = 0; i < iters; i++) { + bits += secp256k1_wnaf_const(data->wnaf, &data->scalar[0], WINDOW_A, 256); + overflow += secp256k1_scalar_add(&data->scalar[0], &data->scalar[0], &data->scalar[1]); } + CHECK(overflow >= 0); + CHECK(bits <= 256*iters); } -void bench_wnaf_const(void* arg) { - int i; - bench_inv *data = (bench_inv*)arg; - for (i = 0; i < 20000; i++) { - secp256k1_wnaf_const(data->wnaf, data->scalar_x, WINDOW_A, 256); - secp256k1_scalar_add(&data->scalar_x, &data->scalar_x, &data->scalar_y); - } -} - - -void bench_sha256(void* arg) { +void bench_sha256(void* arg, int iters) { int i; bench_inv *data = (bench_inv*)arg; secp256k1_sha256 sha; - for (i = 0; i < 20000; i++) { + for (i = 0; i < iters; i++) { secp256k1_sha256_initialize(&sha); secp256k1_sha256_write(&sha, data->data, 32); secp256k1_sha256_finalize(&sha, data->data); } } -void bench_hmac_sha256(void* arg) { +void bench_hmac_sha256(void* arg, int iters) { int i; bench_inv *data = (bench_inv*)arg; secp256k1_hmac_sha256 hmac; - for (i = 0; i < 20000; i++) { + for (i = 0; i < iters; i++) { secp256k1_hmac_sha256_initialize(&hmac, data->data, 32); secp256k1_hmac_sha256_write(&hmac, data->data, 32); secp256k1_hmac_sha256_finalize(&hmac, data->data); } } -void bench_rfc6979_hmac_sha256(void* arg) { +void bench_rfc6979_hmac_sha256(void* arg, int iters) { int i; bench_inv *data = (bench_inv*)arg; secp256k1_rfc6979_hmac_sha256 rng; - for (i = 0; i < 20000; i++) { + for (i = 0; i < iters; i++) { secp256k1_rfc6979_hmac_sha256_initialize(&rng, data->data, 64); secp256k1_rfc6979_hmac_sha256_generate(&rng, data->data, 32); } } -void bench_context_verify(void* arg) { +void bench_context_verify(void* arg, int iters) { int i; (void)arg; - for (i = 0; i < 20; i++) { + for (i = 0; i < iters; i++) { secp256k1_context_destroy(secp256k1_context_create(SECP256K1_CONTEXT_VERIFY)); } } -void bench_context_sign(void* arg) { +void bench_context_sign(void* arg, int iters) { int i; (void)arg; - for (i = 0; i < 200; i++) { + for (i = 0; i < iters; i++) { secp256k1_context_destroy(secp256k1_context_create(SECP256K1_CONTEXT_SIGN)); } } -#ifndef USE_NUM_NONE -void bench_num_jacobi(void* arg) { - int i; - bench_inv *data = (bench_inv*)arg; - secp256k1_num nx, norder; - - secp256k1_scalar_get_num(&nx, &data->scalar_x); - secp256k1_scalar_order_get_num(&norder); - secp256k1_scalar_get_num(&norder, &data->scalar_y); - - for (i = 0; i < 200000; i++) { - secp256k1_num_jacobi(&nx, &norder); - } -} -#endif - int main(int argc, char **argv) { bench_inv data; - if (have_flag(argc, argv, "scalar") || have_flag(argc, argv, "add")) run_benchmark("scalar_add", bench_scalar_add, bench_setup, NULL, &data, 10, 2000000); - if (have_flag(argc, argv, "scalar") || have_flag(argc, argv, "negate")) run_benchmark("scalar_negate", bench_scalar_negate, bench_setup, NULL, &data, 10, 2000000); - if (have_flag(argc, argv, "scalar") || have_flag(argc, argv, "sqr")) run_benchmark("scalar_sqr", bench_scalar_sqr, bench_setup, NULL, &data, 10, 200000); - if (have_flag(argc, argv, "scalar") || have_flag(argc, argv, "mul")) run_benchmark("scalar_mul", bench_scalar_mul, bench_setup, NULL, &data, 10, 200000); -#ifdef USE_ENDOMORPHISM - if (have_flag(argc, argv, "scalar") || have_flag(argc, argv, "split")) run_benchmark("scalar_split", bench_scalar_split, bench_setup, NULL, &data, 10, 20000); -#endif - if (have_flag(argc, argv, "scalar") || have_flag(argc, argv, "inverse")) run_benchmark("scalar_inverse", bench_scalar_inverse, bench_setup, NULL, &data, 10, 2000); - if (have_flag(argc, argv, "scalar") || have_flag(argc, argv, "inverse")) run_benchmark("scalar_inverse_var", bench_scalar_inverse_var, bench_setup, NULL, &data, 10, 2000); - - if (have_flag(argc, argv, "field") || have_flag(argc, argv, "normalize")) run_benchmark("field_normalize", bench_field_normalize, bench_setup, NULL, &data, 10, 2000000); - if (have_flag(argc, argv, "field") || have_flag(argc, argv, "normalize")) run_benchmark("field_normalize_weak", bench_field_normalize_weak, bench_setup, NULL, &data, 10, 2000000); - if (have_flag(argc, argv, "field") || have_flag(argc, argv, "sqr")) run_benchmark("field_sqr", bench_field_sqr, bench_setup, NULL, &data, 10, 200000); - if (have_flag(argc, argv, "field") || have_flag(argc, argv, "mul")) run_benchmark("field_mul", bench_field_mul, bench_setup, NULL, &data, 10, 200000); - if (have_flag(argc, argv, "field") || have_flag(argc, argv, "inverse")) run_benchmark("field_inverse", bench_field_inverse, bench_setup, NULL, &data, 10, 20000); - if (have_flag(argc, argv, "field") || have_flag(argc, argv, "inverse")) run_benchmark("field_inverse_var", bench_field_inverse_var, bench_setup, NULL, &data, 10, 20000); - if (have_flag(argc, argv, "field") || have_flag(argc, argv, "sqrt")) run_benchmark("field_sqrt", bench_field_sqrt, bench_setup, NULL, &data, 10, 20000); - - if (have_flag(argc, argv, "group") || have_flag(argc, argv, "double")) run_benchmark("group_double_var", bench_group_double_var, bench_setup, NULL, &data, 10, 200000); - if (have_flag(argc, argv, "group") || have_flag(argc, argv, "add")) run_benchmark("group_add_var", bench_group_add_var, bench_setup, NULL, &data, 10, 200000); - if (have_flag(argc, argv, "group") || have_flag(argc, argv, "add")) run_benchmark("group_add_affine", bench_group_add_affine, bench_setup, NULL, &data, 10, 200000); - if (have_flag(argc, argv, "group") || have_flag(argc, argv, "add")) run_benchmark("group_add_affine_var", bench_group_add_affine_var, bench_setup, NULL, &data, 10, 200000); - if (have_flag(argc, argv, "group") || have_flag(argc, argv, "jacobi")) run_benchmark("group_jacobi_var", bench_group_jacobi_var, bench_setup, NULL, &data, 10, 20000); - - if (have_flag(argc, argv, "ecmult") || have_flag(argc, argv, "wnaf")) run_benchmark("wnaf_const", bench_wnaf_const, bench_setup, NULL, &data, 10, 20000); - if (have_flag(argc, argv, "ecmult") || have_flag(argc, argv, "wnaf")) run_benchmark("ecmult_wnaf", bench_ecmult_wnaf, bench_setup, NULL, &data, 10, 20000); - - if (have_flag(argc, argv, "hash") || have_flag(argc, argv, "sha256")) run_benchmark("hash_sha256", bench_sha256, bench_setup, NULL, &data, 10, 20000); - if (have_flag(argc, argv, "hash") || have_flag(argc, argv, "hmac")) run_benchmark("hash_hmac_sha256", bench_hmac_sha256, bench_setup, NULL, &data, 10, 20000); - if (have_flag(argc, argv, "hash") || have_flag(argc, argv, "rng6979")) run_benchmark("hash_rfc6979_hmac_sha256", bench_rfc6979_hmac_sha256, bench_setup, NULL, &data, 10, 20000); - - if (have_flag(argc, argv, "context") || have_flag(argc, argv, "verify")) run_benchmark("context_verify", bench_context_verify, bench_setup, NULL, &data, 10, 20); - if (have_flag(argc, argv, "context") || have_flag(argc, argv, "sign")) run_benchmark("context_sign", bench_context_sign, bench_setup, NULL, &data, 10, 200); - -#ifndef USE_NUM_NONE - if (have_flag(argc, argv, "num") || have_flag(argc, argv, "jacobi")) run_benchmark("num_jacobi", bench_num_jacobi, bench_setup, NULL, &data, 10, 200000); -#endif + int iters = get_iters(20000); + + if (have_flag(argc, argv, "scalar") || have_flag(argc, argv, "add")) run_benchmark("scalar_add", bench_scalar_add, bench_setup, NULL, &data, 10, iters*100); + if (have_flag(argc, argv, "scalar") || have_flag(argc, argv, "negate")) run_benchmark("scalar_negate", bench_scalar_negate, bench_setup, NULL, &data, 10, iters*100); + if (have_flag(argc, argv, "scalar") || have_flag(argc, argv, "mul")) run_benchmark("scalar_mul", bench_scalar_mul, bench_setup, NULL, &data, 10, iters*10); + if (have_flag(argc, argv, "scalar") || have_flag(argc, argv, "split")) run_benchmark("scalar_split", bench_scalar_split, bench_setup, NULL, &data, 10, iters); + if (have_flag(argc, argv, "scalar") || have_flag(argc, argv, "inverse")) run_benchmark("scalar_inverse", bench_scalar_inverse, bench_setup, NULL, &data, 10, iters); + if (have_flag(argc, argv, "scalar") || have_flag(argc, argv, "inverse")) run_benchmark("scalar_inverse_var", bench_scalar_inverse_var, bench_setup, NULL, &data, 10, iters); + + if (have_flag(argc, argv, "field") || have_flag(argc, argv, "normalize")) run_benchmark("field_normalize", bench_field_normalize, bench_setup, NULL, &data, 10, iters*100); + if (have_flag(argc, argv, "field") || have_flag(argc, argv, "normalize")) run_benchmark("field_normalize_weak", bench_field_normalize_weak, bench_setup, NULL, &data, 10, iters*100); + if (have_flag(argc, argv, "field") || have_flag(argc, argv, "sqr")) run_benchmark("field_sqr", bench_field_sqr, bench_setup, NULL, &data, 10, iters*10); + if (have_flag(argc, argv, "field") || have_flag(argc, argv, "mul")) run_benchmark("field_mul", bench_field_mul, bench_setup, NULL, &data, 10, iters*10); + if (have_flag(argc, argv, "field") || have_flag(argc, argv, "inverse")) run_benchmark("field_inverse", bench_field_inverse, bench_setup, NULL, &data, 10, iters); + if (have_flag(argc, argv, "field") || have_flag(argc, argv, "inverse")) run_benchmark("field_inverse_var", bench_field_inverse_var, bench_setup, NULL, &data, 10, iters); + if (have_flag(argc, argv, "field") || have_flag(argc, argv, "sqrt")) run_benchmark("field_sqrt", bench_field_sqrt, bench_setup, NULL, &data, 10, iters); + + if (have_flag(argc, argv, "group") || have_flag(argc, argv, "double")) run_benchmark("group_double_var", bench_group_double_var, bench_setup, NULL, &data, 10, iters*10); + if (have_flag(argc, argv, "group") || have_flag(argc, argv, "add")) run_benchmark("group_add_var", bench_group_add_var, bench_setup, NULL, &data, 10, iters*10); + if (have_flag(argc, argv, "group") || have_flag(argc, argv, "add")) run_benchmark("group_add_affine", bench_group_add_affine, bench_setup, NULL, &data, 10, iters*10); + if (have_flag(argc, argv, "group") || have_flag(argc, argv, "add")) run_benchmark("group_add_affine_var", bench_group_add_affine_var, bench_setup, NULL, &data, 10, iters*10); + if (have_flag(argc, argv, "group") || have_flag(argc, argv, "to_affine")) run_benchmark("group_to_affine_var", bench_group_to_affine_var, bench_setup, NULL, &data, 10, iters); + + if (have_flag(argc, argv, "ecmult") || have_flag(argc, argv, "wnaf")) run_benchmark("wnaf_const", bench_wnaf_const, bench_setup, NULL, &data, 10, iters); + if (have_flag(argc, argv, "ecmult") || have_flag(argc, argv, "wnaf")) run_benchmark("ecmult_wnaf", bench_ecmult_wnaf, bench_setup, NULL, &data, 10, iters); + + if (have_flag(argc, argv, "hash") || have_flag(argc, argv, "sha256")) run_benchmark("hash_sha256", bench_sha256, bench_setup, NULL, &data, 10, iters); + if (have_flag(argc, argv, "hash") || have_flag(argc, argv, "hmac")) run_benchmark("hash_hmac_sha256", bench_hmac_sha256, bench_setup, NULL, &data, 10, iters); + if (have_flag(argc, argv, "hash") || have_flag(argc, argv, "rng6979")) run_benchmark("hash_rfc6979_hmac_sha256", bench_rfc6979_hmac_sha256, bench_setup, NULL, &data, 10, iters); + + if (have_flag(argc, argv, "context") || have_flag(argc, argv, "verify")) run_benchmark("context_verify", bench_context_verify, bench_setup, NULL, &data, 10, 1 + iters/1000); + if (have_flag(argc, argv, "context") || have_flag(argc, argv, "sign")) run_benchmark("context_sign", bench_context_sign, bench_setup, NULL, &data, 10, 1 + iters/100); + return 0; } diff --git a/src/bench_recover.c b/src/bench_recover.c index b806eed94e150..4bcac19dc0a39 100644 --- a/src/bench_recover.c +++ b/src/bench_recover.c @@ -1,11 +1,11 @@ -/********************************************************************** - * Copyright (c) 2014-2015 Pieter Wuille * - * Distributed under the MIT software license, see the accompanying * - * file COPYING or http://www.opensource.org/licenses/mit-license.php.* - **********************************************************************/ - -#include "include/secp256k1.h" -#include "include/secp256k1_recovery.h" +/*********************************************************************** + * Copyright (c) 2014-2015 Pieter Wuille * + * Distributed under the MIT software license, see the accompanying * + * file COPYING or https://www.opensource.org/licenses/mit-license.php.* + ***********************************************************************/ + +#include "../include/secp256k1.h" +#include "../include/secp256k1_recovery.h" #include "util.h" #include "bench.h" @@ -15,13 +15,13 @@ typedef struct { unsigned char sig[64]; } bench_recover_data; -void bench_recover(void* arg) { +void bench_recover(void* arg, int iters) { int i; bench_recover_data *data = (bench_recover_data*)arg; secp256k1_pubkey pubkey; unsigned char pubkeyc[33]; - for (i = 0; i < 20000; i++) { + for (i = 0; i < iters; i++) { int j; size_t pubkeylen = 33; secp256k1_ecdsa_recoverable_signature sig; @@ -51,9 +51,11 @@ void bench_recover_setup(void* arg) { int main(void) { bench_recover_data data; + int iters = get_iters(20000); + data.ctx = secp256k1_context_create(SECP256K1_CONTEXT_VERIFY); - run_benchmark("ecdsa_recover", bench_recover, bench_recover_setup, NULL, &data, 10, 20000); + run_benchmark("ecdsa_recover", bench_recover, bench_recover_setup, NULL, &data, 10, iters); secp256k1_context_destroy(data.ctx); return 0; diff --git a/src/bench_schnorrsig.c b/src/bench_schnorrsig.c new file mode 100644 index 0000000000000..d95bc00f485fb --- /dev/null +++ b/src/bench_schnorrsig.c @@ -0,0 +1,105 @@ +/*********************************************************************** + * Copyright (c) 2018-2020 Andrew Poelstra, Jonas Nick * + * Distributed under the MIT software license, see the accompanying * + * file COPYING or https://www.opensource.org/licenses/mit-license.php.* + ***********************************************************************/ + +#include +#include + + +#include "../include/secp256k1.h" +#include "../include/secp256k1_schnorrsig.h" +#include "util.h" +#include "bench.h" + +#define MSGLEN 32 + +typedef struct { + secp256k1_context *ctx; + int n; + + const secp256k1_keypair **keypairs; + const unsigned char **pk; + const unsigned char **sigs; + const unsigned char **msgs; +} bench_schnorrsig_data; + +void bench_schnorrsig_sign(void* arg, int iters) { + bench_schnorrsig_data *data = (bench_schnorrsig_data *)arg; + int i; + unsigned char msg[MSGLEN] = {0}; + unsigned char sig[64]; + + for (i = 0; i < iters; i++) { + msg[0] = i; + msg[1] = i >> 8; + CHECK(secp256k1_schnorrsig_sign_custom(data->ctx, sig, msg, MSGLEN, data->keypairs[i], NULL)); + } +} + +void bench_schnorrsig_verify(void* arg, int iters) { + bench_schnorrsig_data *data = (bench_schnorrsig_data *)arg; + int i; + + for (i = 0; i < iters; i++) { + secp256k1_xonly_pubkey pk; + CHECK(secp256k1_xonly_pubkey_parse(data->ctx, &pk, data->pk[i]) == 1); + CHECK(secp256k1_schnorrsig_verify(data->ctx, data->sigs[i], data->msgs[i], MSGLEN, &pk)); + } +} + +int main(void) { + int i; + bench_schnorrsig_data data; + int iters = get_iters(10000); + + data.ctx = secp256k1_context_create(SECP256K1_CONTEXT_VERIFY | SECP256K1_CONTEXT_SIGN); + data.keypairs = (const secp256k1_keypair **)malloc(iters * sizeof(secp256k1_keypair *)); + data.pk = (const unsigned char **)malloc(iters * sizeof(unsigned char *)); + data.msgs = (const unsigned char **)malloc(iters * sizeof(unsigned char *)); + data.sigs = (const unsigned char **)malloc(iters * sizeof(unsigned char *)); + + CHECK(MSGLEN >= 4); + for (i = 0; i < iters; i++) { + unsigned char sk[32]; + unsigned char *msg = (unsigned char *)malloc(MSGLEN); + unsigned char *sig = (unsigned char *)malloc(64); + secp256k1_keypair *keypair = (secp256k1_keypair *)malloc(sizeof(*keypair)); + unsigned char *pk_char = (unsigned char *)malloc(32); + secp256k1_xonly_pubkey pk; + msg[0] = sk[0] = i; + msg[1] = sk[1] = i >> 8; + msg[2] = sk[2] = i >> 16; + msg[3] = sk[3] = i >> 24; + memset(&msg[4], 'm', MSGLEN - 4); + memset(&sk[4], 's', 28); + + data.keypairs[i] = keypair; + data.pk[i] = pk_char; + data.msgs[i] = msg; + data.sigs[i] = sig; + + CHECK(secp256k1_keypair_create(data.ctx, keypair, sk)); + CHECK(secp256k1_schnorrsig_sign_custom(data.ctx, sig, msg, MSGLEN, keypair, NULL)); + CHECK(secp256k1_keypair_xonly_pub(data.ctx, &pk, NULL, keypair)); + CHECK(secp256k1_xonly_pubkey_serialize(data.ctx, pk_char, &pk) == 1); + } + + run_benchmark("schnorrsig_sign", bench_schnorrsig_sign, NULL, NULL, (void *) &data, 10, iters); + run_benchmark("schnorrsig_verify", bench_schnorrsig_verify, NULL, NULL, (void *) &data, 10, iters); + + for (i = 0; i < iters; i++) { + free((void *)data.keypairs[i]); + free((void *)data.pk[i]); + free((void *)data.msgs[i]); + free((void *)data.sigs[i]); + } + free(data.keypairs); + free(data.pk); + free(data.msgs); + free(data.sigs); + + secp256k1_context_destroy(data.ctx); + return 0; +} diff --git a/src/bench_sign.c b/src/bench_sign.c index 544b43963c8d1..f659c18c92d0b 100644 --- a/src/bench_sign.c +++ b/src/bench_sign.c @@ -1,10 +1,10 @@ -/********************************************************************** - * Copyright (c) 2014 Pieter Wuille * - * Distributed under the MIT software license, see the accompanying * - * file COPYING or http://www.opensource.org/licenses/mit-license.php.* - **********************************************************************/ +/*********************************************************************** + * Copyright (c) 2014 Pieter Wuille * + * Distributed under the MIT software license, see the accompanying * + * file COPYING or https://www.opensource.org/licenses/mit-license.php.* + ***********************************************************************/ -#include "include/secp256k1.h" +#include "../include/secp256k1.h" #include "util.h" #include "bench.h" @@ -12,11 +12,11 @@ typedef struct { secp256k1_context* ctx; unsigned char msg[32]; unsigned char key[32]; -} bench_sign; +} bench_sign_data; static void bench_sign_setup(void* arg) { int i; - bench_sign *data = (bench_sign*)arg; + bench_sign_data *data = (bench_sign_data*)arg; for (i = 0; i < 32; i++) { data->msg[i] = i + 1; @@ -26,12 +26,12 @@ static void bench_sign_setup(void* arg) { } } -static void bench_sign_run(void* arg) { +static void bench_sign_run(void* arg, int iters) { int i; - bench_sign *data = (bench_sign*)arg; + bench_sign_data *data = (bench_sign_data*)arg; unsigned char sig[74]; - for (i = 0; i < 20000; i++) { + for (i = 0; i < iters; i++) { size_t siglen = 74; int j; secp256k1_ecdsa_signature signature; @@ -45,11 +45,13 @@ static void bench_sign_run(void* arg) { } int main(void) { - bench_sign data; + bench_sign_data data; + + int iters = get_iters(20000); data.ctx = secp256k1_context_create(SECP256K1_CONTEXT_SIGN); - run_benchmark("ecdsa_sign", bench_sign_run, bench_sign_setup, NULL, &data, 10, 20000); + run_benchmark("ecdsa_sign", bench_sign_run, bench_sign_setup, NULL, &data, 10, iters); secp256k1_context_destroy(data.ctx); return 0; diff --git a/src/bench_verify.c b/src/bench_verify.c index 418defa0aa22a..565ae4beec8a5 100644 --- a/src/bench_verify.c +++ b/src/bench_verify.c @@ -1,13 +1,13 @@ -/********************************************************************** - * Copyright (c) 2014 Pieter Wuille * - * Distributed under the MIT software license, see the accompanying * - * file COPYING or http://www.opensource.org/licenses/mit-license.php.* - **********************************************************************/ +/*********************************************************************** + * Copyright (c) 2014 Pieter Wuille * + * Distributed under the MIT software license, see the accompanying * + * file COPYING or https://www.opensource.org/licenses/mit-license.php.* + ***********************************************************************/ #include #include -#include "include/secp256k1.h" +#include "../include/secp256k1.h" #include "util.h" #include "bench.h" @@ -17,6 +17,7 @@ #include #endif + typedef struct { secp256k1_context *ctx; unsigned char msg[32]; @@ -28,13 +29,13 @@ typedef struct { #ifdef ENABLE_OPENSSL_TESTS EC_GROUP* ec_group; #endif -} benchmark_verify_t; +} bench_verify_data; -static void benchmark_verify(void* arg) { +static void bench_verify(void* arg, int iters) { int i; - benchmark_verify_t* data = (benchmark_verify_t*)arg; + bench_verify_data* data = (bench_verify_data*)arg; - for (i = 0; i < 20000; i++) { + for (i = 0; i < iters; i++) { secp256k1_pubkey pubkey; secp256k1_ecdsa_signature sig; data->sig[data->siglen - 1] ^= (i & 0xFF); @@ -50,11 +51,11 @@ static void benchmark_verify(void* arg) { } #ifdef ENABLE_OPENSSL_TESTS -static void benchmark_verify_openssl(void* arg) { +static void bench_verify_openssl(void* arg, int iters) { int i; - benchmark_verify_t* data = (benchmark_verify_t*)arg; + bench_verify_data* data = (bench_verify_data*)arg; - for (i = 0; i < 20000; i++) { + for (i = 0; i < iters; i++) { data->sig[data->siglen - 1] ^= (i & 0xFF); data->sig[data->siglen - 2] ^= ((i >> 8) & 0xFF); data->sig[data->siglen - 3] ^= ((i >> 16) & 0xFF); @@ -83,7 +84,9 @@ int main(void) { int i; secp256k1_pubkey pubkey; secp256k1_ecdsa_signature sig; - benchmark_verify_t data; + bench_verify_data data; + + int iters = get_iters(20000); data.ctx = secp256k1_context_create(SECP256K1_CONTEXT_SIGN | SECP256K1_CONTEXT_VERIFY); @@ -100,10 +103,10 @@ int main(void) { data.pubkeylen = 33; CHECK(secp256k1_ec_pubkey_serialize(data.ctx, data.pubkey, &data.pubkeylen, &pubkey, SECP256K1_EC_COMPRESSED) == 1); - run_benchmark("ecdsa_verify", benchmark_verify, NULL, NULL, &data, 10, 20000); + run_benchmark("ecdsa_verify", bench_verify, NULL, NULL, &data, 10, iters); #ifdef ENABLE_OPENSSL_TESTS data.ec_group = EC_GROUP_new_by_curve_name(NID_secp256k1); - run_benchmark("ecdsa_verify_openssl", benchmark_verify_openssl, NULL, NULL, &data, 10, 20000); + run_benchmark("ecdsa_verify_openssl", bench_verify_openssl, NULL, NULL, &data, 10, iters); EC_GROUP_free(data.ec_group); #endif diff --git a/src/ecdsa.h b/src/ecdsa.h index 80590c7cc862d..d5e54d8ce6197 100644 --- a/src/ecdsa.h +++ b/src/ecdsa.h @@ -1,8 +1,8 @@ -/********************************************************************** - * Copyright (c) 2013, 2014 Pieter Wuille * - * Distributed under the MIT software license, see the accompanying * - * file COPYING or http://www.opensource.org/licenses/mit-license.php.* - **********************************************************************/ +/*********************************************************************** + * Copyright (c) 2013, 2014 Pieter Wuille * + * Distributed under the MIT software license, see the accompanying * + * file COPYING or https://www.opensource.org/licenses/mit-license.php.* + ***********************************************************************/ #ifndef SECP256K1_ECDSA_H #define SECP256K1_ECDSA_H diff --git a/src/ecdsa_impl.h b/src/ecdsa_impl.h index c3400042d8393..156a33d112865 100644 --- a/src/ecdsa_impl.h +++ b/src/ecdsa_impl.h @@ -1,8 +1,8 @@ -/********************************************************************** - * Copyright (c) 2013-2015 Pieter Wuille * - * Distributed under the MIT software license, see the accompanying * - * file COPYING or http://www.opensource.org/licenses/mit-license.php.* - **********************************************************************/ +/*********************************************************************** + * Copyright (c) 2013-2015 Pieter Wuille * + * Distributed under the MIT software license, see the accompanying * + * file COPYING or https://www.opensource.org/licenses/mit-license.php.* + ***********************************************************************/ #ifndef SECP256K1_ECDSA_IMPL_H @@ -46,68 +46,73 @@ static const secp256k1_fe secp256k1_ecdsa_const_p_minus_order = SECP256K1_FE_CON 0, 0, 0, 1, 0x45512319UL, 0x50B75FC4UL, 0x402DA172UL, 0x2FC9BAEEUL ); -static int secp256k1_der_read_len(const unsigned char **sigp, const unsigned char *sigend) { - int lenleft, b1; - size_t ret = 0; +static int secp256k1_der_read_len(size_t *len, const unsigned char **sigp, const unsigned char *sigend) { + size_t lenleft; + unsigned char b1; + VERIFY_CHECK(len != NULL); + *len = 0; if (*sigp >= sigend) { - return -1; + return 0; } b1 = *((*sigp)++); if (b1 == 0xFF) { /* X.690-0207 8.1.3.5.c the value 0xFF shall not be used. */ - return -1; + return 0; } if ((b1 & 0x80) == 0) { /* X.690-0207 8.1.3.4 short form length octets */ - return b1; + *len = b1; + return 1; } if (b1 == 0x80) { /* Indefinite length is not allowed in DER. */ - return -1; + return 0; } /* X.690-207 8.1.3.5 long form length octets */ - lenleft = b1 & 0x7F; - if (lenleft > sigend - *sigp) { - return -1; + lenleft = b1 & 0x7F; /* lenleft is at least 1 */ + if (lenleft > (size_t)(sigend - *sigp)) { + return 0; } if (**sigp == 0) { /* Not the shortest possible length encoding. */ - return -1; + return 0; } - if ((size_t)lenleft > sizeof(size_t)) { + if (lenleft > sizeof(size_t)) { /* The resulting length would exceed the range of a size_t, so * certainly longer than the passed array size. */ - return -1; + return 0; } while (lenleft > 0) { - ret = (ret << 8) | **sigp; - if (ret + lenleft > (size_t)(sigend - *sigp)) { - /* Result exceeds the length of the passed array. */ - return -1; - } + *len = (*len << 8) | **sigp; (*sigp)++; lenleft--; } - if (ret < 128) { + if (*len > (size_t)(sigend - *sigp)) { + /* Result exceeds the length of the passed array. */ + return 0; + } + if (*len < 128) { /* Not the shortest possible length encoding. */ - return -1; + return 0; } - return ret; + return 1; } static int secp256k1_der_parse_integer(secp256k1_scalar *r, const unsigned char **sig, const unsigned char *sigend) { int overflow = 0; unsigned char ra[32] = {0}; - int rlen; + size_t rlen; if (*sig == sigend || **sig != 0x02) { /* Not a primitive integer (X.690-0207 8.3.1). */ return 0; } (*sig)++; - rlen = secp256k1_der_read_len(sig, sigend); - if (rlen <= 0 || (*sig) + rlen > sigend) { + if (secp256k1_der_read_len(&rlen, sig, sigend) == 0) { + return 0; + } + if (rlen == 0 || *sig + rlen > sigend) { /* Exceeds bounds or not at least length 1 (X.690-0207 8.3.1). */ return 0; } @@ -123,8 +128,11 @@ static int secp256k1_der_parse_integer(secp256k1_scalar *r, const unsigned char /* Negative. */ overflow = 1; } - while (rlen > 0 && **sig == 0) { - /* Skip leading zero bytes */ + /* There is at most one leading zero byte: + * if there were two leading zero bytes, we would have failed and returned 0 + * because of excessive 0x00 padding already. */ + if (rlen > 0 && **sig == 0) { + /* Skip leading zero byte */ rlen--; (*sig)++; } @@ -144,18 +152,16 @@ static int secp256k1_der_parse_integer(secp256k1_scalar *r, const unsigned char static int secp256k1_ecdsa_sig_parse(secp256k1_scalar *rr, secp256k1_scalar *rs, const unsigned char *sig, size_t size) { const unsigned char *sigend = sig + size; - int rlen; + size_t rlen; if (sig == sigend || *(sig++) != 0x30) { /* The encoding doesn't start with a constructed sequence (X.690-0207 8.9.1). */ return 0; } - rlen = secp256k1_der_read_len(&sig, sigend); - if (rlen < 0 || sig + rlen > sigend) { - /* Tuple exceeds bounds */ + if (secp256k1_der_read_len(&rlen, &sig, sigend) == 0) { return 0; } - if (sig + rlen != sigend) { - /* Garbage after tuple. */ + if (rlen != (size_t)(sigend - sig)) { + /* Tuple exceeds bounds or garage after tuple. */ return 0; } @@ -274,6 +280,7 @@ static int secp256k1_ecdsa_sig_sign(const secp256k1_ecmult_gen_context *ctx, sec secp256k1_ge r; secp256k1_scalar n; int overflow = 0; + int high; secp256k1_ecmult_gen(ctx, &rp, nonce); secp256k1_ge_set_gej(&r, &rp); @@ -281,15 +288,11 @@ static int secp256k1_ecdsa_sig_sign(const secp256k1_ecmult_gen_context *ctx, sec secp256k1_fe_normalize(&r.y); secp256k1_fe_get_b32(b, &r.x); secp256k1_scalar_set_b32(sigr, b, &overflow); - /* These two conditions should be checked before calling */ - VERIFY_CHECK(!secp256k1_scalar_is_zero(sigr)); - VERIFY_CHECK(overflow == 0); - if (recid) { /* The overflow condition is cryptographically unreachable as hitting it requires finding the discrete log * of some P where P.x >= order, and only 1 in about 2^127 points meet this criteria. */ - *recid = (overflow ? 2 : 0) | (secp256k1_fe_is_odd(&r.y) ? 1 : 0); + *recid = (overflow << 1) | secp256k1_fe_is_odd(&r.y); } secp256k1_scalar_mul(&n, sigr, seckey); secp256k1_scalar_add(&n, &n, message); @@ -298,16 +301,15 @@ static int secp256k1_ecdsa_sig_sign(const secp256k1_ecmult_gen_context *ctx, sec secp256k1_scalar_clear(&n); secp256k1_gej_clear(&rp); secp256k1_ge_clear(&r); - if (secp256k1_scalar_is_zero(sigs)) { - return 0; - } - if (secp256k1_scalar_is_high(sigs)) { - secp256k1_scalar_negate(sigs, sigs); - if (recid) { - *recid ^= 1; - } + high = secp256k1_scalar_is_high(sigs); + secp256k1_scalar_cond_negate(sigs, high); + if (recid) { + *recid ^= high; } - return 1; + /* P.x = order is on the curve, so technically sig->r could end up being zero, which would be an invalid signature. + * This is cryptographically unreachable as hitting it requires finding the discrete log of P.x = N. + */ + return !secp256k1_scalar_is_zero(sigr) & !secp256k1_scalar_is_zero(sigs); } #endif /* SECP256K1_ECDSA_IMPL_H */ diff --git a/src/eckey.h b/src/eckey.h index b621f1e6c39d9..5be3a64b84043 100644 --- a/src/eckey.h +++ b/src/eckey.h @@ -1,8 +1,8 @@ -/********************************************************************** - * Copyright (c) 2013, 2014 Pieter Wuille * - * Distributed under the MIT software license, see the accompanying * - * file COPYING or http://www.opensource.org/licenses/mit-license.php.* - **********************************************************************/ +/*********************************************************************** + * Copyright (c) 2013, 2014 Pieter Wuille * + * Distributed under the MIT software license, see the accompanying * + * file COPYING or https://www.opensource.org/licenses/mit-license.php.* + ***********************************************************************/ #ifndef SECP256K1_ECKEY_H #define SECP256K1_ECKEY_H diff --git a/src/eckey_impl.h b/src/eckey_impl.h index 1ab9a68ec048c..a39cb79653c38 100644 --- a/src/eckey_impl.h +++ b/src/eckey_impl.h @@ -1,8 +1,8 @@ -/********************************************************************** - * Copyright (c) 2013, 2014 Pieter Wuille * - * Distributed under the MIT software license, see the accompanying * - * file COPYING or http://www.opensource.org/licenses/mit-license.php.* - **********************************************************************/ +/*********************************************************************** + * Copyright (c) 2013, 2014 Pieter Wuille * + * Distributed under the MIT software license, see the accompanying * + * file COPYING or https://www.opensource.org/licenses/mit-license.php.* + ***********************************************************************/ #ifndef SECP256K1_ECKEY_IMPL_H #define SECP256K1_ECKEY_IMPL_H @@ -18,7 +18,7 @@ static int secp256k1_eckey_pubkey_parse(secp256k1_ge *elem, const unsigned char if (size == 33 && (pub[0] == SECP256K1_TAG_PUBKEY_EVEN || pub[0] == SECP256K1_TAG_PUBKEY_ODD)) { secp256k1_fe x; return secp256k1_fe_set_b32(&x, pub+1) && secp256k1_ge_set_xo_var(elem, &x, pub[0] == SECP256K1_TAG_PUBKEY_ODD); - } else if (size == 65 && (pub[0] == 0x04 || pub[0] == 0x06 || pub[0] == 0x07)) { + } else if (size == 65 && (pub[0] == SECP256K1_TAG_PUBKEY_UNCOMPRESSED || pub[0] == SECP256K1_TAG_PUBKEY_HYBRID_EVEN || pub[0] == SECP256K1_TAG_PUBKEY_HYBRID_ODD)) { secp256k1_fe x, y; if (!secp256k1_fe_set_b32(&x, pub+1) || !secp256k1_fe_set_b32(&y, pub+33)) { return 0; @@ -54,10 +54,7 @@ static int secp256k1_eckey_pubkey_serialize(secp256k1_ge *elem, unsigned char *p static int secp256k1_eckey_privkey_tweak_add(secp256k1_scalar *key, const secp256k1_scalar *tweak) { secp256k1_scalar_add(key, key, tweak); - if (secp256k1_scalar_is_zero(key)) { - return 0; - } - return 1; + return !secp256k1_scalar_is_zero(key); } static int secp256k1_eckey_pubkey_tweak_add(const secp256k1_ecmult_context *ctx, secp256k1_ge *key, const secp256k1_scalar *tweak) { @@ -75,12 +72,11 @@ static int secp256k1_eckey_pubkey_tweak_add(const secp256k1_ecmult_context *ctx, } static int secp256k1_eckey_privkey_tweak_mul(secp256k1_scalar *key, const secp256k1_scalar *tweak) { - if (secp256k1_scalar_is_zero(tweak)) { - return 0; - } + int ret; + ret = !secp256k1_scalar_is_zero(tweak); secp256k1_scalar_mul(key, key, tweak); - return 1; + return ret; } static int secp256k1_eckey_pubkey_tweak_mul(const secp256k1_ecmult_context *ctx, secp256k1_ge *key, const secp256k1_scalar *tweak) { diff --git a/src/ecmult.h b/src/ecmult.h index ea1cd8a21f66b..7ab617e20e421 100644 --- a/src/ecmult.h +++ b/src/ecmult.h @@ -1,13 +1,12 @@ -/********************************************************************** - * Copyright (c) 2013, 2014, 2017 Pieter Wuille, Andrew Poelstra * - * Distributed under the MIT software license, see the accompanying * - * file COPYING or http://www.opensource.org/licenses/mit-license.php.* - **********************************************************************/ +/*********************************************************************** + * Copyright (c) 2013, 2014, 2017 Pieter Wuille, Andrew Poelstra * + * Distributed under the MIT software license, see the accompanying * + * file COPYING or https://www.opensource.org/licenses/mit-license.php.* + ***********************************************************************/ #ifndef SECP256K1_ECMULT_H #define SECP256K1_ECMULT_H -#include "num.h" #include "group.h" #include "scalar.h" #include "scratch.h" @@ -15,15 +14,13 @@ typedef struct { /* For accelerating the computation of a*P + b*G: */ secp256k1_ge_storage (*pre_g)[]; /* odd multiples of the generator */ -#ifdef USE_ENDOMORPHISM secp256k1_ge_storage (*pre_g_128)[]; /* odd multiples of 2^128*generator */ -#endif } secp256k1_ecmult_context; +static const size_t SECP256K1_ECMULT_CONTEXT_PREALLOCATED_SIZE; static void secp256k1_ecmult_context_init(secp256k1_ecmult_context *ctx); -static void secp256k1_ecmult_context_build(secp256k1_ecmult_context *ctx, const secp256k1_callback *cb); -static void secp256k1_ecmult_context_clone(secp256k1_ecmult_context *dst, - const secp256k1_ecmult_context *src, const secp256k1_callback *cb); +static void secp256k1_ecmult_context_build(secp256k1_ecmult_context *ctx, void **prealloc); +static void secp256k1_ecmult_context_finalize_memcpy(secp256k1_ecmult_context *dst, const secp256k1_ecmult_context *src); static void secp256k1_ecmult_context_clear(secp256k1_ecmult_context *ctx); static int secp256k1_ecmult_context_is_built(const secp256k1_ecmult_context *ctx); @@ -37,11 +34,12 @@ typedef int (secp256k1_ecmult_multi_callback)(secp256k1_scalar *sc, secp256k1_ge * Chooses the right algorithm for a given number of points and scratch space * size. Resets and overwrites the given scratch space. If the points do not * fit in the scratch space the algorithm is repeatedly run with batches of - * points. + * points. If no scratch space is given then a simple algorithm is used that + * simply multiplies the points with the corresponding scalars and adds them up. * Returns: 1 on success (including when inp_g_sc is NULL and n is 0) * 0 if there is not enough scratch space for a single point or * callback returns 0 */ -static int secp256k1_ecmult_multi_var(const secp256k1_ecmult_context *ctx, secp256k1_scratch *scratch, secp256k1_gej *r, const secp256k1_scalar *inp_g_sc, secp256k1_ecmult_multi_callback cb, void *cbdata, size_t n); +static int secp256k1_ecmult_multi_var(const secp256k1_callback* error_callback, const secp256k1_ecmult_context *ctx, secp256k1_scratch *scratch, secp256k1_gej *r, const secp256k1_scalar *inp_g_sc, secp256k1_ecmult_multi_callback cb, void *cbdata, size_t n); #endif /* SECP256K1_ECMULT_H */ diff --git a/src/ecmult_const.h b/src/ecmult_const.h index d4804b8b68faa..d6f0ea22275a6 100644 --- a/src/ecmult_const.h +++ b/src/ecmult_const.h @@ -1,8 +1,8 @@ -/********************************************************************** - * Copyright (c) 2015 Andrew Poelstra * - * Distributed under the MIT software license, see the accompanying * - * file COPYING or http://www.opensource.org/licenses/mit-license.php.* - **********************************************************************/ +/*********************************************************************** + * Copyright (c) 2015 Andrew Poelstra * + * Distributed under the MIT software license, see the accompanying * + * file COPYING or https://www.opensource.org/licenses/mit-license.php.* + ***********************************************************************/ #ifndef SECP256K1_ECMULT_CONST_H #define SECP256K1_ECMULT_CONST_H @@ -10,8 +10,11 @@ #include "scalar.h" #include "group.h" -/* Here `bits` should be set to the maximum bitlength of the _absolute value_ of `q`, plus - * one because we internally sometimes add 2 to the number during the WNAF conversion. */ +/** + * Multiply: R = q*A (in constant-time) + * Here `bits` should be set to the maximum bitlength of the _absolute value_ of `q`, plus + * one because we internally sometimes add 2 to the number during the WNAF conversion. + */ static void secp256k1_ecmult_const(secp256k1_gej *r, const secp256k1_ge *a, const secp256k1_scalar *q, int bits); #endif /* SECP256K1_ECMULT_CONST_H */ diff --git a/src/ecmult_const_impl.h b/src/ecmult_const_impl.h index 8411752eb069f..0e1fb965cbdef 100644 --- a/src/ecmult_const_impl.h +++ b/src/ecmult_const_impl.h @@ -1,8 +1,8 @@ -/********************************************************************** - * Copyright (c) 2015 Pieter Wuille, Andrew Poelstra * - * Distributed under the MIT software license, see the accompanying * - * file COPYING or http://www.opensource.org/licenses/mit-license.php.* - **********************************************************************/ +/*********************************************************************** + * Copyright (c) 2015 Pieter Wuille, Andrew Poelstra * + * Distributed under the MIT software license, see the accompanying * + * file COPYING or https://www.opensource.org/licenses/mit-license.php.* + ***********************************************************************/ #ifndef SECP256K1_ECMULT_CONST_IMPL_H #define SECP256K1_ECMULT_CONST_IMPL_H @@ -14,16 +14,22 @@ /* This is like `ECMULT_TABLE_GET_GE` but is constant time */ #define ECMULT_CONST_TABLE_GET_GE(r,pre,n,w) do { \ - int m; \ - int abs_n = (n) * (((n) > 0) * 2 - 1); \ - int idx_n = abs_n / 2; \ + int m = 0; \ + /* Extract the sign-bit for a constant time absolute-value. */ \ + int mask = (n) >> (sizeof(n) * CHAR_BIT - 1); \ + int abs_n = ((n) + mask) ^ mask; \ + int idx_n = abs_n >> 1; \ secp256k1_fe neg_y; \ VERIFY_CHECK(((n) & 1) == 1); \ VERIFY_CHECK((n) >= -((1 << ((w)-1)) - 1)); \ VERIFY_CHECK((n) <= ((1 << ((w)-1)) - 1)); \ VERIFY_SETUP(secp256k1_fe_clear(&(r)->x)); \ VERIFY_SETUP(secp256k1_fe_clear(&(r)->y)); \ - for (m = 0; m < ECMULT_TABLE_SIZE(w); m++) { \ + /* Unconditionally set r->x = (pre)[m].x. r->y = (pre)[m].y. because it's either the correct one \ + * or will get replaced in the later iterations, this is needed to make sure `r` is initialized. */ \ + (r)->x = (pre)[m].x; \ + (r)->y = (pre)[m].y; \ + for (m = 1; m < ECMULT_TABLE_SIZE(w); m++) { \ /* This loop is used to avoid secret data in array indices. See * the comment in ecmult_gen_impl.h for rationale. */ \ secp256k1_fe_cmov(&(r)->x, &(pre)[m].x, m == idx_n); \ @@ -44,11 +50,11 @@ * * Adapted from `The Width-w NAF Method Provides Small Memory and Fast Elliptic Scalar * Multiplications Secure against Side Channel Attacks`, Okeya and Tagaki. M. Joye (Ed.) - * CT-RSA 2003, LNCS 2612, pp. 328-443, 2003. Springer-Verlagy Berlin Heidelberg 2003 + * CT-RSA 2003, LNCS 2612, pp. 328-443, 2003. Springer-Verlag Berlin Heidelberg 2003 * * Numbers reference steps of `Algorithm SPA-resistant Width-w NAF with Odd Scalar` on pp. 335 */ -static int secp256k1_wnaf_const(int *wnaf, secp256k1_scalar s, int w, int size) { +static int secp256k1_wnaf_const(int *wnaf, const secp256k1_scalar *scalar, int w, int size) { int global_sign; int skew = 0; int word = 0; @@ -59,8 +65,12 @@ static int secp256k1_wnaf_const(int *wnaf, secp256k1_scalar s, int w, int size) int flip; int bit; - secp256k1_scalar neg_s; + secp256k1_scalar s; int not_neg_one; + + VERIFY_CHECK(w > 0); + VERIFY_CHECK(size > 0); + /* Note that we cannot handle even numbers by negating them to be odd, as is * done in other implementations, since if our scalars were specified to have * width < 256 for performance reasons, their negations would have width 256 @@ -75,12 +85,13 @@ static int secp256k1_wnaf_const(int *wnaf, secp256k1_scalar s, int w, int size) * {1, 2} we want to add to the scalar when ensuring that it's odd. Further * complicating things, -1 interacts badly with `secp256k1_scalar_cadd_bit` and * we need to special-case it in this logic. */ - flip = secp256k1_scalar_is_high(&s); + flip = secp256k1_scalar_is_high(scalar); /* We add 1 to even numbers, 2 to odd ones, noting that negation flips parity */ - bit = flip ^ !secp256k1_scalar_is_even(&s); + bit = flip ^ !secp256k1_scalar_is_even(scalar); /* We check for negative one, since adding 2 to it will cause an overflow */ - secp256k1_scalar_negate(&neg_s, &s); - not_neg_one = !secp256k1_scalar_is_one(&neg_s); + secp256k1_scalar_negate(&s, scalar); + not_neg_one = !secp256k1_scalar_is_one(&s); + s = *scalar; secp256k1_scalar_cadd_bit(&s, bit, not_neg_one); /* If we had negative one, flip == 1, s.d[0] == 0, bit == 1, so caller expects * that we added two to it and flipped it. In fact for -1 these operations are @@ -93,23 +104,29 @@ static int secp256k1_wnaf_const(int *wnaf, secp256k1_scalar s, int w, int size) /* 4 */ u_last = secp256k1_scalar_shr_int(&s, w); - while (word * w < size) { - int sign; + do { int even; /* 4.1 4.4 */ u = secp256k1_scalar_shr_int(&s, w); /* 4.2 */ even = ((u & 1) == 0); - sign = 2 * (u_last > 0) - 1; - u += sign * even; - u_last -= sign * even * (1 << w); + /* In contrast to the original algorithm, u_last is always > 0 and + * therefore we do not need to check its sign. In particular, it's easy + * to see that u_last is never < 0 because u is never < 0. Moreover, + * u_last is never = 0 because u is never even after a loop + * iteration. The same holds analogously for the initial value of + * u_last (in the first loop iteration). */ + VERIFY_CHECK(u_last > 0); + VERIFY_CHECK((u_last & 1) == 1); + u += even; + u_last -= even * (1 << w); /* 4.3, adapted for global sign change */ wnaf[word++] = u_last * global_sign; u_last = u; - } + } while (word * w < size); wnaf[word] = u * global_sign; VERIFY_CHECK(secp256k1_scalar_is_zero(&s)); @@ -123,33 +140,26 @@ static void secp256k1_ecmult_const(secp256k1_gej *r, const secp256k1_ge *a, cons secp256k1_fe Z; int skew_1; -#ifdef USE_ENDOMORPHISM secp256k1_ge pre_a_lam[ECMULT_TABLE_SIZE(WINDOW_A)]; int wnaf_lam[1 + WNAF_SIZE(WINDOW_A - 1)]; int skew_lam; secp256k1_scalar q_1, q_lam; -#endif int wnaf_1[1 + WNAF_SIZE(WINDOW_A - 1)]; int i; - secp256k1_scalar sc = *scalar; /* build wnaf representation for q. */ int rsize = size; -#ifdef USE_ENDOMORPHISM if (size > 128) { rsize = 128; /* split q into q_1 and q_lam (where q = q_1 + q_lam*lambda, and q_1 and q_lam are ~128 bit) */ - secp256k1_scalar_split_lambda(&q_1, &q_lam, &sc); - skew_1 = secp256k1_wnaf_const(wnaf_1, q_1, WINDOW_A - 1, 128); - skew_lam = secp256k1_wnaf_const(wnaf_lam, q_lam, WINDOW_A - 1, 128); + secp256k1_scalar_split_lambda(&q_1, &q_lam, scalar); + skew_1 = secp256k1_wnaf_const(wnaf_1, &q_1, WINDOW_A - 1, 128); + skew_lam = secp256k1_wnaf_const(wnaf_lam, &q_lam, WINDOW_A - 1, 128); } else -#endif { - skew_1 = secp256k1_wnaf_const(wnaf_1, sc, WINDOW_A - 1, size); -#ifdef USE_ENDOMORPHISM + skew_1 = secp256k1_wnaf_const(wnaf_1, scalar, WINDOW_A - 1, size); skew_lam = 0; -#endif } /* Calculate odd multiples of a. @@ -163,13 +173,12 @@ static void secp256k1_ecmult_const(secp256k1_gej *r, const secp256k1_ge *a, cons for (i = 0; i < ECMULT_TABLE_SIZE(WINDOW_A); i++) { secp256k1_fe_normalize_weak(&pre_a[i].y); } -#ifdef USE_ENDOMORPHISM if (size > 128) { for (i = 0; i < ECMULT_TABLE_SIZE(WINDOW_A); i++) { secp256k1_ge_mul_lambda(&pre_a_lam[i], &pre_a[i]); } + } -#endif /* first loop iteration (separated out so we can directly set r, rather * than having it start at infinity, get doubled several times, then have @@ -178,34 +187,30 @@ static void secp256k1_ecmult_const(secp256k1_gej *r, const secp256k1_ge *a, cons VERIFY_CHECK(i != 0); ECMULT_CONST_TABLE_GET_GE(&tmpa, pre_a, i, WINDOW_A); secp256k1_gej_set_ge(r, &tmpa); -#ifdef USE_ENDOMORPHISM if (size > 128) { i = wnaf_lam[WNAF_SIZE_BITS(rsize, WINDOW_A - 1)]; VERIFY_CHECK(i != 0); ECMULT_CONST_TABLE_GET_GE(&tmpa, pre_a_lam, i, WINDOW_A); secp256k1_gej_add_ge(r, r, &tmpa); } -#endif /* remaining loop iterations */ for (i = WNAF_SIZE_BITS(rsize, WINDOW_A - 1) - 1; i >= 0; i--) { int n; int j; for (j = 0; j < WINDOW_A - 1; ++j) { - secp256k1_gej_double_nonzero(r, r, NULL); + secp256k1_gej_double(r, r); } n = wnaf_1[i]; ECMULT_CONST_TABLE_GET_GE(&tmpa, pre_a, n, WINDOW_A); VERIFY_CHECK(n != 0); secp256k1_gej_add_ge(r, r, &tmpa); -#ifdef USE_ENDOMORPHISM if (size > 128) { n = wnaf_lam[i]; ECMULT_CONST_TABLE_GET_GE(&tmpa, pre_a_lam, n, WINDOW_A); VERIFY_CHECK(n != 0); secp256k1_gej_add_ge(r, r, &tmpa); } -#endif } secp256k1_fe_mul(&r->z, &r->z, &Z); @@ -214,43 +219,35 @@ static void secp256k1_ecmult_const(secp256k1_gej *r, const secp256k1_ge *a, cons /* Correct for wNAF skew */ secp256k1_ge correction = *a; secp256k1_ge_storage correction_1_stor; -#ifdef USE_ENDOMORPHISM secp256k1_ge_storage correction_lam_stor; -#endif secp256k1_ge_storage a2_stor; secp256k1_gej tmpj; secp256k1_gej_set_ge(&tmpj, &correction); secp256k1_gej_double_var(&tmpj, &tmpj, NULL); secp256k1_ge_set_gej(&correction, &tmpj); secp256k1_ge_to_storage(&correction_1_stor, a); -#ifdef USE_ENDOMORPHISM if (size > 128) { secp256k1_ge_to_storage(&correction_lam_stor, a); } -#endif secp256k1_ge_to_storage(&a2_stor, &correction); /* For odd numbers this is 2a (so replace it), for even ones a (so no-op) */ secp256k1_ge_storage_cmov(&correction_1_stor, &a2_stor, skew_1 == 2); -#ifdef USE_ENDOMORPHISM if (size > 128) { secp256k1_ge_storage_cmov(&correction_lam_stor, &a2_stor, skew_lam == 2); } -#endif /* Apply the correction */ secp256k1_ge_from_storage(&correction, &correction_1_stor); secp256k1_ge_neg(&correction, &correction); secp256k1_gej_add_ge(r, r, &correction); -#ifdef USE_ENDOMORPHISM if (size > 128) { secp256k1_ge_from_storage(&correction, &correction_lam_stor); secp256k1_ge_neg(&correction, &correction); secp256k1_ge_mul_lambda(&correction, &correction); secp256k1_gej_add_ge(r, r, &correction); } -#endif } } diff --git a/src/ecmult_gen.h b/src/ecmult_gen.h index 7564b7015f0b7..539618dcbb872 100644 --- a/src/ecmult_gen.h +++ b/src/ecmult_gen.h @@ -1,8 +1,8 @@ -/********************************************************************** - * Copyright (c) 2013, 2014 Pieter Wuille * - * Distributed under the MIT software license, see the accompanying * - * file COPYING or http://www.opensource.org/licenses/mit-license.php.* - **********************************************************************/ +/*********************************************************************** + * Copyright (c) 2013, 2014 Pieter Wuille * + * Distributed under the MIT software license, see the accompanying * + * file COPYING or https://www.opensource.org/licenses/mit-license.php.* + ***********************************************************************/ #ifndef SECP256K1_ECMULT_GEN_H #define SECP256K1_ECMULT_GEN_H @@ -10,28 +10,35 @@ #include "scalar.h" #include "group.h" +#if ECMULT_GEN_PREC_BITS != 2 && ECMULT_GEN_PREC_BITS != 4 && ECMULT_GEN_PREC_BITS != 8 +# error "Set ECMULT_GEN_PREC_BITS to 2, 4 or 8." +#endif +#define ECMULT_GEN_PREC_B ECMULT_GEN_PREC_BITS +#define ECMULT_GEN_PREC_G (1 << ECMULT_GEN_PREC_B) +#define ECMULT_GEN_PREC_N (256 / ECMULT_GEN_PREC_B) + typedef struct { /* For accelerating the computation of a*G: * To harden against timing attacks, use the following mechanism: - * * Break up the multiplicand into groups of 4 bits, called n_0, n_1, n_2, ..., n_63. - * * Compute sum(n_i * 16^i * G + U_i, i=0..63), where: - * * U_i = U * 2^i (for i=0..62) - * * U_i = U * (1-2^63) (for i=63) - * where U is a point with no known corresponding scalar. Note that sum(U_i, i=0..63) = 0. - * For each i, and each of the 16 possible values of n_i, (n_i * 16^i * G + U_i) is - * precomputed (call it prec(i, n_i)). The formula now becomes sum(prec(i, n_i), i=0..63). + * * Break up the multiplicand into groups of PREC_B bits, called n_0, n_1, n_2, ..., n_(PREC_N-1). + * * Compute sum(n_i * (PREC_G)^i * G + U_i, i=0 ... PREC_N-1), where: + * * U_i = U * 2^i, for i=0 ... PREC_N-2 + * * U_i = U * (1-2^(PREC_N-1)), for i=PREC_N-1 + * where U is a point with no known corresponding scalar. Note that sum(U_i, i=0 ... PREC_N-1) = 0. + * For each i, and each of the PREC_G possible values of n_i, (n_i * (PREC_G)^i * G + U_i) is + * precomputed (call it prec(i, n_i)). The formula now becomes sum(prec(i, n_i), i=0 ... PREC_N-1). * None of the resulting prec group elements have a known scalar, and neither do any of * the intermediate sums while computing a*G. */ - secp256k1_ge_storage (*prec)[64][16]; /* prec[j][i] = 16^j * i * G + U_i */ + secp256k1_ge_storage (*prec)[ECMULT_GEN_PREC_N][ECMULT_GEN_PREC_G]; /* prec[j][i] = (PREC_G)^j * i * G + U_i */ secp256k1_scalar blind; secp256k1_gej initial; } secp256k1_ecmult_gen_context; +static const size_t SECP256K1_ECMULT_GEN_CONTEXT_PREALLOCATED_SIZE; static void secp256k1_ecmult_gen_context_init(secp256k1_ecmult_gen_context* ctx); -static void secp256k1_ecmult_gen_context_build(secp256k1_ecmult_gen_context* ctx, const secp256k1_callback* cb); -static void secp256k1_ecmult_gen_context_clone(secp256k1_ecmult_gen_context *dst, - const secp256k1_ecmult_gen_context* src, const secp256k1_callback* cb); +static void secp256k1_ecmult_gen_context_build(secp256k1_ecmult_gen_context* ctx, void **prealloc); +static void secp256k1_ecmult_gen_context_finalize_memcpy(secp256k1_ecmult_gen_context *dst, const secp256k1_ecmult_gen_context* src); static void secp256k1_ecmult_gen_context_clear(secp256k1_ecmult_gen_context* ctx); static int secp256k1_ecmult_gen_context_is_built(const secp256k1_ecmult_gen_context* ctx); diff --git a/src/ecmult_gen_impl.h b/src/ecmult_gen_impl.h index 714f02e94c981..384a67faeda7a 100644 --- a/src/ecmult_gen_impl.h +++ b/src/ecmult_gen_impl.h @@ -1,12 +1,13 @@ -/********************************************************************** - * Copyright (c) 2013, 2014, 2015 Pieter Wuille, Gregory Maxwell * - * Distributed under the MIT software license, see the accompanying * - * file COPYING or http://www.opensource.org/licenses/mit-license.php.* - **********************************************************************/ +/*********************************************************************** + * Copyright (c) 2013, 2014, 2015 Pieter Wuille, Gregory Maxwell * + * Distributed under the MIT software license, see the accompanying * + * file COPYING or https://www.opensource.org/licenses/mit-license.php.* + ***********************************************************************/ #ifndef SECP256K1_ECMULT_GEN_IMPL_H #define SECP256K1_ECMULT_GEN_IMPL_H +#include "util.h" #include "scalar.h" #include "group.h" #include "ecmult_gen.h" @@ -14,23 +15,32 @@ #ifdef USE_ECMULT_STATIC_PRECOMPUTATION #include "ecmult_static_context.h" #endif + +#ifndef USE_ECMULT_STATIC_PRECOMPUTATION + static const size_t SECP256K1_ECMULT_GEN_CONTEXT_PREALLOCATED_SIZE = ROUND_TO_ALIGN(sizeof(*((secp256k1_ecmult_gen_context*) NULL)->prec)); +#else + static const size_t SECP256K1_ECMULT_GEN_CONTEXT_PREALLOCATED_SIZE = 0; +#endif + static void secp256k1_ecmult_gen_context_init(secp256k1_ecmult_gen_context *ctx) { ctx->prec = NULL; } -static void secp256k1_ecmult_gen_context_build(secp256k1_ecmult_gen_context *ctx, const secp256k1_callback* cb) { +static void secp256k1_ecmult_gen_context_build(secp256k1_ecmult_gen_context *ctx, void **prealloc) { #ifndef USE_ECMULT_STATIC_PRECOMPUTATION - secp256k1_ge prec[1024]; + secp256k1_ge prec[ECMULT_GEN_PREC_N * ECMULT_GEN_PREC_G]; secp256k1_gej gj; secp256k1_gej nums_gej; int i, j; + size_t const prealloc_size = SECP256K1_ECMULT_GEN_CONTEXT_PREALLOCATED_SIZE; + void* const base = *prealloc; #endif if (ctx->prec != NULL) { return; } #ifndef USE_ECMULT_STATIC_PRECOMPUTATION - ctx->prec = (secp256k1_ge_storage (*)[64][16])checked_malloc(cb, sizeof(*ctx->prec)); + ctx->prec = (secp256k1_ge_storage (*)[ECMULT_GEN_PREC_N][ECMULT_GEN_PREC_G])manual_alloc(prealloc, prealloc_size, base, prealloc_size); /* get the generator */ secp256k1_gej_set_ge(&gj, &secp256k1_ge_const_g); @@ -54,39 +64,39 @@ static void secp256k1_ecmult_gen_context_build(secp256k1_ecmult_gen_context *ctx /* compute prec. */ { - secp256k1_gej precj[1024]; /* Jacobian versions of prec. */ + secp256k1_gej precj[ECMULT_GEN_PREC_N * ECMULT_GEN_PREC_G]; /* Jacobian versions of prec. */ secp256k1_gej gbase; secp256k1_gej numsbase; - gbase = gj; /* 16^j * G */ + gbase = gj; /* PREC_G^j * G */ numsbase = nums_gej; /* 2^j * nums. */ - for (j = 0; j < 64; j++) { - /* Set precj[j*16 .. j*16+15] to (numsbase, numsbase + gbase, ..., numsbase + 15*gbase). */ - precj[j*16] = numsbase; - for (i = 1; i < 16; i++) { - secp256k1_gej_add_var(&precj[j*16 + i], &precj[j*16 + i - 1], &gbase, NULL); + for (j = 0; j < ECMULT_GEN_PREC_N; j++) { + /* Set precj[j*PREC_G .. j*PREC_G+(PREC_G-1)] to (numsbase, numsbase + gbase, ..., numsbase + (PREC_G-1)*gbase). */ + precj[j*ECMULT_GEN_PREC_G] = numsbase; + for (i = 1; i < ECMULT_GEN_PREC_G; i++) { + secp256k1_gej_add_var(&precj[j*ECMULT_GEN_PREC_G + i], &precj[j*ECMULT_GEN_PREC_G + i - 1], &gbase, NULL); } - /* Multiply gbase by 16. */ - for (i = 0; i < 4; i++) { + /* Multiply gbase by PREC_G. */ + for (i = 0; i < ECMULT_GEN_PREC_B; i++) { secp256k1_gej_double_var(&gbase, &gbase, NULL); } /* Multiply numbase by 2. */ secp256k1_gej_double_var(&numsbase, &numsbase, NULL); - if (j == 62) { + if (j == ECMULT_GEN_PREC_N - 2) { /* In the last iteration, numsbase is (1 - 2^j) * nums instead. */ secp256k1_gej_neg(&numsbase, &numsbase); secp256k1_gej_add_var(&numsbase, &numsbase, &nums_gej, NULL); } } - secp256k1_ge_set_all_gej_var(prec, precj, 1024, cb); + secp256k1_ge_set_all_gej_var(prec, precj, ECMULT_GEN_PREC_N * ECMULT_GEN_PREC_G); } - for (j = 0; j < 64; j++) { - for (i = 0; i < 16; i++) { - secp256k1_ge_to_storage(&(*ctx->prec)[j][i], &prec[j*16 + i]); + for (j = 0; j < ECMULT_GEN_PREC_N; j++) { + for (i = 0; i < ECMULT_GEN_PREC_G; i++) { + secp256k1_ge_to_storage(&(*ctx->prec)[j][i], &prec[j*ECMULT_GEN_PREC_G + i]); } } #else - (void)cb; - ctx->prec = (secp256k1_ge_storage (*)[64][16])secp256k1_ecmult_static_context; + (void)prealloc; + ctx->prec = (secp256k1_ge_storage (*)[ECMULT_GEN_PREC_N][ECMULT_GEN_PREC_G])secp256k1_ecmult_static_context; #endif secp256k1_ecmult_gen_blind(ctx, NULL); } @@ -95,27 +105,18 @@ static int secp256k1_ecmult_gen_context_is_built(const secp256k1_ecmult_gen_cont return ctx->prec != NULL; } -static void secp256k1_ecmult_gen_context_clone(secp256k1_ecmult_gen_context *dst, - const secp256k1_ecmult_gen_context *src, const secp256k1_callback* cb) { - if (src->prec == NULL) { - dst->prec = NULL; - } else { +static void secp256k1_ecmult_gen_context_finalize_memcpy(secp256k1_ecmult_gen_context *dst, const secp256k1_ecmult_gen_context *src) { #ifndef USE_ECMULT_STATIC_PRECOMPUTATION - dst->prec = (secp256k1_ge_storage (*)[64][16])checked_malloc(cb, sizeof(*dst->prec)); - memcpy(dst->prec, src->prec, sizeof(*dst->prec)); + if (src->prec != NULL) { + /* We cast to void* first to suppress a -Wcast-align warning. */ + dst->prec = (secp256k1_ge_storage (*)[ECMULT_GEN_PREC_N][ECMULT_GEN_PREC_G])(void*)((unsigned char*)dst + ((unsigned char*)src->prec - (unsigned char*)src)); + } #else - (void)cb; - dst->prec = src->prec; + (void)dst, (void)src; #endif - dst->initial = src->initial; - dst->blind = src->blind; - } } static void secp256k1_ecmult_gen_context_clear(secp256k1_ecmult_gen_context *ctx) { -#ifndef USE_ECMULT_STATIC_PRECOMPUTATION - free(ctx->prec); -#endif secp256k1_scalar_clear(&ctx->blind); secp256k1_gej_clear(&ctx->initial); ctx->prec = NULL; @@ -132,9 +133,9 @@ static void secp256k1_ecmult_gen(const secp256k1_ecmult_gen_context *ctx, secp25 /* Blind scalar/point multiplication by computing (n-b)G + bG instead of nG. */ secp256k1_scalar_add(&gnb, gn, &ctx->blind); add.infinity = 0; - for (j = 0; j < 64; j++) { - bits = secp256k1_scalar_get_bits(&gnb, j * 4, 4); - for (i = 0; i < 16; i++) { + for (j = 0; j < ECMULT_GEN_PREC_N; j++) { + bits = secp256k1_scalar_get_bits(&gnb, j * ECMULT_GEN_PREC_B, ECMULT_GEN_PREC_B); + for (i = 0; i < ECMULT_GEN_PREC_G; i++) { /** This uses a conditional move to avoid any secret data in array indexes. * _Any_ use of secret indexes has been demonstrated to result in timing * sidechannels, even when the cache-line access patterns are uniform. @@ -143,7 +144,7 @@ static void secp256k1_ecmult_gen(const secp256k1_ecmult_gen_context *ctx, secp25 * (https://cryptojedi.org/peter/data/chesrump-20130822.pdf) and * "Cache Attacks and Countermeasures: the Case of AES", RSA 2006, * by Dag Arne Osvik, Adi Shamir, and Eran Tromer - * (http://www.tau.ac.il/~tromer/papers/cache.pdf) + * (https://www.tau.ac.il/~tromer/papers/cache.pdf) */ secp256k1_ge_storage_cmov(&adds, &(*ctx->prec)[j][i], i == bits); } @@ -162,7 +163,7 @@ static void secp256k1_ecmult_gen_blind(secp256k1_ecmult_gen_context *ctx, const secp256k1_fe s; unsigned char nonce32[32]; secp256k1_rfc6979_hmac_sha256 rng; - int retry; + int overflow; unsigned char keydata[64] = {0}; if (seed32 == NULL) { /* When seed is NULL, reset the initial point and blinding value. */ @@ -182,21 +183,18 @@ static void secp256k1_ecmult_gen_blind(secp256k1_ecmult_gen_context *ctx, const } secp256k1_rfc6979_hmac_sha256_initialize(&rng, keydata, seed32 ? 64 : 32); memset(keydata, 0, sizeof(keydata)); - /* Retry for out of range results to achieve uniformity. */ - do { - secp256k1_rfc6979_hmac_sha256_generate(&rng, nonce32, 32); - retry = !secp256k1_fe_set_b32(&s, nonce32); - retry |= secp256k1_fe_is_zero(&s); - } while (retry); /* This branch true is cryptographically unreachable. Requires sha256_hmac output > Fp. */ + /* Accept unobservably small non-uniformity. */ + secp256k1_rfc6979_hmac_sha256_generate(&rng, nonce32, 32); + overflow = !secp256k1_fe_set_b32(&s, nonce32); + overflow |= secp256k1_fe_is_zero(&s); + secp256k1_fe_cmov(&s, &secp256k1_fe_one, overflow); /* Randomize the projection to defend against multiplier sidechannels. */ secp256k1_gej_rescale(&ctx->initial, &s); secp256k1_fe_clear(&s); - do { - secp256k1_rfc6979_hmac_sha256_generate(&rng, nonce32, 32); - secp256k1_scalar_set_b32(&b, nonce32, &retry); - /* A blinding value of 0 works, but would undermine the projection hardening. */ - retry |= secp256k1_scalar_is_zero(&b); - } while (retry); /* This branch true is cryptographically unreachable. Requires sha256_hmac output > order. */ + secp256k1_rfc6979_hmac_sha256_generate(&rng, nonce32, 32); + secp256k1_scalar_set_b32(&b, nonce32, NULL); + /* A blinding value of 0 works, but would undermine the projection hardening. */ + secp256k1_scalar_cmov(&b, &secp256k1_scalar_one, secp256k1_scalar_is_zero(&b)); secp256k1_rfc6979_hmac_sha256_finalize(&rng); memset(nonce32, 0, 32); secp256k1_ecmult_gen(ctx, &gb, &b); diff --git a/src/ecmult_impl.h b/src/ecmult_impl.h index d5fb6c5b61dd2..5c2edac68fc69 100644 --- a/src/ecmult_impl.h +++ b/src/ecmult_impl.h @@ -1,8 +1,8 @@ -/***************************************************************************** - * Copyright (c) 2013, 2014, 2017 Pieter Wuille, Andrew Poelstra, Jonas Nick * - * Distributed under the MIT software license, see the accompanying * - * file COPYING or http://www.opensource.org/licenses/mit-license.php. * - *****************************************************************************/ +/****************************************************************************** + * Copyright (c) 2013, 2014, 2017 Pieter Wuille, Andrew Poelstra, Jonas Nick * + * Distributed under the MIT software license, see the accompanying * + * file COPYING or https://www.opensource.org/licenses/mit-license.php. * + ******************************************************************************/ #ifndef SECP256K1_ECMULT_IMPL_H #define SECP256K1_ECMULT_IMPL_H @@ -10,6 +10,7 @@ #include #include +#include "util.h" #include "group.h" #include "scalar.h" #include "ecmult.h" @@ -30,23 +31,35 @@ # endif #else /* optimal for 128-bit and 256-bit exponents. */ -#define WINDOW_A 5 -/** larger numbers may result in slightly better performance, at the cost of - exponentially larger precomputed tables. */ -#ifdef USE_ENDOMORPHISM -/** Two tables for window size 15: 1.375 MiB. */ -#define WINDOW_G 15 -#else -/** One table for window size 16: 1.375 MiB. */ -#define WINDOW_G 16 -#endif +# define WINDOW_A 5 +/** Larger values for ECMULT_WINDOW_SIZE result in possibly better + * performance at the cost of an exponentially larger precomputed + * table. The exact table size is + * (1 << (WINDOW_G - 2)) * sizeof(secp256k1_ge_storage) bytes, + * where sizeof(secp256k1_ge_storage) is typically 64 bytes but can + * be larger due to platform-specific padding and alignment. + * Two tables of this size are used (due to the endomorphism + * optimization). + */ +# define WINDOW_G ECMULT_WINDOW_SIZE #endif -#ifdef USE_ENDOMORPHISM - #define WNAF_BITS 128 -#else - #define WNAF_BITS 256 +/* Noone will ever need more than a window size of 24. The code might + * be correct for larger values of ECMULT_WINDOW_SIZE but this is not + * not tested. + * + * The following limitations are known, and there are probably more: + * If WINDOW_G > 27 and size_t has 32 bits, then the code is incorrect + * because the size of the memory object that we allocate (in bytes) + * will not fit in a size_t. + * If WINDOW_G > 31 and int has 32 bits, then the code is incorrect + * because certain expressions will overflow. + */ +#if ECMULT_WINDOW_SIZE < 2 || ECMULT_WINDOW_SIZE > 24 +# error Set ECMULT_WINDOW_SIZE to an integer in range [2..24]. #endif + +#define WNAF_BITS 128 #define WNAF_SIZE_BITS(bits, w) (((bits) + (w) - 1) / (w)) #define WNAF_SIZE(w) WNAF_SIZE_BITS(WNAF_BITS, w) @@ -60,17 +73,9 @@ #define PIPPENGER_MAX_BUCKET_WINDOW 12 /* Minimum number of points for which pippenger_wnaf is faster than strauss wnaf */ -#ifdef USE_ENDOMORPHISM - #define ECMULT_PIPPENGER_THRESHOLD 88 -#else - #define ECMULT_PIPPENGER_THRESHOLD 160 -#endif +#define ECMULT_PIPPENGER_THRESHOLD 88 -#ifdef USE_ENDOMORPHISM - #define ECMULT_MAX_POINTS_PER_BATCH 5000000 -#else - #define ECMULT_MAX_POINTS_PER_BATCH 10000000 -#endif +#define ECMULT_MAX_POINTS_PER_BATCH 5000000 /** Fill a table 'prej' with precomputed odd multiples of a. Prej will contain * the values [1*a,3*a,...,(2*n-1)*a], so it space for n values. zr[0] will @@ -121,7 +126,7 @@ static void secp256k1_ecmult_odd_multiples_table(int n, secp256k1_gej *prej, sec * It only operates on tables sized for WINDOW_A wnaf multiples. * - secp256k1_ecmult_odd_multiples_table_storage_var, which converts its * resulting point set to actually affine points, and stores those in pre. - * It operates on tables of any size, but uses heap-allocated temporaries. + * It operates on tables of any size. * * To compute a*P + b*G, we compute a table for P using the first function, * and for G using the second (which requires an inverse, but it only needs to @@ -137,24 +142,135 @@ static void secp256k1_ecmult_odd_multiples_table_globalz_windowa(secp256k1_ge *p secp256k1_ge_globalz_set_table_gej(ECMULT_TABLE_SIZE(WINDOW_A), pre, globalz, prej, zr); } -static void secp256k1_ecmult_odd_multiples_table_storage_var(int n, secp256k1_ge_storage *pre, const secp256k1_gej *a, const secp256k1_callback *cb) { - secp256k1_gej *prej = (secp256k1_gej*)checked_malloc(cb, sizeof(secp256k1_gej) * n); - secp256k1_ge *prea = (secp256k1_ge*)checked_malloc(cb, sizeof(secp256k1_ge) * n); - secp256k1_fe *zr = (secp256k1_fe*)checked_malloc(cb, sizeof(secp256k1_fe) * n); +static void secp256k1_ecmult_odd_multiples_table_storage_var(const int n, secp256k1_ge_storage *pre, const secp256k1_gej *a) { + secp256k1_gej d; + secp256k1_ge d_ge, p_ge; + secp256k1_gej pj; + secp256k1_fe zi; + secp256k1_fe zr; + secp256k1_fe dx_over_dz_squared; int i; - /* Compute the odd multiples in Jacobian form. */ - secp256k1_ecmult_odd_multiples_table(n, prej, zr, a); - /* Convert them in batch to affine coordinates. */ - secp256k1_ge_set_table_gej_var(prea, prej, zr, n); - /* Convert them to compact storage form. */ - for (i = 0; i < n; i++) { - secp256k1_ge_to_storage(&pre[i], &prea[i]); + VERIFY_CHECK(!a->infinity); + + secp256k1_gej_double_var(&d, a, NULL); + + /* First, we perform all the additions in an isomorphic curve obtained by multiplying + * all `z` coordinates by 1/`d.z`. In these coordinates `d` is affine so we can use + * `secp256k1_gej_add_ge_var` to perform the additions. For each addition, we store + * the resulting y-coordinate and the z-ratio, since we only have enough memory to + * store two field elements. These are sufficient to efficiently undo the isomorphism + * and recompute all the `x`s. + */ + d_ge.x = d.x; + d_ge.y = d.y; + d_ge.infinity = 0; + + secp256k1_ge_set_gej_zinv(&p_ge, a, &d.z); + pj.x = p_ge.x; + pj.y = p_ge.y; + pj.z = a->z; + pj.infinity = 0; + + for (i = 0; i < (n - 1); i++) { + secp256k1_fe_normalize_var(&pj.y); + secp256k1_fe_to_storage(&pre[i].y, &pj.y); + secp256k1_gej_add_ge_var(&pj, &pj, &d_ge, &zr); + secp256k1_fe_normalize_var(&zr); + secp256k1_fe_to_storage(&pre[i].x, &zr); } - free(prea); - free(prej); - free(zr); + /* Invert d.z in the same batch, preserving pj.z so we can extract 1/d.z */ + secp256k1_fe_mul(&zi, &pj.z, &d.z); + secp256k1_fe_inv_var(&zi, &zi); + + /* Directly set `pre[n - 1]` to `pj`, saving the inverted z-coordinate so + * that we can combine it with the saved z-ratios to compute the other zs + * without any more inversions. */ + secp256k1_ge_set_gej_zinv(&p_ge, &pj, &zi); + secp256k1_ge_to_storage(&pre[n - 1], &p_ge); + + /* Compute the actual x-coordinate of D, which will be needed below. */ + secp256k1_fe_mul(&d.z, &zi, &pj.z); /* d.z = 1/d.z */ + secp256k1_fe_sqr(&dx_over_dz_squared, &d.z); + secp256k1_fe_mul(&dx_over_dz_squared, &dx_over_dz_squared, &d.x); + + /* Going into the second loop, we have set `pre[n-1]` to its final affine + * form, but still need to set `pre[i]` for `i` in 0 through `n-2`. We + * have `zi = (p.z * d.z)^-1`, where + * + * `p.z` is the z-coordinate of the point on the isomorphic curve + * which was ultimately assigned to `pre[n-1]`. + * `d.z` is the multiplier that must be applied to all z-coordinates + * to move from our isomorphic curve back to secp256k1; so the + * product `p.z * d.z` is the z-coordinate of the secp256k1 + * point assigned to `pre[n-1]`. + * + * All subsequent inverse-z-coordinates can be obtained by multiplying this + * factor by successive z-ratios, which is much more efficient than directly + * computing each one. + * + * Importantly, these inverse-zs will be coordinates of points on secp256k1, + * while our other stored values come from computations on the isomorphic + * curve. So in the below loop, we will take care not to actually use `zi` + * or any derived values until we're back on secp256k1. + */ + i = n - 1; + while (i > 0) { + secp256k1_fe zi2, zi3; + const secp256k1_fe *rzr; + i--; + + secp256k1_ge_from_storage(&p_ge, &pre[i]); + + /* For each remaining point, we extract the z-ratio from the stored + * x-coordinate, compute its z^-1 from that, and compute the full + * point from that. */ + rzr = &p_ge.x; + secp256k1_fe_mul(&zi, &zi, rzr); + secp256k1_fe_sqr(&zi2, &zi); + secp256k1_fe_mul(&zi3, &zi2, &zi); + /* To compute the actual x-coordinate, we use the stored z ratio and + * y-coordinate, which we obtained from `secp256k1_gej_add_ge_var` + * in the loop above, as well as the inverse of the square of its + * z-coordinate. We store the latter in the `zi2` variable, which is + * computed iteratively starting from the overall Z inverse then + * multiplying by each z-ratio in turn. + * + * Denoting the z-ratio as `rzr`, we observe that it is equal to `h` + * from the inside of the above `gej_add_ge_var` call. This satisfies + * + * rzr = d_x * z^2 - x * d_z^2 + * + * where (`d_x`, `d_z`) are Jacobian coordinates of `D` and `(x, z)` + * are Jacobian coordinates of our desired point -- except both are on + * the isomorphic curve that we were using when we called `gej_add_ge_var`. + * To get back to secp256k1, we must multiply both `z`s by `d_z`, or + * equivalently divide both `x`s by `d_z^2`. Our equation then becomes + * + * rzr = d_x * z^2 / d_z^2 - x + * + * (The left-hand-side, being a ratio of z-coordinates, is unaffected + * by the isomorphism.) + * + * Rearranging to solve for `x`, we have + * + * x = d_x * z^2 / d_z^2 - rzr + * + * But what we actually want is the affine coordinate `X = x/z^2`, + * which will satisfy + * + * X = d_x / d_z^2 - rzr / z^2 + * = dx_over_dz_squared - rzr * zi2 + */ + secp256k1_fe_mul(&p_ge.x, rzr, &zi2); + secp256k1_fe_negate(&p_ge.x, &p_ge.x, 1); + secp256k1_fe_add(&p_ge.x, &dx_over_dz_squared); + /* y is stored_y/z^3, as we expect */ + secp256k1_fe_mul(&p_ge.y, &p_ge.y, &zi3); + /* Store */ + secp256k1_ge_to_storage(&pre[i], &p_ge); + } } /** The following two macro retrieves a particular odd multiple from a table @@ -166,7 +282,8 @@ static void secp256k1_ecmult_odd_multiples_table_storage_var(int n, secp256k1_ge if ((n) > 0) { \ *(r) = (pre)[((n)-1)/2]; \ } else { \ - secp256k1_ge_neg((r), &(pre)[(-(n)-1)/2]); \ + *(r) = (pre)[(-(n)-1)/2]; \ + secp256k1_fe_negate(&((r)->y), &((r)->y), 1); \ } \ } while(0) @@ -178,19 +295,24 @@ static void secp256k1_ecmult_odd_multiples_table_storage_var(int n, secp256k1_ge secp256k1_ge_from_storage((r), &(pre)[((n)-1)/2]); \ } else { \ secp256k1_ge_from_storage((r), &(pre)[(-(n)-1)/2]); \ - secp256k1_ge_neg((r), (r)); \ + secp256k1_fe_negate(&((r)->y), &((r)->y), 1); \ } \ } while(0) +static const size_t SECP256K1_ECMULT_CONTEXT_PREALLOCATED_SIZE = + ROUND_TO_ALIGN(sizeof((*((secp256k1_ecmult_context*) NULL)->pre_g)[0]) * ECMULT_TABLE_SIZE(WINDOW_G)) + + ROUND_TO_ALIGN(sizeof((*((secp256k1_ecmult_context*) NULL)->pre_g_128)[0]) * ECMULT_TABLE_SIZE(WINDOW_G)) + ; + static void secp256k1_ecmult_context_init(secp256k1_ecmult_context *ctx) { ctx->pre_g = NULL; -#ifdef USE_ENDOMORPHISM ctx->pre_g_128 = NULL; -#endif } -static void secp256k1_ecmult_context_build(secp256k1_ecmult_context *ctx, const secp256k1_callback *cb) { +static void secp256k1_ecmult_context_build(secp256k1_ecmult_context *ctx, void **prealloc) { secp256k1_gej gj; + void* const base = *prealloc; + size_t const prealloc_size = SECP256K1_ECMULT_CONTEXT_PREALLOCATED_SIZE; if (ctx->pre_g != NULL) { return; @@ -199,46 +321,42 @@ static void secp256k1_ecmult_context_build(secp256k1_ecmult_context *ctx, const /* get the generator */ secp256k1_gej_set_ge(&gj, &secp256k1_ge_const_g); - ctx->pre_g = (secp256k1_ge_storage (*)[])checked_malloc(cb, sizeof((*ctx->pre_g)[0]) * ECMULT_TABLE_SIZE(WINDOW_G)); + { + size_t size = sizeof((*ctx->pre_g)[0]) * ((size_t)ECMULT_TABLE_SIZE(WINDOW_G)); + /* check for overflow */ + VERIFY_CHECK(size / sizeof((*ctx->pre_g)[0]) == ((size_t)ECMULT_TABLE_SIZE(WINDOW_G))); + ctx->pre_g = (secp256k1_ge_storage (*)[])manual_alloc(prealloc, sizeof((*ctx->pre_g)[0]) * ECMULT_TABLE_SIZE(WINDOW_G), base, prealloc_size); + } /* precompute the tables with odd multiples */ - secp256k1_ecmult_odd_multiples_table_storage_var(ECMULT_TABLE_SIZE(WINDOW_G), *ctx->pre_g, &gj, cb); + secp256k1_ecmult_odd_multiples_table_storage_var(ECMULT_TABLE_SIZE(WINDOW_G), *ctx->pre_g, &gj); -#ifdef USE_ENDOMORPHISM { secp256k1_gej g_128j; int i; - ctx->pre_g_128 = (secp256k1_ge_storage (*)[])checked_malloc(cb, sizeof((*ctx->pre_g_128)[0]) * ECMULT_TABLE_SIZE(WINDOW_G)); + size_t size = sizeof((*ctx->pre_g_128)[0]) * ((size_t) ECMULT_TABLE_SIZE(WINDOW_G)); + /* check for overflow */ + VERIFY_CHECK(size / sizeof((*ctx->pre_g_128)[0]) == ((size_t)ECMULT_TABLE_SIZE(WINDOW_G))); + ctx->pre_g_128 = (secp256k1_ge_storage (*)[])manual_alloc(prealloc, sizeof((*ctx->pre_g_128)[0]) * ECMULT_TABLE_SIZE(WINDOW_G), base, prealloc_size); /* calculate 2^128*generator */ g_128j = gj; for (i = 0; i < 128; i++) { secp256k1_gej_double_var(&g_128j, &g_128j, NULL); } - secp256k1_ecmult_odd_multiples_table_storage_var(ECMULT_TABLE_SIZE(WINDOW_G), *ctx->pre_g_128, &g_128j, cb); + secp256k1_ecmult_odd_multiples_table_storage_var(ECMULT_TABLE_SIZE(WINDOW_G), *ctx->pre_g_128, &g_128j); } -#endif } -static void secp256k1_ecmult_context_clone(secp256k1_ecmult_context *dst, - const secp256k1_ecmult_context *src, const secp256k1_callback *cb) { - if (src->pre_g == NULL) { - dst->pre_g = NULL; - } else { - size_t size = sizeof((*dst->pre_g)[0]) * ECMULT_TABLE_SIZE(WINDOW_G); - dst->pre_g = (secp256k1_ge_storage (*)[])checked_malloc(cb, size); - memcpy(dst->pre_g, src->pre_g, size); +static void secp256k1_ecmult_context_finalize_memcpy(secp256k1_ecmult_context *dst, const secp256k1_ecmult_context *src) { + if (src->pre_g != NULL) { + /* We cast to void* first to suppress a -Wcast-align warning. */ + dst->pre_g = (secp256k1_ge_storage (*)[])(void*)((unsigned char*)dst + ((unsigned char*)(src->pre_g) - (unsigned char*)src)); } -#ifdef USE_ENDOMORPHISM - if (src->pre_g_128 == NULL) { - dst->pre_g_128 = NULL; - } else { - size_t size = sizeof((*dst->pre_g_128)[0]) * ECMULT_TABLE_SIZE(WINDOW_G); - dst->pre_g_128 = (secp256k1_ge_storage (*)[])checked_malloc(cb, size); - memcpy(dst->pre_g_128, src->pre_g_128, size); + if (src->pre_g_128 != NULL) { + dst->pre_g_128 = (secp256k1_ge_storage (*)[])(void*)((unsigned char*)dst + ((unsigned char*)(src->pre_g_128) - (unsigned char*)src)); } -#endif } static int secp256k1_ecmult_context_is_built(const secp256k1_ecmult_context *ctx) { @@ -246,10 +364,6 @@ static int secp256k1_ecmult_context_is_built(const secp256k1_ecmult_context *ctx } static void secp256k1_ecmult_context_clear(secp256k1_ecmult_context *ctx) { - free(ctx->pre_g); -#ifdef USE_ENDOMORPHISM - free(ctx->pre_g_128); -#endif secp256k1_ecmult_context_init(ctx); } @@ -261,7 +375,7 @@ static void secp256k1_ecmult_context_clear(secp256k1_ecmult_context *ctx) { * than the number of bits in the (absolute value) of the input. */ static int secp256k1_ecmult_wnaf(int *wnaf, int len, const secp256k1_scalar *a, int w) { - secp256k1_scalar s = *a; + secp256k1_scalar s; int last_set_bit = -1; int bit = 0; int sign = 1; @@ -274,6 +388,7 @@ static int secp256k1_ecmult_wnaf(int *wnaf, int len, const secp256k1_scalar *a, memset(wnaf, 0, len * sizeof(wnaf[0])); + s = *a; if (secp256k1_scalar_get_bits(&s, 255, 1)) { secp256k1_scalar_negate(&s, &s); sign = -1; @@ -306,22 +421,17 @@ static int secp256k1_ecmult_wnaf(int *wnaf, int len, const secp256k1_scalar *a, CHECK(carry == 0); while (bit < 256) { CHECK(secp256k1_scalar_get_bits(&s, bit++, 1) == 0); - } + } #endif return last_set_bit + 1; } struct secp256k1_strauss_point_state { -#ifdef USE_ENDOMORPHISM secp256k1_scalar na_1, na_lam; - int wnaf_na_1[130]; - int wnaf_na_lam[130]; + int wnaf_na_1[129]; + int wnaf_na_lam[129]; int bits_na_1; int bits_na_lam; -#else - int wnaf_na[256]; - int bits_na; -#endif size_t input_pos; }; @@ -329,58 +439,43 @@ struct secp256k1_strauss_state { secp256k1_gej* prej; secp256k1_fe* zr; secp256k1_ge* pre_a; -#ifdef USE_ENDOMORPHISM secp256k1_ge* pre_a_lam; -#endif struct secp256k1_strauss_point_state* ps; }; -static void secp256k1_ecmult_strauss_wnaf(const secp256k1_ecmult_context *ctx, const struct secp256k1_strauss_state *state, secp256k1_gej *r, int num, const secp256k1_gej *a, const secp256k1_scalar *na, const secp256k1_scalar *ng) { +static void secp256k1_ecmult_strauss_wnaf(const secp256k1_ecmult_context *ctx, const struct secp256k1_strauss_state *state, secp256k1_gej *r, size_t num, const secp256k1_gej *a, const secp256k1_scalar *na, const secp256k1_scalar *ng) { secp256k1_ge tmpa; secp256k1_fe Z; -#ifdef USE_ENDOMORPHISM /* Splitted G factors. */ secp256k1_scalar ng_1, ng_128; int wnaf_ng_1[129]; int bits_ng_1 = 0; int wnaf_ng_128[129]; int bits_ng_128 = 0; -#else - int wnaf_ng[256]; - int bits_ng = 0; -#endif int i; int bits = 0; - int np; - int no = 0; + size_t np; + size_t no = 0; for (np = 0; np < num; ++np) { if (secp256k1_scalar_is_zero(&na[np]) || secp256k1_gej_is_infinity(&a[np])) { continue; } state->ps[no].input_pos = np; -#ifdef USE_ENDOMORPHISM /* split na into na_1 and na_lam (where na = na_1 + na_lam*lambda, and na_1 and na_lam are ~128 bit) */ secp256k1_scalar_split_lambda(&state->ps[no].na_1, &state->ps[no].na_lam, &na[np]); /* build wnaf representation for na_1 and na_lam. */ - state->ps[no].bits_na_1 = secp256k1_ecmult_wnaf(state->ps[no].wnaf_na_1, 130, &state->ps[no].na_1, WINDOW_A); - state->ps[no].bits_na_lam = secp256k1_ecmult_wnaf(state->ps[no].wnaf_na_lam, 130, &state->ps[no].na_lam, WINDOW_A); - VERIFY_CHECK(state->ps[no].bits_na_1 <= 130); - VERIFY_CHECK(state->ps[no].bits_na_lam <= 130); + state->ps[no].bits_na_1 = secp256k1_ecmult_wnaf(state->ps[no].wnaf_na_1, 129, &state->ps[no].na_1, WINDOW_A); + state->ps[no].bits_na_lam = secp256k1_ecmult_wnaf(state->ps[no].wnaf_na_lam, 129, &state->ps[no].na_lam, WINDOW_A); + VERIFY_CHECK(state->ps[no].bits_na_1 <= 129); + VERIFY_CHECK(state->ps[no].bits_na_lam <= 129); if (state->ps[no].bits_na_1 > bits) { bits = state->ps[no].bits_na_1; } if (state->ps[no].bits_na_lam > bits) { bits = state->ps[no].bits_na_lam; } -#else - /* build wnaf representation for na. */ - state->ps[no].bits_na = secp256k1_ecmult_wnaf(state->ps[no].wnaf_na, 256, &na[np], WINDOW_A); - if (state->ps[no].bits_na > bits) { - bits = state->ps[no].bits_na; - } -#endif ++no; } @@ -412,7 +507,6 @@ static void secp256k1_ecmult_strauss_wnaf(const secp256k1_ecmult_context *ctx, c secp256k1_fe_set_int(&Z, 1); } -#ifdef USE_ENDOMORPHISM for (np = 0; np < no; ++np) { for (i = 0; i < ECMULT_TABLE_SIZE(WINDOW_A); i++) { secp256k1_ge_mul_lambda(&state->pre_a_lam[np * ECMULT_TABLE_SIZE(WINDOW_A) + i], &state->pre_a[np * ECMULT_TABLE_SIZE(WINDOW_A) + i]); @@ -433,21 +527,12 @@ static void secp256k1_ecmult_strauss_wnaf(const secp256k1_ecmult_context *ctx, c bits = bits_ng_128; } } -#else - if (ng) { - bits_ng = secp256k1_ecmult_wnaf(wnaf_ng, 256, ng, WINDOW_G); - if (bits_ng > bits) { - bits = bits_ng; - } - } -#endif secp256k1_gej_set_infinity(r); for (i = bits - 1; i >= 0; i--) { int n; secp256k1_gej_double_var(r, r, NULL); -#ifdef USE_ENDOMORPHISM for (np = 0; np < no; ++np) { if (i < state->ps[np].bits_na_1 && (n = state->ps[np].wnaf_na_1[i])) { ECMULT_TABLE_GET_GE(&tmpa, state->pre_a + np * ECMULT_TABLE_SIZE(WINDOW_A), n, WINDOW_A); @@ -466,18 +551,6 @@ static void secp256k1_ecmult_strauss_wnaf(const secp256k1_ecmult_context *ctx, c ECMULT_TABLE_GET_GE_STORAGE(&tmpa, *ctx->pre_g_128, n, WINDOW_G); secp256k1_gej_add_zinv_var(r, r, &tmpa, &Z); } -#else - for (np = 0; np < no; ++np) { - if (i < state->ps[np].bits_na && (n = state->ps[np].wnaf_na[i])) { - ECMULT_TABLE_GET_GE(&tmpa, state->pre_a + np * ECMULT_TABLE_SIZE(WINDOW_A), n, WINDOW_A); - secp256k1_gej_add_ge_var(r, r, &tmpa, NULL); - } - } - if (i < bits_ng && (n = wnaf_ng[i])) { - ECMULT_TABLE_GET_GE_STORAGE(&tmpa, *ctx->pre_g, n, WINDOW_G); - secp256k1_gej_add_zinv_var(r, r, &tmpa, &Z); - } -#endif } if (!r->infinity) { @@ -490,76 +563,67 @@ static void secp256k1_ecmult(const secp256k1_ecmult_context *ctx, secp256k1_gej secp256k1_fe zr[ECMULT_TABLE_SIZE(WINDOW_A)]; secp256k1_ge pre_a[ECMULT_TABLE_SIZE(WINDOW_A)]; struct secp256k1_strauss_point_state ps[1]; -#ifdef USE_ENDOMORPHISM secp256k1_ge pre_a_lam[ECMULT_TABLE_SIZE(WINDOW_A)]; -#endif struct secp256k1_strauss_state state; state.prej = prej; state.zr = zr; state.pre_a = pre_a; -#ifdef USE_ENDOMORPHISM state.pre_a_lam = pre_a_lam; -#endif state.ps = ps; secp256k1_ecmult_strauss_wnaf(ctx, &state, r, 1, a, na, ng); } static size_t secp256k1_strauss_scratch_size(size_t n_points) { -#ifdef USE_ENDOMORPHISM static const size_t point_size = (2 * sizeof(secp256k1_ge) + sizeof(secp256k1_gej) + sizeof(secp256k1_fe)) * ECMULT_TABLE_SIZE(WINDOW_A) + sizeof(struct secp256k1_strauss_point_state) + sizeof(secp256k1_gej) + sizeof(secp256k1_scalar); -#else - static const size_t point_size = (sizeof(secp256k1_ge) + sizeof(secp256k1_gej) + sizeof(secp256k1_fe)) * ECMULT_TABLE_SIZE(WINDOW_A) + sizeof(struct secp256k1_strauss_point_state) + sizeof(secp256k1_gej) + sizeof(secp256k1_scalar); -#endif return n_points*point_size; } -static int secp256k1_ecmult_strauss_batch(const secp256k1_ecmult_context *ctx, secp256k1_scratch *scratch, secp256k1_gej *r, const secp256k1_scalar *inp_g_sc, secp256k1_ecmult_multi_callback cb, void *cbdata, size_t n_points, size_t cb_offset) { +static int secp256k1_ecmult_strauss_batch(const secp256k1_callback* error_callback, const secp256k1_ecmult_context *ctx, secp256k1_scratch *scratch, secp256k1_gej *r, const secp256k1_scalar *inp_g_sc, secp256k1_ecmult_multi_callback cb, void *cbdata, size_t n_points, size_t cb_offset) { secp256k1_gej* points; secp256k1_scalar* scalars; struct secp256k1_strauss_state state; size_t i; + const size_t scratch_checkpoint = secp256k1_scratch_checkpoint(error_callback, scratch); secp256k1_gej_set_infinity(r); if (inp_g_sc == NULL && n_points == 0) { return 1; } - if (!secp256k1_scratch_allocate_frame(scratch, secp256k1_strauss_scratch_size(n_points), STRAUSS_SCRATCH_OBJECTS)) { + points = (secp256k1_gej*)secp256k1_scratch_alloc(error_callback, scratch, n_points * sizeof(secp256k1_gej)); + scalars = (secp256k1_scalar*)secp256k1_scratch_alloc(error_callback, scratch, n_points * sizeof(secp256k1_scalar)); + state.prej = (secp256k1_gej*)secp256k1_scratch_alloc(error_callback, scratch, n_points * ECMULT_TABLE_SIZE(WINDOW_A) * sizeof(secp256k1_gej)); + state.zr = (secp256k1_fe*)secp256k1_scratch_alloc(error_callback, scratch, n_points * ECMULT_TABLE_SIZE(WINDOW_A) * sizeof(secp256k1_fe)); + state.pre_a = (secp256k1_ge*)secp256k1_scratch_alloc(error_callback, scratch, n_points * ECMULT_TABLE_SIZE(WINDOW_A) * sizeof(secp256k1_ge)); + state.pre_a_lam = (secp256k1_ge*)secp256k1_scratch_alloc(error_callback, scratch, n_points * ECMULT_TABLE_SIZE(WINDOW_A) * sizeof(secp256k1_ge)); + state.ps = (struct secp256k1_strauss_point_state*)secp256k1_scratch_alloc(error_callback, scratch, n_points * sizeof(struct secp256k1_strauss_point_state)); + + if (points == NULL || scalars == NULL || state.prej == NULL || state.zr == NULL || state.pre_a == NULL || state.pre_a_lam == NULL || state.ps == NULL) { + secp256k1_scratch_apply_checkpoint(error_callback, scratch, scratch_checkpoint); return 0; } - points = (secp256k1_gej*)secp256k1_scratch_alloc(scratch, n_points * sizeof(secp256k1_gej)); - scalars = (secp256k1_scalar*)secp256k1_scratch_alloc(scratch, n_points * sizeof(secp256k1_scalar)); - state.prej = (secp256k1_gej*)secp256k1_scratch_alloc(scratch, n_points * ECMULT_TABLE_SIZE(WINDOW_A) * sizeof(secp256k1_gej)); - state.zr = (secp256k1_fe*)secp256k1_scratch_alloc(scratch, n_points * ECMULT_TABLE_SIZE(WINDOW_A) * sizeof(secp256k1_fe)); -#ifdef USE_ENDOMORPHISM - state.pre_a = (secp256k1_ge*)secp256k1_scratch_alloc(scratch, n_points * 2 * ECMULT_TABLE_SIZE(WINDOW_A) * sizeof(secp256k1_ge)); - state.pre_a_lam = state.pre_a + n_points * ECMULT_TABLE_SIZE(WINDOW_A); -#else - state.pre_a = (secp256k1_ge*)secp256k1_scratch_alloc(scratch, n_points * ECMULT_TABLE_SIZE(WINDOW_A) * sizeof(secp256k1_ge)); -#endif - state.ps = (struct secp256k1_strauss_point_state*)secp256k1_scratch_alloc(scratch, n_points * sizeof(struct secp256k1_strauss_point_state)); for (i = 0; i < n_points; i++) { secp256k1_ge point; if (!cb(&scalars[i], &point, i+cb_offset, cbdata)) { - secp256k1_scratch_deallocate_frame(scratch); + secp256k1_scratch_apply_checkpoint(error_callback, scratch, scratch_checkpoint); return 0; } secp256k1_gej_set_ge(&points[i], &point); } secp256k1_ecmult_strauss_wnaf(ctx, &state, r, n_points, points, scalars, inp_g_sc); - secp256k1_scratch_deallocate_frame(scratch); + secp256k1_scratch_apply_checkpoint(error_callback, scratch, scratch_checkpoint); return 1; } /* Wrapper for secp256k1_ecmult_multi_func interface */ -static int secp256k1_ecmult_strauss_batch_single(const secp256k1_ecmult_context *actx, secp256k1_scratch *scratch, secp256k1_gej *r, const secp256k1_scalar *inp_g_sc, secp256k1_ecmult_multi_callback cb, void *cbdata, size_t n) { - return secp256k1_ecmult_strauss_batch(actx, scratch, r, inp_g_sc, cb, cbdata, n, 0); +static int secp256k1_ecmult_strauss_batch_single(const secp256k1_callback* error_callback, const secp256k1_ecmult_context *actx, secp256k1_scratch *scratch, secp256k1_gej *r, const secp256k1_scalar *inp_g_sc, secp256k1_ecmult_multi_callback cb, void *cbdata, size_t n) { + return secp256k1_ecmult_strauss_batch(error_callback, actx, scratch, r, inp_g_sc, cb, cbdata, n, 0); } -static size_t secp256k1_strauss_max_points(secp256k1_scratch *scratch) { - return secp256k1_scratch_max_allocation(scratch, STRAUSS_SCRATCH_OBJECTS) / secp256k1_strauss_scratch_size(1); +static size_t secp256k1_strauss_max_points(const secp256k1_callback* error_callback, secp256k1_scratch *scratch) { + return secp256k1_scratch_max_allocation(error_callback, scratch, STRAUSS_SCRATCH_OBJECTS) / secp256k1_strauss_scratch_size(1); } /** Convert a number to WNAF notation. @@ -730,7 +794,6 @@ static int secp256k1_ecmult_pippenger_wnaf(secp256k1_gej *buckets, int bucket_wi * set of buckets) for a given number of points. */ static int secp256k1_pippenger_bucket_window(size_t n) { -#ifdef USE_ENDOMORPHISM if (n <= 1) { return 1; } else if (n <= 4) { @@ -754,33 +817,6 @@ static int secp256k1_pippenger_bucket_window(size_t n) { } else { return PIPPENGER_MAX_BUCKET_WINDOW; } -#else - if (n <= 1) { - return 1; - } else if (n <= 11) { - return 2; - } else if (n <= 45) { - return 3; - } else if (n <= 100) { - return 4; - } else if (n <= 275) { - return 5; - } else if (n <= 625) { - return 6; - } else if (n <= 1850) { - return 7; - } else if (n <= 3400) { - return 8; - } else if (n <= 9630) { - return 9; - } else if (n <= 17900) { - return 10; - } else if (n <= 32800) { - return 11; - } else { - return PIPPENGER_MAX_BUCKET_WINDOW; - } -#endif } /** @@ -788,7 +824,6 @@ static int secp256k1_pippenger_bucket_window(size_t n) { */ static size_t secp256k1_pippenger_bucket_window_inv(int bucket_window) { switch(bucket_window) { -#ifdef USE_ENDOMORPHISM case 1: return 1; case 2: return 4; case 3: return 20; @@ -801,26 +836,11 @@ static size_t secp256k1_pippenger_bucket_window_inv(int bucket_window) { case 10: return 7880; case 11: return 16050; case PIPPENGER_MAX_BUCKET_WINDOW: return SIZE_MAX; -#else - case 1: return 1; - case 2: return 11; - case 3: return 45; - case 4: return 100; - case 5: return 275; - case 6: return 625; - case 7: return 1850; - case 8: return 3400; - case 9: return 9630; - case 10: return 17900; - case 11: return 32800; - case PIPPENGER_MAX_BUCKET_WINDOW: return SIZE_MAX; -#endif } return 0; } -#ifdef USE_ENDOMORPHISM SECP256K1_INLINE static void secp256k1_ecmult_endo_split(secp256k1_scalar *s1, secp256k1_scalar *s2, secp256k1_ge *p1, secp256k1_ge *p2) { secp256k1_scalar tmp = *s1; secp256k1_scalar_split_lambda(s1, s2, &tmp); @@ -835,31 +855,23 @@ SECP256K1_INLINE static void secp256k1_ecmult_endo_split(secp256k1_scalar *s1, s secp256k1_ge_neg(p2, p2); } } -#endif /** * Returns the scratch size required for a given number of points (excluding * base point G) without considering alignment. */ static size_t secp256k1_pippenger_scratch_size(size_t n_points, int bucket_window) { -#ifdef USE_ENDOMORPHISM size_t entries = 2*n_points + 2; -#else - size_t entries = n_points + 1; -#endif size_t entry_size = sizeof(secp256k1_ge) + sizeof(secp256k1_scalar) + sizeof(struct secp256k1_pippenger_point_state) + (WNAF_SIZE(bucket_window+1)+1)*sizeof(int); - return ((1<ps = (struct secp256k1_pippenger_point_state *) secp256k1_scratch_alloc(error_callback, scratch, entries * sizeof(*state_space->ps)); + state_space->wnaf_na = (int *) secp256k1_scratch_alloc(error_callback, scratch, entries*(WNAF_SIZE(bucket_window+1)) * sizeof(int)); + buckets = (secp256k1_gej *) secp256k1_scratch_alloc(error_callback, scratch, (1<ps == NULL || state_space->wnaf_na == NULL || buckets == NULL) { + secp256k1_scratch_apply_checkpoint(error_callback, scratch, scratch_checkpoint); return 0; } - points = (secp256k1_ge *) secp256k1_scratch_alloc(scratch, entries * sizeof(*points)); - scalars = (secp256k1_scalar *) secp256k1_scratch_alloc(scratch, entries * sizeof(*scalars)); - state_space = (struct secp256k1_pippenger_state *) secp256k1_scratch_alloc(scratch, sizeof(*state_space)); - state_space->ps = (struct secp256k1_pippenger_point_state *) secp256k1_scratch_alloc(scratch, entries * sizeof(*state_space->ps)); - state_space->wnaf_na = (int *) secp256k1_scratch_alloc(scratch, entries*(WNAF_SIZE(bucket_window+1)) * sizeof(int)); - buckets = (secp256k1_gej *) secp256k1_scratch_alloc(scratch, (1< max_alloc) { break; } @@ -972,12 +984,58 @@ static size_t secp256k1_pippenger_max_points(secp256k1_scratch *scratch) { return res; } -typedef int (*secp256k1_ecmult_multi_func)(const secp256k1_ecmult_context*, secp256k1_scratch*, secp256k1_gej*, const secp256k1_scalar*, secp256k1_ecmult_multi_callback cb, void*, size_t); -static int secp256k1_ecmult_multi_var(const secp256k1_ecmult_context *ctx, secp256k1_scratch *scratch, secp256k1_gej *r, const secp256k1_scalar *inp_g_sc, secp256k1_ecmult_multi_callback cb, void *cbdata, size_t n) { +/* Computes ecmult_multi by simply multiplying and adding each point. Does not + * require a scratch space */ +static int secp256k1_ecmult_multi_simple_var(const secp256k1_ecmult_context *ctx, secp256k1_gej *r, const secp256k1_scalar *inp_g_sc, secp256k1_ecmult_multi_callback cb, void *cbdata, size_t n_points) { + size_t point_idx; + secp256k1_scalar szero; + secp256k1_gej tmpj; + + secp256k1_scalar_set_int(&szero, 0); + secp256k1_gej_set_infinity(r); + secp256k1_gej_set_infinity(&tmpj); + /* r = inp_g_sc*G */ + secp256k1_ecmult(ctx, r, &tmpj, &szero, inp_g_sc); + for (point_idx = 0; point_idx < n_points; point_idx++) { + secp256k1_ge point; + secp256k1_gej pointj; + secp256k1_scalar scalar; + if (!cb(&scalar, &point, point_idx, cbdata)) { + return 0; + } + /* r += scalar*point */ + secp256k1_gej_set_ge(&pointj, &point); + secp256k1_ecmult(ctx, &tmpj, &pointj, &scalar, NULL); + secp256k1_gej_add_var(r, r, &tmpj, NULL); + } + return 1; +} + +/* Compute the number of batches and the batch size given the maximum batch size and the + * total number of points */ +static int secp256k1_ecmult_multi_batch_size_helper(size_t *n_batches, size_t *n_batch_points, size_t max_n_batch_points, size_t n) { + if (max_n_batch_points == 0) { + return 0; + } + if (max_n_batch_points > ECMULT_MAX_POINTS_PER_BATCH) { + max_n_batch_points = ECMULT_MAX_POINTS_PER_BATCH; + } + if (n == 0) { + *n_batches = 0; + *n_batch_points = 0; + return 1; + } + /* Compute ceil(n/max_n_batch_points) and ceil(n/n_batches) */ + *n_batches = 1 + (n - 1) / max_n_batch_points; + *n_batch_points = 1 + (n - 1) / *n_batches; + return 1; +} + +typedef int (*secp256k1_ecmult_multi_func)(const secp256k1_callback* error_callback, const secp256k1_ecmult_context*, secp256k1_scratch*, secp256k1_gej*, const secp256k1_scalar*, secp256k1_ecmult_multi_callback cb, void*, size_t); +static int secp256k1_ecmult_multi_var(const secp256k1_callback* error_callback, const secp256k1_ecmult_context *ctx, secp256k1_scratch *scratch, secp256k1_gej *r, const secp256k1_scalar *inp_g_sc, secp256k1_ecmult_multi_callback cb, void *cbdata, size_t n) { size_t i; - int (*f)(const secp256k1_ecmult_context*, secp256k1_scratch*, secp256k1_gej*, const secp256k1_scalar*, secp256k1_ecmult_multi_callback cb, void*, size_t, size_t); - size_t max_points; + int (*f)(const secp256k1_callback* error_callback, const secp256k1_ecmult_context*, secp256k1_scratch*, secp256k1_gej*, const secp256k1_scalar*, secp256k1_ecmult_multi_callback cb, void*, size_t, size_t); size_t n_batches; size_t n_batch_points; @@ -990,32 +1048,30 @@ static int secp256k1_ecmult_multi_var(const secp256k1_ecmult_context *ctx, secp2 secp256k1_ecmult(ctx, r, r, &szero, inp_g_sc); return 1; } - - max_points = secp256k1_pippenger_max_points(scratch); - if (max_points == 0) { - return 0; - } else if (max_points > ECMULT_MAX_POINTS_PER_BATCH) { - max_points = ECMULT_MAX_POINTS_PER_BATCH; + if (scratch == NULL) { + return secp256k1_ecmult_multi_simple_var(ctx, r, inp_g_sc, cb, cbdata, n); } - n_batches = (n+max_points-1)/max_points; - n_batch_points = (n+n_batches-1)/n_batches; + /* Compute the batch sizes for Pippenger's algorithm given a scratch space. If it's greater than + * a threshold use Pippenger's algorithm. Otherwise use Strauss' algorithm. + * As a first step check if there's enough space for Pippenger's algo (which requires less space + * than Strauss' algo) and if not, use the simple algorithm. */ + if (!secp256k1_ecmult_multi_batch_size_helper(&n_batches, &n_batch_points, secp256k1_pippenger_max_points(error_callback, scratch), n)) { + return secp256k1_ecmult_multi_simple_var(ctx, r, inp_g_sc, cb, cbdata, n); + } if (n_batch_points >= ECMULT_PIPPENGER_THRESHOLD) { f = secp256k1_ecmult_pippenger_batch; } else { - max_points = secp256k1_strauss_max_points(scratch); - if (max_points == 0) { - return 0; + if (!secp256k1_ecmult_multi_batch_size_helper(&n_batches, &n_batch_points, secp256k1_strauss_max_points(error_callback, scratch), n)) { + return secp256k1_ecmult_multi_simple_var(ctx, r, inp_g_sc, cb, cbdata, n); } - n_batches = (n+max_points-1)/max_points; - n_batch_points = (n+n_batches-1)/n_batches; f = secp256k1_ecmult_strauss_batch; } for(i = 0; i < n_batches; i++) { size_t nbp = n < n_batch_points ? n : n_batch_points; size_t offset = n_batch_points*i; secp256k1_gej tmp; - if (!f(ctx, scratch, &tmp, i == 0 ? inp_g_sc : NULL, cb, cbdata, nbp, offset)) { + if (!f(error_callback, ctx, scratch, &tmp, i == 0 ? inp_g_sc : NULL, cb, cbdata, nbp, offset)) { return 0; } secp256k1_gej_add_var(r, r, &tmp, NULL); diff --git a/src/field.h b/src/field.h index bb6692ad57835..854aaebabc966 100644 --- a/src/field.h +++ b/src/field.h @@ -1,8 +1,8 @@ -/********************************************************************** - * Copyright (c) 2013, 2014 Pieter Wuille * - * Distributed under the MIT software license, see the accompanying * - * file COPYING or http://www.opensource.org/licenses/mit-license.php.* - **********************************************************************/ +/*********************************************************************** + * Copyright (c) 2013, 2014 Pieter Wuille * + * Distributed under the MIT software license, see the accompanying * + * file COPYING or https://www.opensource.org/licenses/mit-license.php.* + ***********************************************************************/ #ifndef SECP256K1_FIELD_H #define SECP256K1_FIELD_H @@ -22,32 +22,33 @@ #include "libsecp256k1-config.h" #endif -#if defined(USE_FIELD_10X26) -#include "field_10x26.h" -#elif defined(USE_FIELD_5X52) +#include "util.h" + +#if defined(SECP256K1_WIDEMUL_INT128) #include "field_5x52.h" +#elif defined(SECP256K1_WIDEMUL_INT64) +#include "field_10x26.h" #else -#error "Please select field implementation" +#error "Please select wide multiplication implementation" #endif -#include "util.h" - -/** Normalize a field element. */ +/** Normalize a field element. This brings the field element to a canonical representation, reduces + * its magnitude to 1, and reduces it modulo field size `p`. + */ static void secp256k1_fe_normalize(secp256k1_fe *r); -/** Weakly normalize a field element: reduce it magnitude to 1, but don't fully normalize. */ +/** Weakly normalize a field element: reduce its magnitude to 1, but don't fully normalize. */ static void secp256k1_fe_normalize_weak(secp256k1_fe *r); /** Normalize a field element, without constant-time guarantee. */ static void secp256k1_fe_normalize_var(secp256k1_fe *r); -/** Verify whether a field element represents zero i.e. would normalize to a zero value. The field - * implementation may optionally normalize the input, but this should not be relied upon. */ -static int secp256k1_fe_normalizes_to_zero(secp256k1_fe *r); +/** Verify whether a field element represents zero i.e. would normalize to a zero value. */ +static int secp256k1_fe_normalizes_to_zero(const secp256k1_fe *r); -/** Verify whether a field element represents zero i.e. would normalize to a zero value. The field - * implementation may optionally normalize the input, but this should not be relied upon. */ -static int secp256k1_fe_normalizes_to_zero_var(secp256k1_fe *r); +/** Verify whether a field element represents zero i.e. would normalize to a zero value, + * without constant-time guarantee. */ +static int secp256k1_fe_normalizes_to_zero_var(const secp256k1_fe *r); /** Set a field element equal to a small integer. Resulting field element is normalized. */ static void secp256k1_fe_set_int(secp256k1_fe *r, int a); @@ -102,9 +103,6 @@ static void secp256k1_fe_sqr(secp256k1_fe *r, const secp256k1_fe *a); * itself. */ static int secp256k1_fe_sqrt(secp256k1_fe *r, const secp256k1_fe *a); -/** Checks whether a field element is a quadratic residue. */ -static int secp256k1_fe_is_quad_var(const secp256k1_fe *a); - /** Sets a field element to be the (modular) inverse of another. Requires the input's magnitude to be * at most 8. The output magnitude is 1 (but not guaranteed to be normalized). */ static void secp256k1_fe_inv(secp256k1_fe *r, const secp256k1_fe *a); @@ -112,21 +110,16 @@ static void secp256k1_fe_inv(secp256k1_fe *r, const secp256k1_fe *a); /** Potentially faster version of secp256k1_fe_inv, without constant-time guarantee. */ static void secp256k1_fe_inv_var(secp256k1_fe *r, const secp256k1_fe *a); -/** Calculate the (modular) inverses of a batch of field elements. Requires the inputs' magnitudes to be - * at most 8. The output magnitudes are 1 (but not guaranteed to be normalized). The inputs and - * outputs must not overlap in memory. */ -static void secp256k1_fe_inv_all_var(secp256k1_fe *r, const secp256k1_fe *a, size_t len); - /** Convert a field element to the storage type. */ static void secp256k1_fe_to_storage(secp256k1_fe_storage *r, const secp256k1_fe *a); /** Convert a field element back from the storage type. */ static void secp256k1_fe_from_storage(secp256k1_fe *r, const secp256k1_fe_storage *a); -/** If flag is true, set *r equal to *a; otherwise leave it. Constant-time. */ +/** If flag is true, set *r equal to *a; otherwise leave it. Constant-time. Both *r and *a must be initialized.*/ static void secp256k1_fe_storage_cmov(secp256k1_fe_storage *r, const secp256k1_fe_storage *a, int flag); -/** If flag is true, set *r equal to *a; otherwise leave it. Constant-time. */ +/** If flag is true, set *r equal to *a; otherwise leave it. Constant-time. Both *r and *a must be initialized.*/ static void secp256k1_fe_cmov(secp256k1_fe *r, const secp256k1_fe *a, int flag); #endif /* SECP256K1_FIELD_H */ diff --git a/src/field_10x26.h b/src/field_10x26.h index 727c5267fbb5f..9eb65607f12cb 100644 --- a/src/field_10x26.h +++ b/src/field_10x26.h @@ -1,8 +1,8 @@ -/********************************************************************** - * Copyright (c) 2013, 2014 Pieter Wuille * - * Distributed under the MIT software license, see the accompanying * - * file COPYING or http://www.opensource.org/licenses/mit-license.php.* - **********************************************************************/ +/*********************************************************************** + * Copyright (c) 2013, 2014 Pieter Wuille * + * Distributed under the MIT software license, see the accompanying * + * file COPYING or https://www.opensource.org/licenses/mit-license.php.* + ***********************************************************************/ #ifndef SECP256K1_FIELD_REPR_H #define SECP256K1_FIELD_REPR_H @@ -10,7 +10,9 @@ #include typedef struct { - /* X = sum(i=0..9, elem[i]*2^26) mod n */ + /* X = sum(i=0..9, n[i]*2^(i*26)) mod p + * where p = 2^256 - 0x1000003D1 + */ uint32_t n[10]; #ifdef VERIFY int magnitude; diff --git a/src/field_10x26_impl.h b/src/field_10x26_impl.h index 94f8132fc8e62..7a38c117f194b 100644 --- a/src/field_10x26_impl.h +++ b/src/field_10x26_impl.h @@ -1,15 +1,15 @@ -/********************************************************************** - * Copyright (c) 2013, 2014 Pieter Wuille * - * Distributed under the MIT software license, see the accompanying * - * file COPYING or http://www.opensource.org/licenses/mit-license.php.* - **********************************************************************/ +/*********************************************************************** + * Copyright (c) 2013, 2014 Pieter Wuille * + * Distributed under the MIT software license, see the accompanying * + * file COPYING or https://www.opensource.org/licenses/mit-license.php.* + ***********************************************************************/ #ifndef SECP256K1_FIELD_REPR_IMPL_H #define SECP256K1_FIELD_REPR_IMPL_H #include "util.h" -#include "num.h" #include "field.h" +#include "modinv32_impl.h" #ifdef VERIFY static void secp256k1_fe_verify(const secp256k1_fe *a) { @@ -182,7 +182,7 @@ static void secp256k1_fe_normalize_var(secp256k1_fe *r) { #endif } -static int secp256k1_fe_normalizes_to_zero(secp256k1_fe *r) { +static int secp256k1_fe_normalizes_to_zero(const secp256k1_fe *r) { uint32_t t0 = r->n[0], t1 = r->n[1], t2 = r->n[2], t3 = r->n[3], t4 = r->n[4], t5 = r->n[5], t6 = r->n[6], t7 = r->n[7], t8 = r->n[8], t9 = r->n[9]; @@ -211,7 +211,7 @@ static int secp256k1_fe_normalizes_to_zero(secp256k1_fe *r) { return (z0 == 0) | (z1 == 0x3FFFFFFUL); } -static int secp256k1_fe_normalizes_to_zero_var(secp256k1_fe *r) { +static int secp256k1_fe_normalizes_to_zero_var(const secp256k1_fe *r) { uint32_t t0, t1, t2, t3, t4, t5, t6, t7, t8, t9; uint32_t z0, z1; uint32_t x; @@ -321,6 +321,7 @@ static int secp256k1_fe_cmp_var(const secp256k1_fe *a, const secp256k1_fe *b) { } static int secp256k1_fe_set_b32(secp256k1_fe *r, const unsigned char *a) { + int ret; r->n[0] = (uint32_t)a[31] | ((uint32_t)a[30] << 8) | ((uint32_t)a[29] << 16) | ((uint32_t)(a[28] & 0x3) << 24); r->n[1] = (uint32_t)((a[28] >> 2) & 0x3f) | ((uint32_t)a[27] << 6) | ((uint32_t)a[26] << 14) | ((uint32_t)(a[25] & 0xf) << 22); r->n[2] = (uint32_t)((a[25] >> 4) & 0xf) | ((uint32_t)a[24] << 4) | ((uint32_t)a[23] << 12) | ((uint32_t)(a[22] & 0x3f) << 20); @@ -332,15 +333,17 @@ static int secp256k1_fe_set_b32(secp256k1_fe *r, const unsigned char *a) { r->n[8] = (uint32_t)a[5] | ((uint32_t)a[4] << 8) | ((uint32_t)a[3] << 16) | ((uint32_t)(a[2] & 0x3) << 24); r->n[9] = (uint32_t)((a[2] >> 2) & 0x3f) | ((uint32_t)a[1] << 6) | ((uint32_t)a[0] << 14); - if (r->n[9] == 0x3FFFFFUL && (r->n[8] & r->n[7] & r->n[6] & r->n[5] & r->n[4] & r->n[3] & r->n[2]) == 0x3FFFFFFUL && (r->n[1] + 0x40UL + ((r->n[0] + 0x3D1UL) >> 26)) > 0x3FFFFFFUL) { - return 0; - } + ret = !((r->n[9] == 0x3FFFFFUL) & ((r->n[8] & r->n[7] & r->n[6] & r->n[5] & r->n[4] & r->n[3] & r->n[2]) == 0x3FFFFFFUL) & ((r->n[1] + 0x40UL + ((r->n[0] + 0x3D1UL) >> 26)) > 0x3FFFFFFUL)); #ifdef VERIFY r->magnitude = 1; - r->normalized = 1; - secp256k1_fe_verify(r); + if (ret) { + r->normalized = 1; + secp256k1_fe_verify(r); + } else { + r->normalized = 0; + } #endif - return 1; + return ret; } /** Convert a field element to a 32-byte big endian value. Requires the input to be normalized */ @@ -486,7 +489,8 @@ SECP256K1_INLINE static void secp256k1_fe_mul_inner(uint32_t *r, const uint32_t VERIFY_BITS(b[9], 26); /** [... a b c] is a shorthand for ... + a<<52 + b<<26 + c<<0 mod n. - * px is a shorthand for sum(a[i]*b[x-i], i=0..x). + * for 0 <= x <= 9, px is a shorthand for sum(a[i]*b[x-i], i=0..x). + * for 9 <= x <= 18, px is a shorthand for sum(a[i]*b[x-i], i=(x-9)..9) * Note that [x 0 0 0 0 0 0 0 0 0 0] = [x*R1 x*R0]. */ @@ -1069,6 +1073,7 @@ static void secp256k1_fe_mul(secp256k1_fe *r, const secp256k1_fe *a, const secp2 secp256k1_fe_verify(a); secp256k1_fe_verify(b); VERIFY_CHECK(r != b); + VERIFY_CHECK(a != b); #endif secp256k1_fe_mul_inner(r->n, a->n, b->n); #ifdef VERIFY @@ -1093,6 +1098,7 @@ static void secp256k1_fe_sqr(secp256k1_fe *r, const secp256k1_fe *a) { static SECP256K1_INLINE void secp256k1_fe_cmov(secp256k1_fe *r, const secp256k1_fe *a, int flag) { uint32_t mask0, mask1; + VG_CHECK_VERIFY(r->n, sizeof(r->n)); mask0 = flag + ~((uint32_t)0); mask1 = ~mask0; r->n[0] = (r->n[0] & mask0) | (a->n[0] & mask1); @@ -1106,15 +1112,16 @@ static SECP256K1_INLINE void secp256k1_fe_cmov(secp256k1_fe *r, const secp256k1_ r->n[8] = (r->n[8] & mask0) | (a->n[8] & mask1); r->n[9] = (r->n[9] & mask0) | (a->n[9] & mask1); #ifdef VERIFY - if (a->magnitude > r->magnitude) { + if (flag) { r->magnitude = a->magnitude; + r->normalized = a->normalized; } - r->normalized &= a->normalized; #endif } static SECP256K1_INLINE void secp256k1_fe_storage_cmov(secp256k1_fe_storage *r, const secp256k1_fe_storage *a, int flag) { uint32_t mask0, mask1; + VG_CHECK_VERIFY(r->n, sizeof(r->n)); mask0 = flag + ~((uint32_t)0); mask1 = ~mask0; r->n[0] = (r->n[0] & mask0) | (a->n[0] & mask1); @@ -1158,4 +1165,92 @@ static SECP256K1_INLINE void secp256k1_fe_from_storage(secp256k1_fe *r, const se #endif } +static void secp256k1_fe_from_signed30(secp256k1_fe *r, const secp256k1_modinv32_signed30 *a) { + const uint32_t M26 = UINT32_MAX >> 6; + const uint32_t a0 = a->v[0], a1 = a->v[1], a2 = a->v[2], a3 = a->v[3], a4 = a->v[4], + a5 = a->v[5], a6 = a->v[6], a7 = a->v[7], a8 = a->v[8]; + + /* The output from secp256k1_modinv32{_var} should be normalized to range [0,modulus), and + * have limbs in [0,2^30). The modulus is < 2^256, so the top limb must be below 2^(256-30*8). + */ + VERIFY_CHECK(a0 >> 30 == 0); + VERIFY_CHECK(a1 >> 30 == 0); + VERIFY_CHECK(a2 >> 30 == 0); + VERIFY_CHECK(a3 >> 30 == 0); + VERIFY_CHECK(a4 >> 30 == 0); + VERIFY_CHECK(a5 >> 30 == 0); + VERIFY_CHECK(a6 >> 30 == 0); + VERIFY_CHECK(a7 >> 30 == 0); + VERIFY_CHECK(a8 >> 16 == 0); + + r->n[0] = a0 & M26; + r->n[1] = (a0 >> 26 | a1 << 4) & M26; + r->n[2] = (a1 >> 22 | a2 << 8) & M26; + r->n[3] = (a2 >> 18 | a3 << 12) & M26; + r->n[4] = (a3 >> 14 | a4 << 16) & M26; + r->n[5] = (a4 >> 10 | a5 << 20) & M26; + r->n[6] = (a5 >> 6 | a6 << 24) & M26; + r->n[7] = (a6 >> 2 ) & M26; + r->n[8] = (a6 >> 28 | a7 << 2) & M26; + r->n[9] = (a7 >> 24 | a8 << 6); + +#ifdef VERIFY + r->magnitude = 1; + r->normalized = 1; + secp256k1_fe_verify(r); +#endif +} + +static void secp256k1_fe_to_signed30(secp256k1_modinv32_signed30 *r, const secp256k1_fe *a) { + const uint32_t M30 = UINT32_MAX >> 2; + const uint64_t a0 = a->n[0], a1 = a->n[1], a2 = a->n[2], a3 = a->n[3], a4 = a->n[4], + a5 = a->n[5], a6 = a->n[6], a7 = a->n[7], a8 = a->n[8], a9 = a->n[9]; + +#ifdef VERIFY + VERIFY_CHECK(a->normalized); +#endif + + r->v[0] = (a0 | a1 << 26) & M30; + r->v[1] = (a1 >> 4 | a2 << 22) & M30; + r->v[2] = (a2 >> 8 | a3 << 18) & M30; + r->v[3] = (a3 >> 12 | a4 << 14) & M30; + r->v[4] = (a4 >> 16 | a5 << 10) & M30; + r->v[5] = (a5 >> 20 | a6 << 6) & M30; + r->v[6] = (a6 >> 24 | a7 << 2 + | a8 << 28) & M30; + r->v[7] = (a8 >> 2 | a9 << 24) & M30; + r->v[8] = a9 >> 6; +} + +static const secp256k1_modinv32_modinfo secp256k1_const_modinfo_fe = { + {{-0x3D1, -4, 0, 0, 0, 0, 0, 0, 65536}}, + 0x2DDACACFL +}; + +static void secp256k1_fe_inv(secp256k1_fe *r, const secp256k1_fe *x) { + secp256k1_fe tmp; + secp256k1_modinv32_signed30 s; + + tmp = *x; + secp256k1_fe_normalize(&tmp); + secp256k1_fe_to_signed30(&s, &tmp); + secp256k1_modinv32(&s, &secp256k1_const_modinfo_fe); + secp256k1_fe_from_signed30(r, &s); + + VERIFY_CHECK(secp256k1_fe_normalizes_to_zero(r) == secp256k1_fe_normalizes_to_zero(&tmp)); +} + +static void secp256k1_fe_inv_var(secp256k1_fe *r, const secp256k1_fe *x) { + secp256k1_fe tmp; + secp256k1_modinv32_signed30 s; + + tmp = *x; + secp256k1_fe_normalize_var(&tmp); + secp256k1_fe_to_signed30(&s, &tmp); + secp256k1_modinv32_var(&s, &secp256k1_const_modinfo_fe); + secp256k1_fe_from_signed30(r, &s); + + VERIFY_CHECK(secp256k1_fe_normalizes_to_zero(r) == secp256k1_fe_normalizes_to_zero(&tmp)); +} + #endif /* SECP256K1_FIELD_REPR_IMPL_H */ diff --git a/src/field_5x52.h b/src/field_5x52.h index bccd8feb4dde6..50ee3f9ec96b7 100644 --- a/src/field_5x52.h +++ b/src/field_5x52.h @@ -1,8 +1,8 @@ -/********************************************************************** - * Copyright (c) 2013, 2014 Pieter Wuille * - * Distributed under the MIT software license, see the accompanying * - * file COPYING or http://www.opensource.org/licenses/mit-license.php.* - **********************************************************************/ +/*********************************************************************** + * Copyright (c) 2013, 2014 Pieter Wuille * + * Distributed under the MIT software license, see the accompanying * + * file COPYING or https://www.opensource.org/licenses/mit-license.php.* + ***********************************************************************/ #ifndef SECP256K1_FIELD_REPR_H #define SECP256K1_FIELD_REPR_H @@ -10,7 +10,9 @@ #include typedef struct { - /* X = sum(i=0..4, elem[i]*2^52) mod n */ + /* X = sum(i=0..4, n[i]*2^(i*52)) mod p + * where p = 2^256 - 0x1000003D1 + */ uint64_t n[5]; #ifdef VERIFY int magnitude; @@ -44,4 +46,10 @@ typedef struct { (d6) | (((uint64_t)(d7)) << 32) \ }} +#define SECP256K1_FE_STORAGE_CONST_GET(d) \ + (uint32_t)(d.n[3] >> 32), (uint32_t)d.n[3], \ + (uint32_t)(d.n[2] >> 32), (uint32_t)d.n[2], \ + (uint32_t)(d.n[1] >> 32), (uint32_t)d.n[1], \ + (uint32_t)(d.n[0] >> 32), (uint32_t)d.n[0] + #endif /* SECP256K1_FIELD_REPR_H */ diff --git a/src/field_5x52_asm_impl.h b/src/field_5x52_asm_impl.h index 1fc3171f6b0ed..a2118044ab381 100644 --- a/src/field_5x52_asm_impl.h +++ b/src/field_5x52_asm_impl.h @@ -1,8 +1,8 @@ -/********************************************************************** - * Copyright (c) 2013-2014 Diederik Huys, Pieter Wuille * - * Distributed under the MIT software license, see the accompanying * - * file COPYING or http://www.opensource.org/licenses/mit-license.php.* - **********************************************************************/ +/*********************************************************************** + * Copyright (c) 2013-2014 Diederik Huys, Pieter Wuille * + * Distributed under the MIT software license, see the accompanying * + * file COPYING or https://www.opensource.org/licenses/mit-license.php.* + ***********************************************************************/ /** * Changelog: diff --git a/src/field_5x52_impl.h b/src/field_5x52_impl.h index 957c61b01451a..60ded927f6e83 100644 --- a/src/field_5x52_impl.h +++ b/src/field_5x52_impl.h @@ -1,8 +1,8 @@ -/********************************************************************** - * Copyright (c) 2013, 2014 Pieter Wuille * - * Distributed under the MIT software license, see the accompanying * - * file COPYING or http://www.opensource.org/licenses/mit-license.php.* - **********************************************************************/ +/*********************************************************************** + * Copyright (c) 2013, 2014 Pieter Wuille * + * Distributed under the MIT software license, see the accompanying * + * file COPYING or https://www.opensource.org/licenses/mit-license.php.* + ***********************************************************************/ #ifndef SECP256K1_FIELD_REPR_IMPL_H #define SECP256K1_FIELD_REPR_IMPL_H @@ -12,8 +12,8 @@ #endif #include "util.h" -#include "num.h" #include "field.h" +#include "modinv64_impl.h" #if defined(USE_ASM_X86_64) #include "field_5x52_asm_impl.h" @@ -162,7 +162,7 @@ static void secp256k1_fe_normalize_var(secp256k1_fe *r) { #endif } -static int secp256k1_fe_normalizes_to_zero(secp256k1_fe *r) { +static int secp256k1_fe_normalizes_to_zero(const secp256k1_fe *r) { uint64_t t0 = r->n[0], t1 = r->n[1], t2 = r->n[2], t3 = r->n[3], t4 = r->n[4]; /* z0 tracks a possible raw value of 0, z1 tracks a possible raw value of P */ @@ -185,7 +185,7 @@ static int secp256k1_fe_normalizes_to_zero(secp256k1_fe *r) { return (z0 == 0) | (z1 == 0xFFFFFFFFFFFFFULL); } -static int secp256k1_fe_normalizes_to_zero_var(secp256k1_fe *r) { +static int secp256k1_fe_normalizes_to_zero_var(const secp256k1_fe *r) { uint64_t t0, t1, t2, t3, t4; uint64_t z0, z1; uint64_t x; @@ -284,6 +284,7 @@ static int secp256k1_fe_cmp_var(const secp256k1_fe *a, const secp256k1_fe *b) { } static int secp256k1_fe_set_b32(secp256k1_fe *r, const unsigned char *a) { + int ret; r->n[0] = (uint64_t)a[31] | ((uint64_t)a[30] << 8) | ((uint64_t)a[29] << 16) @@ -318,15 +319,17 @@ static int secp256k1_fe_set_b32(secp256k1_fe *r, const unsigned char *a) { | ((uint64_t)a[2] << 24) | ((uint64_t)a[1] << 32) | ((uint64_t)a[0] << 40); - if (r->n[4] == 0x0FFFFFFFFFFFFULL && (r->n[3] & r->n[2] & r->n[1]) == 0xFFFFFFFFFFFFFULL && r->n[0] >= 0xFFFFEFFFFFC2FULL) { - return 0; - } + ret = !((r->n[4] == 0x0FFFFFFFFFFFFULL) & ((r->n[3] & r->n[2] & r->n[1]) == 0xFFFFFFFFFFFFFULL) & (r->n[0] >= 0xFFFFEFFFFFC2FULL)); #ifdef VERIFY r->magnitude = 1; - r->normalized = 1; - secp256k1_fe_verify(r); + if (ret) { + r->normalized = 1; + secp256k1_fe_verify(r); + } else { + r->normalized = 0; + } #endif - return 1; + return ret; } /** Convert a field element to a 32-byte big endian value. Requires the input to be normalized */ @@ -422,6 +425,7 @@ static void secp256k1_fe_mul(secp256k1_fe *r, const secp256k1_fe *a, const secp2 secp256k1_fe_verify(a); secp256k1_fe_verify(b); VERIFY_CHECK(r != b); + VERIFY_CHECK(a != b); #endif secp256k1_fe_mul_inner(r->n, a->n, b->n); #ifdef VERIFY @@ -446,6 +450,7 @@ static void secp256k1_fe_sqr(secp256k1_fe *r, const secp256k1_fe *a) { static SECP256K1_INLINE void secp256k1_fe_cmov(secp256k1_fe *r, const secp256k1_fe *a, int flag) { uint64_t mask0, mask1; + VG_CHECK_VERIFY(r->n, sizeof(r->n)); mask0 = flag + ~((uint64_t)0); mask1 = ~mask0; r->n[0] = (r->n[0] & mask0) | (a->n[0] & mask1); @@ -454,15 +459,16 @@ static SECP256K1_INLINE void secp256k1_fe_cmov(secp256k1_fe *r, const secp256k1_ r->n[3] = (r->n[3] & mask0) | (a->n[3] & mask1); r->n[4] = (r->n[4] & mask0) | (a->n[4] & mask1); #ifdef VERIFY - if (a->magnitude > r->magnitude) { + if (flag) { r->magnitude = a->magnitude; + r->normalized = a->normalized; } - r->normalized &= a->normalized; #endif } static SECP256K1_INLINE void secp256k1_fe_storage_cmov(secp256k1_fe_storage *r, const secp256k1_fe_storage *a, int flag) { uint64_t mask0, mask1; + VG_CHECK_VERIFY(r->n, sizeof(r->n)); mask0 = flag + ~((uint64_t)0); mask1 = ~mask0; r->n[0] = (r->n[0] & mask0) | (a->n[0] & mask1); @@ -493,4 +499,80 @@ static SECP256K1_INLINE void secp256k1_fe_from_storage(secp256k1_fe *r, const se #endif } +static void secp256k1_fe_from_signed62(secp256k1_fe *r, const secp256k1_modinv64_signed62 *a) { + const uint64_t M52 = UINT64_MAX >> 12; + const uint64_t a0 = a->v[0], a1 = a->v[1], a2 = a->v[2], a3 = a->v[3], a4 = a->v[4]; + + /* The output from secp256k1_modinv64{_var} should be normalized to range [0,modulus), and + * have limbs in [0,2^62). The modulus is < 2^256, so the top limb must be below 2^(256-62*4). + */ + VERIFY_CHECK(a0 >> 62 == 0); + VERIFY_CHECK(a1 >> 62 == 0); + VERIFY_CHECK(a2 >> 62 == 0); + VERIFY_CHECK(a3 >> 62 == 0); + VERIFY_CHECK(a4 >> 8 == 0); + + r->n[0] = a0 & M52; + r->n[1] = (a0 >> 52 | a1 << 10) & M52; + r->n[2] = (a1 >> 42 | a2 << 20) & M52; + r->n[3] = (a2 >> 32 | a3 << 30) & M52; + r->n[4] = (a3 >> 22 | a4 << 40); + +#ifdef VERIFY + r->magnitude = 1; + r->normalized = 1; + secp256k1_fe_verify(r); +#endif +} + +static void secp256k1_fe_to_signed62(secp256k1_modinv64_signed62 *r, const secp256k1_fe *a) { + const uint64_t M62 = UINT64_MAX >> 2; + const uint64_t a0 = a->n[0], a1 = a->n[1], a2 = a->n[2], a3 = a->n[3], a4 = a->n[4]; + +#ifdef VERIFY + VERIFY_CHECK(a->normalized); +#endif + + r->v[0] = (a0 | a1 << 52) & M62; + r->v[1] = (a1 >> 10 | a2 << 42) & M62; + r->v[2] = (a2 >> 20 | a3 << 32) & M62; + r->v[3] = (a3 >> 30 | a4 << 22) & M62; + r->v[4] = a4 >> 40; +} + +static const secp256k1_modinv64_modinfo secp256k1_const_modinfo_fe = { + {{-0x1000003D1LL, 0, 0, 0, 256}}, + 0x27C7F6E22DDACACFLL +}; + +static void secp256k1_fe_inv(secp256k1_fe *r, const secp256k1_fe *x) { + secp256k1_fe tmp; + secp256k1_modinv64_signed62 s; + + tmp = *x; + secp256k1_fe_normalize(&tmp); + secp256k1_fe_to_signed62(&s, &tmp); + secp256k1_modinv64(&s, &secp256k1_const_modinfo_fe); + secp256k1_fe_from_signed62(r, &s); + +#ifdef VERIFY + VERIFY_CHECK(secp256k1_fe_normalizes_to_zero(r) == secp256k1_fe_normalizes_to_zero(&tmp)); +#endif +} + +static void secp256k1_fe_inv_var(secp256k1_fe *r, const secp256k1_fe *x) { + secp256k1_fe tmp; + secp256k1_modinv64_signed62 s; + + tmp = *x; + secp256k1_fe_normalize_var(&tmp); + secp256k1_fe_to_signed62(&s, &tmp); + secp256k1_modinv64_var(&s, &secp256k1_const_modinfo_fe); + secp256k1_fe_from_signed62(r, &s); + +#ifdef VERIFY + VERIFY_CHECK(secp256k1_fe_normalizes_to_zero(r) == secp256k1_fe_normalizes_to_zero(&tmp)); +#endif +} + #endif /* SECP256K1_FIELD_REPR_IMPL_H */ diff --git a/src/field_5x52_int128_impl.h b/src/field_5x52_int128_impl.h index 95a0d1791c055..314002ee3950f 100644 --- a/src/field_5x52_int128_impl.h +++ b/src/field_5x52_int128_impl.h @@ -1,8 +1,8 @@ -/********************************************************************** - * Copyright (c) 2013, 2014 Pieter Wuille * - * Distributed under the MIT software license, see the accompanying * - * file COPYING or http://www.opensource.org/licenses/mit-license.php.* - **********************************************************************/ +/*********************************************************************** + * Copyright (c) 2013, 2014 Pieter Wuille * + * Distributed under the MIT software license, see the accompanying * + * file COPYING or https://www.opensource.org/licenses/mit-license.php.* + ***********************************************************************/ #ifndef SECP256K1_FIELD_INNER5X52_IMPL_H #define SECP256K1_FIELD_INNER5X52_IMPL_H @@ -32,9 +32,11 @@ SECP256K1_INLINE static void secp256k1_fe_mul_inner(uint64_t *r, const uint64_t VERIFY_BITS(b[3], 56); VERIFY_BITS(b[4], 52); VERIFY_CHECK(r != b); + VERIFY_CHECK(a != b); /* [... a b c] is a shorthand for ... + a<<104 + b<<52 + c<<0 mod n. - * px is a shorthand for sum(a[i]*b[x-i], i=0..x). + * for 0 <= x <= 4, px is a shorthand for sum(a[i]*b[x-i], i=0..x). + * for 4 <= x <= 8, px is a shorthand for sum(a[i]*b[x-i], i=(x-4)..4) * Note that [x 0 0 0 0 0] = [x*R]. */ diff --git a/src/field_impl.h b/src/field_impl.h index 20428648af312..374284a1f4ce9 100644 --- a/src/field_impl.h +++ b/src/field_impl.h @@ -1,8 +1,8 @@ -/********************************************************************** - * Copyright (c) 2013, 2014 Pieter Wuille * - * Distributed under the MIT software license, see the accompanying * - * file COPYING or http://www.opensource.org/licenses/mit-license.php.* - **********************************************************************/ +/*********************************************************************** + * Copyright (c) 2013, 2014 Pieter Wuille * + * Distributed under the MIT software license, see the accompanying * + * file COPYING or https://www.opensource.org/licenses/mit-license.php.* + ***********************************************************************/ #ifndef SECP256K1_FIELD_IMPL_H #define SECP256K1_FIELD_IMPL_H @@ -13,12 +13,12 @@ #include "util.h" -#if defined(USE_FIELD_10X26) -#include "field_10x26_impl.h" -#elif defined(USE_FIELD_5X52) +#if defined(SECP256K1_WIDEMUL_INT128) #include "field_5x52_impl.h" +#elif defined(SECP256K1_WIDEMUL_INT64) +#include "field_10x26_impl.h" #else -#error "Please select field implementation" +#error "Please select wide multiplication implementation" #endif SECP256K1_INLINE static int secp256k1_fe_equal(const secp256k1_fe *a, const secp256k1_fe *b) { @@ -48,6 +48,8 @@ static int secp256k1_fe_sqrt(secp256k1_fe *r, const secp256k1_fe *a) { secp256k1_fe x2, x3, x6, x9, x11, x22, x44, x88, x176, x220, x223, t1; int j; + VERIFY_CHECK(r != a); + /** The binary representation of (p + 1)/4 has 3 blocks of 1s, with lengths in * { 2, 22, 223 }. Use an addition chain to calculate 2^n - 1 for each block: * 1, [2], 3, 6, 9, 11, [22], 44, 88, 176, 220, [223] @@ -133,183 +135,6 @@ static int secp256k1_fe_sqrt(secp256k1_fe *r, const secp256k1_fe *a) { return secp256k1_fe_equal(&t1, a); } -static void secp256k1_fe_inv(secp256k1_fe *r, const secp256k1_fe *a) { - secp256k1_fe x2, x3, x6, x9, x11, x22, x44, x88, x176, x220, x223, t1; - int j; - - /** The binary representation of (p - 2) has 5 blocks of 1s, with lengths in - * { 1, 2, 22, 223 }. Use an addition chain to calculate 2^n - 1 for each block: - * [1], [2], 3, 6, 9, 11, [22], 44, 88, 176, 220, [223] - */ - - secp256k1_fe_sqr(&x2, a); - secp256k1_fe_mul(&x2, &x2, a); - - secp256k1_fe_sqr(&x3, &x2); - secp256k1_fe_mul(&x3, &x3, a); - - x6 = x3; - for (j=0; j<3; j++) { - secp256k1_fe_sqr(&x6, &x6); - } - secp256k1_fe_mul(&x6, &x6, &x3); - - x9 = x6; - for (j=0; j<3; j++) { - secp256k1_fe_sqr(&x9, &x9); - } - secp256k1_fe_mul(&x9, &x9, &x3); - - x11 = x9; - for (j=0; j<2; j++) { - secp256k1_fe_sqr(&x11, &x11); - } - secp256k1_fe_mul(&x11, &x11, &x2); - - x22 = x11; - for (j=0; j<11; j++) { - secp256k1_fe_sqr(&x22, &x22); - } - secp256k1_fe_mul(&x22, &x22, &x11); - - x44 = x22; - for (j=0; j<22; j++) { - secp256k1_fe_sqr(&x44, &x44); - } - secp256k1_fe_mul(&x44, &x44, &x22); - - x88 = x44; - for (j=0; j<44; j++) { - secp256k1_fe_sqr(&x88, &x88); - } - secp256k1_fe_mul(&x88, &x88, &x44); - - x176 = x88; - for (j=0; j<88; j++) { - secp256k1_fe_sqr(&x176, &x176); - } - secp256k1_fe_mul(&x176, &x176, &x88); - - x220 = x176; - for (j=0; j<44; j++) { - secp256k1_fe_sqr(&x220, &x220); - } - secp256k1_fe_mul(&x220, &x220, &x44); - - x223 = x220; - for (j=0; j<3; j++) { - secp256k1_fe_sqr(&x223, &x223); - } - secp256k1_fe_mul(&x223, &x223, &x3); - - /* The final result is then assembled using a sliding window over the blocks. */ - - t1 = x223; - for (j=0; j<23; j++) { - secp256k1_fe_sqr(&t1, &t1); - } - secp256k1_fe_mul(&t1, &t1, &x22); - for (j=0; j<5; j++) { - secp256k1_fe_sqr(&t1, &t1); - } - secp256k1_fe_mul(&t1, &t1, a); - for (j=0; j<3; j++) { - secp256k1_fe_sqr(&t1, &t1); - } - secp256k1_fe_mul(&t1, &t1, &x2); - for (j=0; j<2; j++) { - secp256k1_fe_sqr(&t1, &t1); - } - secp256k1_fe_mul(r, a, &t1); -} - -static void secp256k1_fe_inv_var(secp256k1_fe *r, const secp256k1_fe *a) { -#if defined(USE_FIELD_INV_BUILTIN) - secp256k1_fe_inv(r, a); -#elif defined(USE_FIELD_INV_NUM) - secp256k1_num n, m; - static const secp256k1_fe negone = SECP256K1_FE_CONST( - 0xFFFFFFFFUL, 0xFFFFFFFFUL, 0xFFFFFFFFUL, 0xFFFFFFFFUL, - 0xFFFFFFFFUL, 0xFFFFFFFFUL, 0xFFFFFFFEUL, 0xFFFFFC2EUL - ); - /* secp256k1 field prime, value p defined in "Standards for Efficient Cryptography" (SEC2) 2.7.1. */ - static const unsigned char prime[32] = { - 0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF, - 0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF, - 0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF, - 0xFF,0xFF,0xFF,0xFE,0xFF,0xFF,0xFC,0x2F - }; - unsigned char b[32]; - int res; - secp256k1_fe c = *a; - secp256k1_fe_normalize_var(&c); - secp256k1_fe_get_b32(b, &c); - secp256k1_num_set_bin(&n, b, 32); - secp256k1_num_set_bin(&m, prime, 32); - secp256k1_num_mod_inverse(&n, &n, &m); - secp256k1_num_get_bin(b, 32, &n); - res = secp256k1_fe_set_b32(r, b); - (void)res; - VERIFY_CHECK(res); - /* Verify the result is the (unique) valid inverse using non-GMP code. */ - secp256k1_fe_mul(&c, &c, r); - secp256k1_fe_add(&c, &negone); - CHECK(secp256k1_fe_normalizes_to_zero_var(&c)); -#else -#error "Please select field inverse implementation" -#endif -} - -static void secp256k1_fe_inv_all_var(secp256k1_fe *r, const secp256k1_fe *a, size_t len) { - secp256k1_fe u; - size_t i; - if (len < 1) { - return; - } - - VERIFY_CHECK((r + len <= a) || (a + len <= r)); - - r[0] = a[0]; - - i = 0; - while (++i < len) { - secp256k1_fe_mul(&r[i], &r[i - 1], &a[i]); - } - - secp256k1_fe_inv_var(&u, &r[--i]); - - while (i > 0) { - size_t j = i--; - secp256k1_fe_mul(&r[j], &r[i], &u); - secp256k1_fe_mul(&u, &u, &a[j]); - } - - r[0] = u; -} - -static int secp256k1_fe_is_quad_var(const secp256k1_fe *a) { -#ifndef USE_NUM_NONE - unsigned char b[32]; - secp256k1_num n; - secp256k1_num m; - /* secp256k1 field prime, value p defined in "Standards for Efficient Cryptography" (SEC2) 2.7.1. */ - static const unsigned char prime[32] = { - 0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF, - 0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF, - 0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF, - 0xFF,0xFF,0xFF,0xFE,0xFF,0xFF,0xFC,0x2F - }; - - secp256k1_fe c = *a; - secp256k1_fe_normalize_var(&c); - secp256k1_fe_get_b32(b, &c); - secp256k1_num_set_bin(&n, b, 32); - secp256k1_num_set_bin(&m, prime, 32); - return secp256k1_num_jacobi(&n, &m) >= 0; -#else - secp256k1_fe r; - return secp256k1_fe_sqrt(&r, a); -#endif -} +static const secp256k1_fe secp256k1_fe_one = SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 1); #endif /* SECP256K1_FIELD_IMPL_H */ diff --git a/src/gen_context.c b/src/gen_context.c index 87d296ebf0e2c..8fab7aa49d80c 100644 --- a/src/gen_context.c +++ b/src/gen_context.c @@ -1,13 +1,26 @@ -/********************************************************************** - * Copyright (c) 2013, 2014, 2015 Thomas Daede, Cory Fields * - * Distributed under the MIT software license, see the accompanying * - * file COPYING or http://www.opensource.org/licenses/mit-license.php.* - **********************************************************************/ +/*********************************************************************** + * Copyright (c) 2013, 2014, 2015 Thomas Daede, Cory Fields * + * Distributed under the MIT software license, see the accompanying * + * file COPYING or https://www.opensource.org/licenses/mit-license.php.* + ***********************************************************************/ -#define USE_BASIC_CONFIG 1 +/* Autotools creates libsecp256k1-config.h, of which ECMULT_GEN_PREC_BITS is needed. + ifndef guard so downstream users can define their own if they do not use autotools. */ +#if !defined(ECMULT_GEN_PREC_BITS) +#include "libsecp256k1-config.h" +#endif -#include "basic-config.h" -#include "include/secp256k1.h" +/* We can't require the precomputed tables when creating them. */ +#undef USE_ECMULT_STATIC_PRECOMPUTATION + +/* In principle we could use external ASM, but this yields only a minor speedup in + build time and it's very complicated. In particular when cross-compiling, we'd + need to build the external ASM for the build and the host machine. */ +#undef USE_EXTERNAL_ASM + +#include "../include/secp256k1.h" +#include "assumptions.h" +#include "util.h" #include "field_impl.h" #include "scalar_impl.h" #include "group_impl.h" @@ -26,6 +39,7 @@ static const secp256k1_callback default_error_callback = { int main(int argc, char **argv) { secp256k1_ecmult_gen_context ctx; + void *prealloc, *base; int inner; int outer; FILE* fp; @@ -38,26 +52,31 @@ int main(int argc, char **argv) { fprintf(stderr, "Could not open src/ecmult_static_context.h for writing!\n"); return -1; } - - fprintf(fp, "#ifndef _SECP256K1_ECMULT_STATIC_CONTEXT_\n"); - fprintf(fp, "#define _SECP256K1_ECMULT_STATIC_CONTEXT_\n"); + + fprintf(fp, "#ifndef SECP256K1_ECMULT_STATIC_CONTEXT_H\n"); + fprintf(fp, "#define SECP256K1_ECMULT_STATIC_CONTEXT_H\n"); fprintf(fp, "#include \"src/group.h\"\n"); fprintf(fp, "#define SC SECP256K1_GE_STORAGE_CONST\n"); - fprintf(fp, "static const secp256k1_ge_storage secp256k1_ecmult_static_context[64][16] = {\n"); + fprintf(fp, "#if ECMULT_GEN_PREC_N != %d || ECMULT_GEN_PREC_G != %d\n", ECMULT_GEN_PREC_N, ECMULT_GEN_PREC_G); + fprintf(fp, " #error configuration mismatch, invalid ECMULT_GEN_PREC_N, ECMULT_GEN_PREC_G. Try deleting ecmult_static_context.h before the build.\n"); + fprintf(fp, "#endif\n"); + fprintf(fp, "static const secp256k1_ge_storage secp256k1_ecmult_static_context[ECMULT_GEN_PREC_N][ECMULT_GEN_PREC_G] = {\n"); + base = checked_malloc(&default_error_callback, SECP256K1_ECMULT_GEN_CONTEXT_PREALLOCATED_SIZE); + prealloc = base; secp256k1_ecmult_gen_context_init(&ctx); - secp256k1_ecmult_gen_context_build(&ctx, &default_error_callback); - for(outer = 0; outer != 64; outer++) { + secp256k1_ecmult_gen_context_build(&ctx, &prealloc); + for(outer = 0; outer != ECMULT_GEN_PREC_N; outer++) { fprintf(fp,"{\n"); - for(inner = 0; inner != 16; inner++) { + for(inner = 0; inner != ECMULT_GEN_PREC_G; inner++) { fprintf(fp," SC(%uu, %uu, %uu, %uu, %uu, %uu, %uu, %uu, %uu, %uu, %uu, %uu, %uu, %uu, %uu, %uu)", SECP256K1_GE_STORAGE_CONST_GET((*ctx.prec)[outer][inner])); - if (inner != 15) { + if (inner != ECMULT_GEN_PREC_G - 1) { fprintf(fp,",\n"); } else { fprintf(fp,"\n"); } } - if (outer != 63) { + if (outer != ECMULT_GEN_PREC_N - 1) { fprintf(fp,"},\n"); } else { fprintf(fp,"}\n"); @@ -65,10 +84,11 @@ int main(int argc, char **argv) { } fprintf(fp,"};\n"); secp256k1_ecmult_gen_context_clear(&ctx); - + free(base); + fprintf(fp, "#undef SC\n"); fprintf(fp, "#endif\n"); fclose(fp); - + return 0; } diff --git a/src/group.h b/src/group.h index 3947ea2ddafa3..b9cd334dae26c 100644 --- a/src/group.h +++ b/src/group.h @@ -1,13 +1,12 @@ -/********************************************************************** - * Copyright (c) 2013, 2014 Pieter Wuille * - * Distributed under the MIT software license, see the accompanying * - * file COPYING or http://www.opensource.org/licenses/mit-license.php.* - **********************************************************************/ +/*********************************************************************** + * Copyright (c) 2013, 2014 Pieter Wuille * + * Distributed under the MIT software license, see the accompanying * + * file COPYING or https://www.opensource.org/licenses/mit-license.php.* + ***********************************************************************/ #ifndef SECP256K1_GROUP_H #define SECP256K1_GROUP_H -#include "num.h" #include "field.h" /** A group element of the secp256k1 curve, in affine coordinates. */ @@ -43,12 +42,6 @@ typedef struct { /** Set a group element equal to the point with given X and Y coordinates */ static void secp256k1_ge_set_xy(secp256k1_ge *r, const secp256k1_fe *x, const secp256k1_fe *y); -/** Set a group element (affine) equal to the point with the given X coordinate - * and a Y coordinate that is a quadratic residue modulo p. The return value - * is true iff a coordinate with the given X coordinate exists. - */ -static int secp256k1_ge_set_xquad(secp256k1_ge *r, const secp256k1_fe *x); - /** Set a group element (affine) equal to the point with the given X coordinate, and given oddness * for Y. Return value indicates whether the result is valid. */ static int secp256k1_ge_set_xo_var(secp256k1_ge *r, const secp256k1_fe *x, int odd); @@ -59,18 +52,17 @@ static int secp256k1_ge_is_infinity(const secp256k1_ge *a); /** Check whether a group element is valid (i.e., on the curve). */ static int secp256k1_ge_is_valid_var(const secp256k1_ge *a); +/** Set r equal to the inverse of a (i.e., mirrored around the X axis) */ static void secp256k1_ge_neg(secp256k1_ge *r, const secp256k1_ge *a); -/** Set a group element equal to another which is given in jacobian coordinates */ +/** Set a group element equal to another which is given in jacobian coordinates. Constant time. */ static void secp256k1_ge_set_gej(secp256k1_ge *r, secp256k1_gej *a); -/** Set a batch of group elements equal to the inputs given in jacobian coordinates */ -static void secp256k1_ge_set_all_gej_var(secp256k1_ge *r, const secp256k1_gej *a, size_t len, const secp256k1_callback *cb); +/** Set a group element equal to another which is given in jacobian coordinates. */ +static void secp256k1_ge_set_gej_var(secp256k1_ge *r, secp256k1_gej *a); -/** Set a batch of group elements equal to the inputs given in jacobian - * coordinates (with known z-ratios). zr must contain the known z-ratios such - * that mul(a[i].z, zr[i+1]) == a[i+1].z. zr[0] is ignored. */ -static void secp256k1_ge_set_table_gej_var(secp256k1_ge *r, const secp256k1_gej *a, const secp256k1_fe *zr, size_t len); +/** Set a batch of group elements equal to the inputs given in jacobian coordinates */ +static void secp256k1_ge_set_all_gej_var(secp256k1_ge *r, const secp256k1_gej *a, size_t len); /** Bring a batch inputs given in jacobian coordinates (with known z-ratios) to * the same global z "denominator". zr must contain the known z-ratios such @@ -97,17 +89,13 @@ static void secp256k1_gej_neg(secp256k1_gej *r, const secp256k1_gej *a); /** Check whether a group element is the point at infinity. */ static int secp256k1_gej_is_infinity(const secp256k1_gej *a); -/** Check whether a group element's y coordinate is a quadratic residue. */ -static int secp256k1_gej_has_quad_y_var(const secp256k1_gej *a); - -/** Set r equal to the double of a. If rzr is not-NULL, r->z = a->z * *rzr (where infinity means an implicit z = 0). - * a may not be zero. Constant time. */ -static void secp256k1_gej_double_nonzero(secp256k1_gej *r, const secp256k1_gej *a, secp256k1_fe *rzr); +/** Set r equal to the double of a. Constant time. */ +static void secp256k1_gej_double(secp256k1_gej *r, const secp256k1_gej *a); -/** Set r equal to the double of a. If rzr is not-NULL, r->z = a->z * *rzr (where infinity means an implicit z = 0). */ +/** Set r equal to the double of a. If rzr is not-NULL this sets *rzr such that r->z == a->z * *rzr (where infinity means an implicit z = 0). */ static void secp256k1_gej_double_var(secp256k1_gej *r, const secp256k1_gej *a, secp256k1_fe *rzr); -/** Set r equal to the sum of a and b. If rzr is non-NULL, r->z = a->z * *rzr (a cannot be infinity in that case). */ +/** Set r equal to the sum of a and b. If rzr is non-NULL this sets *rzr such that r->z == a->z * *rzr (a cannot be infinity in that case). */ static void secp256k1_gej_add_var(secp256k1_gej *r, const secp256k1_gej *a, const secp256k1_gej *b, secp256k1_fe *rzr); /** Set r equal to the sum of a and b (with b given in affine coordinates, and not infinity). */ @@ -115,16 +103,14 @@ static void secp256k1_gej_add_ge(secp256k1_gej *r, const secp256k1_gej *a, const /** Set r equal to the sum of a and b (with b given in affine coordinates). This is more efficient than secp256k1_gej_add_var. It is identical to secp256k1_gej_add_ge but without constant-time - guarantee, and b is allowed to be infinity. If rzr is non-NULL, r->z = a->z * *rzr (a cannot be infinity in that case). */ + guarantee, and b is allowed to be infinity. If rzr is non-NULL this sets *rzr such that r->z == a->z * *rzr (a cannot be infinity in that case). */ static void secp256k1_gej_add_ge_var(secp256k1_gej *r, const secp256k1_gej *a, const secp256k1_ge *b, secp256k1_fe *rzr); /** Set r equal to the sum of a and b (with the inverse of b's Z coordinate passed as bzinv). */ static void secp256k1_gej_add_zinv_var(secp256k1_gej *r, const secp256k1_gej *a, const secp256k1_ge *b, const secp256k1_fe *bzinv); -#ifdef USE_ENDOMORPHISM /** Set r to be equal to lambda times a, where lambda is chosen in a way such that this is very fast. */ static void secp256k1_ge_mul_lambda(secp256k1_ge *r, const secp256k1_ge *a); -#endif /** Clear a secp256k1_gej to prevent leaking sensitive information. */ static void secp256k1_gej_clear(secp256k1_gej *r); @@ -138,10 +124,21 @@ static void secp256k1_ge_to_storage(secp256k1_ge_storage *r, const secp256k1_ge /** Convert a group element back from the storage type. */ static void secp256k1_ge_from_storage(secp256k1_ge *r, const secp256k1_ge_storage *a); -/** If flag is true, set *r equal to *a; otherwise leave it. Constant-time. */ +/** If flag is true, set *r equal to *a; otherwise leave it. Constant-time. Both *r and *a must be initialized.*/ static void secp256k1_ge_storage_cmov(secp256k1_ge_storage *r, const secp256k1_ge_storage *a, int flag); /** Rescale a jacobian point by b which must be non-zero. Constant-time. */ static void secp256k1_gej_rescale(secp256k1_gej *r, const secp256k1_fe *b); +/** Determine if a point (which is assumed to be on the curve) is in the correct (sub)group of the curve. + * + * In normal mode, the used group is secp256k1, which has cofactor=1 meaning that every point on the curve is in the + * group, and this function returns always true. + * + * When compiling in exhaustive test mode, a slightly different curve equation is used, leading to a group with a + * (very) small subgroup, and that subgroup is what is used for all cryptographic operations. In that mode, this + * function checks whether a point that is on the curve is in fact also in that subgroup. + */ +static int secp256k1_ge_is_in_correct_subgroup(const secp256k1_ge* ge); + #endif /* SECP256K1_GROUP_H */ diff --git a/src/group_impl.h b/src/group_impl.h index b1ace87b6ffd0..47aea32be184a 100644 --- a/src/group_impl.h +++ b/src/group_impl.h @@ -1,59 +1,47 @@ -/********************************************************************** - * Copyright (c) 2013, 2014 Pieter Wuille * - * Distributed under the MIT software license, see the accompanying * - * file COPYING or http://www.opensource.org/licenses/mit-license.php.* - **********************************************************************/ +/*********************************************************************** + * Copyright (c) 2013, 2014 Pieter Wuille * + * Distributed under the MIT software license, see the accompanying * + * file COPYING or https://www.opensource.org/licenses/mit-license.php.* + ***********************************************************************/ #ifndef SECP256K1_GROUP_IMPL_H #define SECP256K1_GROUP_IMPL_H -#include "num.h" #include "field.h" #include "group.h" -/* These points can be generated in sage as follows: +/* These exhaustive group test orders and generators are chosen such that: + * - The field size is equal to that of secp256k1, so field code is the same. + * - The curve equation is of the form y^2=x^3+B for some constant B. + * - The subgroup has a generator 2*P, where P.x=1. + * - The subgroup has size less than 1000 to permit exhaustive testing. + * - The subgroup admits an endomorphism of the form lambda*(x,y) == (beta*x,y). * - * 0. Setup a worksheet with the following parameters. - * b = 4 # whatever CURVE_B will be set to - * F = FiniteField (0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFC2F) - * C = EllipticCurve ([F (0), F (b)]) - * - * 1. Determine all the small orders available to you. (If there are - * no satisfactory ones, go back and change b.) - * print C.order().factor(limit=1000) - * - * 2. Choose an order as one of the prime factors listed in the above step. - * (You can also multiply some to get a composite order, though the - * tests will crash trying to invert scalars during signing.) We take a - * random point and scale it to drop its order to the desired value. - * There is some probability this won't work; just try again. - * order = 199 - * P = C.random_point() - * P = (int(P.order()) / int(order)) * P - * assert(P.order() == order) - * - * 3. Print the values. You'll need to use a vim macro or something to - * split the hex output into 4-byte chunks. - * print "%x %x" % P.xy() + * These parameters are generated using sage/gen_exhaustive_groups.sage. */ #if defined(EXHAUSTIVE_TEST_ORDER) -# if EXHAUSTIVE_TEST_ORDER == 199 -const secp256k1_ge secp256k1_ge_const_g = SECP256K1_GE_CONST( - 0xFA7CC9A7, 0x0737F2DB, 0xA749DD39, 0x2B4FB069, - 0x3B017A7D, 0xA808C2F1, 0xFB12940C, 0x9EA66C18, - 0x78AC123A, 0x5ED8AEF3, 0x8732BC91, 0x1F3A2868, - 0x48DF246C, 0x808DAE72, 0xCFE52572, 0x7F0501ED +# if EXHAUSTIVE_TEST_ORDER == 13 +static const secp256k1_ge secp256k1_ge_const_g = SECP256K1_GE_CONST( + 0xc3459c3d, 0x35326167, 0xcd86cce8, 0x07a2417f, + 0x5b8bd567, 0xde8538ee, 0x0d507b0c, 0xd128f5bb, + 0x8e467fec, 0xcd30000a, 0x6cc1184e, 0x25d382c2, + 0xa2f4494e, 0x2fbe9abc, 0x8b64abac, 0xd005fb24 ); - -const int CURVE_B = 4; -# elif EXHAUSTIVE_TEST_ORDER == 13 -const secp256k1_ge secp256k1_ge_const_g = SECP256K1_GE_CONST( - 0xedc60018, 0xa51a786b, 0x2ea91f4d, 0x4c9416c0, - 0x9de54c3b, 0xa1316554, 0x6cf4345c, 0x7277ef15, - 0x54cb1b6b, 0xdc8c1273, 0x087844ea, 0x43f4603e, - 0x0eaf9a43, 0xf6effe55, 0x939f806d, 0x37adf8ac +static const secp256k1_fe secp256k1_fe_const_b = SECP256K1_FE_CONST( + 0x3d3486b2, 0x159a9ca5, 0xc75638be, 0xb23a69bc, + 0x946a45ab, 0x24801247, 0xb4ed2b8e, 0x26b6a417 +); +# elif EXHAUSTIVE_TEST_ORDER == 199 +static const secp256k1_ge secp256k1_ge_const_g = SECP256K1_GE_CONST( + 0x226e653f, 0xc8df7744, 0x9bacbf12, 0x7d1dcbf9, + 0x87f05b2a, 0xe7edbd28, 0x1f564575, 0xc48dcf18, + 0xa13872c2, 0xe933bb17, 0x5d9ffd5b, 0xb5b6e10c, + 0x57fe3c00, 0xbaaaa15a, 0xe003ec3e, 0x9c269bae +); +static const secp256k1_fe secp256k1_fe_const_b = SECP256K1_FE_CONST( + 0x2cca28fa, 0xfc614b80, 0x2a3db42b, 0x00ba00b1, + 0xbea8d943, 0xdace9ab2, 0x9536daea, 0x0074defb ); -const int CURVE_B = 2; # else # error No known generator for the specified exhaustive test group order. # endif @@ -68,7 +56,7 @@ static const secp256k1_ge secp256k1_ge_const_g = SECP256K1_GE_CONST( 0xFD17B448UL, 0xA6855419UL, 0x9C47D08FUL, 0xFB10D4B8UL ); -const int CURVE_B = 7; +static const secp256k1_fe secp256k1_fe_const_b = SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 7); #endif static void secp256k1_ge_set_gej_zinv(secp256k1_ge *r, const secp256k1_gej *a, const secp256k1_fe *zi) { @@ -112,8 +100,8 @@ static void secp256k1_ge_set_gej(secp256k1_ge *r, secp256k1_gej *a) { static void secp256k1_ge_set_gej_var(secp256k1_ge *r, secp256k1_gej *a) { secp256k1_fe z2, z3; - r->infinity = a->infinity; if (a->infinity) { + secp256k1_ge_set_infinity(r); return; } secp256k1_fe_inv_var(&a->z, &a->z); @@ -122,50 +110,47 @@ static void secp256k1_ge_set_gej_var(secp256k1_ge *r, secp256k1_gej *a) { secp256k1_fe_mul(&a->x, &a->x, &z2); secp256k1_fe_mul(&a->y, &a->y, &z3); secp256k1_fe_set_int(&a->z, 1); - r->x = a->x; - r->y = a->y; + secp256k1_ge_set_xy(r, &a->x, &a->y); } -static void secp256k1_ge_set_all_gej_var(secp256k1_ge *r, const secp256k1_gej *a, size_t len, const secp256k1_callback *cb) { - secp256k1_fe *az; - secp256k1_fe *azi; +static void secp256k1_ge_set_all_gej_var(secp256k1_ge *r, const secp256k1_gej *a, size_t len) { + secp256k1_fe u; size_t i; - size_t count = 0; - az = (secp256k1_fe *)checked_malloc(cb, sizeof(secp256k1_fe) * len); + size_t last_i = SIZE_MAX; + for (i = 0; i < len; i++) { - if (!a[i].infinity) { - az[count++] = a[i].z; + if (a[i].infinity) { + secp256k1_ge_set_infinity(&r[i]); + } else { + /* Use destination's x coordinates as scratch space */ + if (last_i == SIZE_MAX) { + r[i].x = a[i].z; + } else { + secp256k1_fe_mul(&r[i].x, &r[last_i].x, &a[i].z); + } + last_i = i; } } + if (last_i == SIZE_MAX) { + return; + } + secp256k1_fe_inv_var(&u, &r[last_i].x); - azi = (secp256k1_fe *)checked_malloc(cb, sizeof(secp256k1_fe) * count); - secp256k1_fe_inv_all_var(azi, az, count); - free(az); - - count = 0; - for (i = 0; i < len; i++) { - r[i].infinity = a[i].infinity; + i = last_i; + while (i > 0) { + i--; if (!a[i].infinity) { - secp256k1_ge_set_gej_zinv(&r[i], &a[i], &azi[count++]); + secp256k1_fe_mul(&r[last_i].x, &r[i].x, &u); + secp256k1_fe_mul(&u, &u, &a[last_i].z); + last_i = i; } } - free(azi); -} - -static void secp256k1_ge_set_table_gej_var(secp256k1_ge *r, const secp256k1_gej *a, const secp256k1_fe *zr, size_t len) { - size_t i = len - 1; - secp256k1_fe zi; + VERIFY_CHECK(!a[last_i].infinity); + r[last_i].x = u; - if (len > 0) { - /* Compute the inverse of the last z coordinate, and use it to compute the last affine output. */ - secp256k1_fe_inv(&zi, &a[i].z); - secp256k1_ge_set_gej_zinv(&r[i], &a[i], &zi); - - /* Work out way backwards, using the z-ratios to scale the x/y values. */ - while (i > 0) { - secp256k1_fe_mul(&zi, &zi, &zr[i]); - i--; - secp256k1_ge_set_gej_zinv(&r[i], &a[i], &zi); + for (i = 0; i < len; i++) { + if (!a[i].infinity) { + secp256k1_ge_set_gej_zinv(&r[i], &a[i], &r[i].x); } } } @@ -178,6 +163,8 @@ static void secp256k1_ge_globalz_set_table_gej(size_t len, secp256k1_ge *r, secp /* The z of the final point gives us the "global Z" for the table. */ r[i].x = a[i].x; r[i].y = a[i].y; + /* Ensure all y values are in weak normal form for fast negation of points */ + secp256k1_fe_normalize_weak(&r[i].y); *globalz = a[i].z; r[i].infinity = 0; zs = zr[i]; @@ -219,19 +206,14 @@ static void secp256k1_ge_clear(secp256k1_ge *r) { secp256k1_fe_clear(&r->y); } -static int secp256k1_ge_set_xquad(secp256k1_ge *r, const secp256k1_fe *x) { - secp256k1_fe x2, x3, c; +static int secp256k1_ge_set_xo_var(secp256k1_ge *r, const secp256k1_fe *x, int odd) { + secp256k1_fe x2, x3; r->x = *x; secp256k1_fe_sqr(&x2, x); secp256k1_fe_mul(&x3, x, &x2); r->infinity = 0; - secp256k1_fe_set_int(&c, CURVE_B); - secp256k1_fe_add(&c, &x3); - return secp256k1_fe_sqrt(&r->y, &c); -} - -static int secp256k1_ge_set_xo_var(secp256k1_ge *r, const secp256k1_fe *x, int odd) { - if (!secp256k1_ge_set_xquad(r, x)) { + secp256k1_fe_add(&x3, &secp256k1_fe_const_b); + if (!secp256k1_fe_sqrt(&r->y, &x3)) { return 0; } secp256k1_fe_normalize_var(&r->y); @@ -270,41 +252,20 @@ static int secp256k1_gej_is_infinity(const secp256k1_gej *a) { return a->infinity; } -static int secp256k1_gej_is_valid_var(const secp256k1_gej *a) { - secp256k1_fe y2, x3, z2, z6; - if (a->infinity) { - return 0; - } - /** y^2 = x^3 + 7 - * (Y/Z^3)^2 = (X/Z^2)^3 + 7 - * Y^2 / Z^6 = X^3 / Z^6 + 7 - * Y^2 = X^3 + 7*Z^6 - */ - secp256k1_fe_sqr(&y2, &a->y); - secp256k1_fe_sqr(&x3, &a->x); secp256k1_fe_mul(&x3, &x3, &a->x); - secp256k1_fe_sqr(&z2, &a->z); - secp256k1_fe_sqr(&z6, &z2); secp256k1_fe_mul(&z6, &z6, &z2); - secp256k1_fe_mul_int(&z6, CURVE_B); - secp256k1_fe_add(&x3, &z6); - secp256k1_fe_normalize_weak(&x3); - return secp256k1_fe_equal_var(&y2, &x3); -} - static int secp256k1_ge_is_valid_var(const secp256k1_ge *a) { - secp256k1_fe y2, x3, c; + secp256k1_fe y2, x3; if (a->infinity) { return 0; } /* y^2 = x^3 + 7 */ secp256k1_fe_sqr(&y2, &a->y); secp256k1_fe_sqr(&x3, &a->x); secp256k1_fe_mul(&x3, &x3, &a->x); - secp256k1_fe_set_int(&c, CURVE_B); - secp256k1_fe_add(&x3, &c); + secp256k1_fe_add(&x3, &secp256k1_fe_const_b); secp256k1_fe_normalize_weak(&x3); return secp256k1_fe_equal_var(&y2, &x3); } -static void secp256k1_gej_double_var(secp256k1_gej *r, const secp256k1_gej *a, secp256k1_fe *rzr) { +static SECP256K1_INLINE void secp256k1_gej_double(secp256k1_gej *r, const secp256k1_gej *a) { /* Operations: 3 mul, 4 sqr, 0 normalize, 12 mul_int/add/negate. * * Note that there is an implementation described at @@ -313,29 +274,8 @@ static void secp256k1_gej_double_var(secp256k1_gej *r, const secp256k1_gej *a, s * mainly because it requires more normalizations. */ secp256k1_fe t1,t2,t3,t4; - /** For secp256k1, 2Q is infinity if and only if Q is infinity. This is because if 2Q = infinity, - * Q must equal -Q, or that Q.y == -(Q.y), or Q.y is 0. For a point on y^2 = x^3 + 7 to have - * y=0, x^3 must be -7 mod p. However, -7 has no cube root mod p. - * - * Having said this, if this function receives a point on a sextic twist, e.g. by - * a fault attack, it is possible for y to be 0. This happens for y^2 = x^3 + 6, - * since -6 does have a cube root mod p. For this point, this function will not set - * the infinity flag even though the point doubles to infinity, and the result - * point will be gibberish (z = 0 but infinity = 0). - */ - r->infinity = a->infinity; - if (r->infinity) { - if (rzr != NULL) { - secp256k1_fe_set_int(rzr, 1); - } - return; - } - if (rzr != NULL) { - *rzr = a->y; - secp256k1_fe_normalize_weak(rzr); - secp256k1_fe_mul_int(rzr, 2); - } + r->infinity = a->infinity; secp256k1_fe_mul(&r->z, &a->z, &a->y); secp256k1_fe_mul_int(&r->z, 2); /* Z' = 2*Y*Z (2) */ @@ -359,9 +299,32 @@ static void secp256k1_gej_double_var(secp256k1_gej *r, const secp256k1_gej *a, s secp256k1_fe_add(&r->y, &t2); /* Y' = 36*X^3*Y^2 - 27*X^6 - 8*Y^4 (4) */ } -static SECP256K1_INLINE void secp256k1_gej_double_nonzero(secp256k1_gej *r, const secp256k1_gej *a, secp256k1_fe *rzr) { - VERIFY_CHECK(!secp256k1_gej_is_infinity(a)); - secp256k1_gej_double_var(r, a, rzr); +static void secp256k1_gej_double_var(secp256k1_gej *r, const secp256k1_gej *a, secp256k1_fe *rzr) { + /** For secp256k1, 2Q is infinity if and only if Q is infinity. This is because if 2Q = infinity, + * Q must equal -Q, or that Q.y == -(Q.y), or Q.y is 0. For a point on y^2 = x^3 + 7 to have + * y=0, x^3 must be -7 mod p. However, -7 has no cube root mod p. + * + * Having said this, if this function receives a point on a sextic twist, e.g. by + * a fault attack, it is possible for y to be 0. This happens for y^2 = x^3 + 6, + * since -6 does have a cube root mod p. For this point, this function will not set + * the infinity flag even though the point doubles to infinity, and the result + * point will be gibberish (z = 0 but infinity = 0). + */ + if (a->infinity) { + secp256k1_gej_set_infinity(r); + if (rzr != NULL) { + secp256k1_fe_set_int(rzr, 1); + } + return; + } + + if (rzr != NULL) { + *rzr = a->y; + secp256k1_fe_normalize_weak(rzr); + secp256k1_fe_mul_int(rzr, 2); + } + + secp256k1_gej_double(r, a); } static void secp256k1_gej_add_var(secp256k1_gej *r, const secp256k1_gej *a, const secp256k1_gej *b, secp256k1_fe *rzr) { @@ -398,7 +361,7 @@ static void secp256k1_gej_add_var(secp256k1_gej *r, const secp256k1_gej *a, cons if (rzr != NULL) { secp256k1_fe_set_int(rzr, 0); } - r->infinity = 1; + secp256k1_gej_set_infinity(r); } return; } @@ -448,7 +411,7 @@ static void secp256k1_gej_add_ge_var(secp256k1_gej *r, const secp256k1_gej *a, c if (rzr != NULL) { secp256k1_fe_set_int(rzr, 0); } - r->infinity = 1; + secp256k1_gej_set_infinity(r); } return; } @@ -507,7 +470,7 @@ static void secp256k1_gej_add_zinv_var(secp256k1_gej *r, const secp256k1_gej *a, if (secp256k1_fe_normalizes_to_zero_var(&i)) { secp256k1_gej_double_var(r, a, NULL); } else { - r->infinity = 1; + secp256k1_gej_set_infinity(r); } return; } @@ -623,7 +586,7 @@ static void secp256k1_gej_add_ge(secp256k1_gej *r, const secp256k1_gej *a, const secp256k1_fe_cmov(&n, &m, degenerate); /* n = M^3 * Malt (2) */ secp256k1_fe_sqr(&t, &rr_alt); /* t = Ralt^2 (1) */ secp256k1_fe_mul(&r->z, &a->z, &m_alt); /* r->z = Malt*Z (1) */ - infinity = secp256k1_fe_normalizes_to_zero(&r->z) * (1 - a->infinity); + infinity = secp256k1_fe_normalizes_to_zero(&r->z) & ~a->infinity; secp256k1_fe_mul_int(&r->z, 2); /* r->z = Z3 = 2*Malt*Z (2) */ secp256k1_fe_negate(&q, &q, 1); /* q = -Q (2) */ secp256k1_fe_add(&t, &q); /* t = Ralt^2-Q (3) */ @@ -678,7 +641,6 @@ static SECP256K1_INLINE void secp256k1_ge_storage_cmov(secp256k1_ge_storage *r, secp256k1_fe_storage_cmov(&r->y, &a->y, flag); } -#ifdef USE_ENDOMORPHISM static void secp256k1_ge_mul_lambda(secp256k1_ge *r, const secp256k1_ge *a) { static const secp256k1_fe beta = SECP256K1_FE_CONST( 0x7ae96a2bul, 0x657c0710ul, 0x6e64479eul, 0xac3434e9ul, @@ -687,20 +649,26 @@ static void secp256k1_ge_mul_lambda(secp256k1_ge *r, const secp256k1_ge *a) { *r = *a; secp256k1_fe_mul(&r->x, &r->x, &beta); } -#endif -static int secp256k1_gej_has_quad_y_var(const secp256k1_gej *a) { - secp256k1_fe yz; +static int secp256k1_ge_is_in_correct_subgroup(const secp256k1_ge* ge) { +#ifdef EXHAUSTIVE_TEST_ORDER + secp256k1_gej out; + int i; - if (a->infinity) { - return 0; + /* A very simple EC multiplication ladder that avoids a dependency on ecmult. */ + secp256k1_gej_set_infinity(&out); + for (i = 0; i < 32; ++i) { + secp256k1_gej_double_var(&out, &out, NULL); + if ((((uint32_t)EXHAUSTIVE_TEST_ORDER) >> (31 - i)) & 1) { + secp256k1_gej_add_ge_var(&out, &out, ge, NULL); + } } - - /* We rely on the fact that the Jacobi symbol of 1 / a->z^3 is the same as - * that of a->z. Thus a->y / a->z^3 is a quadratic residue iff a->y * a->z - is */ - secp256k1_fe_mul(&yz, &a->y, &a->z); - return secp256k1_fe_is_quad_var(&yz); + return secp256k1_gej_is_infinity(&out); +#else + (void)ge; + /* The real secp256k1 group has cofactor 1, so the subgroup is the entire curve. */ + return 1; +#endif } #endif /* SECP256K1_GROUP_IMPL_H */ diff --git a/src/hash.h b/src/hash.h index de26e4b89f8cb..0947a096943a9 100644 --- a/src/hash.h +++ b/src/hash.h @@ -1,8 +1,8 @@ -/********************************************************************** - * Copyright (c) 2014 Pieter Wuille * - * Distributed under the MIT software license, see the accompanying * - * file COPYING or http://www.opensource.org/licenses/mit-license.php.* - **********************************************************************/ +/*********************************************************************** + * Copyright (c) 2014 Pieter Wuille * + * Distributed under the MIT software license, see the accompanying * + * file COPYING or https://www.opensource.org/licenses/mit-license.php.* + ***********************************************************************/ #ifndef SECP256K1_HASH_H #define SECP256K1_HASH_H diff --git a/src/hash_impl.h b/src/hash_impl.h index 009f26beba939..f8cd3a1634113 100644 --- a/src/hash_impl.h +++ b/src/hash_impl.h @@ -1,13 +1,14 @@ -/********************************************************************** - * Copyright (c) 2014 Pieter Wuille * - * Distributed under the MIT software license, see the accompanying * - * file COPYING or http://www.opensource.org/licenses/mit-license.php.* - **********************************************************************/ +/*********************************************************************** + * Copyright (c) 2014 Pieter Wuille * + * Distributed under the MIT software license, see the accompanying * + * file COPYING or https://www.opensource.org/licenses/mit-license.php.* + ***********************************************************************/ #ifndef SECP256K1_HASH_IMPL_H #define SECP256K1_HASH_IMPL_H #include "hash.h" +#include "util.h" #include #include @@ -27,9 +28,9 @@ (h) = t1 + t2; \ } while(0) -#ifdef WORDS_BIGENDIAN +#if defined(SECP256K1_BIG_ENDIAN) #define BE32(x) (x) -#else +#elif defined(SECP256K1_LITTLE_ENDIAN) #define BE32(p) ((((p) & 0xFF) << 24) | (((p) & 0xFF00) << 8) | (((p) & 0xFF0000) >> 8) | (((p) & 0xFF000000) >> 24)) #endif @@ -131,7 +132,8 @@ static void secp256k1_sha256_transform(uint32_t* s, const uint32_t* chunk) { static void secp256k1_sha256_write(secp256k1_sha256 *hash, const unsigned char *data, size_t len) { size_t bufsize = hash->bytes & 0x3F; hash->bytes += len; - while (bufsize + len >= 64) { + VERIFY_CHECK(hash->bytes >= len); + while (len >= 64 - bufsize) { /* Fill the buffer, and process it. */ size_t chunk_len = 64 - bufsize; memcpy(((unsigned char*)hash->buf) + bufsize, data, chunk_len); @@ -162,6 +164,19 @@ static void secp256k1_sha256_finalize(secp256k1_sha256 *hash, unsigned char *out memcpy(out32, (const unsigned char*)out, 32); } +/* Initializes a sha256 struct and writes the 64 byte string + * SHA256(tag)||SHA256(tag) into it. */ +static void secp256k1_sha256_initialize_tagged(secp256k1_sha256 *hash, const unsigned char *tag, size_t taglen) { + unsigned char buf[32]; + secp256k1_sha256_initialize(hash); + secp256k1_sha256_write(hash, tag, taglen); + secp256k1_sha256_finalize(hash, buf); + + secp256k1_sha256_initialize(hash); + secp256k1_sha256_write(hash, buf, 32); + secp256k1_sha256_write(hash, buf, 32); +} + static void secp256k1_hmac_sha256_initialize(secp256k1_hmac_sha256 *hash, const unsigned char *key, size_t keylen) { size_t n; unsigned char rkey[64]; diff --git a/src/java/org/bitcoin/NativeSecp256k1.java b/src/java/org/bitcoin/NativeSecp256k1.java deleted file mode 100644 index 1c67802fba82e..0000000000000 --- a/src/java/org/bitcoin/NativeSecp256k1.java +++ /dev/null @@ -1,446 +0,0 @@ -/* - * Copyright 2013 Google Inc. - * Copyright 2014-2016 the libsecp256k1 contributors - * - * Licensed under the Apache License, Version 2.0 (the "License"); - * you may not use this file except in compliance with the License. - * You may obtain a copy of the License at - * - * http://www.apache.org/licenses/LICENSE-2.0 - * - * Unless required by applicable law or agreed to in writing, software - * distributed under the License is distributed on an "AS IS" BASIS, - * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - * See the License for the specific language governing permissions and - * limitations under the License. - */ - -package org.bitcoin; - -import java.nio.ByteBuffer; -import java.nio.ByteOrder; - -import java.math.BigInteger; -import com.google.common.base.Preconditions; -import java.util.concurrent.locks.Lock; -import java.util.concurrent.locks.ReentrantReadWriteLock; -import static org.bitcoin.NativeSecp256k1Util.*; - -/** - *

This class holds native methods to handle ECDSA verification.

- * - *

You can find an example library that can be used for this at https://github.com/bitcoin/secp256k1

- * - *

To build secp256k1 for use with bitcoinj, run - * `./configure --enable-jni --enable-experimental --enable-module-ecdh` - * and `make` then copy `.libs/libsecp256k1.so` to your system library path - * or point the JVM to the folder containing it with -Djava.library.path - *

- */ -public class NativeSecp256k1 { - - private static final ReentrantReadWriteLock rwl = new ReentrantReadWriteLock(); - private static final Lock r = rwl.readLock(); - private static final Lock w = rwl.writeLock(); - private static ThreadLocal nativeECDSABuffer = new ThreadLocal(); - /** - * Verifies the given secp256k1 signature in native code. - * Calling when enabled == false is undefined (probably library not loaded) - * - * @param data The data which was signed, must be exactly 32 bytes - * @param signature The signature - * @param pub The public key which did the signing - */ - public static boolean verify(byte[] data, byte[] signature, byte[] pub) throws AssertFailException{ - Preconditions.checkArgument(data.length == 32 && signature.length <= 520 && pub.length <= 520); - - ByteBuffer byteBuff = nativeECDSABuffer.get(); - if (byteBuff == null || byteBuff.capacity() < 520) { - byteBuff = ByteBuffer.allocateDirect(520); - byteBuff.order(ByteOrder.nativeOrder()); - nativeECDSABuffer.set(byteBuff); - } - byteBuff.rewind(); - byteBuff.put(data); - byteBuff.put(signature); - byteBuff.put(pub); - - byte[][] retByteArray; - - r.lock(); - try { - return secp256k1_ecdsa_verify(byteBuff, Secp256k1Context.getContext(), signature.length, pub.length) == 1; - } finally { - r.unlock(); - } - } - - /** - * libsecp256k1 Create an ECDSA signature. - * - * @param data Message hash, 32 bytes - * @param key Secret key, 32 bytes - * - * Return values - * @param sig byte array of signature - */ - public static byte[] sign(byte[] data, byte[] sec) throws AssertFailException{ - Preconditions.checkArgument(data.length == 32 && sec.length <= 32); - - ByteBuffer byteBuff = nativeECDSABuffer.get(); - if (byteBuff == null || byteBuff.capacity() < 32 + 32) { - byteBuff = ByteBuffer.allocateDirect(32 + 32); - byteBuff.order(ByteOrder.nativeOrder()); - nativeECDSABuffer.set(byteBuff); - } - byteBuff.rewind(); - byteBuff.put(data); - byteBuff.put(sec); - - byte[][] retByteArray; - - r.lock(); - try { - retByteArray = secp256k1_ecdsa_sign(byteBuff, Secp256k1Context.getContext()); - } finally { - r.unlock(); - } - - byte[] sigArr = retByteArray[0]; - int sigLen = new BigInteger(new byte[] { retByteArray[1][0] }).intValue(); - int retVal = new BigInteger(new byte[] { retByteArray[1][1] }).intValue(); - - assertEquals(sigArr.length, sigLen, "Got bad signature length."); - - return retVal == 0 ? new byte[0] : sigArr; - } - - /** - * libsecp256k1 Seckey Verify - returns 1 if valid, 0 if invalid - * - * @param seckey ECDSA Secret key, 32 bytes - */ - public static boolean secKeyVerify(byte[] seckey) { - Preconditions.checkArgument(seckey.length == 32); - - ByteBuffer byteBuff = nativeECDSABuffer.get(); - if (byteBuff == null || byteBuff.capacity() < seckey.length) { - byteBuff = ByteBuffer.allocateDirect(seckey.length); - byteBuff.order(ByteOrder.nativeOrder()); - nativeECDSABuffer.set(byteBuff); - } - byteBuff.rewind(); - byteBuff.put(seckey); - - r.lock(); - try { - return secp256k1_ec_seckey_verify(byteBuff,Secp256k1Context.getContext()) == 1; - } finally { - r.unlock(); - } - } - - - /** - * libsecp256k1 Compute Pubkey - computes public key from secret key - * - * @param seckey ECDSA Secret key, 32 bytes - * - * Return values - * @param pubkey ECDSA Public key, 33 or 65 bytes - */ - //TODO add a 'compressed' arg - public static byte[] computePubkey(byte[] seckey) throws AssertFailException{ - Preconditions.checkArgument(seckey.length == 32); - - ByteBuffer byteBuff = nativeECDSABuffer.get(); - if (byteBuff == null || byteBuff.capacity() < seckey.length) { - byteBuff = ByteBuffer.allocateDirect(seckey.length); - byteBuff.order(ByteOrder.nativeOrder()); - nativeECDSABuffer.set(byteBuff); - } - byteBuff.rewind(); - byteBuff.put(seckey); - - byte[][] retByteArray; - - r.lock(); - try { - retByteArray = secp256k1_ec_pubkey_create(byteBuff, Secp256k1Context.getContext()); - } finally { - r.unlock(); - } - - byte[] pubArr = retByteArray[0]; - int pubLen = new BigInteger(new byte[] { retByteArray[1][0] }).intValue(); - int retVal = new BigInteger(new byte[] { retByteArray[1][1] }).intValue(); - - assertEquals(pubArr.length, pubLen, "Got bad pubkey length."); - - return retVal == 0 ? new byte[0]: pubArr; - } - - /** - * libsecp256k1 Cleanup - This destroys the secp256k1 context object - * This should be called at the end of the program for proper cleanup of the context. - */ - public static synchronized void cleanup() { - w.lock(); - try { - secp256k1_destroy_context(Secp256k1Context.getContext()); - } finally { - w.unlock(); - } - } - - public static long cloneContext() { - r.lock(); - try { - return secp256k1_ctx_clone(Secp256k1Context.getContext()); - } finally { r.unlock(); } - } - - /** - * libsecp256k1 PrivKey Tweak-Mul - Tweak privkey by multiplying to it - * - * @param tweak some bytes to tweak with - * @param seckey 32-byte seckey - */ - public static byte[] privKeyTweakMul(byte[] privkey, byte[] tweak) throws AssertFailException{ - Preconditions.checkArgument(privkey.length == 32); - - ByteBuffer byteBuff = nativeECDSABuffer.get(); - if (byteBuff == null || byteBuff.capacity() < privkey.length + tweak.length) { - byteBuff = ByteBuffer.allocateDirect(privkey.length + tweak.length); - byteBuff.order(ByteOrder.nativeOrder()); - nativeECDSABuffer.set(byteBuff); - } - byteBuff.rewind(); - byteBuff.put(privkey); - byteBuff.put(tweak); - - byte[][] retByteArray; - r.lock(); - try { - retByteArray = secp256k1_privkey_tweak_mul(byteBuff,Secp256k1Context.getContext()); - } finally { - r.unlock(); - } - - byte[] privArr = retByteArray[0]; - - int privLen = (byte) new BigInteger(new byte[] { retByteArray[1][0] }).intValue() & 0xFF; - int retVal = new BigInteger(new byte[] { retByteArray[1][1] }).intValue(); - - assertEquals(privArr.length, privLen, "Got bad pubkey length."); - - assertEquals(retVal, 1, "Failed return value check."); - - return privArr; - } - - /** - * libsecp256k1 PrivKey Tweak-Add - Tweak privkey by adding to it - * - * @param tweak some bytes to tweak with - * @param seckey 32-byte seckey - */ - public static byte[] privKeyTweakAdd(byte[] privkey, byte[] tweak) throws AssertFailException{ - Preconditions.checkArgument(privkey.length == 32); - - ByteBuffer byteBuff = nativeECDSABuffer.get(); - if (byteBuff == null || byteBuff.capacity() < privkey.length + tweak.length) { - byteBuff = ByteBuffer.allocateDirect(privkey.length + tweak.length); - byteBuff.order(ByteOrder.nativeOrder()); - nativeECDSABuffer.set(byteBuff); - } - byteBuff.rewind(); - byteBuff.put(privkey); - byteBuff.put(tweak); - - byte[][] retByteArray; - r.lock(); - try { - retByteArray = secp256k1_privkey_tweak_add(byteBuff,Secp256k1Context.getContext()); - } finally { - r.unlock(); - } - - byte[] privArr = retByteArray[0]; - - int privLen = (byte) new BigInteger(new byte[] { retByteArray[1][0] }).intValue() & 0xFF; - int retVal = new BigInteger(new byte[] { retByteArray[1][1] }).intValue(); - - assertEquals(privArr.length, privLen, "Got bad pubkey length."); - - assertEquals(retVal, 1, "Failed return value check."); - - return privArr; - } - - /** - * libsecp256k1 PubKey Tweak-Add - Tweak pubkey by adding to it - * - * @param tweak some bytes to tweak with - * @param pubkey 32-byte seckey - */ - public static byte[] pubKeyTweakAdd(byte[] pubkey, byte[] tweak) throws AssertFailException{ - Preconditions.checkArgument(pubkey.length == 33 || pubkey.length == 65); - - ByteBuffer byteBuff = nativeECDSABuffer.get(); - if (byteBuff == null || byteBuff.capacity() < pubkey.length + tweak.length) { - byteBuff = ByteBuffer.allocateDirect(pubkey.length + tweak.length); - byteBuff.order(ByteOrder.nativeOrder()); - nativeECDSABuffer.set(byteBuff); - } - byteBuff.rewind(); - byteBuff.put(pubkey); - byteBuff.put(tweak); - - byte[][] retByteArray; - r.lock(); - try { - retByteArray = secp256k1_pubkey_tweak_add(byteBuff,Secp256k1Context.getContext(), pubkey.length); - } finally { - r.unlock(); - } - - byte[] pubArr = retByteArray[0]; - - int pubLen = (byte) new BigInteger(new byte[] { retByteArray[1][0] }).intValue() & 0xFF; - int retVal = new BigInteger(new byte[] { retByteArray[1][1] }).intValue(); - - assertEquals(pubArr.length, pubLen, "Got bad pubkey length."); - - assertEquals(retVal, 1, "Failed return value check."); - - return pubArr; - } - - /** - * libsecp256k1 PubKey Tweak-Mul - Tweak pubkey by multiplying to it - * - * @param tweak some bytes to tweak with - * @param pubkey 32-byte seckey - */ - public static byte[] pubKeyTweakMul(byte[] pubkey, byte[] tweak) throws AssertFailException{ - Preconditions.checkArgument(pubkey.length == 33 || pubkey.length == 65); - - ByteBuffer byteBuff = nativeECDSABuffer.get(); - if (byteBuff == null || byteBuff.capacity() < pubkey.length + tweak.length) { - byteBuff = ByteBuffer.allocateDirect(pubkey.length + tweak.length); - byteBuff.order(ByteOrder.nativeOrder()); - nativeECDSABuffer.set(byteBuff); - } - byteBuff.rewind(); - byteBuff.put(pubkey); - byteBuff.put(tweak); - - byte[][] retByteArray; - r.lock(); - try { - retByteArray = secp256k1_pubkey_tweak_mul(byteBuff,Secp256k1Context.getContext(), pubkey.length); - } finally { - r.unlock(); - } - - byte[] pubArr = retByteArray[0]; - - int pubLen = (byte) new BigInteger(new byte[] { retByteArray[1][0] }).intValue() & 0xFF; - int retVal = new BigInteger(new byte[] { retByteArray[1][1] }).intValue(); - - assertEquals(pubArr.length, pubLen, "Got bad pubkey length."); - - assertEquals(retVal, 1, "Failed return value check."); - - return pubArr; - } - - /** - * libsecp256k1 create ECDH secret - constant time ECDH calculation - * - * @param seckey byte array of secret key used in exponentiaion - * @param pubkey byte array of public key used in exponentiaion - */ - public static byte[] createECDHSecret(byte[] seckey, byte[] pubkey) throws AssertFailException{ - Preconditions.checkArgument(seckey.length <= 32 && pubkey.length <= 65); - - ByteBuffer byteBuff = nativeECDSABuffer.get(); - if (byteBuff == null || byteBuff.capacity() < 32 + pubkey.length) { - byteBuff = ByteBuffer.allocateDirect(32 + pubkey.length); - byteBuff.order(ByteOrder.nativeOrder()); - nativeECDSABuffer.set(byteBuff); - } - byteBuff.rewind(); - byteBuff.put(seckey); - byteBuff.put(pubkey); - - byte[][] retByteArray; - r.lock(); - try { - retByteArray = secp256k1_ecdh(byteBuff, Secp256k1Context.getContext(), pubkey.length); - } finally { - r.unlock(); - } - - byte[] resArr = retByteArray[0]; - int retVal = new BigInteger(new byte[] { retByteArray[1][0] }).intValue(); - - assertEquals(resArr.length, 32, "Got bad result length."); - assertEquals(retVal, 1, "Failed return value check."); - - return resArr; - } - - /** - * libsecp256k1 randomize - updates the context randomization - * - * @param seed 32-byte random seed - */ - public static synchronized boolean randomize(byte[] seed) throws AssertFailException{ - Preconditions.checkArgument(seed.length == 32 || seed == null); - - ByteBuffer byteBuff = nativeECDSABuffer.get(); - if (byteBuff == null || byteBuff.capacity() < seed.length) { - byteBuff = ByteBuffer.allocateDirect(seed.length); - byteBuff.order(ByteOrder.nativeOrder()); - nativeECDSABuffer.set(byteBuff); - } - byteBuff.rewind(); - byteBuff.put(seed); - - w.lock(); - try { - return secp256k1_context_randomize(byteBuff, Secp256k1Context.getContext()) == 1; - } finally { - w.unlock(); - } - } - - private static native long secp256k1_ctx_clone(long context); - - private static native int secp256k1_context_randomize(ByteBuffer byteBuff, long context); - - private static native byte[][] secp256k1_privkey_tweak_add(ByteBuffer byteBuff, long context); - - private static native byte[][] secp256k1_privkey_tweak_mul(ByteBuffer byteBuff, long context); - - private static native byte[][] secp256k1_pubkey_tweak_add(ByteBuffer byteBuff, long context, int pubLen); - - private static native byte[][] secp256k1_pubkey_tweak_mul(ByteBuffer byteBuff, long context, int pubLen); - - private static native void secp256k1_destroy_context(long context); - - private static native int secp256k1_ecdsa_verify(ByteBuffer byteBuff, long context, int sigLen, int pubLen); - - private static native byte[][] secp256k1_ecdsa_sign(ByteBuffer byteBuff, long context); - - private static native int secp256k1_ec_seckey_verify(ByteBuffer byteBuff, long context); - - private static native byte[][] secp256k1_ec_pubkey_create(ByteBuffer byteBuff, long context); - - private static native byte[][] secp256k1_ec_pubkey_parse(ByteBuffer byteBuff, long context, int inputLen); - - private static native byte[][] secp256k1_ecdh(ByteBuffer byteBuff, long context, int inputLen); - -} diff --git a/src/java/org/bitcoin/NativeSecp256k1Test.java b/src/java/org/bitcoin/NativeSecp256k1Test.java deleted file mode 100644 index d766a1029ce38..0000000000000 --- a/src/java/org/bitcoin/NativeSecp256k1Test.java +++ /dev/null @@ -1,226 +0,0 @@ -package org.bitcoin; - -import com.google.common.io.BaseEncoding; -import java.util.Arrays; -import java.math.BigInteger; -import javax.xml.bind.DatatypeConverter; -import static org.bitcoin.NativeSecp256k1Util.*; - -/** - * This class holds test cases defined for testing this library. - */ -public class NativeSecp256k1Test { - - //TODO improve comments/add more tests - /** - * This tests verify() for a valid signature - */ - public static void testVerifyPos() throws AssertFailException{ - boolean result = false; - byte[] data = BaseEncoding.base16().lowerCase().decode("CF80CD8AED482D5D1527D7DC72FCEFF84E6326592848447D2DC0B0E87DFC9A90".toLowerCase()); //sha256hash of "testing" - byte[] sig = BaseEncoding.base16().lowerCase().decode("3044022079BE667EF9DCBBAC55A06295CE870B07029BFCDB2DCE28D959F2815B16F817980220294F14E883B3F525B5367756C2A11EF6CF84B730B36C17CB0C56F0AAB2C98589".toLowerCase()); - byte[] pub = BaseEncoding.base16().lowerCase().decode("040A629506E1B65CD9D2E0BA9C75DF9C4FED0DB16DC9625ED14397F0AFC836FAE595DC53F8B0EFE61E703075BD9B143BAC75EC0E19F82A2208CAEB32BE53414C40".toLowerCase()); - - result = NativeSecp256k1.verify( data, sig, pub); - assertEquals( result, true , "testVerifyPos"); - } - - /** - * This tests verify() for a non-valid signature - */ - public static void testVerifyNeg() throws AssertFailException{ - boolean result = false; - byte[] data = BaseEncoding.base16().lowerCase().decode("CF80CD8AED482D5D1527D7DC72FCEFF84E6326592848447D2DC0B0E87DFC9A91".toLowerCase()); //sha256hash of "testing" - byte[] sig = BaseEncoding.base16().lowerCase().decode("3044022079BE667EF9DCBBAC55A06295CE870B07029BFCDB2DCE28D959F2815B16F817980220294F14E883B3F525B5367756C2A11EF6CF84B730B36C17CB0C56F0AAB2C98589".toLowerCase()); - byte[] pub = BaseEncoding.base16().lowerCase().decode("040A629506E1B65CD9D2E0BA9C75DF9C4FED0DB16DC9625ED14397F0AFC836FAE595DC53F8B0EFE61E703075BD9B143BAC75EC0E19F82A2208CAEB32BE53414C40".toLowerCase()); - - result = NativeSecp256k1.verify( data, sig, pub); - //System.out.println(" TEST " + new BigInteger(1, resultbytes).toString(16)); - assertEquals( result, false , "testVerifyNeg"); - } - - /** - * This tests secret key verify() for a valid secretkey - */ - public static void testSecKeyVerifyPos() throws AssertFailException{ - boolean result = false; - byte[] sec = BaseEncoding.base16().lowerCase().decode("67E56582298859DDAE725F972992A07C6C4FB9F62A8FFF58CE3CA926A1063530".toLowerCase()); - - result = NativeSecp256k1.secKeyVerify( sec ); - //System.out.println(" TEST " + new BigInteger(1, resultbytes).toString(16)); - assertEquals( result, true , "testSecKeyVerifyPos"); - } - - /** - * This tests secret key verify() for an invalid secretkey - */ - public static void testSecKeyVerifyNeg() throws AssertFailException{ - boolean result = false; - byte[] sec = BaseEncoding.base16().lowerCase().decode("FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF".toLowerCase()); - - result = NativeSecp256k1.secKeyVerify( sec ); - //System.out.println(" TEST " + new BigInteger(1, resultbytes).toString(16)); - assertEquals( result, false , "testSecKeyVerifyNeg"); - } - - /** - * This tests public key create() for a valid secretkey - */ - public static void testPubKeyCreatePos() throws AssertFailException{ - byte[] sec = BaseEncoding.base16().lowerCase().decode("67E56582298859DDAE725F972992A07C6C4FB9F62A8FFF58CE3CA926A1063530".toLowerCase()); - - byte[] resultArr = NativeSecp256k1.computePubkey( sec); - String pubkeyString = javax.xml.bind.DatatypeConverter.printHexBinary(resultArr); - assertEquals( pubkeyString , "04C591A8FF19AC9C4E4E5793673B83123437E975285E7B442F4EE2654DFFCA5E2D2103ED494718C697AC9AEBCFD19612E224DB46661011863ED2FC54E71861E2A6" , "testPubKeyCreatePos"); - } - - /** - * This tests public key create() for a invalid secretkey - */ - public static void testPubKeyCreateNeg() throws AssertFailException{ - byte[] sec = BaseEncoding.base16().lowerCase().decode("FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF".toLowerCase()); - - byte[] resultArr = NativeSecp256k1.computePubkey( sec); - String pubkeyString = javax.xml.bind.DatatypeConverter.printHexBinary(resultArr); - assertEquals( pubkeyString, "" , "testPubKeyCreateNeg"); - } - - /** - * This tests sign() for a valid secretkey - */ - public static void testSignPos() throws AssertFailException{ - - byte[] data = BaseEncoding.base16().lowerCase().decode("CF80CD8AED482D5D1527D7DC72FCEFF84E6326592848447D2DC0B0E87DFC9A90".toLowerCase()); //sha256hash of "testing" - byte[] sec = BaseEncoding.base16().lowerCase().decode("67E56582298859DDAE725F972992A07C6C4FB9F62A8FFF58CE3CA926A1063530".toLowerCase()); - - byte[] resultArr = NativeSecp256k1.sign(data, sec); - String sigString = javax.xml.bind.DatatypeConverter.printHexBinary(resultArr); - assertEquals( sigString, "30440220182A108E1448DC8F1FB467D06A0F3BB8EA0533584CB954EF8DA112F1D60E39A202201C66F36DA211C087F3AF88B50EDF4F9BDAA6CF5FD6817E74DCA34DB12390C6E9" , "testSignPos"); - } - - /** - * This tests sign() for a invalid secretkey - */ - public static void testSignNeg() throws AssertFailException{ - byte[] data = BaseEncoding.base16().lowerCase().decode("CF80CD8AED482D5D1527D7DC72FCEFF84E6326592848447D2DC0B0E87DFC9A90".toLowerCase()); //sha256hash of "testing" - byte[] sec = BaseEncoding.base16().lowerCase().decode("FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF".toLowerCase()); - - byte[] resultArr = NativeSecp256k1.sign(data, sec); - String sigString = javax.xml.bind.DatatypeConverter.printHexBinary(resultArr); - assertEquals( sigString, "" , "testSignNeg"); - } - - /** - * This tests private key tweak-add - */ - public static void testPrivKeyTweakAdd_1() throws AssertFailException { - byte[] sec = BaseEncoding.base16().lowerCase().decode("67E56582298859DDAE725F972992A07C6C4FB9F62A8FFF58CE3CA926A1063530".toLowerCase()); - byte[] data = BaseEncoding.base16().lowerCase().decode("3982F19BEF1615BCCFBB05E321C10E1D4CBA3DF0E841C2E41EEB6016347653C3".toLowerCase()); //sha256hash of "tweak" - - byte[] resultArr = NativeSecp256k1.privKeyTweakAdd( sec , data ); - String sigString = javax.xml.bind.DatatypeConverter.printHexBinary(resultArr); - assertEquals( sigString , "A168571E189E6F9A7E2D657A4B53AE99B909F7E712D1C23CED28093CD57C88F3" , "testPrivKeyAdd_1"); - } - - /** - * This tests private key tweak-mul - */ - public static void testPrivKeyTweakMul_1() throws AssertFailException { - byte[] sec = BaseEncoding.base16().lowerCase().decode("67E56582298859DDAE725F972992A07C6C4FB9F62A8FFF58CE3CA926A1063530".toLowerCase()); - byte[] data = BaseEncoding.base16().lowerCase().decode("3982F19BEF1615BCCFBB05E321C10E1D4CBA3DF0E841C2E41EEB6016347653C3".toLowerCase()); //sha256hash of "tweak" - - byte[] resultArr = NativeSecp256k1.privKeyTweakMul( sec , data ); - String sigString = javax.xml.bind.DatatypeConverter.printHexBinary(resultArr); - assertEquals( sigString , "97F8184235F101550F3C71C927507651BD3F1CDB4A5A33B8986ACF0DEE20FFFC" , "testPrivKeyMul_1"); - } - - /** - * This tests private key tweak-add uncompressed - */ - public static void testPrivKeyTweakAdd_2() throws AssertFailException { - byte[] pub = BaseEncoding.base16().lowerCase().decode("040A629506E1B65CD9D2E0BA9C75DF9C4FED0DB16DC9625ED14397F0AFC836FAE595DC53F8B0EFE61E703075BD9B143BAC75EC0E19F82A2208CAEB32BE53414C40".toLowerCase()); - byte[] data = BaseEncoding.base16().lowerCase().decode("3982F19BEF1615BCCFBB05E321C10E1D4CBA3DF0E841C2E41EEB6016347653C3".toLowerCase()); //sha256hash of "tweak" - - byte[] resultArr = NativeSecp256k1.pubKeyTweakAdd( pub , data ); - String sigString = javax.xml.bind.DatatypeConverter.printHexBinary(resultArr); - assertEquals( sigString , "0411C6790F4B663CCE607BAAE08C43557EDC1A4D11D88DFCB3D841D0C6A941AF525A268E2A863C148555C48FB5FBA368E88718A46E205FABC3DBA2CCFFAB0796EF" , "testPrivKeyAdd_2"); - } - - /** - * This tests private key tweak-mul uncompressed - */ - public static void testPrivKeyTweakMul_2() throws AssertFailException { - byte[] pub = BaseEncoding.base16().lowerCase().decode("040A629506E1B65CD9D2E0BA9C75DF9C4FED0DB16DC9625ED14397F0AFC836FAE595DC53F8B0EFE61E703075BD9B143BAC75EC0E19F82A2208CAEB32BE53414C40".toLowerCase()); - byte[] data = BaseEncoding.base16().lowerCase().decode("3982F19BEF1615BCCFBB05E321C10E1D4CBA3DF0E841C2E41EEB6016347653C3".toLowerCase()); //sha256hash of "tweak" - - byte[] resultArr = NativeSecp256k1.pubKeyTweakMul( pub , data ); - String sigString = javax.xml.bind.DatatypeConverter.printHexBinary(resultArr); - assertEquals( sigString , "04E0FE6FE55EBCA626B98A807F6CAF654139E14E5E3698F01A9A658E21DC1D2791EC060D4F412A794D5370F672BC94B722640B5F76914151CFCA6E712CA48CC589" , "testPrivKeyMul_2"); - } - - /** - * This tests seed randomization - */ - public static void testRandomize() throws AssertFailException { - byte[] seed = BaseEncoding.base16().lowerCase().decode("A441B15FE9A3CF56661190A0B93B9DEC7D04127288CC87250967CF3B52894D11".toLowerCase()); //sha256hash of "random" - boolean result = NativeSecp256k1.randomize(seed); - assertEquals( result, true, "testRandomize"); - } - - public static void testCreateECDHSecret() throws AssertFailException{ - - byte[] sec = BaseEncoding.base16().lowerCase().decode("67E56582298859DDAE725F972992A07C6C4FB9F62A8FFF58CE3CA926A1063530".toLowerCase()); - byte[] pub = BaseEncoding.base16().lowerCase().decode("040A629506E1B65CD9D2E0BA9C75DF9C4FED0DB16DC9625ED14397F0AFC836FAE595DC53F8B0EFE61E703075BD9B143BAC75EC0E19F82A2208CAEB32BE53414C40".toLowerCase()); - - byte[] resultArr = NativeSecp256k1.createECDHSecret(sec, pub); - String ecdhString = javax.xml.bind.DatatypeConverter.printHexBinary(resultArr); - assertEquals( ecdhString, "2A2A67007A926E6594AF3EB564FC74005B37A9C8AEF2033C4552051B5C87F043" , "testCreateECDHSecret"); - } - - public static void main(String[] args) throws AssertFailException{ - - - System.out.println("\n libsecp256k1 enabled: " + Secp256k1Context.isEnabled() + "\n"); - - assertEquals( Secp256k1Context.isEnabled(), true, "isEnabled" ); - - //Test verify() success/fail - testVerifyPos(); - testVerifyNeg(); - - //Test secKeyVerify() success/fail - testSecKeyVerifyPos(); - testSecKeyVerifyNeg(); - - //Test computePubkey() success/fail - testPubKeyCreatePos(); - testPubKeyCreateNeg(); - - //Test sign() success/fail - testSignPos(); - testSignNeg(); - - //Test privKeyTweakAdd() 1 - testPrivKeyTweakAdd_1(); - - //Test privKeyTweakMul() 2 - testPrivKeyTweakMul_1(); - - //Test privKeyTweakAdd() 3 - testPrivKeyTweakAdd_2(); - - //Test privKeyTweakMul() 4 - testPrivKeyTweakMul_2(); - - //Test randomize() - testRandomize(); - - //Test ECDH - testCreateECDHSecret(); - - NativeSecp256k1.cleanup(); - - System.out.println(" All tests passed." ); - - } -} diff --git a/src/java/org/bitcoin/NativeSecp256k1Util.java b/src/java/org/bitcoin/NativeSecp256k1Util.java deleted file mode 100644 index 04732ba044363..0000000000000 --- a/src/java/org/bitcoin/NativeSecp256k1Util.java +++ /dev/null @@ -1,45 +0,0 @@ -/* - * Copyright 2014-2016 the libsecp256k1 contributors - * - * Licensed under the Apache License, Version 2.0 (the "License"); - * you may not use this file except in compliance with the License. - * You may obtain a copy of the License at - * - * http://www.apache.org/licenses/LICENSE-2.0 - * - * Unless required by applicable law or agreed to in writing, software - * distributed under the License is distributed on an "AS IS" BASIS, - * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - * See the License for the specific language governing permissions and - * limitations under the License. - */ - -package org.bitcoin; - -public class NativeSecp256k1Util{ - - public static void assertEquals( int val, int val2, String message ) throws AssertFailException{ - if( val != val2 ) - throw new AssertFailException("FAIL: " + message); - } - - public static void assertEquals( boolean val, boolean val2, String message ) throws AssertFailException{ - if( val != val2 ) - throw new AssertFailException("FAIL: " + message); - else - System.out.println("PASS: " + message); - } - - public static void assertEquals( String val, String val2, String message ) throws AssertFailException{ - if( !val.equals(val2) ) - throw new AssertFailException("FAIL: " + message); - else - System.out.println("PASS: " + message); - } - - public static class AssertFailException extends Exception { - public AssertFailException(String message) { - super( message ); - } - } -} diff --git a/src/java/org/bitcoin/Secp256k1Context.java b/src/java/org/bitcoin/Secp256k1Context.java deleted file mode 100644 index 216c986a8b564..0000000000000 --- a/src/java/org/bitcoin/Secp256k1Context.java +++ /dev/null @@ -1,51 +0,0 @@ -/* - * Copyright 2014-2016 the libsecp256k1 contributors - * - * Licensed under the Apache License, Version 2.0 (the "License"); - * you may not use this file except in compliance with the License. - * You may obtain a copy of the License at - * - * http://www.apache.org/licenses/LICENSE-2.0 - * - * Unless required by applicable law or agreed to in writing, software - * distributed under the License is distributed on an "AS IS" BASIS, - * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - * See the License for the specific language governing permissions and - * limitations under the License. - */ - -package org.bitcoin; - -/** - * This class holds the context reference used in native methods - * to handle ECDSA operations. - */ -public class Secp256k1Context { - private static final boolean enabled; //true if the library is loaded - private static final long context; //ref to pointer to context obj - - static { //static initializer - boolean isEnabled = true; - long contextRef = -1; - try { - System.loadLibrary("secp256k1"); - contextRef = secp256k1_init_context(); - } catch (UnsatisfiedLinkError e) { - System.out.println("UnsatisfiedLinkError: " + e.toString()); - isEnabled = false; - } - enabled = isEnabled; - context = contextRef; - } - - public static boolean isEnabled() { - return enabled; - } - - public static long getContext() { - if(!enabled) return -1; //sanity check - return context; - } - - private static native long secp256k1_init_context(); -} diff --git a/src/java/org_bitcoin_NativeSecp256k1.c b/src/java/org_bitcoin_NativeSecp256k1.c deleted file mode 100644 index b50970b4f24c8..0000000000000 --- a/src/java/org_bitcoin_NativeSecp256k1.c +++ /dev/null @@ -1,379 +0,0 @@ -#include -#include -#include -#include "org_bitcoin_NativeSecp256k1.h" -#include "include/secp256k1.h" -#include "include/secp256k1_ecdh.h" -#include "include/secp256k1_recovery.h" - - -SECP256K1_API jlong JNICALL Java_org_bitcoin_NativeSecp256k1_secp256k1_1ctx_1clone - (JNIEnv* env, jclass classObject, jlong ctx_l) -{ - const secp256k1_context *ctx = (secp256k1_context*)(uintptr_t)ctx_l; - - jlong ctx_clone_l = (uintptr_t) secp256k1_context_clone(ctx); - - (void)classObject;(void)env; - - return ctx_clone_l; - -} - -SECP256K1_API jint JNICALL Java_org_bitcoin_NativeSecp256k1_secp256k1_1context_1randomize - (JNIEnv* env, jclass classObject, jobject byteBufferObject, jlong ctx_l) -{ - secp256k1_context *ctx = (secp256k1_context*)(uintptr_t)ctx_l; - - const unsigned char* seed = (unsigned char*) (*env)->GetDirectBufferAddress(env, byteBufferObject); - - (void)classObject; - - return secp256k1_context_randomize(ctx, seed); - -} - -SECP256K1_API void JNICALL Java_org_bitcoin_NativeSecp256k1_secp256k1_1destroy_1context - (JNIEnv* env, jclass classObject, jlong ctx_l) -{ - secp256k1_context *ctx = (secp256k1_context*)(uintptr_t)ctx_l; - - secp256k1_context_destroy(ctx); - - (void)classObject;(void)env; -} - -SECP256K1_API jint JNICALL Java_org_bitcoin_NativeSecp256k1_secp256k1_1ecdsa_1verify - (JNIEnv* env, jclass classObject, jobject byteBufferObject, jlong ctx_l, jint siglen, jint publen) -{ - secp256k1_context *ctx = (secp256k1_context*)(uintptr_t)ctx_l; - - unsigned char* data = (unsigned char*) (*env)->GetDirectBufferAddress(env, byteBufferObject); - const unsigned char* sigdata = { (unsigned char*) (data + 32) }; - const unsigned char* pubdata = { (unsigned char*) (data + siglen + 32) }; - - secp256k1_ecdsa_signature sig; - secp256k1_pubkey pubkey; - - int ret = secp256k1_ecdsa_signature_parse_der(ctx, &sig, sigdata, siglen); - - if( ret ) { - ret = secp256k1_ec_pubkey_parse(ctx, &pubkey, pubdata, publen); - - if( ret ) { - ret = secp256k1_ecdsa_verify(ctx, &sig, data, &pubkey); - } - } - - (void)classObject; - - return ret; -} - -SECP256K1_API jobjectArray JNICALL Java_org_bitcoin_NativeSecp256k1_secp256k1_1ecdsa_1sign - (JNIEnv* env, jclass classObject, jobject byteBufferObject, jlong ctx_l) -{ - secp256k1_context *ctx = (secp256k1_context*)(uintptr_t)ctx_l; - unsigned char* data = (unsigned char*) (*env)->GetDirectBufferAddress(env, byteBufferObject); - unsigned char* secKey = (unsigned char*) (data + 32); - - jobjectArray retArray; - jbyteArray sigArray, intsByteArray; - unsigned char intsarray[2]; - - secp256k1_ecdsa_signature sig[72]; - - int ret = secp256k1_ecdsa_sign(ctx, sig, data, secKey, NULL, NULL); - - unsigned char outputSer[72]; - size_t outputLen = 72; - - if( ret ) { - int ret2 = secp256k1_ecdsa_signature_serialize_der(ctx,outputSer, &outputLen, sig ); (void)ret2; - } - - intsarray[0] = outputLen; - intsarray[1] = ret; - - retArray = (*env)->NewObjectArray(env, 2, - (*env)->FindClass(env, "[B"), - (*env)->NewByteArray(env, 1)); - - sigArray = (*env)->NewByteArray(env, outputLen); - (*env)->SetByteArrayRegion(env, sigArray, 0, outputLen, (jbyte*)outputSer); - (*env)->SetObjectArrayElement(env, retArray, 0, sigArray); - - intsByteArray = (*env)->NewByteArray(env, 2); - (*env)->SetByteArrayRegion(env, intsByteArray, 0, 2, (jbyte*)intsarray); - (*env)->SetObjectArrayElement(env, retArray, 1, intsByteArray); - - (void)classObject; - - return retArray; -} - -SECP256K1_API jint JNICALL Java_org_bitcoin_NativeSecp256k1_secp256k1_1ec_1seckey_1verify - (JNIEnv* env, jclass classObject, jobject byteBufferObject, jlong ctx_l) -{ - secp256k1_context *ctx = (secp256k1_context*)(uintptr_t)ctx_l; - unsigned char* secKey = (unsigned char*) (*env)->GetDirectBufferAddress(env, byteBufferObject); - - (void)classObject; - - return secp256k1_ec_seckey_verify(ctx, secKey); -} - -SECP256K1_API jobjectArray JNICALL Java_org_bitcoin_NativeSecp256k1_secp256k1_1ec_1pubkey_1create - (JNIEnv* env, jclass classObject, jobject byteBufferObject, jlong ctx_l) -{ - secp256k1_context *ctx = (secp256k1_context*)(uintptr_t)ctx_l; - const unsigned char* secKey = (unsigned char*) (*env)->GetDirectBufferAddress(env, byteBufferObject); - - secp256k1_pubkey pubkey; - - jobjectArray retArray; - jbyteArray pubkeyArray, intsByteArray; - unsigned char intsarray[2]; - - int ret = secp256k1_ec_pubkey_create(ctx, &pubkey, secKey); - - unsigned char outputSer[65]; - size_t outputLen = 65; - - if( ret ) { - int ret2 = secp256k1_ec_pubkey_serialize(ctx,outputSer, &outputLen, &pubkey,SECP256K1_EC_UNCOMPRESSED );(void)ret2; - } - - intsarray[0] = outputLen; - intsarray[1] = ret; - - retArray = (*env)->NewObjectArray(env, 2, - (*env)->FindClass(env, "[B"), - (*env)->NewByteArray(env, 1)); - - pubkeyArray = (*env)->NewByteArray(env, outputLen); - (*env)->SetByteArrayRegion(env, pubkeyArray, 0, outputLen, (jbyte*)outputSer); - (*env)->SetObjectArrayElement(env, retArray, 0, pubkeyArray); - - intsByteArray = (*env)->NewByteArray(env, 2); - (*env)->SetByteArrayRegion(env, intsByteArray, 0, 2, (jbyte*)intsarray); - (*env)->SetObjectArrayElement(env, retArray, 1, intsByteArray); - - (void)classObject; - - return retArray; - -} - -SECP256K1_API jobjectArray JNICALL Java_org_bitcoin_NativeSecp256k1_secp256k1_1privkey_1tweak_1add - (JNIEnv* env, jclass classObject, jobject byteBufferObject, jlong ctx_l) -{ - secp256k1_context *ctx = (secp256k1_context*)(uintptr_t)ctx_l; - unsigned char* privkey = (unsigned char*) (*env)->GetDirectBufferAddress(env, byteBufferObject); - const unsigned char* tweak = (unsigned char*) (privkey + 32); - - jobjectArray retArray; - jbyteArray privArray, intsByteArray; - unsigned char intsarray[2]; - - int privkeylen = 32; - - int ret = secp256k1_ec_privkey_tweak_add(ctx, privkey, tweak); - - intsarray[0] = privkeylen; - intsarray[1] = ret; - - retArray = (*env)->NewObjectArray(env, 2, - (*env)->FindClass(env, "[B"), - (*env)->NewByteArray(env, 1)); - - privArray = (*env)->NewByteArray(env, privkeylen); - (*env)->SetByteArrayRegion(env, privArray, 0, privkeylen, (jbyte*)privkey); - (*env)->SetObjectArrayElement(env, retArray, 0, privArray); - - intsByteArray = (*env)->NewByteArray(env, 2); - (*env)->SetByteArrayRegion(env, intsByteArray, 0, 2, (jbyte*)intsarray); - (*env)->SetObjectArrayElement(env, retArray, 1, intsByteArray); - - (void)classObject; - - return retArray; -} - -SECP256K1_API jobjectArray JNICALL Java_org_bitcoin_NativeSecp256k1_secp256k1_1privkey_1tweak_1mul - (JNIEnv* env, jclass classObject, jobject byteBufferObject, jlong ctx_l) -{ - secp256k1_context *ctx = (secp256k1_context*)(uintptr_t)ctx_l; - unsigned char* privkey = (unsigned char*) (*env)->GetDirectBufferAddress(env, byteBufferObject); - const unsigned char* tweak = (unsigned char*) (privkey + 32); - - jobjectArray retArray; - jbyteArray privArray, intsByteArray; - unsigned char intsarray[2]; - - int privkeylen = 32; - - int ret = secp256k1_ec_privkey_tweak_mul(ctx, privkey, tweak); - - intsarray[0] = privkeylen; - intsarray[1] = ret; - - retArray = (*env)->NewObjectArray(env, 2, - (*env)->FindClass(env, "[B"), - (*env)->NewByteArray(env, 1)); - - privArray = (*env)->NewByteArray(env, privkeylen); - (*env)->SetByteArrayRegion(env, privArray, 0, privkeylen, (jbyte*)privkey); - (*env)->SetObjectArrayElement(env, retArray, 0, privArray); - - intsByteArray = (*env)->NewByteArray(env, 2); - (*env)->SetByteArrayRegion(env, intsByteArray, 0, 2, (jbyte*)intsarray); - (*env)->SetObjectArrayElement(env, retArray, 1, intsByteArray); - - (void)classObject; - - return retArray; -} - -SECP256K1_API jobjectArray JNICALL Java_org_bitcoin_NativeSecp256k1_secp256k1_1pubkey_1tweak_1add - (JNIEnv* env, jclass classObject, jobject byteBufferObject, jlong ctx_l, jint publen) -{ - secp256k1_context *ctx = (secp256k1_context*)(uintptr_t)ctx_l; -/* secp256k1_pubkey* pubkey = (secp256k1_pubkey*) (*env)->GetDirectBufferAddress(env, byteBufferObject);*/ - unsigned char* pkey = (*env)->GetDirectBufferAddress(env, byteBufferObject); - const unsigned char* tweak = (unsigned char*) (pkey + publen); - - jobjectArray retArray; - jbyteArray pubArray, intsByteArray; - unsigned char intsarray[2]; - unsigned char outputSer[65]; - size_t outputLen = 65; - - secp256k1_pubkey pubkey; - int ret = secp256k1_ec_pubkey_parse(ctx, &pubkey, pkey, publen); - - if( ret ) { - ret = secp256k1_ec_pubkey_tweak_add(ctx, &pubkey, tweak); - } - - if( ret ) { - int ret2 = secp256k1_ec_pubkey_serialize(ctx,outputSer, &outputLen, &pubkey,SECP256K1_EC_UNCOMPRESSED );(void)ret2; - } - - intsarray[0] = outputLen; - intsarray[1] = ret; - - retArray = (*env)->NewObjectArray(env, 2, - (*env)->FindClass(env, "[B"), - (*env)->NewByteArray(env, 1)); - - pubArray = (*env)->NewByteArray(env, outputLen); - (*env)->SetByteArrayRegion(env, pubArray, 0, outputLen, (jbyte*)outputSer); - (*env)->SetObjectArrayElement(env, retArray, 0, pubArray); - - intsByteArray = (*env)->NewByteArray(env, 2); - (*env)->SetByteArrayRegion(env, intsByteArray, 0, 2, (jbyte*)intsarray); - (*env)->SetObjectArrayElement(env, retArray, 1, intsByteArray); - - (void)classObject; - - return retArray; -} - -SECP256K1_API jobjectArray JNICALL Java_org_bitcoin_NativeSecp256k1_secp256k1_1pubkey_1tweak_1mul - (JNIEnv* env, jclass classObject, jobject byteBufferObject, jlong ctx_l, jint publen) -{ - secp256k1_context *ctx = (secp256k1_context*)(uintptr_t)ctx_l; - unsigned char* pkey = (*env)->GetDirectBufferAddress(env, byteBufferObject); - const unsigned char* tweak = (unsigned char*) (pkey + publen); - - jobjectArray retArray; - jbyteArray pubArray, intsByteArray; - unsigned char intsarray[2]; - unsigned char outputSer[65]; - size_t outputLen = 65; - - secp256k1_pubkey pubkey; - int ret = secp256k1_ec_pubkey_parse(ctx, &pubkey, pkey, publen); - - if ( ret ) { - ret = secp256k1_ec_pubkey_tweak_mul(ctx, &pubkey, tweak); - } - - if( ret ) { - int ret2 = secp256k1_ec_pubkey_serialize(ctx,outputSer, &outputLen, &pubkey,SECP256K1_EC_UNCOMPRESSED );(void)ret2; - } - - intsarray[0] = outputLen; - intsarray[1] = ret; - - retArray = (*env)->NewObjectArray(env, 2, - (*env)->FindClass(env, "[B"), - (*env)->NewByteArray(env, 1)); - - pubArray = (*env)->NewByteArray(env, outputLen); - (*env)->SetByteArrayRegion(env, pubArray, 0, outputLen, (jbyte*)outputSer); - (*env)->SetObjectArrayElement(env, retArray, 0, pubArray); - - intsByteArray = (*env)->NewByteArray(env, 2); - (*env)->SetByteArrayRegion(env, intsByteArray, 0, 2, (jbyte*)intsarray); - (*env)->SetObjectArrayElement(env, retArray, 1, intsByteArray); - - (void)classObject; - - return retArray; -} - -SECP256K1_API jlong JNICALL Java_org_bitcoin_NativeSecp256k1_secp256k1_1ecdsa_1pubkey_1combine - (JNIEnv * env, jclass classObject, jobject byteBufferObject, jlong ctx_l, jint numkeys) -{ - (void)classObject;(void)env;(void)byteBufferObject;(void)ctx_l;(void)numkeys; - - return 0; -} - -SECP256K1_API jobjectArray JNICALL Java_org_bitcoin_NativeSecp256k1_secp256k1_1ecdh - (JNIEnv* env, jclass classObject, jobject byteBufferObject, jlong ctx_l, jint publen) -{ - secp256k1_context *ctx = (secp256k1_context*)(uintptr_t)ctx_l; - const unsigned char* secdata = (*env)->GetDirectBufferAddress(env, byteBufferObject); - const unsigned char* pubdata = (const unsigned char*) (secdata + 32); - - jobjectArray retArray; - jbyteArray outArray, intsByteArray; - unsigned char intsarray[1]; - secp256k1_pubkey pubkey; - unsigned char nonce_res[32]; - size_t outputLen = 32; - - int ret = secp256k1_ec_pubkey_parse(ctx, &pubkey, pubdata, publen); - - if (ret) { - ret = secp256k1_ecdh( - ctx, - nonce_res, - &pubkey, - secdata, - NULL, - NULL - ); - } - - intsarray[0] = ret; - - retArray = (*env)->NewObjectArray(env, 2, - (*env)->FindClass(env, "[B"), - (*env)->NewByteArray(env, 1)); - - outArray = (*env)->NewByteArray(env, outputLen); - (*env)->SetByteArrayRegion(env, outArray, 0, 32, (jbyte*)nonce_res); - (*env)->SetObjectArrayElement(env, retArray, 0, outArray); - - intsByteArray = (*env)->NewByteArray(env, 1); - (*env)->SetByteArrayRegion(env, intsByteArray, 0, 1, (jbyte*)intsarray); - (*env)->SetObjectArrayElement(env, retArray, 1, intsByteArray); - - (void)classObject; - - return retArray; -} diff --git a/src/java/org_bitcoin_NativeSecp256k1.h b/src/java/org_bitcoin_NativeSecp256k1.h deleted file mode 100644 index fe613c9e9e77e..0000000000000 --- a/src/java/org_bitcoin_NativeSecp256k1.h +++ /dev/null @@ -1,119 +0,0 @@ -/* DO NOT EDIT THIS FILE - it is machine generated */ -#include -#include "include/secp256k1.h" -/* Header for class org_bitcoin_NativeSecp256k1 */ - -#ifndef _Included_org_bitcoin_NativeSecp256k1 -#define _Included_org_bitcoin_NativeSecp256k1 -#ifdef __cplusplus -extern "C" { -#endif -/* - * Class: org_bitcoin_NativeSecp256k1 - * Method: secp256k1_ctx_clone - * Signature: (J)J - */ -SECP256K1_API jlong JNICALL Java_org_bitcoin_NativeSecp256k1_secp256k1_1ctx_1clone - (JNIEnv *, jclass, jlong); - -/* - * Class: org_bitcoin_NativeSecp256k1 - * Method: secp256k1_context_randomize - * Signature: (Ljava/nio/ByteBuffer;J)I - */ -SECP256K1_API jint JNICALL Java_org_bitcoin_NativeSecp256k1_secp256k1_1context_1randomize - (JNIEnv *, jclass, jobject, jlong); - -/* - * Class: org_bitcoin_NativeSecp256k1 - * Method: secp256k1_privkey_tweak_add - * Signature: (Ljava/nio/ByteBuffer;J)[[B - */ -SECP256K1_API jobjectArray JNICALL Java_org_bitcoin_NativeSecp256k1_secp256k1_1privkey_1tweak_1add - (JNIEnv *, jclass, jobject, jlong); - -/* - * Class: org_bitcoin_NativeSecp256k1 - * Method: secp256k1_privkey_tweak_mul - * Signature: (Ljava/nio/ByteBuffer;J)[[B - */ -SECP256K1_API jobjectArray JNICALL Java_org_bitcoin_NativeSecp256k1_secp256k1_1privkey_1tweak_1mul - (JNIEnv *, jclass, jobject, jlong); - -/* - * Class: org_bitcoin_NativeSecp256k1 - * Method: secp256k1_pubkey_tweak_add - * Signature: (Ljava/nio/ByteBuffer;JI)[[B - */ -SECP256K1_API jobjectArray JNICALL Java_org_bitcoin_NativeSecp256k1_secp256k1_1pubkey_1tweak_1add - (JNIEnv *, jclass, jobject, jlong, jint); - -/* - * Class: org_bitcoin_NativeSecp256k1 - * Method: secp256k1_pubkey_tweak_mul - * Signature: (Ljava/nio/ByteBuffer;JI)[[B - */ -SECP256K1_API jobjectArray JNICALL Java_org_bitcoin_NativeSecp256k1_secp256k1_1pubkey_1tweak_1mul - (JNIEnv *, jclass, jobject, jlong, jint); - -/* - * Class: org_bitcoin_NativeSecp256k1 - * Method: secp256k1_destroy_context - * Signature: (J)V - */ -SECP256K1_API void JNICALL Java_org_bitcoin_NativeSecp256k1_secp256k1_1destroy_1context - (JNIEnv *, jclass, jlong); - -/* - * Class: org_bitcoin_NativeSecp256k1 - * Method: secp256k1_ecdsa_verify - * Signature: (Ljava/nio/ByteBuffer;JII)I - */ -SECP256K1_API jint JNICALL Java_org_bitcoin_NativeSecp256k1_secp256k1_1ecdsa_1verify - (JNIEnv *, jclass, jobject, jlong, jint, jint); - -/* - * Class: org_bitcoin_NativeSecp256k1 - * Method: secp256k1_ecdsa_sign - * Signature: (Ljava/nio/ByteBuffer;J)[[B - */ -SECP256K1_API jobjectArray JNICALL Java_org_bitcoin_NativeSecp256k1_secp256k1_1ecdsa_1sign - (JNIEnv *, jclass, jobject, jlong); - -/* - * Class: org_bitcoin_NativeSecp256k1 - * Method: secp256k1_ec_seckey_verify - * Signature: (Ljava/nio/ByteBuffer;J)I - */ -SECP256K1_API jint JNICALL Java_org_bitcoin_NativeSecp256k1_secp256k1_1ec_1seckey_1verify - (JNIEnv *, jclass, jobject, jlong); - -/* - * Class: org_bitcoin_NativeSecp256k1 - * Method: secp256k1_ec_pubkey_create - * Signature: (Ljava/nio/ByteBuffer;J)[[B - */ -SECP256K1_API jobjectArray JNICALL Java_org_bitcoin_NativeSecp256k1_secp256k1_1ec_1pubkey_1create - (JNIEnv *, jclass, jobject, jlong); - -/* - * Class: org_bitcoin_NativeSecp256k1 - * Method: secp256k1_ec_pubkey_parse - * Signature: (Ljava/nio/ByteBuffer;JI)[[B - */ -SECP256K1_API jobjectArray JNICALL Java_org_bitcoin_NativeSecp256k1_secp256k1_1ec_1pubkey_1parse - (JNIEnv *, jclass, jobject, jlong, jint); - -/* - * Class: org_bitcoin_NativeSecp256k1 - * Method: secp256k1_ecdh - * Signature: (Ljava/nio/ByteBuffer;JI)[[B - */ -SECP256K1_API jobjectArray JNICALL Java_org_bitcoin_NativeSecp256k1_secp256k1_1ecdh - (JNIEnv* env, jclass classObject, jobject byteBufferObject, jlong ctx_l, jint publen); - - -#ifdef __cplusplus -} -#endif -#endif diff --git a/src/java/org_bitcoin_Secp256k1Context.c b/src/java/org_bitcoin_Secp256k1Context.c deleted file mode 100644 index a52939e7e7dac..0000000000000 --- a/src/java/org_bitcoin_Secp256k1Context.c +++ /dev/null @@ -1,15 +0,0 @@ -#include -#include -#include "org_bitcoin_Secp256k1Context.h" -#include "include/secp256k1.h" - -SECP256K1_API jlong JNICALL Java_org_bitcoin_Secp256k1Context_secp256k1_1init_1context - (JNIEnv* env, jclass classObject) -{ - secp256k1_context *ctx = secp256k1_context_create(SECP256K1_CONTEXT_SIGN | SECP256K1_CONTEXT_VERIFY); - - (void)classObject;(void)env; - - return (uintptr_t)ctx; -} - diff --git a/src/java/org_bitcoin_Secp256k1Context.h b/src/java/org_bitcoin_Secp256k1Context.h deleted file mode 100644 index 0d2bc84b7f3fd..0000000000000 --- a/src/java/org_bitcoin_Secp256k1Context.h +++ /dev/null @@ -1,22 +0,0 @@ -/* DO NOT EDIT THIS FILE - it is machine generated */ -#include -#include "include/secp256k1.h" -/* Header for class org_bitcoin_Secp256k1Context */ - -#ifndef _Included_org_bitcoin_Secp256k1Context -#define _Included_org_bitcoin_Secp256k1Context -#ifdef __cplusplus -extern "C" { -#endif -/* - * Class: org_bitcoin_Secp256k1Context - * Method: secp256k1_init_context - * Signature: ()J - */ -SECP256K1_API jlong JNICALL Java_org_bitcoin_Secp256k1Context_secp256k1_1init_1context - (JNIEnv *, jclass); - -#ifdef __cplusplus -} -#endif -#endif diff --git a/src/modinv32.h b/src/modinv32.h new file mode 100644 index 0000000000000..0efdda9ab5e2e --- /dev/null +++ b/src/modinv32.h @@ -0,0 +1,42 @@ +/*********************************************************************** + * Copyright (c) 2020 Peter Dettman * + * Distributed under the MIT software license, see the accompanying * + * file COPYING or https://www.opensource.org/licenses/mit-license.php.* + **********************************************************************/ + +#ifndef SECP256K1_MODINV32_H +#define SECP256K1_MODINV32_H + +#if defined HAVE_CONFIG_H +#include "libsecp256k1-config.h" +#endif + +#include "util.h" + +/* A signed 30-bit limb representation of integers. + * + * Its value is sum(v[i] * 2^(30*i), i=0..8). */ +typedef struct { + int32_t v[9]; +} secp256k1_modinv32_signed30; + +typedef struct { + /* The modulus in signed30 notation, must be odd and in [3, 2^256]. */ + secp256k1_modinv32_signed30 modulus; + + /* modulus^{-1} mod 2^30 */ + uint32_t modulus_inv30; +} secp256k1_modinv32_modinfo; + +/* Replace x with its modular inverse mod modinfo->modulus. x must be in range [0, modulus). + * If x is zero, the result will be zero as well. If not, the inverse must exist (i.e., the gcd of + * x and modulus must be 1). These rules are automatically satisfied if the modulus is prime. + * + * On output, all of x's limbs will be in [0, 2^30). + */ +static void secp256k1_modinv32_var(secp256k1_modinv32_signed30 *x, const secp256k1_modinv32_modinfo *modinfo); + +/* Same as secp256k1_modinv32_var, but constant time in x (not in the modulus). */ +static void secp256k1_modinv32(secp256k1_modinv32_signed30 *x, const secp256k1_modinv32_modinfo *modinfo); + +#endif /* SECP256K1_MODINV32_H */ diff --git a/src/modinv32_impl.h b/src/modinv32_impl.h new file mode 100644 index 0000000000000..661c5fc04c988 --- /dev/null +++ b/src/modinv32_impl.h @@ -0,0 +1,587 @@ +/*********************************************************************** + * Copyright (c) 2020 Peter Dettman * + * Distributed under the MIT software license, see the accompanying * + * file COPYING or https://www.opensource.org/licenses/mit-license.php.* + **********************************************************************/ + +#ifndef SECP256K1_MODINV32_IMPL_H +#define SECP256K1_MODINV32_IMPL_H + +#include "modinv32.h" + +#include "util.h" + +#include + +/* This file implements modular inversion based on the paper "Fast constant-time gcd computation and + * modular inversion" by Daniel J. Bernstein and Bo-Yin Yang. + * + * For an explanation of the algorithm, see doc/safegcd_implementation.md. This file contains an + * implementation for N=30, using 30-bit signed limbs represented as int32_t. + */ + +#ifdef VERIFY +static const secp256k1_modinv32_signed30 SECP256K1_SIGNED30_ONE = {{1}}; + +/* Compute a*factor and put it in r. All but the top limb in r will be in range [0,2^30). */ +static void secp256k1_modinv32_mul_30(secp256k1_modinv32_signed30 *r, const secp256k1_modinv32_signed30 *a, int alen, int32_t factor) { + const int32_t M30 = (int32_t)(UINT32_MAX >> 2); + int64_t c = 0; + int i; + for (i = 0; i < 8; ++i) { + if (i < alen) c += (int64_t)a->v[i] * factor; + r->v[i] = (int32_t)c & M30; c >>= 30; + } + if (8 < alen) c += (int64_t)a->v[8] * factor; + VERIFY_CHECK(c == (int32_t)c); + r->v[8] = (int32_t)c; +} + +/* Return -1 for ab*factor. A consists of alen limbs; b has 9. */ +static int secp256k1_modinv32_mul_cmp_30(const secp256k1_modinv32_signed30 *a, int alen, const secp256k1_modinv32_signed30 *b, int32_t factor) { + int i; + secp256k1_modinv32_signed30 am, bm; + secp256k1_modinv32_mul_30(&am, a, alen, 1); /* Normalize all but the top limb of a. */ + secp256k1_modinv32_mul_30(&bm, b, 9, factor); + for (i = 0; i < 8; ++i) { + /* Verify that all but the top limb of a and b are normalized. */ + VERIFY_CHECK(am.v[i] >> 30 == 0); + VERIFY_CHECK(bm.v[i] >> 30 == 0); + } + for (i = 8; i >= 0; --i) { + if (am.v[i] < bm.v[i]) return -1; + if (am.v[i] > bm.v[i]) return 1; + } + return 0; +} +#endif + +/* Take as input a signed30 number in range (-2*modulus,modulus), and add a multiple of the modulus + * to it to bring it to range [0,modulus). If sign < 0, the input will also be negated in the + * process. The input must have limbs in range (-2^30,2^30). The output will have limbs in range + * [0,2^30). */ +static void secp256k1_modinv32_normalize_30(secp256k1_modinv32_signed30 *r, int32_t sign, const secp256k1_modinv32_modinfo *modinfo) { + const int32_t M30 = (int32_t)(UINT32_MAX >> 2); + int32_t r0 = r->v[0], r1 = r->v[1], r2 = r->v[2], r3 = r->v[3], r4 = r->v[4], + r5 = r->v[5], r6 = r->v[6], r7 = r->v[7], r8 = r->v[8]; + int32_t cond_add, cond_negate; + +#ifdef VERIFY + /* Verify that all limbs are in range (-2^30,2^30). */ + int i; + for (i = 0; i < 9; ++i) { + VERIFY_CHECK(r->v[i] >= -M30); + VERIFY_CHECK(r->v[i] <= M30); + } + VERIFY_CHECK(secp256k1_modinv32_mul_cmp_30(r, 9, &modinfo->modulus, -2) > 0); /* r > -2*modulus */ + VERIFY_CHECK(secp256k1_modinv32_mul_cmp_30(r, 9, &modinfo->modulus, 1) < 0); /* r < modulus */ +#endif + + /* In a first step, add the modulus if the input is negative, and then negate if requested. + * This brings r from range (-2*modulus,modulus) to range (-modulus,modulus). As all input + * limbs are in range (-2^30,2^30), this cannot overflow an int32_t. Note that the right + * shifts below are signed sign-extending shifts (see assumptions.h for tests that that is + * indeed the behavior of the right shift operator). */ + cond_add = r8 >> 31; + r0 += modinfo->modulus.v[0] & cond_add; + r1 += modinfo->modulus.v[1] & cond_add; + r2 += modinfo->modulus.v[2] & cond_add; + r3 += modinfo->modulus.v[3] & cond_add; + r4 += modinfo->modulus.v[4] & cond_add; + r5 += modinfo->modulus.v[5] & cond_add; + r6 += modinfo->modulus.v[6] & cond_add; + r7 += modinfo->modulus.v[7] & cond_add; + r8 += modinfo->modulus.v[8] & cond_add; + cond_negate = sign >> 31; + r0 = (r0 ^ cond_negate) - cond_negate; + r1 = (r1 ^ cond_negate) - cond_negate; + r2 = (r2 ^ cond_negate) - cond_negate; + r3 = (r3 ^ cond_negate) - cond_negate; + r4 = (r4 ^ cond_negate) - cond_negate; + r5 = (r5 ^ cond_negate) - cond_negate; + r6 = (r6 ^ cond_negate) - cond_negate; + r7 = (r7 ^ cond_negate) - cond_negate; + r8 = (r8 ^ cond_negate) - cond_negate; + /* Propagate the top bits, to bring limbs back to range (-2^30,2^30). */ + r1 += r0 >> 30; r0 &= M30; + r2 += r1 >> 30; r1 &= M30; + r3 += r2 >> 30; r2 &= M30; + r4 += r3 >> 30; r3 &= M30; + r5 += r4 >> 30; r4 &= M30; + r6 += r5 >> 30; r5 &= M30; + r7 += r6 >> 30; r6 &= M30; + r8 += r7 >> 30; r7 &= M30; + + /* In a second step add the modulus again if the result is still negative, bringing r to range + * [0,modulus). */ + cond_add = r8 >> 31; + r0 += modinfo->modulus.v[0] & cond_add; + r1 += modinfo->modulus.v[1] & cond_add; + r2 += modinfo->modulus.v[2] & cond_add; + r3 += modinfo->modulus.v[3] & cond_add; + r4 += modinfo->modulus.v[4] & cond_add; + r5 += modinfo->modulus.v[5] & cond_add; + r6 += modinfo->modulus.v[6] & cond_add; + r7 += modinfo->modulus.v[7] & cond_add; + r8 += modinfo->modulus.v[8] & cond_add; + /* And propagate again. */ + r1 += r0 >> 30; r0 &= M30; + r2 += r1 >> 30; r1 &= M30; + r3 += r2 >> 30; r2 &= M30; + r4 += r3 >> 30; r3 &= M30; + r5 += r4 >> 30; r4 &= M30; + r6 += r5 >> 30; r5 &= M30; + r7 += r6 >> 30; r6 &= M30; + r8 += r7 >> 30; r7 &= M30; + + r->v[0] = r0; + r->v[1] = r1; + r->v[2] = r2; + r->v[3] = r3; + r->v[4] = r4; + r->v[5] = r5; + r->v[6] = r6; + r->v[7] = r7; + r->v[8] = r8; + +#ifdef VERIFY + VERIFY_CHECK(r0 >> 30 == 0); + VERIFY_CHECK(r1 >> 30 == 0); + VERIFY_CHECK(r2 >> 30 == 0); + VERIFY_CHECK(r3 >> 30 == 0); + VERIFY_CHECK(r4 >> 30 == 0); + VERIFY_CHECK(r5 >> 30 == 0); + VERIFY_CHECK(r6 >> 30 == 0); + VERIFY_CHECK(r7 >> 30 == 0); + VERIFY_CHECK(r8 >> 30 == 0); + VERIFY_CHECK(secp256k1_modinv32_mul_cmp_30(r, 9, &modinfo->modulus, 0) >= 0); /* r >= 0 */ + VERIFY_CHECK(secp256k1_modinv32_mul_cmp_30(r, 9, &modinfo->modulus, 1) < 0); /* r < modulus */ +#endif +} + +/* Data type for transition matrices (see section 3 of explanation). + * + * t = [ u v ] + * [ q r ] + */ +typedef struct { + int32_t u, v, q, r; +} secp256k1_modinv32_trans2x2; + +/* Compute the transition matrix and zeta for 30 divsteps. + * + * Input: zeta: initial zeta + * f0: bottom limb of initial f + * g0: bottom limb of initial g + * Output: t: transition matrix + * Return: final zeta + * + * Implements the divsteps_n_matrix function from the explanation. + */ +static int32_t secp256k1_modinv32_divsteps_30(int32_t zeta, uint32_t f0, uint32_t g0, secp256k1_modinv32_trans2x2 *t) { + /* u,v,q,r are the elements of the transformation matrix being built up, + * starting with the identity matrix. Semantically they are signed integers + * in range [-2^30,2^30], but here represented as unsigned mod 2^32. This + * permits left shifting (which is UB for negative numbers). The range + * being inside [-2^31,2^31) means that casting to signed works correctly. + */ + uint32_t u = 1, v = 0, q = 0, r = 1; + uint32_t c1, c2, f = f0, g = g0, x, y, z; + int i; + + for (i = 0; i < 30; ++i) { + VERIFY_CHECK((f & 1) == 1); /* f must always be odd */ + VERIFY_CHECK((u * f0 + v * g0) == f << i); + VERIFY_CHECK((q * f0 + r * g0) == g << i); + /* Compute conditional masks for (zeta < 0) and for (g & 1). */ + c1 = zeta >> 31; + c2 = -(g & 1); + /* Compute x,y,z, conditionally negated versions of f,u,v. */ + x = (f ^ c1) - c1; + y = (u ^ c1) - c1; + z = (v ^ c1) - c1; + /* Conditionally add x,y,z to g,q,r. */ + g += x & c2; + q += y & c2; + r += z & c2; + /* In what follows, c1 is a condition mask for (zeta < 0) and (g & 1). */ + c1 &= c2; + /* Conditionally change zeta into -zeta-2 or zeta-1. */ + zeta = (zeta ^ c1) - 1; + /* Conditionally add g,q,r to f,u,v. */ + f += g & c1; + u += q & c1; + v += r & c1; + /* Shifts */ + g >>= 1; + u <<= 1; + v <<= 1; + /* Bounds on zeta that follow from the bounds on iteration count (max 20*30 divsteps). */ + VERIFY_CHECK(zeta >= -601 && zeta <= 601); + } + /* Return data in t and return value. */ + t->u = (int32_t)u; + t->v = (int32_t)v; + t->q = (int32_t)q; + t->r = (int32_t)r; + /* The determinant of t must be a power of two. This guarantees that multiplication with t + * does not change the gcd of f and g, apart from adding a power-of-2 factor to it (which + * will be divided out again). As each divstep's individual matrix has determinant 2, the + * aggregate of 30 of them will have determinant 2^30. */ + VERIFY_CHECK((int64_t)t->u * t->r - (int64_t)t->v * t->q == ((int64_t)1) << 30); + return zeta; +} + +/* Compute the transition matrix and eta for 30 divsteps (variable time). + * + * Input: eta: initial eta + * f0: bottom limb of initial f + * g0: bottom limb of initial g + * Output: t: transition matrix + * Return: final eta + * + * Implements the divsteps_n_matrix_var function from the explanation. + */ +static int32_t secp256k1_modinv32_divsteps_30_var(int32_t eta, uint32_t f0, uint32_t g0, secp256k1_modinv32_trans2x2 *t) { + /* inv256[i] = -(2*i+1)^-1 (mod 256) */ + static const uint8_t inv256[128] = { + 0xFF, 0x55, 0x33, 0x49, 0xC7, 0x5D, 0x3B, 0x11, 0x0F, 0xE5, 0xC3, 0x59, + 0xD7, 0xED, 0xCB, 0x21, 0x1F, 0x75, 0x53, 0x69, 0xE7, 0x7D, 0x5B, 0x31, + 0x2F, 0x05, 0xE3, 0x79, 0xF7, 0x0D, 0xEB, 0x41, 0x3F, 0x95, 0x73, 0x89, + 0x07, 0x9D, 0x7B, 0x51, 0x4F, 0x25, 0x03, 0x99, 0x17, 0x2D, 0x0B, 0x61, + 0x5F, 0xB5, 0x93, 0xA9, 0x27, 0xBD, 0x9B, 0x71, 0x6F, 0x45, 0x23, 0xB9, + 0x37, 0x4D, 0x2B, 0x81, 0x7F, 0xD5, 0xB3, 0xC9, 0x47, 0xDD, 0xBB, 0x91, + 0x8F, 0x65, 0x43, 0xD9, 0x57, 0x6D, 0x4B, 0xA1, 0x9F, 0xF5, 0xD3, 0xE9, + 0x67, 0xFD, 0xDB, 0xB1, 0xAF, 0x85, 0x63, 0xF9, 0x77, 0x8D, 0x6B, 0xC1, + 0xBF, 0x15, 0xF3, 0x09, 0x87, 0x1D, 0xFB, 0xD1, 0xCF, 0xA5, 0x83, 0x19, + 0x97, 0xAD, 0x8B, 0xE1, 0xDF, 0x35, 0x13, 0x29, 0xA7, 0x3D, 0x1B, 0xF1, + 0xEF, 0xC5, 0xA3, 0x39, 0xB7, 0xCD, 0xAB, 0x01 + }; + + /* Transformation matrix; see comments in secp256k1_modinv32_divsteps_30. */ + uint32_t u = 1, v = 0, q = 0, r = 1; + uint32_t f = f0, g = g0, m; + uint16_t w; + int i = 30, limit, zeros; + + for (;;) { + /* Use a sentinel bit to count zeros only up to i. */ + zeros = secp256k1_ctz32_var(g | (UINT32_MAX << i)); + /* Perform zeros divsteps at once; they all just divide g by two. */ + g >>= zeros; + u <<= zeros; + v <<= zeros; + eta -= zeros; + i -= zeros; + /* We're done once we've done 30 divsteps. */ + if (i == 0) break; + VERIFY_CHECK((f & 1) == 1); + VERIFY_CHECK((g & 1) == 1); + VERIFY_CHECK((u * f0 + v * g0) == f << (30 - i)); + VERIFY_CHECK((q * f0 + r * g0) == g << (30 - i)); + /* Bounds on eta that follow from the bounds on iteration count (max 25*30 divsteps). */ + VERIFY_CHECK(eta >= -751 && eta <= 751); + /* If eta is negative, negate it and replace f,g with g,-f. */ + if (eta < 0) { + uint32_t tmp; + eta = -eta; + tmp = f; f = g; g = -tmp; + tmp = u; u = q; q = -tmp; + tmp = v; v = r; r = -tmp; + } + /* eta is now >= 0. In what follows we're going to cancel out the bottom bits of g. No more + * than i can be cancelled out (as we'd be done before that point), and no more than eta+1 + * can be done as its sign will flip once that happens. */ + limit = ((int)eta + 1) > i ? i : ((int)eta + 1); + /* m is a mask for the bottom min(limit, 8) bits (our table only supports 8 bits). */ + VERIFY_CHECK(limit > 0 && limit <= 30); + m = (UINT32_MAX >> (32 - limit)) & 255U; + /* Find what multiple of f must be added to g to cancel its bottom min(limit, 8) bits. */ + w = (g * inv256[(f >> 1) & 127]) & m; + /* Do so. */ + g += f * w; + q += u * w; + r += v * w; + VERIFY_CHECK((g & m) == 0); + } + /* Return data in t and return value. */ + t->u = (int32_t)u; + t->v = (int32_t)v; + t->q = (int32_t)q; + t->r = (int32_t)r; + /* The determinant of t must be a power of two. This guarantees that multiplication with t + * does not change the gcd of f and g, apart from adding a power-of-2 factor to it (which + * will be divided out again). As each divstep's individual matrix has determinant 2, the + * aggregate of 30 of them will have determinant 2^30. */ + VERIFY_CHECK((int64_t)t->u * t->r - (int64_t)t->v * t->q == ((int64_t)1) << 30); + return eta; +} + +/* Compute (t/2^30) * [d, e] mod modulus, where t is a transition matrix for 30 divsteps. + * + * On input and output, d and e are in range (-2*modulus,modulus). All output limbs will be in range + * (-2^30,2^30). + * + * This implements the update_de function from the explanation. + */ +static void secp256k1_modinv32_update_de_30(secp256k1_modinv32_signed30 *d, secp256k1_modinv32_signed30 *e, const secp256k1_modinv32_trans2x2 *t, const secp256k1_modinv32_modinfo* modinfo) { + const int32_t M30 = (int32_t)(UINT32_MAX >> 2); + const int32_t u = t->u, v = t->v, q = t->q, r = t->r; + int32_t di, ei, md, me, sd, se; + int64_t cd, ce; + int i; +#ifdef VERIFY + VERIFY_CHECK(secp256k1_modinv32_mul_cmp_30(d, 9, &modinfo->modulus, -2) > 0); /* d > -2*modulus */ + VERIFY_CHECK(secp256k1_modinv32_mul_cmp_30(d, 9, &modinfo->modulus, 1) < 0); /* d < modulus */ + VERIFY_CHECK(secp256k1_modinv32_mul_cmp_30(e, 9, &modinfo->modulus, -2) > 0); /* e > -2*modulus */ + VERIFY_CHECK(secp256k1_modinv32_mul_cmp_30(e, 9, &modinfo->modulus, 1) < 0); /* e < modulus */ + VERIFY_CHECK((labs(u) + labs(v)) >= 0); /* |u|+|v| doesn't overflow */ + VERIFY_CHECK((labs(q) + labs(r)) >= 0); /* |q|+|r| doesn't overflow */ + VERIFY_CHECK((labs(u) + labs(v)) <= M30 + 1); /* |u|+|v| <= 2^30 */ + VERIFY_CHECK((labs(q) + labs(r)) <= M30 + 1); /* |q|+|r| <= 2^30 */ +#endif + /* [md,me] start as zero; plus [u,q] if d is negative; plus [v,r] if e is negative. */ + sd = d->v[8] >> 31; + se = e->v[8] >> 31; + md = (u & sd) + (v & se); + me = (q & sd) + (r & se); + /* Begin computing t*[d,e]. */ + di = d->v[0]; + ei = e->v[0]; + cd = (int64_t)u * di + (int64_t)v * ei; + ce = (int64_t)q * di + (int64_t)r * ei; + /* Correct md,me so that t*[d,e]+modulus*[md,me] has 30 zero bottom bits. */ + md -= (modinfo->modulus_inv30 * (uint32_t)cd + md) & M30; + me -= (modinfo->modulus_inv30 * (uint32_t)ce + me) & M30; + /* Update the beginning of computation for t*[d,e]+modulus*[md,me] now md,me are known. */ + cd += (int64_t)modinfo->modulus.v[0] * md; + ce += (int64_t)modinfo->modulus.v[0] * me; + /* Verify that the low 30 bits of the computation are indeed zero, and then throw them away. */ + VERIFY_CHECK(((int32_t)cd & M30) == 0); cd >>= 30; + VERIFY_CHECK(((int32_t)ce & M30) == 0); ce >>= 30; + /* Now iteratively compute limb i=1..8 of t*[d,e]+modulus*[md,me], and store them in output + * limb i-1 (shifting down by 30 bits). */ + for (i = 1; i < 9; ++i) { + di = d->v[i]; + ei = e->v[i]; + cd += (int64_t)u * di + (int64_t)v * ei; + ce += (int64_t)q * di + (int64_t)r * ei; + cd += (int64_t)modinfo->modulus.v[i] * md; + ce += (int64_t)modinfo->modulus.v[i] * me; + d->v[i - 1] = (int32_t)cd & M30; cd >>= 30; + e->v[i - 1] = (int32_t)ce & M30; ce >>= 30; + } + /* What remains is limb 9 of t*[d,e]+modulus*[md,me]; store it as output limb 8. */ + d->v[8] = (int32_t)cd; + e->v[8] = (int32_t)ce; +#ifdef VERIFY + VERIFY_CHECK(secp256k1_modinv32_mul_cmp_30(d, 9, &modinfo->modulus, -2) > 0); /* d > -2*modulus */ + VERIFY_CHECK(secp256k1_modinv32_mul_cmp_30(d, 9, &modinfo->modulus, 1) < 0); /* d < modulus */ + VERIFY_CHECK(secp256k1_modinv32_mul_cmp_30(e, 9, &modinfo->modulus, -2) > 0); /* e > -2*modulus */ + VERIFY_CHECK(secp256k1_modinv32_mul_cmp_30(e, 9, &modinfo->modulus, 1) < 0); /* e < modulus */ +#endif +} + +/* Compute (t/2^30) * [f, g], where t is a transition matrix for 30 divsteps. + * + * This implements the update_fg function from the explanation. + */ +static void secp256k1_modinv32_update_fg_30(secp256k1_modinv32_signed30 *f, secp256k1_modinv32_signed30 *g, const secp256k1_modinv32_trans2x2 *t) { + const int32_t M30 = (int32_t)(UINT32_MAX >> 2); + const int32_t u = t->u, v = t->v, q = t->q, r = t->r; + int32_t fi, gi; + int64_t cf, cg; + int i; + /* Start computing t*[f,g]. */ + fi = f->v[0]; + gi = g->v[0]; + cf = (int64_t)u * fi + (int64_t)v * gi; + cg = (int64_t)q * fi + (int64_t)r * gi; + /* Verify that the bottom 30 bits of the result are zero, and then throw them away. */ + VERIFY_CHECK(((int32_t)cf & M30) == 0); cf >>= 30; + VERIFY_CHECK(((int32_t)cg & M30) == 0); cg >>= 30; + /* Now iteratively compute limb i=1..8 of t*[f,g], and store them in output limb i-1 (shifting + * down by 30 bits). */ + for (i = 1; i < 9; ++i) { + fi = f->v[i]; + gi = g->v[i]; + cf += (int64_t)u * fi + (int64_t)v * gi; + cg += (int64_t)q * fi + (int64_t)r * gi; + f->v[i - 1] = (int32_t)cf & M30; cf >>= 30; + g->v[i - 1] = (int32_t)cg & M30; cg >>= 30; + } + /* What remains is limb 9 of t*[f,g]; store it as output limb 8. */ + f->v[8] = (int32_t)cf; + g->v[8] = (int32_t)cg; +} + +/* Compute (t/2^30) * [f, g], where t is a transition matrix for 30 divsteps. + * + * Version that operates on a variable number of limbs in f and g. + * + * This implements the update_fg function from the explanation in modinv64_impl.h. + */ +static void secp256k1_modinv32_update_fg_30_var(int len, secp256k1_modinv32_signed30 *f, secp256k1_modinv32_signed30 *g, const secp256k1_modinv32_trans2x2 *t) { + const int32_t M30 = (int32_t)(UINT32_MAX >> 2); + const int32_t u = t->u, v = t->v, q = t->q, r = t->r; + int32_t fi, gi; + int64_t cf, cg; + int i; + VERIFY_CHECK(len > 0); + /* Start computing t*[f,g]. */ + fi = f->v[0]; + gi = g->v[0]; + cf = (int64_t)u * fi + (int64_t)v * gi; + cg = (int64_t)q * fi + (int64_t)r * gi; + /* Verify that the bottom 62 bits of the result are zero, and then throw them away. */ + VERIFY_CHECK(((int32_t)cf & M30) == 0); cf >>= 30; + VERIFY_CHECK(((int32_t)cg & M30) == 0); cg >>= 30; + /* Now iteratively compute limb i=1..len of t*[f,g], and store them in output limb i-1 (shifting + * down by 30 bits). */ + for (i = 1; i < len; ++i) { + fi = f->v[i]; + gi = g->v[i]; + cf += (int64_t)u * fi + (int64_t)v * gi; + cg += (int64_t)q * fi + (int64_t)r * gi; + f->v[i - 1] = (int32_t)cf & M30; cf >>= 30; + g->v[i - 1] = (int32_t)cg & M30; cg >>= 30; + } + /* What remains is limb (len) of t*[f,g]; store it as output limb (len-1). */ + f->v[len - 1] = (int32_t)cf; + g->v[len - 1] = (int32_t)cg; +} + +/* Compute the inverse of x modulo modinfo->modulus, and replace x with it (constant time in x). */ +static void secp256k1_modinv32(secp256k1_modinv32_signed30 *x, const secp256k1_modinv32_modinfo *modinfo) { + /* Start with d=0, e=1, f=modulus, g=x, zeta=-1. */ + secp256k1_modinv32_signed30 d = {{0}}; + secp256k1_modinv32_signed30 e = {{1}}; + secp256k1_modinv32_signed30 f = modinfo->modulus; + secp256k1_modinv32_signed30 g = *x; + int i; + int32_t zeta = -1; /* zeta = -(delta+1/2); delta is initially 1/2. */ + + /* Do 20 iterations of 30 divsteps each = 600 divsteps. 590 suffices for 256-bit inputs. */ + for (i = 0; i < 20; ++i) { + /* Compute transition matrix and new zeta after 30 divsteps. */ + secp256k1_modinv32_trans2x2 t; + zeta = secp256k1_modinv32_divsteps_30(zeta, f.v[0], g.v[0], &t); + /* Update d,e using that transition matrix. */ + secp256k1_modinv32_update_de_30(&d, &e, &t, modinfo); + /* Update f,g using that transition matrix. */ +#ifdef VERIFY + VERIFY_CHECK(secp256k1_modinv32_mul_cmp_30(&f, 9, &modinfo->modulus, -1) > 0); /* f > -modulus */ + VERIFY_CHECK(secp256k1_modinv32_mul_cmp_30(&f, 9, &modinfo->modulus, 1) <= 0); /* f <= modulus */ + VERIFY_CHECK(secp256k1_modinv32_mul_cmp_30(&g, 9, &modinfo->modulus, -1) > 0); /* g > -modulus */ + VERIFY_CHECK(secp256k1_modinv32_mul_cmp_30(&g, 9, &modinfo->modulus, 1) < 0); /* g < modulus */ +#endif + secp256k1_modinv32_update_fg_30(&f, &g, &t); +#ifdef VERIFY + VERIFY_CHECK(secp256k1_modinv32_mul_cmp_30(&f, 9, &modinfo->modulus, -1) > 0); /* f > -modulus */ + VERIFY_CHECK(secp256k1_modinv32_mul_cmp_30(&f, 9, &modinfo->modulus, 1) <= 0); /* f <= modulus */ + VERIFY_CHECK(secp256k1_modinv32_mul_cmp_30(&g, 9, &modinfo->modulus, -1) > 0); /* g > -modulus */ + VERIFY_CHECK(secp256k1_modinv32_mul_cmp_30(&g, 9, &modinfo->modulus, 1) < 0); /* g < modulus */ +#endif + } + + /* At this point sufficient iterations have been performed that g must have reached 0 + * and (if g was not originally 0) f must now equal +/- GCD of the initial f, g + * values i.e. +/- 1, and d now contains +/- the modular inverse. */ +#ifdef VERIFY + /* g == 0 */ + VERIFY_CHECK(secp256k1_modinv32_mul_cmp_30(&g, 9, &SECP256K1_SIGNED30_ONE, 0) == 0); + /* |f| == 1, or (x == 0 and d == 0 and |f|=modulus) */ + VERIFY_CHECK(secp256k1_modinv32_mul_cmp_30(&f, 9, &SECP256K1_SIGNED30_ONE, -1) == 0 || + secp256k1_modinv32_mul_cmp_30(&f, 9, &SECP256K1_SIGNED30_ONE, 1) == 0 || + (secp256k1_modinv32_mul_cmp_30(x, 9, &SECP256K1_SIGNED30_ONE, 0) == 0 && + secp256k1_modinv32_mul_cmp_30(&d, 9, &SECP256K1_SIGNED30_ONE, 0) == 0 && + (secp256k1_modinv32_mul_cmp_30(&f, 9, &modinfo->modulus, 1) == 0 || + secp256k1_modinv32_mul_cmp_30(&f, 9, &modinfo->modulus, -1) == 0))); +#endif + + /* Optionally negate d, normalize to [0,modulus), and return it. */ + secp256k1_modinv32_normalize_30(&d, f.v[8], modinfo); + *x = d; +} + +/* Compute the inverse of x modulo modinfo->modulus, and replace x with it (variable time). */ +static void secp256k1_modinv32_var(secp256k1_modinv32_signed30 *x, const secp256k1_modinv32_modinfo *modinfo) { + /* Start with d=0, e=1, f=modulus, g=x, eta=-1. */ + secp256k1_modinv32_signed30 d = {{0, 0, 0, 0, 0, 0, 0, 0, 0}}; + secp256k1_modinv32_signed30 e = {{1, 0, 0, 0, 0, 0, 0, 0, 0}}; + secp256k1_modinv32_signed30 f = modinfo->modulus; + secp256k1_modinv32_signed30 g = *x; +#ifdef VERIFY + int i = 0; +#endif + int j, len = 9; + int32_t eta = -1; /* eta = -delta; delta is initially 1 (faster for the variable-time code) */ + int32_t cond, fn, gn; + + /* Do iterations of 30 divsteps each until g=0. */ + while (1) { + /* Compute transition matrix and new eta after 30 divsteps. */ + secp256k1_modinv32_trans2x2 t; + eta = secp256k1_modinv32_divsteps_30_var(eta, f.v[0], g.v[0], &t); + /* Update d,e using that transition matrix. */ + secp256k1_modinv32_update_de_30(&d, &e, &t, modinfo); + /* Update f,g using that transition matrix. */ +#ifdef VERIFY + VERIFY_CHECK(secp256k1_modinv32_mul_cmp_30(&f, len, &modinfo->modulus, -1) > 0); /* f > -modulus */ + VERIFY_CHECK(secp256k1_modinv32_mul_cmp_30(&f, len, &modinfo->modulus, 1) <= 0); /* f <= modulus */ + VERIFY_CHECK(secp256k1_modinv32_mul_cmp_30(&g, len, &modinfo->modulus, -1) > 0); /* g > -modulus */ + VERIFY_CHECK(secp256k1_modinv32_mul_cmp_30(&g, len, &modinfo->modulus, 1) < 0); /* g < modulus */ +#endif + secp256k1_modinv32_update_fg_30_var(len, &f, &g, &t); + /* If the bottom limb of g is 0, there is a chance g=0. */ + if (g.v[0] == 0) { + cond = 0; + /* Check if all other limbs are also 0. */ + for (j = 1; j < len; ++j) { + cond |= g.v[j]; + } + /* If so, we're done. */ + if (cond == 0) break; + } + + /* Determine if len>1 and limb (len-1) of both f and g is 0 or -1. */ + fn = f.v[len - 1]; + gn = g.v[len - 1]; + cond = ((int32_t)len - 2) >> 31; + cond |= fn ^ (fn >> 31); + cond |= gn ^ (gn >> 31); + /* If so, reduce length, propagating the sign of f and g's top limb into the one below. */ + if (cond == 0) { + f.v[len - 2] |= (uint32_t)fn << 30; + g.v[len - 2] |= (uint32_t)gn << 30; + --len; + } +#ifdef VERIFY + VERIFY_CHECK(++i < 25); /* We should never need more than 25*30 = 750 divsteps */ + VERIFY_CHECK(secp256k1_modinv32_mul_cmp_30(&f, len, &modinfo->modulus, -1) > 0); /* f > -modulus */ + VERIFY_CHECK(secp256k1_modinv32_mul_cmp_30(&f, len, &modinfo->modulus, 1) <= 0); /* f <= modulus */ + VERIFY_CHECK(secp256k1_modinv32_mul_cmp_30(&g, len, &modinfo->modulus, -1) > 0); /* g > -modulus */ + VERIFY_CHECK(secp256k1_modinv32_mul_cmp_30(&g, len, &modinfo->modulus, 1) < 0); /* g < modulus */ +#endif + } + + /* At this point g is 0 and (if g was not originally 0) f must now equal +/- GCD of + * the initial f, g values i.e. +/- 1, and d now contains +/- the modular inverse. */ +#ifdef VERIFY + /* g == 0 */ + VERIFY_CHECK(secp256k1_modinv32_mul_cmp_30(&g, len, &SECP256K1_SIGNED30_ONE, 0) == 0); + /* |f| == 1, or (x == 0 and d == 0 and |f|=modulus) */ + VERIFY_CHECK(secp256k1_modinv32_mul_cmp_30(&f, len, &SECP256K1_SIGNED30_ONE, -1) == 0 || + secp256k1_modinv32_mul_cmp_30(&f, len, &SECP256K1_SIGNED30_ONE, 1) == 0 || + (secp256k1_modinv32_mul_cmp_30(x, 9, &SECP256K1_SIGNED30_ONE, 0) == 0 && + secp256k1_modinv32_mul_cmp_30(&d, 9, &SECP256K1_SIGNED30_ONE, 0) == 0 && + (secp256k1_modinv32_mul_cmp_30(&f, len, &modinfo->modulus, 1) == 0 || + secp256k1_modinv32_mul_cmp_30(&f, len, &modinfo->modulus, -1) == 0))); +#endif + + /* Optionally negate d, normalize to [0,modulus), and return it. */ + secp256k1_modinv32_normalize_30(&d, f.v[len - 1], modinfo); + *x = d; +} + +#endif /* SECP256K1_MODINV32_IMPL_H */ diff --git a/src/modinv64.h b/src/modinv64.h new file mode 100644 index 0000000000000..da506dfa9f722 --- /dev/null +++ b/src/modinv64.h @@ -0,0 +1,46 @@ +/*********************************************************************** + * Copyright (c) 2020 Peter Dettman * + * Distributed under the MIT software license, see the accompanying * + * file COPYING or https://www.opensource.org/licenses/mit-license.php.* + **********************************************************************/ + +#ifndef SECP256K1_MODINV64_H +#define SECP256K1_MODINV64_H + +#if defined HAVE_CONFIG_H +#include "libsecp256k1-config.h" +#endif + +#include "util.h" + +#ifndef SECP256K1_WIDEMUL_INT128 +#error "modinv64 requires 128-bit wide multiplication support" +#endif + +/* A signed 62-bit limb representation of integers. + * + * Its value is sum(v[i] * 2^(62*i), i=0..4). */ +typedef struct { + int64_t v[5]; +} secp256k1_modinv64_signed62; + +typedef struct { + /* The modulus in signed62 notation, must be odd and in [3, 2^256]. */ + secp256k1_modinv64_signed62 modulus; + + /* modulus^{-1} mod 2^62 */ + uint64_t modulus_inv62; +} secp256k1_modinv64_modinfo; + +/* Replace x with its modular inverse mod modinfo->modulus. x must be in range [0, modulus). + * If x is zero, the result will be zero as well. If not, the inverse must exist (i.e., the gcd of + * x and modulus must be 1). These rules are automatically satisfied if the modulus is prime. + * + * On output, all of x's limbs will be in [0, 2^62). + */ +static void secp256k1_modinv64_var(secp256k1_modinv64_signed62 *x, const secp256k1_modinv64_modinfo *modinfo); + +/* Same as secp256k1_modinv64_var, but constant time in x (not in the modulus). */ +static void secp256k1_modinv64(secp256k1_modinv64_signed62 *x, const secp256k1_modinv64_modinfo *modinfo); + +#endif /* SECP256K1_MODINV64_H */ diff --git a/src/modinv64_impl.h b/src/modinv64_impl.h new file mode 100644 index 0000000000000..0743a9c8210d2 --- /dev/null +++ b/src/modinv64_impl.h @@ -0,0 +1,593 @@ +/*********************************************************************** + * Copyright (c) 2020 Peter Dettman * + * Distributed under the MIT software license, see the accompanying * + * file COPYING or https://www.opensource.org/licenses/mit-license.php.* + **********************************************************************/ + +#ifndef SECP256K1_MODINV64_IMPL_H +#define SECP256K1_MODINV64_IMPL_H + +#include "modinv64.h" + +#include "util.h" + +/* This file implements modular inversion based on the paper "Fast constant-time gcd computation and + * modular inversion" by Daniel J. Bernstein and Bo-Yin Yang. + * + * For an explanation of the algorithm, see doc/safegcd_implementation.md. This file contains an + * implementation for N=62, using 62-bit signed limbs represented as int64_t. + */ + +#ifdef VERIFY +/* Helper function to compute the absolute value of an int64_t. + * (we don't use abs/labs/llabs as it depends on the int sizes). */ +static int64_t secp256k1_modinv64_abs(int64_t v) { + VERIFY_CHECK(v > INT64_MIN); + if (v < 0) return -v; + return v; +} + +static const secp256k1_modinv64_signed62 SECP256K1_SIGNED62_ONE = {{1}}; + +/* Compute a*factor and put it in r. All but the top limb in r will be in range [0,2^62). */ +static void secp256k1_modinv64_mul_62(secp256k1_modinv64_signed62 *r, const secp256k1_modinv64_signed62 *a, int alen, int64_t factor) { + const int64_t M62 = (int64_t)(UINT64_MAX >> 2); + int128_t c = 0; + int i; + for (i = 0; i < 4; ++i) { + if (i < alen) c += (int128_t)a->v[i] * factor; + r->v[i] = (int64_t)c & M62; c >>= 62; + } + if (4 < alen) c += (int128_t)a->v[4] * factor; + VERIFY_CHECK(c == (int64_t)c); + r->v[4] = (int64_t)c; +} + +/* Return -1 for ab*factor. A has alen limbs; b has 5. */ +static int secp256k1_modinv64_mul_cmp_62(const secp256k1_modinv64_signed62 *a, int alen, const secp256k1_modinv64_signed62 *b, int64_t factor) { + int i; + secp256k1_modinv64_signed62 am, bm; + secp256k1_modinv64_mul_62(&am, a, alen, 1); /* Normalize all but the top limb of a. */ + secp256k1_modinv64_mul_62(&bm, b, 5, factor); + for (i = 0; i < 4; ++i) { + /* Verify that all but the top limb of a and b are normalized. */ + VERIFY_CHECK(am.v[i] >> 62 == 0); + VERIFY_CHECK(bm.v[i] >> 62 == 0); + } + for (i = 4; i >= 0; --i) { + if (am.v[i] < bm.v[i]) return -1; + if (am.v[i] > bm.v[i]) return 1; + } + return 0; +} +#endif + +/* Take as input a signed62 number in range (-2*modulus,modulus), and add a multiple of the modulus + * to it to bring it to range [0,modulus). If sign < 0, the input will also be negated in the + * process. The input must have limbs in range (-2^62,2^62). The output will have limbs in range + * [0,2^62). */ +static void secp256k1_modinv64_normalize_62(secp256k1_modinv64_signed62 *r, int64_t sign, const secp256k1_modinv64_modinfo *modinfo) { + const int64_t M62 = (int64_t)(UINT64_MAX >> 2); + int64_t r0 = r->v[0], r1 = r->v[1], r2 = r->v[2], r3 = r->v[3], r4 = r->v[4]; + int64_t cond_add, cond_negate; + +#ifdef VERIFY + /* Verify that all limbs are in range (-2^62,2^62). */ + int i; + for (i = 0; i < 5; ++i) { + VERIFY_CHECK(r->v[i] >= -M62); + VERIFY_CHECK(r->v[i] <= M62); + } + VERIFY_CHECK(secp256k1_modinv64_mul_cmp_62(r, 5, &modinfo->modulus, -2) > 0); /* r > -2*modulus */ + VERIFY_CHECK(secp256k1_modinv64_mul_cmp_62(r, 5, &modinfo->modulus, 1) < 0); /* r < modulus */ +#endif + + /* In a first step, add the modulus if the input is negative, and then negate if requested. + * This brings r from range (-2*modulus,modulus) to range (-modulus,modulus). As all input + * limbs are in range (-2^62,2^62), this cannot overflow an int64_t. Note that the right + * shifts below are signed sign-extending shifts (see assumptions.h for tests that that is + * indeed the behavior of the right shift operator). */ + cond_add = r4 >> 63; + r0 += modinfo->modulus.v[0] & cond_add; + r1 += modinfo->modulus.v[1] & cond_add; + r2 += modinfo->modulus.v[2] & cond_add; + r3 += modinfo->modulus.v[3] & cond_add; + r4 += modinfo->modulus.v[4] & cond_add; + cond_negate = sign >> 63; + r0 = (r0 ^ cond_negate) - cond_negate; + r1 = (r1 ^ cond_negate) - cond_negate; + r2 = (r2 ^ cond_negate) - cond_negate; + r3 = (r3 ^ cond_negate) - cond_negate; + r4 = (r4 ^ cond_negate) - cond_negate; + /* Propagate the top bits, to bring limbs back to range (-2^62,2^62). */ + r1 += r0 >> 62; r0 &= M62; + r2 += r1 >> 62; r1 &= M62; + r3 += r2 >> 62; r2 &= M62; + r4 += r3 >> 62; r3 &= M62; + + /* In a second step add the modulus again if the result is still negative, bringing + * r to range [0,modulus). */ + cond_add = r4 >> 63; + r0 += modinfo->modulus.v[0] & cond_add; + r1 += modinfo->modulus.v[1] & cond_add; + r2 += modinfo->modulus.v[2] & cond_add; + r3 += modinfo->modulus.v[3] & cond_add; + r4 += modinfo->modulus.v[4] & cond_add; + /* And propagate again. */ + r1 += r0 >> 62; r0 &= M62; + r2 += r1 >> 62; r1 &= M62; + r3 += r2 >> 62; r2 &= M62; + r4 += r3 >> 62; r3 &= M62; + + r->v[0] = r0; + r->v[1] = r1; + r->v[2] = r2; + r->v[3] = r3; + r->v[4] = r4; + +#ifdef VERIFY + VERIFY_CHECK(r0 >> 62 == 0); + VERIFY_CHECK(r1 >> 62 == 0); + VERIFY_CHECK(r2 >> 62 == 0); + VERIFY_CHECK(r3 >> 62 == 0); + VERIFY_CHECK(r4 >> 62 == 0); + VERIFY_CHECK(secp256k1_modinv64_mul_cmp_62(r, 5, &modinfo->modulus, 0) >= 0); /* r >= 0 */ + VERIFY_CHECK(secp256k1_modinv64_mul_cmp_62(r, 5, &modinfo->modulus, 1) < 0); /* r < modulus */ +#endif +} + +/* Data type for transition matrices (see section 3 of explanation). + * + * t = [ u v ] + * [ q r ] + */ +typedef struct { + int64_t u, v, q, r; +} secp256k1_modinv64_trans2x2; + +/* Compute the transition matrix and eta for 59 divsteps (where zeta=-(delta+1/2)). + * Note that the transformation matrix is scaled by 2^62 and not 2^59. + * + * Input: zeta: initial zeta + * f0: bottom limb of initial f + * g0: bottom limb of initial g + * Output: t: transition matrix + * Return: final zeta + * + * Implements the divsteps_n_matrix function from the explanation. + */ +static int64_t secp256k1_modinv64_divsteps_59(int64_t zeta, uint64_t f0, uint64_t g0, secp256k1_modinv64_trans2x2 *t) { + /* u,v,q,r are the elements of the transformation matrix being built up, + * starting with the identity matrix times 8 (because the caller expects + * a result scaled by 2^62). Semantically they are signed integers + * in range [-2^62,2^62], but here represented as unsigned mod 2^64. This + * permits left shifting (which is UB for negative numbers). The range + * being inside [-2^63,2^63) means that casting to signed works correctly. + */ + uint64_t u = 8, v = 0, q = 0, r = 8; + uint64_t c1, c2, f = f0, g = g0, x, y, z; + int i; + + for (i = 3; i < 62; ++i) { + VERIFY_CHECK((f & 1) == 1); /* f must always be odd */ + VERIFY_CHECK((u * f0 + v * g0) == f << i); + VERIFY_CHECK((q * f0 + r * g0) == g << i); + /* Compute conditional masks for (zeta < 0) and for (g & 1). */ + c1 = zeta >> 63; + c2 = -(g & 1); + /* Compute x,y,z, conditionally negated versions of f,u,v. */ + x = (f ^ c1) - c1; + y = (u ^ c1) - c1; + z = (v ^ c1) - c1; + /* Conditionally add x,y,z to g,q,r. */ + g += x & c2; + q += y & c2; + r += z & c2; + /* In what follows, c1 is a condition mask for (zeta < 0) and (g & 1). */ + c1 &= c2; + /* Conditionally change zeta into -zeta-2 or zeta-1. */ + zeta = (zeta ^ c1) - 1; + /* Conditionally add g,q,r to f,u,v. */ + f += g & c1; + u += q & c1; + v += r & c1; + /* Shifts */ + g >>= 1; + u <<= 1; + v <<= 1; + /* Bounds on zeta that follow from the bounds on iteration count (max 10*59 divsteps). */ + VERIFY_CHECK(zeta >= -591 && zeta <= 591); + } + /* Return data in t and return value. */ + t->u = (int64_t)u; + t->v = (int64_t)v; + t->q = (int64_t)q; + t->r = (int64_t)r; + /* The determinant of t must be a power of two. This guarantees that multiplication with t + * does not change the gcd of f and g, apart from adding a power-of-2 factor to it (which + * will be divided out again). As each divstep's individual matrix has determinant 2, the + * aggregate of 59 of them will have determinant 2^59. Multiplying with the initial + * 8*identity (which has determinant 2^6) means the overall outputs has determinant + * 2^65. */ + VERIFY_CHECK((int128_t)t->u * t->r - (int128_t)t->v * t->q == ((int128_t)1) << 65); + return zeta; +} + +/* Compute the transition matrix and eta for 62 divsteps (variable time, eta=-delta). + * + * Input: eta: initial eta + * f0: bottom limb of initial f + * g0: bottom limb of initial g + * Output: t: transition matrix + * Return: final eta + * + * Implements the divsteps_n_matrix_var function from the explanation. + */ +static int64_t secp256k1_modinv64_divsteps_62_var(int64_t eta, uint64_t f0, uint64_t g0, secp256k1_modinv64_trans2x2 *t) { + /* Transformation matrix; see comments in secp256k1_modinv64_divsteps_62. */ + uint64_t u = 1, v = 0, q = 0, r = 1; + uint64_t f = f0, g = g0, m; + uint32_t w; + int i = 62, limit, zeros; + + for (;;) { + /* Use a sentinel bit to count zeros only up to i. */ + zeros = secp256k1_ctz64_var(g | (UINT64_MAX << i)); + /* Perform zeros divsteps at once; they all just divide g by two. */ + g >>= zeros; + u <<= zeros; + v <<= zeros; + eta -= zeros; + i -= zeros; + /* We're done once we've done 62 divsteps. */ + if (i == 0) break; + VERIFY_CHECK((f & 1) == 1); + VERIFY_CHECK((g & 1) == 1); + VERIFY_CHECK((u * f0 + v * g0) == f << (62 - i)); + VERIFY_CHECK((q * f0 + r * g0) == g << (62 - i)); + /* Bounds on eta that follow from the bounds on iteration count (max 12*62 divsteps). */ + VERIFY_CHECK(eta >= -745 && eta <= 745); + /* If eta is negative, negate it and replace f,g with g,-f. */ + if (eta < 0) { + uint64_t tmp; + eta = -eta; + tmp = f; f = g; g = -tmp; + tmp = u; u = q; q = -tmp; + tmp = v; v = r; r = -tmp; + /* Use a formula to cancel out up to 6 bits of g. Also, no more than i can be cancelled + * out (as we'd be done before that point), and no more than eta+1 can be done as its + * will flip again once that happens. */ + limit = ((int)eta + 1) > i ? i : ((int)eta + 1); + VERIFY_CHECK(limit > 0 && limit <= 62); + /* m is a mask for the bottom min(limit, 6) bits. */ + m = (UINT64_MAX >> (64 - limit)) & 63U; + /* Find what multiple of f must be added to g to cancel its bottom min(limit, 6) + * bits. */ + w = (f * g * (f * f - 2)) & m; + } else { + /* In this branch, use a simpler formula that only lets us cancel up to 4 bits of g, as + * eta tends to be smaller here. */ + limit = ((int)eta + 1) > i ? i : ((int)eta + 1); + VERIFY_CHECK(limit > 0 && limit <= 62); + /* m is a mask for the bottom min(limit, 4) bits. */ + m = (UINT64_MAX >> (64 - limit)) & 15U; + /* Find what multiple of f must be added to g to cancel its bottom min(limit, 4) + * bits. */ + w = f + (((f + 1) & 4) << 1); + w = (-w * g) & m; + } + g += f * w; + q += u * w; + r += v * w; + VERIFY_CHECK((g & m) == 0); + } + /* Return data in t and return value. */ + t->u = (int64_t)u; + t->v = (int64_t)v; + t->q = (int64_t)q; + t->r = (int64_t)r; + /* The determinant of t must be a power of two. This guarantees that multiplication with t + * does not change the gcd of f and g, apart from adding a power-of-2 factor to it (which + * will be divided out again). As each divstep's individual matrix has determinant 2, the + * aggregate of 62 of them will have determinant 2^62. */ + VERIFY_CHECK((int128_t)t->u * t->r - (int128_t)t->v * t->q == ((int128_t)1) << 62); + return eta; +} + +/* Compute (t/2^62) * [d, e] mod modulus, where t is a transition matrix scaled by 2^62. + * + * On input and output, d and e are in range (-2*modulus,modulus). All output limbs will be in range + * (-2^62,2^62). + * + * This implements the update_de function from the explanation. + */ +static void secp256k1_modinv64_update_de_62(secp256k1_modinv64_signed62 *d, secp256k1_modinv64_signed62 *e, const secp256k1_modinv64_trans2x2 *t, const secp256k1_modinv64_modinfo* modinfo) { + const int64_t M62 = (int64_t)(UINT64_MAX >> 2); + const int64_t d0 = d->v[0], d1 = d->v[1], d2 = d->v[2], d3 = d->v[3], d4 = d->v[4]; + const int64_t e0 = e->v[0], e1 = e->v[1], e2 = e->v[2], e3 = e->v[3], e4 = e->v[4]; + const int64_t u = t->u, v = t->v, q = t->q, r = t->r; + int64_t md, me, sd, se; + int128_t cd, ce; +#ifdef VERIFY + VERIFY_CHECK(secp256k1_modinv64_mul_cmp_62(d, 5, &modinfo->modulus, -2) > 0); /* d > -2*modulus */ + VERIFY_CHECK(secp256k1_modinv64_mul_cmp_62(d, 5, &modinfo->modulus, 1) < 0); /* d < modulus */ + VERIFY_CHECK(secp256k1_modinv64_mul_cmp_62(e, 5, &modinfo->modulus, -2) > 0); /* e > -2*modulus */ + VERIFY_CHECK(secp256k1_modinv64_mul_cmp_62(e, 5, &modinfo->modulus, 1) < 0); /* e < modulus */ + VERIFY_CHECK((secp256k1_modinv64_abs(u) + secp256k1_modinv64_abs(v)) >= 0); /* |u|+|v| doesn't overflow */ + VERIFY_CHECK((secp256k1_modinv64_abs(q) + secp256k1_modinv64_abs(r)) >= 0); /* |q|+|r| doesn't overflow */ + VERIFY_CHECK((secp256k1_modinv64_abs(u) + secp256k1_modinv64_abs(v)) <= M62 + 1); /* |u|+|v| <= 2^62 */ + VERIFY_CHECK((secp256k1_modinv64_abs(q) + secp256k1_modinv64_abs(r)) <= M62 + 1); /* |q|+|r| <= 2^62 */ +#endif + /* [md,me] start as zero; plus [u,q] if d is negative; plus [v,r] if e is negative. */ + sd = d4 >> 63; + se = e4 >> 63; + md = (u & sd) + (v & se); + me = (q & sd) + (r & se); + /* Begin computing t*[d,e]. */ + cd = (int128_t)u * d0 + (int128_t)v * e0; + ce = (int128_t)q * d0 + (int128_t)r * e0; + /* Correct md,me so that t*[d,e]+modulus*[md,me] has 62 zero bottom bits. */ + md -= (modinfo->modulus_inv62 * (uint64_t)cd + md) & M62; + me -= (modinfo->modulus_inv62 * (uint64_t)ce + me) & M62; + /* Update the beginning of computation for t*[d,e]+modulus*[md,me] now md,me are known. */ + cd += (int128_t)modinfo->modulus.v[0] * md; + ce += (int128_t)modinfo->modulus.v[0] * me; + /* Verify that the low 62 bits of the computation are indeed zero, and then throw them away. */ + VERIFY_CHECK(((int64_t)cd & M62) == 0); cd >>= 62; + VERIFY_CHECK(((int64_t)ce & M62) == 0); ce >>= 62; + /* Compute limb 1 of t*[d,e]+modulus*[md,me], and store it as output limb 0 (= down shift). */ + cd += (int128_t)u * d1 + (int128_t)v * e1; + ce += (int128_t)q * d1 + (int128_t)r * e1; + if (modinfo->modulus.v[1]) { /* Optimize for the case where limb of modulus is zero. */ + cd += (int128_t)modinfo->modulus.v[1] * md; + ce += (int128_t)modinfo->modulus.v[1] * me; + } + d->v[0] = (int64_t)cd & M62; cd >>= 62; + e->v[0] = (int64_t)ce & M62; ce >>= 62; + /* Compute limb 2 of t*[d,e]+modulus*[md,me], and store it as output limb 1. */ + cd += (int128_t)u * d2 + (int128_t)v * e2; + ce += (int128_t)q * d2 + (int128_t)r * e2; + if (modinfo->modulus.v[2]) { /* Optimize for the case where limb of modulus is zero. */ + cd += (int128_t)modinfo->modulus.v[2] * md; + ce += (int128_t)modinfo->modulus.v[2] * me; + } + d->v[1] = (int64_t)cd & M62; cd >>= 62; + e->v[1] = (int64_t)ce & M62; ce >>= 62; + /* Compute limb 3 of t*[d,e]+modulus*[md,me], and store it as output limb 2. */ + cd += (int128_t)u * d3 + (int128_t)v * e3; + ce += (int128_t)q * d3 + (int128_t)r * e3; + if (modinfo->modulus.v[3]) { /* Optimize for the case where limb of modulus is zero. */ + cd += (int128_t)modinfo->modulus.v[3] * md; + ce += (int128_t)modinfo->modulus.v[3] * me; + } + d->v[2] = (int64_t)cd & M62; cd >>= 62; + e->v[2] = (int64_t)ce & M62; ce >>= 62; + /* Compute limb 4 of t*[d,e]+modulus*[md,me], and store it as output limb 3. */ + cd += (int128_t)u * d4 + (int128_t)v * e4; + ce += (int128_t)q * d4 + (int128_t)r * e4; + cd += (int128_t)modinfo->modulus.v[4] * md; + ce += (int128_t)modinfo->modulus.v[4] * me; + d->v[3] = (int64_t)cd & M62; cd >>= 62; + e->v[3] = (int64_t)ce & M62; ce >>= 62; + /* What remains is limb 5 of t*[d,e]+modulus*[md,me]; store it as output limb 4. */ + d->v[4] = (int64_t)cd; + e->v[4] = (int64_t)ce; +#ifdef VERIFY + VERIFY_CHECK(secp256k1_modinv64_mul_cmp_62(d, 5, &modinfo->modulus, -2) > 0); /* d > -2*modulus */ + VERIFY_CHECK(secp256k1_modinv64_mul_cmp_62(d, 5, &modinfo->modulus, 1) < 0); /* d < modulus */ + VERIFY_CHECK(secp256k1_modinv64_mul_cmp_62(e, 5, &modinfo->modulus, -2) > 0); /* e > -2*modulus */ + VERIFY_CHECK(secp256k1_modinv64_mul_cmp_62(e, 5, &modinfo->modulus, 1) < 0); /* e < modulus */ +#endif +} + +/* Compute (t/2^62) * [f, g], where t is a transition matrix scaled by 2^62. + * + * This implements the update_fg function from the explanation. + */ +static void secp256k1_modinv64_update_fg_62(secp256k1_modinv64_signed62 *f, secp256k1_modinv64_signed62 *g, const secp256k1_modinv64_trans2x2 *t) { + const int64_t M62 = (int64_t)(UINT64_MAX >> 2); + const int64_t f0 = f->v[0], f1 = f->v[1], f2 = f->v[2], f3 = f->v[3], f4 = f->v[4]; + const int64_t g0 = g->v[0], g1 = g->v[1], g2 = g->v[2], g3 = g->v[3], g4 = g->v[4]; + const int64_t u = t->u, v = t->v, q = t->q, r = t->r; + int128_t cf, cg; + /* Start computing t*[f,g]. */ + cf = (int128_t)u * f0 + (int128_t)v * g0; + cg = (int128_t)q * f0 + (int128_t)r * g0; + /* Verify that the bottom 62 bits of the result are zero, and then throw them away. */ + VERIFY_CHECK(((int64_t)cf & M62) == 0); cf >>= 62; + VERIFY_CHECK(((int64_t)cg & M62) == 0); cg >>= 62; + /* Compute limb 1 of t*[f,g], and store it as output limb 0 (= down shift). */ + cf += (int128_t)u * f1 + (int128_t)v * g1; + cg += (int128_t)q * f1 + (int128_t)r * g1; + f->v[0] = (int64_t)cf & M62; cf >>= 62; + g->v[0] = (int64_t)cg & M62; cg >>= 62; + /* Compute limb 2 of t*[f,g], and store it as output limb 1. */ + cf += (int128_t)u * f2 + (int128_t)v * g2; + cg += (int128_t)q * f2 + (int128_t)r * g2; + f->v[1] = (int64_t)cf & M62; cf >>= 62; + g->v[1] = (int64_t)cg & M62; cg >>= 62; + /* Compute limb 3 of t*[f,g], and store it as output limb 2. */ + cf += (int128_t)u * f3 + (int128_t)v * g3; + cg += (int128_t)q * f3 + (int128_t)r * g3; + f->v[2] = (int64_t)cf & M62; cf >>= 62; + g->v[2] = (int64_t)cg & M62; cg >>= 62; + /* Compute limb 4 of t*[f,g], and store it as output limb 3. */ + cf += (int128_t)u * f4 + (int128_t)v * g4; + cg += (int128_t)q * f4 + (int128_t)r * g4; + f->v[3] = (int64_t)cf & M62; cf >>= 62; + g->v[3] = (int64_t)cg & M62; cg >>= 62; + /* What remains is limb 5 of t*[f,g]; store it as output limb 4. */ + f->v[4] = (int64_t)cf; + g->v[4] = (int64_t)cg; +} + +/* Compute (t/2^62) * [f, g], where t is a transition matrix for 62 divsteps. + * + * Version that operates on a variable number of limbs in f and g. + * + * This implements the update_fg function from the explanation. + */ +static void secp256k1_modinv64_update_fg_62_var(int len, secp256k1_modinv64_signed62 *f, secp256k1_modinv64_signed62 *g, const secp256k1_modinv64_trans2x2 *t) { + const int64_t M62 = (int64_t)(UINT64_MAX >> 2); + const int64_t u = t->u, v = t->v, q = t->q, r = t->r; + int64_t fi, gi; + int128_t cf, cg; + int i; + VERIFY_CHECK(len > 0); + /* Start computing t*[f,g]. */ + fi = f->v[0]; + gi = g->v[0]; + cf = (int128_t)u * fi + (int128_t)v * gi; + cg = (int128_t)q * fi + (int128_t)r * gi; + /* Verify that the bottom 62 bits of the result are zero, and then throw them away. */ + VERIFY_CHECK(((int64_t)cf & M62) == 0); cf >>= 62; + VERIFY_CHECK(((int64_t)cg & M62) == 0); cg >>= 62; + /* Now iteratively compute limb i=1..len of t*[f,g], and store them in output limb i-1 (shifting + * down by 62 bits). */ + for (i = 1; i < len; ++i) { + fi = f->v[i]; + gi = g->v[i]; + cf += (int128_t)u * fi + (int128_t)v * gi; + cg += (int128_t)q * fi + (int128_t)r * gi; + f->v[i - 1] = (int64_t)cf & M62; cf >>= 62; + g->v[i - 1] = (int64_t)cg & M62; cg >>= 62; + } + /* What remains is limb (len) of t*[f,g]; store it as output limb (len-1). */ + f->v[len - 1] = (int64_t)cf; + g->v[len - 1] = (int64_t)cg; +} + +/* Compute the inverse of x modulo modinfo->modulus, and replace x with it (constant time in x). */ +static void secp256k1_modinv64(secp256k1_modinv64_signed62 *x, const secp256k1_modinv64_modinfo *modinfo) { + /* Start with d=0, e=1, f=modulus, g=x, zeta=-1. */ + secp256k1_modinv64_signed62 d = {{0, 0, 0, 0, 0}}; + secp256k1_modinv64_signed62 e = {{1, 0, 0, 0, 0}}; + secp256k1_modinv64_signed62 f = modinfo->modulus; + secp256k1_modinv64_signed62 g = *x; + int i; + int64_t zeta = -1; /* zeta = -(delta+1/2); delta starts at 1/2. */ + + /* Do 10 iterations of 59 divsteps each = 590 divsteps. This suffices for 256-bit inputs. */ + for (i = 0; i < 10; ++i) { + /* Compute transition matrix and new zeta after 59 divsteps. */ + secp256k1_modinv64_trans2x2 t; + zeta = secp256k1_modinv64_divsteps_59(zeta, f.v[0], g.v[0], &t); + /* Update d,e using that transition matrix. */ + secp256k1_modinv64_update_de_62(&d, &e, &t, modinfo); + /* Update f,g using that transition matrix. */ +#ifdef VERIFY + VERIFY_CHECK(secp256k1_modinv64_mul_cmp_62(&f, 5, &modinfo->modulus, -1) > 0); /* f > -modulus */ + VERIFY_CHECK(secp256k1_modinv64_mul_cmp_62(&f, 5, &modinfo->modulus, 1) <= 0); /* f <= modulus */ + VERIFY_CHECK(secp256k1_modinv64_mul_cmp_62(&g, 5, &modinfo->modulus, -1) > 0); /* g > -modulus */ + VERIFY_CHECK(secp256k1_modinv64_mul_cmp_62(&g, 5, &modinfo->modulus, 1) < 0); /* g < modulus */ +#endif + secp256k1_modinv64_update_fg_62(&f, &g, &t); +#ifdef VERIFY + VERIFY_CHECK(secp256k1_modinv64_mul_cmp_62(&f, 5, &modinfo->modulus, -1) > 0); /* f > -modulus */ + VERIFY_CHECK(secp256k1_modinv64_mul_cmp_62(&f, 5, &modinfo->modulus, 1) <= 0); /* f <= modulus */ + VERIFY_CHECK(secp256k1_modinv64_mul_cmp_62(&g, 5, &modinfo->modulus, -1) > 0); /* g > -modulus */ + VERIFY_CHECK(secp256k1_modinv64_mul_cmp_62(&g, 5, &modinfo->modulus, 1) < 0); /* g < modulus */ +#endif + } + + /* At this point sufficient iterations have been performed that g must have reached 0 + * and (if g was not originally 0) f must now equal +/- GCD of the initial f, g + * values i.e. +/- 1, and d now contains +/- the modular inverse. */ +#ifdef VERIFY + /* g == 0 */ + VERIFY_CHECK(secp256k1_modinv64_mul_cmp_62(&g, 5, &SECP256K1_SIGNED62_ONE, 0) == 0); + /* |f| == 1, or (x == 0 and d == 0 and |f|=modulus) */ + VERIFY_CHECK(secp256k1_modinv64_mul_cmp_62(&f, 5, &SECP256K1_SIGNED62_ONE, -1) == 0 || + secp256k1_modinv64_mul_cmp_62(&f, 5, &SECP256K1_SIGNED62_ONE, 1) == 0 || + (secp256k1_modinv64_mul_cmp_62(x, 5, &SECP256K1_SIGNED62_ONE, 0) == 0 && + secp256k1_modinv64_mul_cmp_62(&d, 5, &SECP256K1_SIGNED62_ONE, 0) == 0 && + (secp256k1_modinv64_mul_cmp_62(&f, 5, &modinfo->modulus, 1) == 0 || + secp256k1_modinv64_mul_cmp_62(&f, 5, &modinfo->modulus, -1) == 0))); +#endif + + /* Optionally negate d, normalize to [0,modulus), and return it. */ + secp256k1_modinv64_normalize_62(&d, f.v[4], modinfo); + *x = d; +} + +/* Compute the inverse of x modulo modinfo->modulus, and replace x with it (variable time). */ +static void secp256k1_modinv64_var(secp256k1_modinv64_signed62 *x, const secp256k1_modinv64_modinfo *modinfo) { + /* Start with d=0, e=1, f=modulus, g=x, eta=-1. */ + secp256k1_modinv64_signed62 d = {{0, 0, 0, 0, 0}}; + secp256k1_modinv64_signed62 e = {{1, 0, 0, 0, 0}}; + secp256k1_modinv64_signed62 f = modinfo->modulus; + secp256k1_modinv64_signed62 g = *x; +#ifdef VERIFY + int i = 0; +#endif + int j, len = 5; + int64_t eta = -1; /* eta = -delta; delta is initially 1 */ + int64_t cond, fn, gn; + + /* Do iterations of 62 divsteps each until g=0. */ + while (1) { + /* Compute transition matrix and new eta after 62 divsteps. */ + secp256k1_modinv64_trans2x2 t; + eta = secp256k1_modinv64_divsteps_62_var(eta, f.v[0], g.v[0], &t); + /* Update d,e using that transition matrix. */ + secp256k1_modinv64_update_de_62(&d, &e, &t, modinfo); + /* Update f,g using that transition matrix. */ +#ifdef VERIFY + VERIFY_CHECK(secp256k1_modinv64_mul_cmp_62(&f, len, &modinfo->modulus, -1) > 0); /* f > -modulus */ + VERIFY_CHECK(secp256k1_modinv64_mul_cmp_62(&f, len, &modinfo->modulus, 1) <= 0); /* f <= modulus */ + VERIFY_CHECK(secp256k1_modinv64_mul_cmp_62(&g, len, &modinfo->modulus, -1) > 0); /* g > -modulus */ + VERIFY_CHECK(secp256k1_modinv64_mul_cmp_62(&g, len, &modinfo->modulus, 1) < 0); /* g < modulus */ +#endif + secp256k1_modinv64_update_fg_62_var(len, &f, &g, &t); + /* If the bottom limb of g is zero, there is a chance that g=0. */ + if (g.v[0] == 0) { + cond = 0; + /* Check if the other limbs are also 0. */ + for (j = 1; j < len; ++j) { + cond |= g.v[j]; + } + /* If so, we're done. */ + if (cond == 0) break; + } + + /* Determine if len>1 and limb (len-1) of both f and g is 0 or -1. */ + fn = f.v[len - 1]; + gn = g.v[len - 1]; + cond = ((int64_t)len - 2) >> 63; + cond |= fn ^ (fn >> 63); + cond |= gn ^ (gn >> 63); + /* If so, reduce length, propagating the sign of f and g's top limb into the one below. */ + if (cond == 0) { + f.v[len - 2] |= (uint64_t)fn << 62; + g.v[len - 2] |= (uint64_t)gn << 62; + --len; + } +#ifdef VERIFY + VERIFY_CHECK(++i < 12); /* We should never need more than 12*62 = 744 divsteps */ + VERIFY_CHECK(secp256k1_modinv64_mul_cmp_62(&f, len, &modinfo->modulus, -1) > 0); /* f > -modulus */ + VERIFY_CHECK(secp256k1_modinv64_mul_cmp_62(&f, len, &modinfo->modulus, 1) <= 0); /* f <= modulus */ + VERIFY_CHECK(secp256k1_modinv64_mul_cmp_62(&g, len, &modinfo->modulus, -1) > 0); /* g > -modulus */ + VERIFY_CHECK(secp256k1_modinv64_mul_cmp_62(&g, len, &modinfo->modulus, 1) < 0); /* g < modulus */ +#endif + } + + /* At this point g is 0 and (if g was not originally 0) f must now equal +/- GCD of + * the initial f, g values i.e. +/- 1, and d now contains +/- the modular inverse. */ +#ifdef VERIFY + /* g == 0 */ + VERIFY_CHECK(secp256k1_modinv64_mul_cmp_62(&g, len, &SECP256K1_SIGNED62_ONE, 0) == 0); + /* |f| == 1, or (x == 0 and d == 0 and |f|=modulus) */ + VERIFY_CHECK(secp256k1_modinv64_mul_cmp_62(&f, len, &SECP256K1_SIGNED62_ONE, -1) == 0 || + secp256k1_modinv64_mul_cmp_62(&f, len, &SECP256K1_SIGNED62_ONE, 1) == 0 || + (secp256k1_modinv64_mul_cmp_62(x, 5, &SECP256K1_SIGNED62_ONE, 0) == 0 && + secp256k1_modinv64_mul_cmp_62(&d, 5, &SECP256K1_SIGNED62_ONE, 0) == 0 && + (secp256k1_modinv64_mul_cmp_62(&f, len, &modinfo->modulus, 1) == 0 || + secp256k1_modinv64_mul_cmp_62(&f, len, &modinfo->modulus, -1) == 0))); +#endif + + /* Optionally negate d, normalize to [0,modulus), and return it. */ + secp256k1_modinv64_normalize_62(&d, f.v[len - 1], modinfo); + *x = d; +} + +#endif /* SECP256K1_MODINV64_IMPL_H */ diff --git a/src/modules/ecdh/main_impl.h b/src/modules/ecdh/main_impl.h index 44cb68e750251..5408c9de70710 100644 --- a/src/modules/ecdh/main_impl.h +++ b/src/modules/ecdh/main_impl.h @@ -1,23 +1,23 @@ -/********************************************************************** - * Copyright (c) 2015 Andrew Poelstra * - * Distributed under the MIT software license, see the accompanying * - * file COPYING or http://www.opensource.org/licenses/mit-license.php.* - **********************************************************************/ +/*********************************************************************** + * Copyright (c) 2015 Andrew Poelstra * + * Distributed under the MIT software license, see the accompanying * + * file COPYING or https://www.opensource.org/licenses/mit-license.php.* + ***********************************************************************/ #ifndef SECP256K1_MODULE_ECDH_MAIN_H #define SECP256K1_MODULE_ECDH_MAIN_H -#include "include/secp256k1_ecdh.h" -#include "ecmult_const_impl.h" +#include "../../../include/secp256k1_ecdh.h" +#include "../../ecmult_const_impl.h" -static int ecdh_hash_function_sha256(unsigned char *output, const unsigned char *x, const unsigned char *y, void *data) { - unsigned char version = (y[31] & 0x01) | 0x02; +static int ecdh_hash_function_sha256(unsigned char *output, const unsigned char *x32, const unsigned char *y32, void *data) { + unsigned char version = (y32[31] & 0x01) | 0x02; secp256k1_sha256 sha; (void)data; secp256k1_sha256_initialize(&sha); secp256k1_sha256_write(&sha, &version, 1); - secp256k1_sha256_write(&sha, x, 32); + secp256k1_sha256_write(&sha, x32, 32); secp256k1_sha256_finalize(&sha, output); return 1; @@ -32,36 +32,40 @@ int secp256k1_ecdh(const secp256k1_context* ctx, unsigned char *output, const se secp256k1_gej res; secp256k1_ge pt; secp256k1_scalar s; + unsigned char x[32]; + unsigned char y[32]; + VERIFY_CHECK(ctx != NULL); ARG_CHECK(output != NULL); ARG_CHECK(point != NULL); ARG_CHECK(scalar != NULL); + if (hashfp == NULL) { hashfp = secp256k1_ecdh_hash_function_default; } secp256k1_pubkey_load(ctx, &pt, point); secp256k1_scalar_set_b32(&s, scalar, &overflow); - if (overflow || secp256k1_scalar_is_zero(&s)) { - ret = 0; - } else { - unsigned char x[32]; - unsigned char y[32]; - - secp256k1_ecmult_const(&res, &pt, &s, 256); - secp256k1_ge_set_gej(&pt, &res); - - /* Compute a hash of the point */ - secp256k1_fe_normalize(&pt.x); - secp256k1_fe_normalize(&pt.y); - secp256k1_fe_get_b32(x, &pt.x); - secp256k1_fe_get_b32(y, &pt.y); - - ret = hashfp(output, x, y, data); - } + overflow |= secp256k1_scalar_is_zero(&s); + secp256k1_scalar_cmov(&s, &secp256k1_scalar_one, overflow); + + secp256k1_ecmult_const(&res, &pt, &s, 256); + secp256k1_ge_set_gej(&pt, &res); + + /* Compute a hash of the point */ + secp256k1_fe_normalize(&pt.x); + secp256k1_fe_normalize(&pt.y); + secp256k1_fe_get_b32(x, &pt.x); + secp256k1_fe_get_b32(y, &pt.y); + + ret = hashfp(output, x, y, data); + + memset(x, 0, 32); + memset(y, 0, 32); secp256k1_scalar_clear(&s); - return ret; + + return !!ret & !overflow; } #endif /* SECP256K1_MODULE_ECDH_MAIN_H */ diff --git a/src/modules/ecdh/tests_impl.h b/src/modules/ecdh/tests_impl.h index fe26e8fb6957d..be07447a4b995 100644 --- a/src/modules/ecdh/tests_impl.h +++ b/src/modules/ecdh/tests_impl.h @@ -1,8 +1,8 @@ -/********************************************************************** - * Copyright (c) 2015 Andrew Poelstra * - * Distributed under the MIT software license, see the accompanying * - * file COPYING or http://www.opensource.org/licenses/mit-license.php.* - **********************************************************************/ +/*********************************************************************** + * Copyright (c) 2015 Andrew Poelstra * + * Distributed under the MIT software license, see the accompanying * + * file COPYING or https://www.opensource.org/licenses/mit-license.php.* + ***********************************************************************/ #ifndef SECP256K1_MODULE_ECDH_TESTS_H #define SECP256K1_MODULE_ECDH_TESTS_H @@ -80,7 +80,7 @@ void test_ecdh_generator_basepoint(void) { /* compute "explicitly" */ CHECK(secp256k1_ec_pubkey_serialize(ctx, point_ser, &point_ser_len, &point[1], SECP256K1_EC_UNCOMPRESSED) == 1); /* compare */ - CHECK(memcmp(output_ecdh, point_ser, 65) == 0); + CHECK(secp256k1_memcmp_var(output_ecdh, point_ser, 65) == 0); /* compute using ECDH function with default hash function */ CHECK(secp256k1_ecdh(ctx, output_ecdh, &point[0], s_b32, NULL, NULL) == 1); @@ -90,7 +90,7 @@ void test_ecdh_generator_basepoint(void) { secp256k1_sha256_write(&sha, point_ser, point_ser_len); secp256k1_sha256_finalize(&sha, output_ser); /* compare */ - CHECK(memcmp(output_ecdh, output_ser, 32) == 0); + CHECK(secp256k1_memcmp_var(output_ecdh, output_ser, 32) == 0); } } diff --git a/src/modules/extrakeys/Makefile.am.include b/src/modules/extrakeys/Makefile.am.include new file mode 100644 index 0000000000000..0d901ec1f4495 --- /dev/null +++ b/src/modules/extrakeys/Makefile.am.include @@ -0,0 +1,4 @@ +include_HEADERS += include/secp256k1_extrakeys.h +noinst_HEADERS += src/modules/extrakeys/tests_impl.h +noinst_HEADERS += src/modules/extrakeys/tests_exhaustive_impl.h +noinst_HEADERS += src/modules/extrakeys/main_impl.h diff --git a/src/modules/extrakeys/main_impl.h b/src/modules/extrakeys/main_impl.h new file mode 100644 index 0000000000000..8607bbede7302 --- /dev/null +++ b/src/modules/extrakeys/main_impl.h @@ -0,0 +1,287 @@ +/*********************************************************************** + * Copyright (c) 2020 Jonas Nick * + * Distributed under the MIT software license, see the accompanying * + * file COPYING or https://www.opensource.org/licenses/mit-license.php.* + ***********************************************************************/ + +#ifndef SECP256K1_MODULE_EXTRAKEYS_MAIN_H +#define SECP256K1_MODULE_EXTRAKEYS_MAIN_H + +#include "../../../include/secp256k1.h" +#include "../../../include/secp256k1_extrakeys.h" + +static SECP256K1_INLINE int secp256k1_xonly_pubkey_load(const secp256k1_context* ctx, secp256k1_ge *ge, const secp256k1_xonly_pubkey *pubkey) { + return secp256k1_pubkey_load(ctx, ge, (const secp256k1_pubkey *) pubkey); +} + +static SECP256K1_INLINE void secp256k1_xonly_pubkey_save(secp256k1_xonly_pubkey *pubkey, secp256k1_ge *ge) { + secp256k1_pubkey_save((secp256k1_pubkey *) pubkey, ge); +} + +int secp256k1_xonly_pubkey_parse(const secp256k1_context* ctx, secp256k1_xonly_pubkey *pubkey, const unsigned char *input32) { + secp256k1_ge pk; + secp256k1_fe x; + + VERIFY_CHECK(ctx != NULL); + ARG_CHECK(pubkey != NULL); + memset(pubkey, 0, sizeof(*pubkey)); + ARG_CHECK(input32 != NULL); + + if (!secp256k1_fe_set_b32(&x, input32)) { + return 0; + } + if (!secp256k1_ge_set_xo_var(&pk, &x, 0)) { + return 0; + } + if (!secp256k1_ge_is_in_correct_subgroup(&pk)) { + return 0; + } + secp256k1_xonly_pubkey_save(pubkey, &pk); + return 1; +} + +int secp256k1_xonly_pubkey_serialize(const secp256k1_context* ctx, unsigned char *output32, const secp256k1_xonly_pubkey *pubkey) { + secp256k1_ge pk; + + VERIFY_CHECK(ctx != NULL); + ARG_CHECK(output32 != NULL); + memset(output32, 0, 32); + ARG_CHECK(pubkey != NULL); + + if (!secp256k1_xonly_pubkey_load(ctx, &pk, pubkey)) { + return 0; + } + secp256k1_fe_get_b32(output32, &pk.x); + return 1; +} + +int secp256k1_xonly_pubkey_cmp(const secp256k1_context* ctx, const secp256k1_xonly_pubkey* pk0, const secp256k1_xonly_pubkey* pk1) { + unsigned char out[2][32]; + const secp256k1_xonly_pubkey* pk[2]; + int i; + + VERIFY_CHECK(ctx != NULL); + pk[0] = pk0; pk[1] = pk1; + for (i = 0; i < 2; i++) { + /* If the public key is NULL or invalid, xonly_pubkey_serialize will + * call the illegal_callback and return 0. In that case we will + * serialize the key as all zeros which is less than any valid public + * key. This results in consistent comparisons even if NULL or invalid + * pubkeys are involved and prevents edge cases such as sorting + * algorithms that use this function and do not terminate as a + * result. */ + if (!secp256k1_xonly_pubkey_serialize(ctx, out[i], pk[i])) { + /* Note that xonly_pubkey_serialize should already set the output to + * zero in that case, but it's not guaranteed by the API, we can't + * test it and writing a VERIFY_CHECK is more complex than + * explicitly memsetting (again). */ + memset(out[i], 0, sizeof(out[i])); + } + } + return secp256k1_memcmp_var(out[0], out[1], sizeof(out[1])); +} + +/** Keeps a group element as is if it has an even Y and otherwise negates it. + * y_parity is set to 0 in the former case and to 1 in the latter case. + * Requires that the coordinates of r are normalized. */ +static int secp256k1_extrakeys_ge_even_y(secp256k1_ge *r) { + int y_parity = 0; + VERIFY_CHECK(!secp256k1_ge_is_infinity(r)); + + if (secp256k1_fe_is_odd(&r->y)) { + secp256k1_fe_negate(&r->y, &r->y, 1); + y_parity = 1; + } + return y_parity; +} + +int secp256k1_xonly_pubkey_from_pubkey(const secp256k1_context* ctx, secp256k1_xonly_pubkey *xonly_pubkey, int *pk_parity, const secp256k1_pubkey *pubkey) { + secp256k1_ge pk; + int tmp; + + VERIFY_CHECK(ctx != NULL); + ARG_CHECK(xonly_pubkey != NULL); + ARG_CHECK(pubkey != NULL); + + if (!secp256k1_pubkey_load(ctx, &pk, pubkey)) { + return 0; + } + tmp = secp256k1_extrakeys_ge_even_y(&pk); + if (pk_parity != NULL) { + *pk_parity = tmp; + } + secp256k1_xonly_pubkey_save(xonly_pubkey, &pk); + return 1; +} + +int secp256k1_xonly_pubkey_tweak_add(const secp256k1_context* ctx, secp256k1_pubkey *output_pubkey, const secp256k1_xonly_pubkey *internal_pubkey, const unsigned char *tweak32) { + secp256k1_ge pk; + + VERIFY_CHECK(ctx != NULL); + ARG_CHECK(output_pubkey != NULL); + memset(output_pubkey, 0, sizeof(*output_pubkey)); + ARG_CHECK(secp256k1_ecmult_context_is_built(&ctx->ecmult_ctx)); + ARG_CHECK(internal_pubkey != NULL); + ARG_CHECK(tweak32 != NULL); + + if (!secp256k1_xonly_pubkey_load(ctx, &pk, internal_pubkey) + || !secp256k1_ec_pubkey_tweak_add_helper(&ctx->ecmult_ctx, &pk, tweak32)) { + return 0; + } + secp256k1_pubkey_save(output_pubkey, &pk); + return 1; +} + +int secp256k1_xonly_pubkey_tweak_add_check(const secp256k1_context* ctx, const unsigned char *tweaked_pubkey32, int tweaked_pk_parity, const secp256k1_xonly_pubkey *internal_pubkey, const unsigned char *tweak32) { + secp256k1_ge pk; + unsigned char pk_expected32[32]; + + VERIFY_CHECK(ctx != NULL); + ARG_CHECK(secp256k1_ecmult_context_is_built(&ctx->ecmult_ctx)); + ARG_CHECK(internal_pubkey != NULL); + ARG_CHECK(tweaked_pubkey32 != NULL); + ARG_CHECK(tweak32 != NULL); + + if (!secp256k1_xonly_pubkey_load(ctx, &pk, internal_pubkey) + || !secp256k1_ec_pubkey_tweak_add_helper(&ctx->ecmult_ctx, &pk, tweak32)) { + return 0; + } + secp256k1_fe_normalize_var(&pk.x); + secp256k1_fe_normalize_var(&pk.y); + secp256k1_fe_get_b32(pk_expected32, &pk.x); + + return secp256k1_memcmp_var(&pk_expected32, tweaked_pubkey32, 32) == 0 + && secp256k1_fe_is_odd(&pk.y) == tweaked_pk_parity; +} + +static void secp256k1_keypair_save(secp256k1_keypair *keypair, const secp256k1_scalar *sk, secp256k1_ge *pk) { + secp256k1_scalar_get_b32(&keypair->data[0], sk); + secp256k1_pubkey_save((secp256k1_pubkey *)&keypair->data[32], pk); +} + + +static int secp256k1_keypair_seckey_load(const secp256k1_context* ctx, secp256k1_scalar *sk, const secp256k1_keypair *keypair) { + int ret; + + ret = secp256k1_scalar_set_b32_seckey(sk, &keypair->data[0]); + /* We can declassify ret here because sk is only zero if a keypair function + * failed (which zeroes the keypair) and its return value is ignored. */ + secp256k1_declassify(ctx, &ret, sizeof(ret)); + ARG_CHECK(ret); + return ret; +} + +/* Load a keypair into pk and sk (if non-NULL). This function declassifies pk + * and ARG_CHECKs that the keypair is not invalid. It always initializes sk and + * pk with dummy values. */ +static int secp256k1_keypair_load(const secp256k1_context* ctx, secp256k1_scalar *sk, secp256k1_ge *pk, const secp256k1_keypair *keypair) { + int ret; + const secp256k1_pubkey *pubkey = (const secp256k1_pubkey *)&keypair->data[32]; + + /* Need to declassify the pubkey because pubkey_load ARG_CHECKs if it's + * invalid. */ + secp256k1_declassify(ctx, pubkey, sizeof(*pubkey)); + ret = secp256k1_pubkey_load(ctx, pk, pubkey); + if (sk != NULL) { + ret = ret && secp256k1_keypair_seckey_load(ctx, sk, keypair); + } + if (!ret) { + *pk = secp256k1_ge_const_g; + if (sk != NULL) { + *sk = secp256k1_scalar_one; + } + } + return ret; +} + +int secp256k1_keypair_create(const secp256k1_context* ctx, secp256k1_keypair *keypair, const unsigned char *seckey32) { + secp256k1_scalar sk; + secp256k1_ge pk; + int ret = 0; + VERIFY_CHECK(ctx != NULL); + ARG_CHECK(keypair != NULL); + memset(keypair, 0, sizeof(*keypair)); + ARG_CHECK(secp256k1_ecmult_gen_context_is_built(&ctx->ecmult_gen_ctx)); + ARG_CHECK(seckey32 != NULL); + + ret = secp256k1_ec_pubkey_create_helper(&ctx->ecmult_gen_ctx, &sk, &pk, seckey32); + secp256k1_keypair_save(keypair, &sk, &pk); + secp256k1_memczero(keypair, sizeof(*keypair), !ret); + + secp256k1_scalar_clear(&sk); + return ret; +} + +int secp256k1_keypair_sec(const secp256k1_context* ctx, unsigned char *seckey, const secp256k1_keypair *keypair) { + VERIFY_CHECK(ctx != NULL); + ARG_CHECK(seckey != NULL); + memset(seckey, 0, 32); + ARG_CHECK(keypair != NULL); + + memcpy(seckey, &keypair->data[0], 32); + return 1; +} + +int secp256k1_keypair_pub(const secp256k1_context* ctx, secp256k1_pubkey *pubkey, const secp256k1_keypair *keypair) { + VERIFY_CHECK(ctx != NULL); + ARG_CHECK(pubkey != NULL); + memset(pubkey, 0, sizeof(*pubkey)); + ARG_CHECK(keypair != NULL); + + memcpy(pubkey->data, &keypair->data[32], sizeof(*pubkey)); + return 1; +} + +int secp256k1_keypair_xonly_pub(const secp256k1_context* ctx, secp256k1_xonly_pubkey *pubkey, int *pk_parity, const secp256k1_keypair *keypair) { + secp256k1_ge pk; + int tmp; + + VERIFY_CHECK(ctx != NULL); + ARG_CHECK(pubkey != NULL); + memset(pubkey, 0, sizeof(*pubkey)); + ARG_CHECK(keypair != NULL); + + if (!secp256k1_keypair_load(ctx, NULL, &pk, keypair)) { + return 0; + } + tmp = secp256k1_extrakeys_ge_even_y(&pk); + if (pk_parity != NULL) { + *pk_parity = tmp; + } + secp256k1_xonly_pubkey_save(pubkey, &pk); + + return 1; +} + +int secp256k1_keypair_xonly_tweak_add(const secp256k1_context* ctx, secp256k1_keypair *keypair, const unsigned char *tweak32) { + secp256k1_ge pk; + secp256k1_scalar sk; + int y_parity; + int ret; + + VERIFY_CHECK(ctx != NULL); + ARG_CHECK(secp256k1_ecmult_context_is_built(&ctx->ecmult_ctx)); + ARG_CHECK(keypair != NULL); + ARG_CHECK(tweak32 != NULL); + + ret = secp256k1_keypair_load(ctx, &sk, &pk, keypair); + memset(keypair, 0, sizeof(*keypair)); + + y_parity = secp256k1_extrakeys_ge_even_y(&pk); + if (y_parity == 1) { + secp256k1_scalar_negate(&sk, &sk); + } + + ret &= secp256k1_ec_seckey_tweak_add_helper(&sk, tweak32); + ret &= secp256k1_ec_pubkey_tweak_add_helper(&ctx->ecmult_ctx, &pk, tweak32); + + secp256k1_declassify(ctx, &ret, sizeof(ret)); + if (ret) { + secp256k1_keypair_save(keypair, &sk, &pk); + } + + secp256k1_scalar_clear(&sk); + return ret; +} + +#endif diff --git a/src/modules/extrakeys/tests_exhaustive_impl.h b/src/modules/extrakeys/tests_exhaustive_impl.h new file mode 100644 index 0000000000000..d4a2f5bdf4050 --- /dev/null +++ b/src/modules/extrakeys/tests_exhaustive_impl.h @@ -0,0 +1,68 @@ +/*********************************************************************** + * Copyright (c) 2020 Pieter Wuille * + * Distributed under the MIT software license, see the accompanying * + * file COPYING or https://www.opensource.org/licenses/mit-license.php.* + ***********************************************************************/ + +#ifndef SECP256K1_MODULE_EXTRAKEYS_TESTS_EXHAUSTIVE_H +#define SECP256K1_MODULE_EXTRAKEYS_TESTS_EXHAUSTIVE_H + +#include "src/modules/extrakeys/main_impl.h" +#include "../../../include/secp256k1_extrakeys.h" + +static void test_exhaustive_extrakeys(const secp256k1_context *ctx, const secp256k1_ge* group) { + secp256k1_keypair keypair[EXHAUSTIVE_TEST_ORDER - 1]; + secp256k1_pubkey pubkey[EXHAUSTIVE_TEST_ORDER - 1]; + secp256k1_xonly_pubkey xonly_pubkey[EXHAUSTIVE_TEST_ORDER - 1]; + int parities[EXHAUSTIVE_TEST_ORDER - 1]; + unsigned char xonly_pubkey_bytes[EXHAUSTIVE_TEST_ORDER - 1][32]; + int i; + + for (i = 1; i < EXHAUSTIVE_TEST_ORDER; i++) { + secp256k1_fe fe; + secp256k1_scalar scalar_i; + unsigned char buf[33]; + int parity; + + secp256k1_scalar_set_int(&scalar_i, i); + secp256k1_scalar_get_b32(buf, &scalar_i); + + /* Construct pubkey and keypair. */ + CHECK(secp256k1_keypair_create(ctx, &keypair[i - 1], buf)); + CHECK(secp256k1_ec_pubkey_create(ctx, &pubkey[i - 1], buf)); + + /* Construct serialized xonly_pubkey from keypair. */ + CHECK(secp256k1_keypair_xonly_pub(ctx, &xonly_pubkey[i - 1], &parities[i - 1], &keypair[i - 1])); + CHECK(secp256k1_xonly_pubkey_serialize(ctx, xonly_pubkey_bytes[i - 1], &xonly_pubkey[i - 1])); + + /* Parse the xonly_pubkey back and verify it matches the previously serialized value. */ + CHECK(secp256k1_xonly_pubkey_parse(ctx, &xonly_pubkey[i - 1], xonly_pubkey_bytes[i - 1])); + CHECK(secp256k1_xonly_pubkey_serialize(ctx, buf, &xonly_pubkey[i - 1])); + CHECK(secp256k1_memcmp_var(xonly_pubkey_bytes[i - 1], buf, 32) == 0); + + /* Construct the xonly_pubkey from the pubkey, and verify it matches the same. */ + CHECK(secp256k1_xonly_pubkey_from_pubkey(ctx, &xonly_pubkey[i - 1], &parity, &pubkey[i - 1])); + CHECK(parity == parities[i - 1]); + CHECK(secp256k1_xonly_pubkey_serialize(ctx, buf, &xonly_pubkey[i - 1])); + CHECK(secp256k1_memcmp_var(xonly_pubkey_bytes[i - 1], buf, 32) == 0); + + /* Compare the xonly_pubkey bytes against the precomputed group. */ + secp256k1_fe_set_b32(&fe, xonly_pubkey_bytes[i - 1]); + CHECK(secp256k1_fe_equal_var(&fe, &group[i].x)); + + /* Check the parity against the precomputed group. */ + fe = group[i].y; + secp256k1_fe_normalize_var(&fe); + CHECK(secp256k1_fe_is_odd(&fe) == parities[i - 1]); + + /* Verify that the higher half is identical to the lower half mirrored. */ + if (i > EXHAUSTIVE_TEST_ORDER / 2) { + CHECK(secp256k1_memcmp_var(xonly_pubkey_bytes[i - 1], xonly_pubkey_bytes[EXHAUSTIVE_TEST_ORDER - i - 1], 32) == 0); + CHECK(parities[i - 1] == 1 - parities[EXHAUSTIVE_TEST_ORDER - i - 1]); + } + } + + /* TODO: keypair/xonly_pubkey tweak tests */ +} + +#endif diff --git a/src/modules/extrakeys/tests_impl.h b/src/modules/extrakeys/tests_impl.h new file mode 100644 index 0000000000000..4a5952714c41c --- /dev/null +++ b/src/modules/extrakeys/tests_impl.h @@ -0,0 +1,587 @@ +/*********************************************************************** + * Copyright (c) 2020 Jonas Nick * + * Distributed under the MIT software license, see the accompanying * + * file COPYING or https://www.opensource.org/licenses/mit-license.php.* + ***********************************************************************/ + +#ifndef SECP256K1_MODULE_EXTRAKEYS_TESTS_H +#define SECP256K1_MODULE_EXTRAKEYS_TESTS_H + +#include "../../../include/secp256k1_extrakeys.h" + +static secp256k1_context* api_test_context(int flags, int *ecount) { + secp256k1_context *ctx0 = secp256k1_context_create(flags); + secp256k1_context_set_error_callback(ctx0, counting_illegal_callback_fn, ecount); + secp256k1_context_set_illegal_callback(ctx0, counting_illegal_callback_fn, ecount); + return ctx0; +} + +void test_xonly_pubkey(void) { + secp256k1_pubkey pk; + secp256k1_xonly_pubkey xonly_pk, xonly_pk_tmp; + secp256k1_ge pk1; + secp256k1_ge pk2; + secp256k1_fe y; + unsigned char sk[32]; + unsigned char xy_sk[32]; + unsigned char buf32[32]; + unsigned char ones32[32]; + unsigned char zeros64[64] = { 0 }; + int pk_parity; + int i; + + int ecount; + secp256k1_context *none = api_test_context(SECP256K1_CONTEXT_NONE, &ecount); + secp256k1_context *sign = api_test_context(SECP256K1_CONTEXT_SIGN, &ecount); + secp256k1_context *verify = api_test_context(SECP256K1_CONTEXT_VERIFY, &ecount); + + secp256k1_testrand256(sk); + memset(ones32, 0xFF, 32); + secp256k1_testrand256(xy_sk); + CHECK(secp256k1_ec_pubkey_create(sign, &pk, sk) == 1); + CHECK(secp256k1_xonly_pubkey_from_pubkey(none, &xonly_pk, &pk_parity, &pk) == 1); + + /* Test xonly_pubkey_from_pubkey */ + ecount = 0; + CHECK(secp256k1_xonly_pubkey_from_pubkey(none, &xonly_pk, &pk_parity, &pk) == 1); + CHECK(secp256k1_xonly_pubkey_from_pubkey(sign, &xonly_pk, &pk_parity, &pk) == 1); + CHECK(secp256k1_xonly_pubkey_from_pubkey(verify, &xonly_pk, &pk_parity, &pk) == 1); + CHECK(secp256k1_xonly_pubkey_from_pubkey(none, NULL, &pk_parity, &pk) == 0); + CHECK(ecount == 1); + CHECK(secp256k1_xonly_pubkey_from_pubkey(none, &xonly_pk, NULL, &pk) == 1); + CHECK(secp256k1_xonly_pubkey_from_pubkey(none, &xonly_pk, &pk_parity, NULL) == 0); + CHECK(ecount == 2); + memset(&pk, 0, sizeof(pk)); + CHECK(secp256k1_xonly_pubkey_from_pubkey(none, &xonly_pk, &pk_parity, &pk) == 0); + CHECK(ecount == 3); + + /* Choose a secret key such that the resulting pubkey and xonly_pubkey match. */ + memset(sk, 0, sizeof(sk)); + sk[0] = 1; + CHECK(secp256k1_ec_pubkey_create(ctx, &pk, sk) == 1); + CHECK(secp256k1_xonly_pubkey_from_pubkey(ctx, &xonly_pk, &pk_parity, &pk) == 1); + CHECK(secp256k1_memcmp_var(&pk, &xonly_pk, sizeof(pk)) == 0); + CHECK(pk_parity == 0); + + /* Choose a secret key such that pubkey and xonly_pubkey are each others + * negation. */ + sk[0] = 2; + CHECK(secp256k1_ec_pubkey_create(ctx, &pk, sk) == 1); + CHECK(secp256k1_xonly_pubkey_from_pubkey(ctx, &xonly_pk, &pk_parity, &pk) == 1); + CHECK(secp256k1_memcmp_var(&xonly_pk, &pk, sizeof(xonly_pk)) != 0); + CHECK(pk_parity == 1); + secp256k1_pubkey_load(ctx, &pk1, &pk); + secp256k1_pubkey_load(ctx, &pk2, (secp256k1_pubkey *) &xonly_pk); + CHECK(secp256k1_fe_equal(&pk1.x, &pk2.x) == 1); + secp256k1_fe_negate(&y, &pk2.y, 1); + CHECK(secp256k1_fe_equal(&pk1.y, &y) == 1); + + /* Test xonly_pubkey_serialize and xonly_pubkey_parse */ + ecount = 0; + CHECK(secp256k1_xonly_pubkey_serialize(none, NULL, &xonly_pk) == 0); + CHECK(ecount == 1); + CHECK(secp256k1_xonly_pubkey_serialize(none, buf32, NULL) == 0); + CHECK(secp256k1_memcmp_var(buf32, zeros64, 32) == 0); + CHECK(ecount == 2); + { + /* A pubkey filled with 0s will fail to serialize due to pubkey_load + * special casing. */ + secp256k1_xonly_pubkey pk_tmp; + memset(&pk_tmp, 0, sizeof(pk_tmp)); + CHECK(secp256k1_xonly_pubkey_serialize(none, buf32, &pk_tmp) == 0); + } + /* pubkey_load called illegal callback */ + CHECK(ecount == 3); + + CHECK(secp256k1_xonly_pubkey_serialize(none, buf32, &xonly_pk) == 1); + ecount = 0; + CHECK(secp256k1_xonly_pubkey_parse(none, NULL, buf32) == 0); + CHECK(ecount == 1); + CHECK(secp256k1_xonly_pubkey_parse(none, &xonly_pk, NULL) == 0); + CHECK(ecount == 2); + + /* Serialization and parse roundtrip */ + CHECK(secp256k1_xonly_pubkey_from_pubkey(none, &xonly_pk, NULL, &pk) == 1); + CHECK(secp256k1_xonly_pubkey_serialize(ctx, buf32, &xonly_pk) == 1); + CHECK(secp256k1_xonly_pubkey_parse(ctx, &xonly_pk_tmp, buf32) == 1); + CHECK(secp256k1_memcmp_var(&xonly_pk, &xonly_pk_tmp, sizeof(xonly_pk)) == 0); + + /* Test parsing invalid field elements */ + memset(&xonly_pk, 1, sizeof(xonly_pk)); + /* Overflowing field element */ + CHECK(secp256k1_xonly_pubkey_parse(none, &xonly_pk, ones32) == 0); + CHECK(secp256k1_memcmp_var(&xonly_pk, zeros64, sizeof(xonly_pk)) == 0); + memset(&xonly_pk, 1, sizeof(xonly_pk)); + /* There's no point with x-coordinate 0 on secp256k1 */ + CHECK(secp256k1_xonly_pubkey_parse(none, &xonly_pk, zeros64) == 0); + CHECK(secp256k1_memcmp_var(&xonly_pk, zeros64, sizeof(xonly_pk)) == 0); + /* If a random 32-byte string can not be parsed with ec_pubkey_parse + * (because interpreted as X coordinate it does not correspond to a point on + * the curve) then xonly_pubkey_parse should fail as well. */ + for (i = 0; i < count; i++) { + unsigned char rand33[33]; + secp256k1_testrand256(&rand33[1]); + rand33[0] = SECP256K1_TAG_PUBKEY_EVEN; + if (!secp256k1_ec_pubkey_parse(ctx, &pk, rand33, 33)) { + memset(&xonly_pk, 1, sizeof(xonly_pk)); + CHECK(secp256k1_xonly_pubkey_parse(ctx, &xonly_pk, &rand33[1]) == 0); + CHECK(secp256k1_memcmp_var(&xonly_pk, zeros64, sizeof(xonly_pk)) == 0); + } else { + CHECK(secp256k1_xonly_pubkey_parse(ctx, &xonly_pk, &rand33[1]) == 1); + } + } + CHECK(ecount == 2); + + secp256k1_context_destroy(none); + secp256k1_context_destroy(sign); + secp256k1_context_destroy(verify); +} + +void test_xonly_pubkey_comparison(void) { + unsigned char pk1_ser[32] = { + 0x58, 0x84, 0xb3, 0xa2, 0x4b, 0x97, 0x37, 0x88, 0x92, 0x38, 0xa6, 0x26, 0x62, 0x52, 0x35, 0x11, + 0xd0, 0x9a, 0xa1, 0x1b, 0x80, 0x0b, 0x5e, 0x93, 0x80, 0x26, 0x11, 0xef, 0x67, 0x4b, 0xd9, 0x23 + }; + const unsigned char pk2_ser[32] = { + 0xde, 0x36, 0x0e, 0x87, 0x59, 0x8f, 0x3c, 0x01, 0x36, 0x2a, 0x2a, 0xb8, 0xc6, 0xf4, 0x5e, 0x4d, + 0xb2, 0xc2, 0xd5, 0x03, 0xa7, 0xf9, 0xf1, 0x4f, 0xa8, 0xfa, 0x95, 0xa8, 0xe9, 0x69, 0x76, 0x1c + }; + secp256k1_xonly_pubkey pk1; + secp256k1_xonly_pubkey pk2; + int ecount = 0; + secp256k1_context *none = api_test_context(SECP256K1_CONTEXT_NONE, &ecount); + + CHECK(secp256k1_xonly_pubkey_parse(none, &pk1, pk1_ser) == 1); + CHECK(secp256k1_xonly_pubkey_parse(none, &pk2, pk2_ser) == 1); + + CHECK(secp256k1_xonly_pubkey_cmp(none, NULL, &pk2) < 0); + CHECK(ecount == 1); + CHECK(secp256k1_xonly_pubkey_cmp(none, &pk1, NULL) > 0); + CHECK(ecount == 2); + CHECK(secp256k1_xonly_pubkey_cmp(none, &pk1, &pk2) < 0); + CHECK(secp256k1_xonly_pubkey_cmp(none, &pk2, &pk1) > 0); + CHECK(secp256k1_xonly_pubkey_cmp(none, &pk1, &pk1) == 0); + CHECK(secp256k1_xonly_pubkey_cmp(none, &pk2, &pk2) == 0); + CHECK(ecount == 2); + memset(&pk1, 0, sizeof(pk1)); /* illegal pubkey */ + CHECK(secp256k1_xonly_pubkey_cmp(none, &pk1, &pk2) < 0); + CHECK(ecount == 3); + CHECK(secp256k1_xonly_pubkey_cmp(none, &pk1, &pk1) == 0); + CHECK(ecount == 5); + CHECK(secp256k1_xonly_pubkey_cmp(none, &pk2, &pk1) > 0); + CHECK(ecount == 6); + + secp256k1_context_destroy(none); +} + +void test_xonly_pubkey_tweak(void) { + unsigned char zeros64[64] = { 0 }; + unsigned char overflows[32]; + unsigned char sk[32]; + secp256k1_pubkey internal_pk; + secp256k1_xonly_pubkey internal_xonly_pk; + secp256k1_pubkey output_pk; + int pk_parity; + unsigned char tweak[32]; + int i; + + int ecount; + secp256k1_context *none = api_test_context(SECP256K1_CONTEXT_NONE, &ecount); + secp256k1_context *sign = api_test_context(SECP256K1_CONTEXT_SIGN, &ecount); + secp256k1_context *verify = api_test_context(SECP256K1_CONTEXT_VERIFY, &ecount); + + memset(overflows, 0xff, sizeof(overflows)); + secp256k1_testrand256(tweak); + secp256k1_testrand256(sk); + CHECK(secp256k1_ec_pubkey_create(ctx, &internal_pk, sk) == 1); + CHECK(secp256k1_xonly_pubkey_from_pubkey(none, &internal_xonly_pk, &pk_parity, &internal_pk) == 1); + + ecount = 0; + CHECK(secp256k1_xonly_pubkey_tweak_add(none, &output_pk, &internal_xonly_pk, tweak) == 0); + CHECK(ecount == 1); + CHECK(secp256k1_xonly_pubkey_tweak_add(sign, &output_pk, &internal_xonly_pk, tweak) == 0); + CHECK(ecount == 2); + CHECK(secp256k1_xonly_pubkey_tweak_add(verify, &output_pk, &internal_xonly_pk, tweak) == 1); + CHECK(secp256k1_xonly_pubkey_tweak_add(verify, NULL, &internal_xonly_pk, tweak) == 0); + CHECK(ecount == 3); + CHECK(secp256k1_xonly_pubkey_tweak_add(verify, &output_pk, NULL, tweak) == 0); + CHECK(ecount == 4); + /* NULL internal_xonly_pk zeroes the output_pk */ + CHECK(secp256k1_memcmp_var(&output_pk, zeros64, sizeof(output_pk)) == 0); + CHECK(secp256k1_xonly_pubkey_tweak_add(verify, &output_pk, &internal_xonly_pk, NULL) == 0); + CHECK(ecount == 5); + /* NULL tweak zeroes the output_pk */ + CHECK(secp256k1_memcmp_var(&output_pk, zeros64, sizeof(output_pk)) == 0); + + /* Invalid tweak zeroes the output_pk */ + CHECK(secp256k1_xonly_pubkey_tweak_add(verify, &output_pk, &internal_xonly_pk, overflows) == 0); + CHECK(secp256k1_memcmp_var(&output_pk, zeros64, sizeof(output_pk)) == 0); + + /* A zero tweak is fine */ + CHECK(secp256k1_xonly_pubkey_tweak_add(verify, &output_pk, &internal_xonly_pk, zeros64) == 1); + + /* Fails if the resulting key was infinity */ + for (i = 0; i < count; i++) { + secp256k1_scalar scalar_tweak; + /* Because sk may be negated before adding, we need to try with tweak = + * sk as well as tweak = -sk. */ + secp256k1_scalar_set_b32(&scalar_tweak, sk, NULL); + secp256k1_scalar_negate(&scalar_tweak, &scalar_tweak); + secp256k1_scalar_get_b32(tweak, &scalar_tweak); + CHECK((secp256k1_xonly_pubkey_tweak_add(verify, &output_pk, &internal_xonly_pk, sk) == 0) + || (secp256k1_xonly_pubkey_tweak_add(verify, &output_pk, &internal_xonly_pk, tweak) == 0)); + CHECK(secp256k1_memcmp_var(&output_pk, zeros64, sizeof(output_pk)) == 0); + } + + /* Invalid pk with a valid tweak */ + memset(&internal_xonly_pk, 0, sizeof(internal_xonly_pk)); + secp256k1_testrand256(tweak); + ecount = 0; + CHECK(secp256k1_xonly_pubkey_tweak_add(verify, &output_pk, &internal_xonly_pk, tweak) == 0); + CHECK(ecount == 1); + CHECK(secp256k1_memcmp_var(&output_pk, zeros64, sizeof(output_pk)) == 0); + + secp256k1_context_destroy(none); + secp256k1_context_destroy(sign); + secp256k1_context_destroy(verify); +} + +void test_xonly_pubkey_tweak_check(void) { + unsigned char zeros64[64] = { 0 }; + unsigned char overflows[32]; + unsigned char sk[32]; + secp256k1_pubkey internal_pk; + secp256k1_xonly_pubkey internal_xonly_pk; + secp256k1_pubkey output_pk; + secp256k1_xonly_pubkey output_xonly_pk; + unsigned char output_pk32[32]; + unsigned char buf32[32]; + int pk_parity; + unsigned char tweak[32]; + + int ecount; + secp256k1_context *none = api_test_context(SECP256K1_CONTEXT_NONE, &ecount); + secp256k1_context *sign = api_test_context(SECP256K1_CONTEXT_SIGN, &ecount); + secp256k1_context *verify = api_test_context(SECP256K1_CONTEXT_VERIFY, &ecount); + + memset(overflows, 0xff, sizeof(overflows)); + secp256k1_testrand256(tweak); + secp256k1_testrand256(sk); + CHECK(secp256k1_ec_pubkey_create(ctx, &internal_pk, sk) == 1); + CHECK(secp256k1_xonly_pubkey_from_pubkey(none, &internal_xonly_pk, &pk_parity, &internal_pk) == 1); + + ecount = 0; + CHECK(secp256k1_xonly_pubkey_tweak_add(verify, &output_pk, &internal_xonly_pk, tweak) == 1); + CHECK(secp256k1_xonly_pubkey_from_pubkey(verify, &output_xonly_pk, &pk_parity, &output_pk) == 1); + CHECK(secp256k1_xonly_pubkey_serialize(ctx, buf32, &output_xonly_pk) == 1); + CHECK(secp256k1_xonly_pubkey_tweak_add_check(none, buf32, pk_parity, &internal_xonly_pk, tweak) == 0); + CHECK(ecount == 1); + CHECK(secp256k1_xonly_pubkey_tweak_add_check(sign, buf32, pk_parity, &internal_xonly_pk, tweak) == 0); + CHECK(ecount == 2); + CHECK(secp256k1_xonly_pubkey_tweak_add_check(verify, buf32, pk_parity, &internal_xonly_pk, tweak) == 1); + CHECK(secp256k1_xonly_pubkey_tweak_add_check(verify, NULL, pk_parity, &internal_xonly_pk, tweak) == 0); + CHECK(ecount == 3); + /* invalid pk_parity value */ + CHECK(secp256k1_xonly_pubkey_tweak_add_check(verify, buf32, 2, &internal_xonly_pk, tweak) == 0); + CHECK(ecount == 3); + CHECK(secp256k1_xonly_pubkey_tweak_add_check(verify, buf32, pk_parity, NULL, tweak) == 0); + CHECK(ecount == 4); + CHECK(secp256k1_xonly_pubkey_tweak_add_check(verify, buf32, pk_parity, &internal_xonly_pk, NULL) == 0); + CHECK(ecount == 5); + + memset(tweak, 1, sizeof(tweak)); + CHECK(secp256k1_xonly_pubkey_from_pubkey(ctx, &internal_xonly_pk, NULL, &internal_pk) == 1); + CHECK(secp256k1_xonly_pubkey_tweak_add(ctx, &output_pk, &internal_xonly_pk, tweak) == 1); + CHECK(secp256k1_xonly_pubkey_from_pubkey(ctx, &output_xonly_pk, &pk_parity, &output_pk) == 1); + CHECK(secp256k1_xonly_pubkey_serialize(ctx, output_pk32, &output_xonly_pk) == 1); + CHECK(secp256k1_xonly_pubkey_tweak_add_check(ctx, output_pk32, pk_parity, &internal_xonly_pk, tweak) == 1); + + /* Wrong pk_parity */ + CHECK(secp256k1_xonly_pubkey_tweak_add_check(ctx, output_pk32, !pk_parity, &internal_xonly_pk, tweak) == 0); + /* Wrong public key */ + CHECK(secp256k1_xonly_pubkey_serialize(ctx, buf32, &internal_xonly_pk) == 1); + CHECK(secp256k1_xonly_pubkey_tweak_add_check(ctx, buf32, pk_parity, &internal_xonly_pk, tweak) == 0); + + /* Overflowing tweak not allowed */ + CHECK(secp256k1_xonly_pubkey_tweak_add_check(ctx, output_pk32, pk_parity, &internal_xonly_pk, overflows) == 0); + CHECK(secp256k1_xonly_pubkey_tweak_add(ctx, &output_pk, &internal_xonly_pk, overflows) == 0); + CHECK(secp256k1_memcmp_var(&output_pk, zeros64, sizeof(output_pk)) == 0); + CHECK(ecount == 5); + + secp256k1_context_destroy(none); + secp256k1_context_destroy(sign); + secp256k1_context_destroy(verify); +} + +/* Starts with an initial pubkey and recursively creates N_PUBKEYS - 1 + * additional pubkeys by calling tweak_add. Then verifies every tweak starting + * from the last pubkey. */ +#define N_PUBKEYS 32 +void test_xonly_pubkey_tweak_recursive(void) { + unsigned char sk[32]; + secp256k1_pubkey pk[N_PUBKEYS]; + unsigned char pk_serialized[32]; + unsigned char tweak[N_PUBKEYS - 1][32]; + int i; + + secp256k1_testrand256(sk); + CHECK(secp256k1_ec_pubkey_create(ctx, &pk[0], sk) == 1); + /* Add tweaks */ + for (i = 0; i < N_PUBKEYS - 1; i++) { + secp256k1_xonly_pubkey xonly_pk; + memset(tweak[i], i + 1, sizeof(tweak[i])); + CHECK(secp256k1_xonly_pubkey_from_pubkey(ctx, &xonly_pk, NULL, &pk[i]) == 1); + CHECK(secp256k1_xonly_pubkey_tweak_add(ctx, &pk[i + 1], &xonly_pk, tweak[i]) == 1); + } + + /* Verify tweaks */ + for (i = N_PUBKEYS - 1; i > 0; i--) { + secp256k1_xonly_pubkey xonly_pk; + int pk_parity; + CHECK(secp256k1_xonly_pubkey_from_pubkey(ctx, &xonly_pk, &pk_parity, &pk[i]) == 1); + CHECK(secp256k1_xonly_pubkey_serialize(ctx, pk_serialized, &xonly_pk) == 1); + CHECK(secp256k1_xonly_pubkey_from_pubkey(ctx, &xonly_pk, NULL, &pk[i - 1]) == 1); + CHECK(secp256k1_xonly_pubkey_tweak_add_check(ctx, pk_serialized, pk_parity, &xonly_pk, tweak[i - 1]) == 1); + } +} +#undef N_PUBKEYS + +void test_keypair(void) { + unsigned char sk[32]; + unsigned char sk_tmp[32]; + unsigned char zeros96[96] = { 0 }; + unsigned char overflows[32]; + secp256k1_keypair keypair; + secp256k1_pubkey pk, pk_tmp; + secp256k1_xonly_pubkey xonly_pk, xonly_pk_tmp; + int pk_parity, pk_parity_tmp; + int ecount; + secp256k1_context *none = api_test_context(SECP256K1_CONTEXT_NONE, &ecount); + secp256k1_context *sign = api_test_context(SECP256K1_CONTEXT_SIGN, &ecount); + secp256k1_context *verify = api_test_context(SECP256K1_CONTEXT_VERIFY, &ecount); + + CHECK(sizeof(zeros96) == sizeof(keypair)); + memset(overflows, 0xFF, sizeof(overflows)); + + /* Test keypair_create */ + ecount = 0; + secp256k1_testrand256(sk); + CHECK(secp256k1_keypair_create(none, &keypair, sk) == 0); + CHECK(secp256k1_memcmp_var(zeros96, &keypair, sizeof(keypair)) == 0); + CHECK(ecount == 1); + CHECK(secp256k1_keypair_create(verify, &keypair, sk) == 0); + CHECK(secp256k1_memcmp_var(zeros96, &keypair, sizeof(keypair)) == 0); + CHECK(ecount == 2); + CHECK(secp256k1_keypair_create(sign, &keypair, sk) == 1); + CHECK(secp256k1_keypair_create(sign, NULL, sk) == 0); + CHECK(ecount == 3); + CHECK(secp256k1_keypair_create(sign, &keypair, NULL) == 0); + CHECK(secp256k1_memcmp_var(zeros96, &keypair, sizeof(keypair)) == 0); + CHECK(ecount == 4); + + /* Invalid secret key */ + CHECK(secp256k1_keypair_create(sign, &keypair, zeros96) == 0); + CHECK(secp256k1_memcmp_var(zeros96, &keypair, sizeof(keypair)) == 0); + CHECK(secp256k1_keypair_create(sign, &keypair, overflows) == 0); + CHECK(secp256k1_memcmp_var(zeros96, &keypair, sizeof(keypair)) == 0); + + /* Test keypair_pub */ + ecount = 0; + secp256k1_testrand256(sk); + CHECK(secp256k1_keypair_create(ctx, &keypair, sk) == 1); + CHECK(secp256k1_keypair_pub(none, &pk, &keypair) == 1); + CHECK(secp256k1_keypair_pub(none, NULL, &keypair) == 0); + CHECK(ecount == 1); + CHECK(secp256k1_keypair_pub(none, &pk, NULL) == 0); + CHECK(ecount == 2); + CHECK(secp256k1_memcmp_var(zeros96, &pk, sizeof(pk)) == 0); + + /* Using an invalid keypair is fine for keypair_pub */ + memset(&keypair, 0, sizeof(keypair)); + CHECK(secp256k1_keypair_pub(none, &pk, &keypair) == 1); + CHECK(secp256k1_memcmp_var(zeros96, &pk, sizeof(pk)) == 0); + + /* keypair holds the same pubkey as pubkey_create */ + CHECK(secp256k1_ec_pubkey_create(sign, &pk, sk) == 1); + CHECK(secp256k1_keypair_create(sign, &keypair, sk) == 1); + CHECK(secp256k1_keypair_pub(none, &pk_tmp, &keypair) == 1); + CHECK(secp256k1_memcmp_var(&pk, &pk_tmp, sizeof(pk)) == 0); + + /** Test keypair_xonly_pub **/ + ecount = 0; + secp256k1_testrand256(sk); + CHECK(secp256k1_keypair_create(ctx, &keypair, sk) == 1); + CHECK(secp256k1_keypair_xonly_pub(none, &xonly_pk, &pk_parity, &keypair) == 1); + CHECK(secp256k1_keypair_xonly_pub(none, NULL, &pk_parity, &keypair) == 0); + CHECK(ecount == 1); + CHECK(secp256k1_keypair_xonly_pub(none, &xonly_pk, NULL, &keypair) == 1); + CHECK(secp256k1_keypair_xonly_pub(none, &xonly_pk, &pk_parity, NULL) == 0); + CHECK(ecount == 2); + CHECK(secp256k1_memcmp_var(zeros96, &xonly_pk, sizeof(xonly_pk)) == 0); + /* Using an invalid keypair will set the xonly_pk to 0 (first reset + * xonly_pk). */ + CHECK(secp256k1_keypair_xonly_pub(none, &xonly_pk, &pk_parity, &keypair) == 1); + memset(&keypair, 0, sizeof(keypair)); + CHECK(secp256k1_keypair_xonly_pub(none, &xonly_pk, &pk_parity, &keypair) == 0); + CHECK(secp256k1_memcmp_var(zeros96, &xonly_pk, sizeof(xonly_pk)) == 0); + CHECK(ecount == 3); + + /** keypair holds the same xonly pubkey as pubkey_create **/ + CHECK(secp256k1_ec_pubkey_create(sign, &pk, sk) == 1); + CHECK(secp256k1_xonly_pubkey_from_pubkey(none, &xonly_pk, &pk_parity, &pk) == 1); + CHECK(secp256k1_keypair_create(sign, &keypair, sk) == 1); + CHECK(secp256k1_keypair_xonly_pub(none, &xonly_pk_tmp, &pk_parity_tmp, &keypair) == 1); + CHECK(secp256k1_memcmp_var(&xonly_pk, &xonly_pk_tmp, sizeof(pk)) == 0); + CHECK(pk_parity == pk_parity_tmp); + + /* Test keypair_seckey */ + ecount = 0; + secp256k1_testrand256(sk); + CHECK(secp256k1_keypair_create(ctx, &keypair, sk) == 1); + CHECK(secp256k1_keypair_sec(none, sk_tmp, &keypair) == 1); + CHECK(secp256k1_keypair_sec(none, NULL, &keypair) == 0); + CHECK(ecount == 1); + CHECK(secp256k1_keypair_sec(none, sk_tmp, NULL) == 0); + CHECK(ecount == 2); + CHECK(secp256k1_memcmp_var(zeros96, sk_tmp, sizeof(sk_tmp)) == 0); + + /* keypair returns the same seckey it got */ + CHECK(secp256k1_keypair_create(sign, &keypair, sk) == 1); + CHECK(secp256k1_keypair_sec(none, sk_tmp, &keypair) == 1); + CHECK(secp256k1_memcmp_var(sk, sk_tmp, sizeof(sk_tmp)) == 0); + + + /* Using an invalid keypair is fine for keypair_seckey */ + memset(&keypair, 0, sizeof(keypair)); + CHECK(secp256k1_keypair_sec(none, sk_tmp, &keypair) == 1); + CHECK(secp256k1_memcmp_var(zeros96, sk_tmp, sizeof(sk_tmp)) == 0); + + secp256k1_context_destroy(none); + secp256k1_context_destroy(sign); + secp256k1_context_destroy(verify); +} + +void test_keypair_add(void) { + unsigned char sk[32]; + secp256k1_keypair keypair; + unsigned char overflows[32]; + unsigned char zeros96[96] = { 0 }; + unsigned char tweak[32]; + int i; + int ecount = 0; + secp256k1_context *none = api_test_context(SECP256K1_CONTEXT_NONE, &ecount); + secp256k1_context *sign = api_test_context(SECP256K1_CONTEXT_SIGN, &ecount); + secp256k1_context *verify = api_test_context(SECP256K1_CONTEXT_VERIFY, &ecount); + + CHECK(sizeof(zeros96) == sizeof(keypair)); + secp256k1_testrand256(sk); + secp256k1_testrand256(tweak); + memset(overflows, 0xFF, 32); + CHECK(secp256k1_keypair_create(ctx, &keypair, sk) == 1); + + CHECK(secp256k1_keypair_xonly_tweak_add(none, &keypair, tweak) == 0); + CHECK(ecount == 1); + CHECK(secp256k1_keypair_xonly_tweak_add(sign, &keypair, tweak) == 0); + CHECK(ecount == 2); + CHECK(secp256k1_keypair_xonly_tweak_add(verify, &keypair, tweak) == 1); + CHECK(secp256k1_keypair_xonly_tweak_add(verify, NULL, tweak) == 0); + CHECK(ecount == 3); + CHECK(secp256k1_keypair_xonly_tweak_add(verify, &keypair, NULL) == 0); + CHECK(ecount == 4); + /* This does not set the keypair to zeroes */ + CHECK(secp256k1_memcmp_var(&keypair, zeros96, sizeof(keypair)) != 0); + + /* Invalid tweak zeroes the keypair */ + CHECK(secp256k1_keypair_create(ctx, &keypair, sk) == 1); + CHECK(secp256k1_keypair_xonly_tweak_add(ctx, &keypair, overflows) == 0); + CHECK(secp256k1_memcmp_var(&keypair, zeros96, sizeof(keypair)) == 0); + + /* A zero tweak is fine */ + CHECK(secp256k1_keypair_create(ctx, &keypair, sk) == 1); + CHECK(secp256k1_keypair_xonly_tweak_add(ctx, &keypair, zeros96) == 1); + + /* Fails if the resulting keypair was (sk=0, pk=infinity) */ + for (i = 0; i < count; i++) { + secp256k1_scalar scalar_tweak; + secp256k1_keypair keypair_tmp; + secp256k1_testrand256(sk); + CHECK(secp256k1_keypair_create(ctx, &keypair, sk) == 1); + memcpy(&keypair_tmp, &keypair, sizeof(keypair)); + /* Because sk may be negated before adding, we need to try with tweak = + * sk as well as tweak = -sk. */ + secp256k1_scalar_set_b32(&scalar_tweak, sk, NULL); + secp256k1_scalar_negate(&scalar_tweak, &scalar_tweak); + secp256k1_scalar_get_b32(tweak, &scalar_tweak); + CHECK((secp256k1_keypair_xonly_tweak_add(ctx, &keypair, sk) == 0) + || (secp256k1_keypair_xonly_tweak_add(ctx, &keypair_tmp, tweak) == 0)); + CHECK(secp256k1_memcmp_var(&keypair, zeros96, sizeof(keypair)) == 0 + || secp256k1_memcmp_var(&keypair_tmp, zeros96, sizeof(keypair_tmp)) == 0); + } + + /* Invalid keypair with a valid tweak */ + memset(&keypair, 0, sizeof(keypair)); + secp256k1_testrand256(tweak); + ecount = 0; + CHECK(secp256k1_keypair_xonly_tweak_add(verify, &keypair, tweak) == 0); + CHECK(ecount == 1); + CHECK(secp256k1_memcmp_var(&keypair, zeros96, sizeof(keypair)) == 0); + /* Only seckey part of keypair invalid */ + CHECK(secp256k1_keypair_create(ctx, &keypair, sk) == 1); + memset(&keypair, 0, 32); + CHECK(secp256k1_keypair_xonly_tweak_add(verify, &keypair, tweak) == 0); + CHECK(ecount == 2); + /* Only pubkey part of keypair invalid */ + CHECK(secp256k1_keypair_create(ctx, &keypair, sk) == 1); + memset(&keypair.data[32], 0, 64); + CHECK(secp256k1_keypair_xonly_tweak_add(verify, &keypair, tweak) == 0); + CHECK(ecount == 3); + + /* Check that the keypair_tweak_add implementation is correct */ + CHECK(secp256k1_keypair_create(ctx, &keypair, sk) == 1); + for (i = 0; i < count; i++) { + secp256k1_xonly_pubkey internal_pk; + secp256k1_xonly_pubkey output_pk; + secp256k1_pubkey output_pk_xy; + secp256k1_pubkey output_pk_expected; + unsigned char pk32[32]; + unsigned char sk32[32]; + int pk_parity; + + secp256k1_testrand256(tweak); + CHECK(secp256k1_keypair_xonly_pub(ctx, &internal_pk, NULL, &keypair) == 1); + CHECK(secp256k1_keypair_xonly_tweak_add(ctx, &keypair, tweak) == 1); + CHECK(secp256k1_keypair_xonly_pub(ctx, &output_pk, &pk_parity, &keypair) == 1); + + /* Check that it passes xonly_pubkey_tweak_add_check */ + CHECK(secp256k1_xonly_pubkey_serialize(ctx, pk32, &output_pk) == 1); + CHECK(secp256k1_xonly_pubkey_tweak_add_check(ctx, pk32, pk_parity, &internal_pk, tweak) == 1); + + /* Check that the resulting pubkey matches xonly_pubkey_tweak_add */ + CHECK(secp256k1_keypair_pub(ctx, &output_pk_xy, &keypair) == 1); + CHECK(secp256k1_xonly_pubkey_tweak_add(ctx, &output_pk_expected, &internal_pk, tweak) == 1); + CHECK(secp256k1_memcmp_var(&output_pk_xy, &output_pk_expected, sizeof(output_pk_xy)) == 0); + + /* Check that the secret key in the keypair is tweaked correctly */ + CHECK(secp256k1_keypair_sec(none, sk32, &keypair) == 1); + CHECK(secp256k1_ec_pubkey_create(ctx, &output_pk_expected, sk32) == 1); + CHECK(secp256k1_memcmp_var(&output_pk_xy, &output_pk_expected, sizeof(output_pk_xy)) == 0); + } + secp256k1_context_destroy(none); + secp256k1_context_destroy(sign); + secp256k1_context_destroy(verify); +} + +void run_extrakeys_tests(void) { + /* xonly key test cases */ + test_xonly_pubkey(); + test_xonly_pubkey_tweak(); + test_xonly_pubkey_tweak_check(); + test_xonly_pubkey_tweak_recursive(); + test_xonly_pubkey_comparison(); + + /* keypair tests */ + test_keypair(); + test_keypair_add(); +} + +#endif diff --git a/src/modules/recovery/Makefile.am.include b/src/modules/recovery/Makefile.am.include index bf23c26e71c5d..e2d3f1248d25c 100644 --- a/src/modules/recovery/Makefile.am.include +++ b/src/modules/recovery/Makefile.am.include @@ -1,6 +1,7 @@ include_HEADERS += include/secp256k1_recovery.h noinst_HEADERS += src/modules/recovery/main_impl.h noinst_HEADERS += src/modules/recovery/tests_impl.h +noinst_HEADERS += src/modules/recovery/tests_exhaustive_impl.h if USE_BENCHMARK noinst_PROGRAMS += bench_recover bench_recover_SOURCES = src/bench_recover.c diff --git a/src/modules/recovery/main_impl.h b/src/modules/recovery/main_impl.h old mode 100755 new mode 100644 index 2f6691c5a1309..9e19f2a2dc9c8 --- a/src/modules/recovery/main_impl.h +++ b/src/modules/recovery/main_impl.h @@ -1,13 +1,13 @@ -/********************************************************************** - * Copyright (c) 2013-2015 Pieter Wuille * - * Distributed under the MIT software license, see the accompanying * - * file COPYING or http://www.opensource.org/licenses/mit-license.php.* - **********************************************************************/ +/*********************************************************************** + * Copyright (c) 2013-2015 Pieter Wuille * + * Distributed under the MIT software license, see the accompanying * + * file COPYING or https://www.opensource.org/licenses/mit-license.php.* + ***********************************************************************/ #ifndef SECP256K1_MODULE_RECOVERY_MAIN_H #define SECP256K1_MODULE_RECOVERY_MAIN_H -#include "include/secp256k1_recovery.h" +#include "../../../include/secp256k1_recovery.h" static void secp256k1_ecdsa_recoverable_signature_load(const secp256k1_context* ctx, secp256k1_scalar* r, secp256k1_scalar* s, int* recid, const secp256k1_ecdsa_recoverable_signature* sig) { (void)ctx; @@ -120,67 +120,34 @@ static int secp256k1_ecdsa_sig_recover(const secp256k1_ecmult_context *ctx, cons return !secp256k1_gej_is_infinity(&qj); } -int secp256k1_ecdsa_sign_recoverable(const secp256k1_context* ctx, secp256k1_ecdsa_recoverable_signature *signature, const unsigned char *msg32, const unsigned char *seckey, secp256k1_nonce_function noncefp, const void* noncedata) { +int secp256k1_ecdsa_sign_recoverable(const secp256k1_context* ctx, secp256k1_ecdsa_recoverable_signature *signature, const unsigned char *msghash32, const unsigned char *seckey, secp256k1_nonce_function noncefp, const void* noncedata) { secp256k1_scalar r, s; - secp256k1_scalar sec, non, msg; - int recid; - int ret = 0; - int overflow = 0; + int ret, recid; VERIFY_CHECK(ctx != NULL); ARG_CHECK(secp256k1_ecmult_gen_context_is_built(&ctx->ecmult_gen_ctx)); - ARG_CHECK(msg32 != NULL); + ARG_CHECK(msghash32 != NULL); ARG_CHECK(signature != NULL); ARG_CHECK(seckey != NULL); - if (noncefp == NULL) { - noncefp = secp256k1_nonce_function_default; - } - secp256k1_scalar_set_b32(&sec, seckey, &overflow); - /* Fail if the secret key is invalid. */ - if (!overflow && !secp256k1_scalar_is_zero(&sec)) { - unsigned char nonce32[32]; - unsigned int count = 0; - secp256k1_scalar_set_b32(&msg, msg32, NULL); - while (1) { - ret = noncefp(nonce32, msg32, seckey, NULL, (void*)noncedata, count); - if (!ret) { - break; - } - secp256k1_scalar_set_b32(&non, nonce32, &overflow); - if (!secp256k1_scalar_is_zero(&non) && !overflow) { - if (secp256k1_ecdsa_sig_sign(&ctx->ecmult_gen_ctx, &r, &s, &sec, &msg, &non, &recid)) { - break; - } - } - count++; - } - memset(nonce32, 0, 32); - secp256k1_scalar_clear(&msg); - secp256k1_scalar_clear(&non); - secp256k1_scalar_clear(&sec); - } - if (ret) { - secp256k1_ecdsa_recoverable_signature_save(signature, &r, &s, recid); - } else { - memset(signature, 0, sizeof(*signature)); - } + ret = secp256k1_ecdsa_sign_inner(ctx, &r, &s, &recid, msghash32, seckey, noncefp, noncedata); + secp256k1_ecdsa_recoverable_signature_save(signature, &r, &s, recid); return ret; } -int secp256k1_ecdsa_recover(const secp256k1_context* ctx, secp256k1_pubkey *pubkey, const secp256k1_ecdsa_recoverable_signature *signature, const unsigned char *msg32) { +int secp256k1_ecdsa_recover(const secp256k1_context* ctx, secp256k1_pubkey *pubkey, const secp256k1_ecdsa_recoverable_signature *signature, const unsigned char *msghash32) { secp256k1_ge q; secp256k1_scalar r, s; secp256k1_scalar m; int recid; VERIFY_CHECK(ctx != NULL); ARG_CHECK(secp256k1_ecmult_context_is_built(&ctx->ecmult_ctx)); - ARG_CHECK(msg32 != NULL); + ARG_CHECK(msghash32 != NULL); ARG_CHECK(signature != NULL); ARG_CHECK(pubkey != NULL); secp256k1_ecdsa_recoverable_signature_load(ctx, &r, &s, &recid, signature); VERIFY_CHECK(recid >= 0 && recid < 4); /* should have been caught in parse_compact */ - secp256k1_scalar_set_b32(&m, msg32, NULL); + secp256k1_scalar_set_b32(&m, msghash32, NULL); if (secp256k1_ecdsa_sig_recover(&ctx->ecmult_ctx, &r, &s, &q, &m, recid)) { secp256k1_pubkey_save(pubkey, &q); return 1; diff --git a/src/modules/recovery/tests_exhaustive_impl.h b/src/modules/recovery/tests_exhaustive_impl.h new file mode 100644 index 0000000000000..590a972ed3f74 --- /dev/null +++ b/src/modules/recovery/tests_exhaustive_impl.h @@ -0,0 +1,149 @@ +/*********************************************************************** + * Copyright (c) 2016 Andrew Poelstra * + * Distributed under the MIT software license, see the accompanying * + * file COPYING or https://www.opensource.org/licenses/mit-license.php.* + ***********************************************************************/ + +#ifndef SECP256K1_MODULE_RECOVERY_EXHAUSTIVE_TESTS_H +#define SECP256K1_MODULE_RECOVERY_EXHAUSTIVE_TESTS_H + +#include "src/modules/recovery/main_impl.h" +#include "../../../include/secp256k1_recovery.h" + +void test_exhaustive_recovery_sign(const secp256k1_context *ctx, const secp256k1_ge *group) { + int i, j, k; + uint64_t iter = 0; + + /* Loop */ + for (i = 1; i < EXHAUSTIVE_TEST_ORDER; i++) { /* message */ + for (j = 1; j < EXHAUSTIVE_TEST_ORDER; j++) { /* key */ + if (skip_section(&iter)) continue; + for (k = 1; k < EXHAUSTIVE_TEST_ORDER; k++) { /* nonce */ + const int starting_k = k; + secp256k1_fe r_dot_y_normalized; + secp256k1_ecdsa_recoverable_signature rsig; + secp256k1_ecdsa_signature sig; + secp256k1_scalar sk, msg, r, s, expected_r; + unsigned char sk32[32], msg32[32]; + int expected_recid; + int recid; + int overflow; + secp256k1_scalar_set_int(&msg, i); + secp256k1_scalar_set_int(&sk, j); + secp256k1_scalar_get_b32(sk32, &sk); + secp256k1_scalar_get_b32(msg32, &msg); + + secp256k1_ecdsa_sign_recoverable(ctx, &rsig, msg32, sk32, secp256k1_nonce_function_smallint, &k); + + /* Check directly */ + secp256k1_ecdsa_recoverable_signature_load(ctx, &r, &s, &recid, &rsig); + r_from_k(&expected_r, group, k, &overflow); + CHECK(r == expected_r); + CHECK((k * s) % EXHAUSTIVE_TEST_ORDER == (i + r * j) % EXHAUSTIVE_TEST_ORDER || + (k * (EXHAUSTIVE_TEST_ORDER - s)) % EXHAUSTIVE_TEST_ORDER == (i + r * j) % EXHAUSTIVE_TEST_ORDER); + /* The recid's second bit is for conveying overflow (R.x value >= group order). + * In the actual secp256k1 this is an astronomically unlikely event, but in the + * small group used here, it will be the case for all points except the ones where + * R.x=1 (which the group is specifically selected to have). + * Note that this isn't actually useful; full recovery would need to convey + * floor(R.x / group_order), but only one bit is used as that is sufficient + * in the real group. */ + expected_recid = overflow ? 2 : 0; + r_dot_y_normalized = group[k].y; + secp256k1_fe_normalize(&r_dot_y_normalized); + /* Also the recovery id is flipped depending if we hit the low-s branch */ + if ((k * s) % EXHAUSTIVE_TEST_ORDER == (i + r * j) % EXHAUSTIVE_TEST_ORDER) { + expected_recid |= secp256k1_fe_is_odd(&r_dot_y_normalized); + } else { + expected_recid |= !secp256k1_fe_is_odd(&r_dot_y_normalized); + } + CHECK(recid == expected_recid); + + /* Convert to a standard sig then check */ + secp256k1_ecdsa_recoverable_signature_convert(ctx, &sig, &rsig); + secp256k1_ecdsa_signature_load(ctx, &r, &s, &sig); + /* Note that we compute expected_r *after* signing -- this is important + * because our nonce-computing function function might change k during + * signing. */ + r_from_k(&expected_r, group, k, NULL); + CHECK(r == expected_r); + CHECK((k * s) % EXHAUSTIVE_TEST_ORDER == (i + r * j) % EXHAUSTIVE_TEST_ORDER || + (k * (EXHAUSTIVE_TEST_ORDER - s)) % EXHAUSTIVE_TEST_ORDER == (i + r * j) % EXHAUSTIVE_TEST_ORDER); + + /* Overflow means we've tried every possible nonce */ + if (k < starting_k) { + break; + } + } + } + } +} + +void test_exhaustive_recovery_verify(const secp256k1_context *ctx, const secp256k1_ge *group) { + /* This is essentially a copy of test_exhaustive_verify, with recovery added */ + int s, r, msg, key; + uint64_t iter = 0; + for (s = 1; s < EXHAUSTIVE_TEST_ORDER; s++) { + for (r = 1; r < EXHAUSTIVE_TEST_ORDER; r++) { + for (msg = 1; msg < EXHAUSTIVE_TEST_ORDER; msg++) { + for (key = 1; key < EXHAUSTIVE_TEST_ORDER; key++) { + secp256k1_ge nonconst_ge; + secp256k1_ecdsa_recoverable_signature rsig; + secp256k1_ecdsa_signature sig; + secp256k1_pubkey pk; + secp256k1_scalar sk_s, msg_s, r_s, s_s; + secp256k1_scalar s_times_k_s, msg_plus_r_times_sk_s; + int recid = 0; + int k, should_verify; + unsigned char msg32[32]; + + if (skip_section(&iter)) continue; + + secp256k1_scalar_set_int(&s_s, s); + secp256k1_scalar_set_int(&r_s, r); + secp256k1_scalar_set_int(&msg_s, msg); + secp256k1_scalar_set_int(&sk_s, key); + secp256k1_scalar_get_b32(msg32, &msg_s); + + /* Verify by hand */ + /* Run through every k value that gives us this r and check that *one* works. + * Note there could be none, there could be multiple, ECDSA is weird. */ + should_verify = 0; + for (k = 0; k < EXHAUSTIVE_TEST_ORDER; k++) { + secp256k1_scalar check_x_s; + r_from_k(&check_x_s, group, k, NULL); + if (r_s == check_x_s) { + secp256k1_scalar_set_int(&s_times_k_s, k); + secp256k1_scalar_mul(&s_times_k_s, &s_times_k_s, &s_s); + secp256k1_scalar_mul(&msg_plus_r_times_sk_s, &r_s, &sk_s); + secp256k1_scalar_add(&msg_plus_r_times_sk_s, &msg_plus_r_times_sk_s, &msg_s); + should_verify |= secp256k1_scalar_eq(&s_times_k_s, &msg_plus_r_times_sk_s); + } + } + /* nb we have a "high s" rule */ + should_verify &= !secp256k1_scalar_is_high(&s_s); + + /* We would like to try recovering the pubkey and checking that it matches, + * but pubkey recovery is impossible in the exhaustive tests (the reason + * being that there are 12 nonzero r values, 12 nonzero points, and no + * overlap between the sets, so there are no valid signatures). */ + + /* Verify by converting to a standard signature and calling verify */ + secp256k1_ecdsa_recoverable_signature_save(&rsig, &r_s, &s_s, recid); + secp256k1_ecdsa_recoverable_signature_convert(ctx, &sig, &rsig); + memcpy(&nonconst_ge, &group[sk_s], sizeof(nonconst_ge)); + secp256k1_pubkey_save(&pk, &nonconst_ge); + CHECK(should_verify == + secp256k1_ecdsa_verify(ctx, &sig, msg32, &pk)); + } + } + } + } +} + +static void test_exhaustive_recovery(const secp256k1_context *ctx, const secp256k1_ge *group) { + test_exhaustive_recovery_sign(ctx, group); + test_exhaustive_recovery_verify(ctx, group); +} + +#endif /* SECP256K1_MODULE_RECOVERY_EXHAUSTIVE_TESTS_H */ diff --git a/src/modules/recovery/tests_impl.h b/src/modules/recovery/tests_impl.h index 5c9bbe86101c9..40dba87ce39a7 100644 --- a/src/modules/recovery/tests_impl.h +++ b/src/modules/recovery/tests_impl.h @@ -1,8 +1,8 @@ -/********************************************************************** - * Copyright (c) 2013-2015 Pieter Wuille * - * Distributed under the MIT software license, see the accompanying * - * file COPYING or http://www.opensource.org/licenses/mit-license.php.* - **********************************************************************/ +/*********************************************************************** + * Copyright (c) 2013-2015 Pieter Wuille * + * Distributed under the MIT software license, see the accompanying * + * file COPYING or https://www.opensource.org/licenses/mit-license.php.* + ***********************************************************************/ #ifndef SECP256K1_MODULE_RECOVERY_TESTS_H #define SECP256K1_MODULE_RECOVERY_TESTS_H @@ -25,7 +25,7 @@ static int recovery_test_nonce_function(unsigned char *nonce32, const unsigned c } /* On the next run, return a valid nonce, but flip a coin as to whether or not to fail signing. */ memset(nonce32, 1, 32); - return secp256k1_rand_bits(1); + return secp256k1_testrand_bits(1); } void test_ecdsa_recovery_api(void) { @@ -184,7 +184,7 @@ void test_ecdsa_recovery_end_to_end(void) { CHECK(secp256k1_ecdsa_sign_recoverable(ctx, &rsignature[3], message, privkey, NULL, extra) == 1); CHECK(secp256k1_ecdsa_recoverable_signature_serialize_compact(ctx, sig, &recid, &rsignature[4]) == 1); CHECK(secp256k1_ecdsa_recoverable_signature_convert(ctx, &signature[4], &rsignature[4]) == 1); - CHECK(memcmp(&signature[4], &signature[0], 64) == 0); + CHECK(secp256k1_memcmp_var(&signature[4], &signature[0], 64) == 0); CHECK(secp256k1_ecdsa_verify(ctx, &signature[4], message, &pubkey) == 1); memset(&rsignature[4], 0, sizeof(rsignature[4])); CHECK(secp256k1_ecdsa_recoverable_signature_parse_compact(ctx, &rsignature[4], sig, recid) == 1); @@ -193,16 +193,16 @@ void test_ecdsa_recovery_end_to_end(void) { /* Parse compact (with recovery id) and recover. */ CHECK(secp256k1_ecdsa_recoverable_signature_parse_compact(ctx, &rsignature[4], sig, recid) == 1); CHECK(secp256k1_ecdsa_recover(ctx, &recpubkey, &rsignature[4], message) == 1); - CHECK(memcmp(&pubkey, &recpubkey, sizeof(pubkey)) == 0); + CHECK(secp256k1_memcmp_var(&pubkey, &recpubkey, sizeof(pubkey)) == 0); /* Serialize/destroy/parse signature and verify again. */ CHECK(secp256k1_ecdsa_recoverable_signature_serialize_compact(ctx, sig, &recid, &rsignature[4]) == 1); - sig[secp256k1_rand_bits(6)] += 1 + secp256k1_rand_int(255); + sig[secp256k1_testrand_bits(6)] += 1 + secp256k1_testrand_int(255); CHECK(secp256k1_ecdsa_recoverable_signature_parse_compact(ctx, &rsignature[4], sig, recid) == 1); CHECK(secp256k1_ecdsa_recoverable_signature_convert(ctx, &signature[4], &rsignature[4]) == 1); CHECK(secp256k1_ecdsa_verify(ctx, &signature[4], message, &pubkey) == 0); /* Recover again */ CHECK(secp256k1_ecdsa_recover(ctx, &recpubkey, &rsignature[4], message) == 0 || - memcmp(&pubkey, &recpubkey, sizeof(pubkey)) != 0); + secp256k1_memcmp_var(&pubkey, &recpubkey, sizeof(pubkey)) != 0); } /* Tests several edge cases. */ @@ -215,7 +215,7 @@ void test_ecdsa_recovery_edge_cases(void) { }; const unsigned char sig64[64] = { /* Generated by signing the above message with nonce 'This is the nonce we will use...' - * and secret key 0 (which is not valid), resulting in recid 0. */ + * and secret key 0 (which is not valid), resulting in recid 1. */ 0x67, 0xCB, 0x28, 0x5F, 0x9C, 0xD1, 0x94, 0xE8, 0x40, 0xD6, 0x29, 0x39, 0x7A, 0xF5, 0x56, 0x96, 0x62, 0xFD, 0xE4, 0x46, 0x49, 0x99, 0x59, 0x63, diff --git a/src/modules/schnorrsig/Makefile.am.include b/src/modules/schnorrsig/Makefile.am.include new file mode 100644 index 0000000000000..568bcc35232d5 --- /dev/null +++ b/src/modules/schnorrsig/Makefile.am.include @@ -0,0 +1,9 @@ +include_HEADERS += include/secp256k1_schnorrsig.h +noinst_HEADERS += src/modules/schnorrsig/main_impl.h +noinst_HEADERS += src/modules/schnorrsig/tests_impl.h +noinst_HEADERS += src/modules/schnorrsig/tests_exhaustive_impl.h +if USE_BENCHMARK +noinst_PROGRAMS += bench_schnorrsig +bench_schnorrsig_SOURCES = src/bench_schnorrsig.c +bench_schnorrsig_LDADD = libsecp256k1.la $(SECP_LIBS) $(COMMON_LIB) +endif diff --git a/src/modules/schnorrsig/main_impl.h b/src/modules/schnorrsig/main_impl.h new file mode 100644 index 0000000000000..e6de73b8a59a3 --- /dev/null +++ b/src/modules/schnorrsig/main_impl.h @@ -0,0 +1,254 @@ +/*********************************************************************** + * Copyright (c) 2018-2020 Andrew Poelstra, Jonas Nick * + * Distributed under the MIT software license, see the accompanying * + * file COPYING or https://www.opensource.org/licenses/mit-license.php.* + ***********************************************************************/ + +#ifndef SECP256K1_MODULE_SCHNORRSIG_MAIN_H +#define SECP256K1_MODULE_SCHNORRSIG_MAIN_H + +#include "../../../include/secp256k1.h" +#include "../../../include/secp256k1_schnorrsig.h" +#include "../../hash.h" + +/* Initializes SHA256 with fixed midstate. This midstate was computed by applying + * SHA256 to SHA256("BIP0340/nonce")||SHA256("BIP0340/nonce"). */ +static void secp256k1_nonce_function_bip340_sha256_tagged(secp256k1_sha256 *sha) { + secp256k1_sha256_initialize(sha); + sha->s[0] = 0x46615b35ul; + sha->s[1] = 0xf4bfbff7ul; + sha->s[2] = 0x9f8dc671ul; + sha->s[3] = 0x83627ab3ul; + sha->s[4] = 0x60217180ul; + sha->s[5] = 0x57358661ul; + sha->s[6] = 0x21a29e54ul; + sha->s[7] = 0x68b07b4cul; + + sha->bytes = 64; +} + +/* Initializes SHA256 with fixed midstate. This midstate was computed by applying + * SHA256 to SHA256("BIP0340/aux")||SHA256("BIP0340/aux"). */ +static void secp256k1_nonce_function_bip340_sha256_tagged_aux(secp256k1_sha256 *sha) { + secp256k1_sha256_initialize(sha); + sha->s[0] = 0x24dd3219ul; + sha->s[1] = 0x4eba7e70ul; + sha->s[2] = 0xca0fabb9ul; + sha->s[3] = 0x0fa3166dul; + sha->s[4] = 0x3afbe4b1ul; + sha->s[5] = 0x4c44df97ul; + sha->s[6] = 0x4aac2739ul; + sha->s[7] = 0x249e850aul; + + sha->bytes = 64; +} + +/* algo argument for nonce_function_bip340 to derive the nonce exactly as stated in BIP-340 + * by using the correct tagged hash function. */ +static const unsigned char bip340_algo[13] = "BIP0340/nonce"; + +static int nonce_function_bip340(unsigned char *nonce32, const unsigned char *msg, size_t msglen, const unsigned char *key32, const unsigned char *xonly_pk32, const unsigned char *algo, size_t algolen, void *data) { + secp256k1_sha256 sha; + unsigned char masked_key[32]; + int i; + + if (algo == NULL) { + return 0; + } + + if (data != NULL) { + secp256k1_nonce_function_bip340_sha256_tagged_aux(&sha); + secp256k1_sha256_write(&sha, data, 32); + secp256k1_sha256_finalize(&sha, masked_key); + for (i = 0; i < 32; i++) { + masked_key[i] ^= key32[i]; + } + } + + /* Tag the hash with algo which is important to avoid nonce reuse across + * algorithms. If this nonce function is used in BIP-340 signing as defined + * in the spec, an optimized tagging implementation is used. */ + if (algolen == sizeof(bip340_algo) + && secp256k1_memcmp_var(algo, bip340_algo, algolen) == 0) { + secp256k1_nonce_function_bip340_sha256_tagged(&sha); + } else { + secp256k1_sha256_initialize_tagged(&sha, algo, algolen); + } + + /* Hash (masked-)key||pk||msg using the tagged hash as per the spec */ + if (data != NULL) { + secp256k1_sha256_write(&sha, masked_key, 32); + } else { + secp256k1_sha256_write(&sha, key32, 32); + } + secp256k1_sha256_write(&sha, xonly_pk32, 32); + secp256k1_sha256_write(&sha, msg, msglen); + secp256k1_sha256_finalize(&sha, nonce32); + return 1; +} + +const secp256k1_nonce_function_hardened secp256k1_nonce_function_bip340 = nonce_function_bip340; + +/* Initializes SHA256 with fixed midstate. This midstate was computed by applying + * SHA256 to SHA256("BIP0340/challenge")||SHA256("BIP0340/challenge"). */ +static void secp256k1_schnorrsig_sha256_tagged(secp256k1_sha256 *sha) { + secp256k1_sha256_initialize(sha); + sha->s[0] = 0x9cecba11ul; + sha->s[1] = 0x23925381ul; + sha->s[2] = 0x11679112ul; + sha->s[3] = 0xd1627e0ful; + sha->s[4] = 0x97c87550ul; + sha->s[5] = 0x003cc765ul; + sha->s[6] = 0x90f61164ul; + sha->s[7] = 0x33e9b66aul; + sha->bytes = 64; +} + +static void secp256k1_schnorrsig_challenge(secp256k1_scalar* e, const unsigned char *r32, const unsigned char *msg, size_t msglen, const unsigned char *pubkey32) +{ + unsigned char buf[32]; + secp256k1_sha256 sha; + + /* tagged hash(r.x, pk.x, msg) */ + secp256k1_schnorrsig_sha256_tagged(&sha); + secp256k1_sha256_write(&sha, r32, 32); + secp256k1_sha256_write(&sha, pubkey32, 32); + secp256k1_sha256_write(&sha, msg, msglen); + secp256k1_sha256_finalize(&sha, buf); + /* Set scalar e to the challenge hash modulo the curve order as per + * BIP340. */ + secp256k1_scalar_set_b32(e, buf, NULL); +} + +int secp256k1_schnorrsig_sign_internal(const secp256k1_context* ctx, unsigned char *sig64, const unsigned char *msg, size_t msglen, const secp256k1_keypair *keypair, secp256k1_nonce_function_hardened noncefp, void *ndata) { + secp256k1_scalar sk; + secp256k1_scalar e; + secp256k1_scalar k; + secp256k1_gej rj; + secp256k1_ge pk; + secp256k1_ge r; + unsigned char buf[32] = { 0 }; + unsigned char pk_buf[32]; + unsigned char seckey[32]; + int ret = 1; + + VERIFY_CHECK(ctx != NULL); + ARG_CHECK(secp256k1_ecmult_gen_context_is_built(&ctx->ecmult_gen_ctx)); + ARG_CHECK(sig64 != NULL); + ARG_CHECK(msg != NULL || msglen == 0); + ARG_CHECK(keypair != NULL); + + if (noncefp == NULL) { + noncefp = secp256k1_nonce_function_bip340; + } + + ret &= secp256k1_keypair_load(ctx, &sk, &pk, keypair); + /* Because we are signing for a x-only pubkey, the secret key is negated + * before signing if the point corresponding to the secret key does not + * have an even Y. */ + if (secp256k1_fe_is_odd(&pk.y)) { + secp256k1_scalar_negate(&sk, &sk); + } + + secp256k1_scalar_get_b32(seckey, &sk); + secp256k1_fe_get_b32(pk_buf, &pk.x); + ret &= !!noncefp(buf, msg, msglen, seckey, pk_buf, bip340_algo, sizeof(bip340_algo), ndata); + secp256k1_scalar_set_b32(&k, buf, NULL); + ret &= !secp256k1_scalar_is_zero(&k); + secp256k1_scalar_cmov(&k, &secp256k1_scalar_one, !ret); + + secp256k1_ecmult_gen(&ctx->ecmult_gen_ctx, &rj, &k); + secp256k1_ge_set_gej(&r, &rj); + + /* We declassify r to allow using it as a branch point. This is fine + * because r is not a secret. */ + secp256k1_declassify(ctx, &r, sizeof(r)); + secp256k1_fe_normalize_var(&r.y); + if (secp256k1_fe_is_odd(&r.y)) { + secp256k1_scalar_negate(&k, &k); + } + secp256k1_fe_normalize_var(&r.x); + secp256k1_fe_get_b32(&sig64[0], &r.x); + + secp256k1_schnorrsig_challenge(&e, &sig64[0], msg, msglen, pk_buf); + secp256k1_scalar_mul(&e, &e, &sk); + secp256k1_scalar_add(&e, &e, &k); + secp256k1_scalar_get_b32(&sig64[32], &e); + + secp256k1_memczero(sig64, 64, !ret); + secp256k1_scalar_clear(&k); + secp256k1_scalar_clear(&sk); + memset(seckey, 0, sizeof(seckey)); + + return ret; +} + +int secp256k1_schnorrsig_sign(const secp256k1_context* ctx, unsigned char *sig64, const unsigned char *msg32, const secp256k1_keypair *keypair, unsigned char *aux_rand32) { + return secp256k1_schnorrsig_sign_internal(ctx, sig64, msg32, 32, keypair, secp256k1_nonce_function_bip340, aux_rand32); +} + +int secp256k1_schnorrsig_sign_custom(const secp256k1_context* ctx, unsigned char *sig64, const unsigned char *msg, size_t msglen, const secp256k1_keypair *keypair, secp256k1_schnorrsig_extraparams *extraparams) { + secp256k1_nonce_function_hardened noncefp = NULL; + void *ndata = NULL; + VERIFY_CHECK(ctx != NULL); + + if (extraparams != NULL) { + ARG_CHECK(secp256k1_memcmp_var(extraparams->magic, + SECP256K1_SCHNORRSIG_EXTRAPARAMS_MAGIC, + sizeof(extraparams->magic)) == 0); + noncefp = extraparams->noncefp; + ndata = extraparams->ndata; + } + return secp256k1_schnorrsig_sign_internal(ctx, sig64, msg, msglen, keypair, noncefp, ndata); +} + +int secp256k1_schnorrsig_verify(const secp256k1_context* ctx, const unsigned char *sig64, const unsigned char *msg, size_t msglen, const secp256k1_xonly_pubkey *pubkey) { + secp256k1_scalar s; + secp256k1_scalar e; + secp256k1_gej rj; + secp256k1_ge pk; + secp256k1_gej pkj; + secp256k1_fe rx; + secp256k1_ge r; + unsigned char buf[32]; + int overflow; + + VERIFY_CHECK(ctx != NULL); + ARG_CHECK(secp256k1_ecmult_context_is_built(&ctx->ecmult_ctx)); + ARG_CHECK(sig64 != NULL); + ARG_CHECK(msg != NULL || msglen == 0); + ARG_CHECK(pubkey != NULL); + + if (!secp256k1_fe_set_b32(&rx, &sig64[0])) { + return 0; + } + + secp256k1_scalar_set_b32(&s, &sig64[32], &overflow); + if (overflow) { + return 0; + } + + if (!secp256k1_xonly_pubkey_load(ctx, &pk, pubkey)) { + return 0; + } + + /* Compute e. */ + secp256k1_fe_get_b32(buf, &pk.x); + secp256k1_schnorrsig_challenge(&e, &sig64[0], msg, msglen, buf); + + /* Compute rj = s*G + (-e)*pkj */ + secp256k1_scalar_negate(&e, &e); + secp256k1_gej_set_ge(&pkj, &pk); + secp256k1_ecmult(&ctx->ecmult_ctx, &rj, &pkj, &e, &s); + + secp256k1_ge_set_gej_var(&r, &rj); + if (secp256k1_ge_is_infinity(&r)) { + return 0; + } + + secp256k1_fe_normalize_var(&r.y); + return !secp256k1_fe_is_odd(&r.y) && + secp256k1_fe_equal_var(&rx, &r.x); +} + +#endif diff --git a/src/modules/schnorrsig/tests_exhaustive_impl.h b/src/modules/schnorrsig/tests_exhaustive_impl.h new file mode 100644 index 0000000000000..d8df9dd2df742 --- /dev/null +++ b/src/modules/schnorrsig/tests_exhaustive_impl.h @@ -0,0 +1,214 @@ +/*********************************************************************** + * Copyright (c) 2020 Pieter Wuille * + * Distributed under the MIT software license, see the accompanying * + * file COPYING or https://www.opensource.org/licenses/mit-license.php.* + ***********************************************************************/ + +#ifndef SECP256K1_MODULE_SCHNORRSIG_TESTS_EXHAUSTIVE_H +#define SECP256K1_MODULE_SCHNORRSIG_TESTS_EXHAUSTIVE_H + +#include "../../../include/secp256k1_schnorrsig.h" +#include "src/modules/schnorrsig/main_impl.h" + +static const unsigned char invalid_pubkey_bytes[][32] = { + /* 0 */ + { + 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, + 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 + }, + /* 2 */ + { + 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, + 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2 + }, + /* order */ + { + 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, + 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, + ((EXHAUSTIVE_TEST_ORDER + 0UL) >> 24) & 0xFF, + ((EXHAUSTIVE_TEST_ORDER + 0UL) >> 16) & 0xFF, + ((EXHAUSTIVE_TEST_ORDER + 0UL) >> 8) & 0xFF, + (EXHAUSTIVE_TEST_ORDER + 0UL) & 0xFF + }, + /* order + 1 */ + { + 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, + 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, + ((EXHAUSTIVE_TEST_ORDER + 1UL) >> 24) & 0xFF, + ((EXHAUSTIVE_TEST_ORDER + 1UL) >> 16) & 0xFF, + ((EXHAUSTIVE_TEST_ORDER + 1UL) >> 8) & 0xFF, + (EXHAUSTIVE_TEST_ORDER + 1UL) & 0xFF + }, + /* field size */ + { + 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, + 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFE, 0xFF, 0xFF, 0xFC, 0x2F + }, + /* field size + 1 (note that 1 is legal) */ + { + 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, + 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFE, 0xFF, 0xFF, 0xFC, 0x30 + }, + /* 2^256 - 1 */ + { + 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, + 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF + } +}; + +#define NUM_INVALID_KEYS (sizeof(invalid_pubkey_bytes) / sizeof(invalid_pubkey_bytes[0])) + +static int secp256k1_hardened_nonce_function_smallint(unsigned char *nonce32, const unsigned char *msg, + size_t msglen, + const unsigned char *key32, const unsigned char *xonly_pk32, + const unsigned char *algo, size_t algolen, + void* data) { + secp256k1_scalar s; + int *idata = data; + (void)msg; + (void)msglen; + (void)key32; + (void)xonly_pk32; + (void)algo; + (void)algolen; + secp256k1_scalar_set_int(&s, *idata); + secp256k1_scalar_get_b32(nonce32, &s); + return 1; +} + +static void test_exhaustive_schnorrsig_verify(const secp256k1_context *ctx, const secp256k1_xonly_pubkey* pubkeys, unsigned char (*xonly_pubkey_bytes)[32], const int* parities) { + int d; + uint64_t iter = 0; + /* Iterate over the possible public keys to verify against (through their corresponding DL d). */ + for (d = 1; d <= EXHAUSTIVE_TEST_ORDER / 2; ++d) { + int actual_d; + unsigned k; + unsigned char pk32[32]; + memcpy(pk32, xonly_pubkey_bytes[d - 1], 32); + actual_d = parities[d - 1] ? EXHAUSTIVE_TEST_ORDER - d : d; + /* Iterate over the possible valid first 32 bytes in the signature, through their corresponding DL k. + Values above EXHAUSTIVE_TEST_ORDER/2 refer to the entries in invalid_pubkey_bytes. */ + for (k = 1; k <= EXHAUSTIVE_TEST_ORDER / 2 + NUM_INVALID_KEYS; ++k) { + unsigned char sig64[64]; + int actual_k = -1; + int e_done[EXHAUSTIVE_TEST_ORDER] = {0}; + int e_count_done = 0; + if (skip_section(&iter)) continue; + if (k <= EXHAUSTIVE_TEST_ORDER / 2) { + memcpy(sig64, xonly_pubkey_bytes[k - 1], 32); + actual_k = parities[k - 1] ? EXHAUSTIVE_TEST_ORDER - k : k; + } else { + memcpy(sig64, invalid_pubkey_bytes[k - 1 - EXHAUSTIVE_TEST_ORDER / 2], 32); + } + /* Randomly generate messages until all challenges have been hit. */ + while (e_count_done < EXHAUSTIVE_TEST_ORDER) { + secp256k1_scalar e; + unsigned char msg32[32]; + secp256k1_testrand256(msg32); + secp256k1_schnorrsig_challenge(&e, sig64, msg32, sizeof(msg32), pk32); + /* Only do work if we hit a challenge we haven't tried before. */ + if (!e_done[e]) { + /* Iterate over the possible valid last 32 bytes in the signature. + 0..order=that s value; order+1=random bytes */ + int count_valid = 0, s; + for (s = 0; s <= EXHAUSTIVE_TEST_ORDER + 1; ++s) { + int expect_valid, valid; + if (s <= EXHAUSTIVE_TEST_ORDER) { + secp256k1_scalar s_s; + secp256k1_scalar_set_int(&s_s, s); + secp256k1_scalar_get_b32(sig64 + 32, &s_s); + expect_valid = actual_k != -1 && s != EXHAUSTIVE_TEST_ORDER && + (s_s == (actual_k + actual_d * e) % EXHAUSTIVE_TEST_ORDER); + } else { + secp256k1_testrand256(sig64 + 32); + expect_valid = 0; + } + valid = secp256k1_schnorrsig_verify(ctx, sig64, msg32, sizeof(msg32), &pubkeys[d - 1]); + CHECK(valid == expect_valid); + count_valid += valid; + } + /* Exactly one s value must verify, unless R is illegal. */ + CHECK(count_valid == (actual_k != -1)); + /* Don't retry other messages that result in the same challenge. */ + e_done[e] = 1; + ++e_count_done; + } + } + } + } +} + +static void test_exhaustive_schnorrsig_sign(const secp256k1_context *ctx, unsigned char (*xonly_pubkey_bytes)[32], const secp256k1_keypair* keypairs, const int* parities) { + int d, k; + uint64_t iter = 0; + secp256k1_schnorrsig_extraparams extraparams = SECP256K1_SCHNORRSIG_EXTRAPARAMS_INIT; + + /* Loop over keys. */ + for (d = 1; d < EXHAUSTIVE_TEST_ORDER; ++d) { + int actual_d = d; + if (parities[d - 1]) actual_d = EXHAUSTIVE_TEST_ORDER - d; + /* Loop over nonces. */ + for (k = 1; k < EXHAUSTIVE_TEST_ORDER; ++k) { + int e_done[EXHAUSTIVE_TEST_ORDER] = {0}; + int e_count_done = 0; + unsigned char msg32[32]; + unsigned char sig64[64]; + int actual_k = k; + if (skip_section(&iter)) continue; + extraparams.noncefp = secp256k1_hardened_nonce_function_smallint; + extraparams.ndata = &k; + if (parities[k - 1]) actual_k = EXHAUSTIVE_TEST_ORDER - k; + /* Generate random messages until all challenges have been tried. */ + while (e_count_done < EXHAUSTIVE_TEST_ORDER) { + secp256k1_scalar e; + secp256k1_testrand256(msg32); + secp256k1_schnorrsig_challenge(&e, xonly_pubkey_bytes[k - 1], msg32, sizeof(msg32), xonly_pubkey_bytes[d - 1]); + /* Only do work if we hit a challenge we haven't tried before. */ + if (!e_done[e]) { + secp256k1_scalar expected_s = (actual_k + e * actual_d) % EXHAUSTIVE_TEST_ORDER; + unsigned char expected_s_bytes[32]; + secp256k1_scalar_get_b32(expected_s_bytes, &expected_s); + /* Invoke the real function to construct a signature. */ + CHECK(secp256k1_schnorrsig_sign_custom(ctx, sig64, msg32, sizeof(msg32), &keypairs[d - 1], &extraparams)); + /* The first 32 bytes must match the xonly pubkey for the specified k. */ + CHECK(secp256k1_memcmp_var(sig64, xonly_pubkey_bytes[k - 1], 32) == 0); + /* The last 32 bytes must match the expected s value. */ + CHECK(secp256k1_memcmp_var(sig64 + 32, expected_s_bytes, 32) == 0); + /* Don't retry other messages that result in the same challenge. */ + e_done[e] = 1; + ++e_count_done; + } + } + } + } +} + +static void test_exhaustive_schnorrsig(const secp256k1_context *ctx) { + secp256k1_keypair keypair[EXHAUSTIVE_TEST_ORDER - 1]; + secp256k1_xonly_pubkey xonly_pubkey[EXHAUSTIVE_TEST_ORDER - 1]; + int parity[EXHAUSTIVE_TEST_ORDER - 1]; + unsigned char xonly_pubkey_bytes[EXHAUSTIVE_TEST_ORDER - 1][32]; + unsigned i; + + /* Verify that all invalid_pubkey_bytes are actually invalid. */ + for (i = 0; i < NUM_INVALID_KEYS; ++i) { + secp256k1_xonly_pubkey pk; + CHECK(!secp256k1_xonly_pubkey_parse(ctx, &pk, invalid_pubkey_bytes[i])); + } + + /* Construct keypairs and xonly-pubkeys for the entire group. */ + for (i = 1; i < EXHAUSTIVE_TEST_ORDER; ++i) { + secp256k1_scalar scalar_i; + unsigned char buf[32]; + secp256k1_scalar_set_int(&scalar_i, i); + secp256k1_scalar_get_b32(buf, &scalar_i); + CHECK(secp256k1_keypair_create(ctx, &keypair[i - 1], buf)); + CHECK(secp256k1_keypair_xonly_pub(ctx, &xonly_pubkey[i - 1], &parity[i - 1], &keypair[i - 1])); + CHECK(secp256k1_xonly_pubkey_serialize(ctx, xonly_pubkey_bytes[i - 1], &xonly_pubkey[i - 1])); + } + + test_exhaustive_schnorrsig_sign(ctx, xonly_pubkey_bytes, keypair, parity); + test_exhaustive_schnorrsig_verify(ctx, xonly_pubkey, xonly_pubkey_bytes, parity); +} + +#endif diff --git a/src/modules/schnorrsig/tests_impl.h b/src/modules/schnorrsig/tests_impl.h new file mode 100644 index 0000000000000..0405d46f4333c --- /dev/null +++ b/src/modules/schnorrsig/tests_impl.h @@ -0,0 +1,891 @@ +/*********************************************************************** + * Copyright (c) 2018-2020 Andrew Poelstra, Jonas Nick * + * Distributed under the MIT software license, see the accompanying * + * file COPYING or https://www.opensource.org/licenses/mit-license.php.* + ***********************************************************************/ + +#ifndef SECP256K1_MODULE_SCHNORRSIG_TESTS_H +#define SECP256K1_MODULE_SCHNORRSIG_TESTS_H + +#include "../../../include/secp256k1_schnorrsig.h" + +/* Checks that a bit flip in the n_flip-th argument (that has n_bytes many + * bytes) changes the hash function + */ +void nonce_function_bip340_bitflip(unsigned char **args, size_t n_flip, size_t n_bytes, size_t msglen, size_t algolen) { + unsigned char nonces[2][32]; + CHECK(nonce_function_bip340(nonces[0], args[0], msglen, args[1], args[2], args[3], algolen, args[4]) == 1); + secp256k1_testrand_flip(args[n_flip], n_bytes); + CHECK(nonce_function_bip340(nonces[1], args[0], msglen, args[1], args[2], args[3], algolen, args[4]) == 1); + CHECK(secp256k1_memcmp_var(nonces[0], nonces[1], 32) != 0); +} + +/* Tests for the equality of two sha256 structs. This function only produces a + * correct result if an integer multiple of 64 many bytes have been written + * into the hash functions. */ +void test_sha256_eq(const secp256k1_sha256 *sha1, const secp256k1_sha256 *sha2) { + /* Is buffer fully consumed? */ + CHECK((sha1->bytes & 0x3F) == 0); + + CHECK(sha1->bytes == sha2->bytes); + CHECK(secp256k1_memcmp_var(sha1->s, sha2->s, sizeof(sha1->s)) == 0); +} + +void run_nonce_function_bip340_tests(void) { + unsigned char tag[13] = "BIP0340/nonce"; + unsigned char aux_tag[11] = "BIP0340/aux"; + unsigned char algo[13] = "BIP0340/nonce"; + size_t algolen = sizeof(algo); + secp256k1_sha256 sha; + secp256k1_sha256 sha_optimized; + unsigned char nonce[32]; + unsigned char msg[32]; + size_t msglen = sizeof(msg); + unsigned char key[32]; + unsigned char pk[32]; + unsigned char aux_rand[32]; + unsigned char *args[5]; + int i; + + /* Check that hash initialized by + * secp256k1_nonce_function_bip340_sha256_tagged has the expected + * state. */ + secp256k1_sha256_initialize_tagged(&sha, tag, sizeof(tag)); + secp256k1_nonce_function_bip340_sha256_tagged(&sha_optimized); + test_sha256_eq(&sha, &sha_optimized); + + /* Check that hash initialized by + * secp256k1_nonce_function_bip340_sha256_tagged_aux has the expected + * state. */ + secp256k1_sha256_initialize_tagged(&sha, aux_tag, sizeof(aux_tag)); + secp256k1_nonce_function_bip340_sha256_tagged_aux(&sha_optimized); + test_sha256_eq(&sha, &sha_optimized); + + secp256k1_testrand256(msg); + secp256k1_testrand256(key); + secp256k1_testrand256(pk); + secp256k1_testrand256(aux_rand); + + /* Check that a bitflip in an argument results in different nonces. */ + args[0] = msg; + args[1] = key; + args[2] = pk; + args[3] = algo; + args[4] = aux_rand; + for (i = 0; i < count; i++) { + nonce_function_bip340_bitflip(args, 0, 32, msglen, algolen); + nonce_function_bip340_bitflip(args, 1, 32, msglen, algolen); + nonce_function_bip340_bitflip(args, 2, 32, msglen, algolen); + /* Flip algo special case "BIP0340/nonce" */ + nonce_function_bip340_bitflip(args, 3, algolen, msglen, algolen); + /* Flip algo again */ + nonce_function_bip340_bitflip(args, 3, algolen, msglen, algolen); + nonce_function_bip340_bitflip(args, 4, 32, msglen, algolen); + } + + /* NULL algo is disallowed */ + CHECK(nonce_function_bip340(nonce, msg, msglen, key, pk, NULL, 0, NULL) == 0); + CHECK(nonce_function_bip340(nonce, msg, msglen, key, pk, algo, algolen, NULL) == 1); + /* Other algo is fine */ + secp256k1_rfc6979_hmac_sha256_generate(&secp256k1_test_rng, algo, algolen); + CHECK(nonce_function_bip340(nonce, msg, msglen, key, pk, algo, algolen, NULL) == 1); + + for (i = 0; i < count; i++) { + unsigned char nonce2[32]; + uint32_t offset = secp256k1_testrand_int(msglen - 1); + size_t msglen_tmp = (msglen + offset) % msglen; + size_t algolen_tmp; + + /* Different msglen gives different nonce */ + CHECK(nonce_function_bip340(nonce2, msg, msglen_tmp, key, pk, algo, algolen, NULL) == 1); + CHECK(secp256k1_memcmp_var(nonce, nonce2, 32) != 0); + + /* Different algolen gives different nonce */ + offset = secp256k1_testrand_int(algolen - 1); + algolen_tmp = (algolen + offset) % algolen; + CHECK(nonce_function_bip340(nonce2, msg, msglen, key, pk, algo, algolen_tmp, NULL) == 1); + CHECK(secp256k1_memcmp_var(nonce, nonce2, 32) != 0); + } + + /* NULL aux_rand argument is allowed. */ + CHECK(nonce_function_bip340(nonce, msg, msglen, key, pk, algo, algolen, NULL) == 1); +} + +void test_schnorrsig_api(void) { + unsigned char sk1[32]; + unsigned char sk2[32]; + unsigned char sk3[32]; + unsigned char msg[32]; + secp256k1_keypair keypairs[3]; + secp256k1_keypair invalid_keypair = {{ 0 }}; + secp256k1_xonly_pubkey pk[3]; + secp256k1_xonly_pubkey zero_pk; + unsigned char sig[64]; + secp256k1_schnorrsig_extraparams extraparams = SECP256K1_SCHNORRSIG_EXTRAPARAMS_INIT; + secp256k1_schnorrsig_extraparams invalid_extraparams = { 0 }; + + /** setup **/ + secp256k1_context *none = secp256k1_context_create(SECP256K1_CONTEXT_NONE); + secp256k1_context *sign = secp256k1_context_create(SECP256K1_CONTEXT_SIGN); + secp256k1_context *vrfy = secp256k1_context_create(SECP256K1_CONTEXT_VERIFY); + secp256k1_context *both = secp256k1_context_create(SECP256K1_CONTEXT_SIGN | SECP256K1_CONTEXT_VERIFY); + int ecount; + + secp256k1_context_set_error_callback(none, counting_illegal_callback_fn, &ecount); + secp256k1_context_set_error_callback(sign, counting_illegal_callback_fn, &ecount); + secp256k1_context_set_error_callback(vrfy, counting_illegal_callback_fn, &ecount); + secp256k1_context_set_error_callback(both, counting_illegal_callback_fn, &ecount); + secp256k1_context_set_illegal_callback(none, counting_illegal_callback_fn, &ecount); + secp256k1_context_set_illegal_callback(sign, counting_illegal_callback_fn, &ecount); + secp256k1_context_set_illegal_callback(vrfy, counting_illegal_callback_fn, &ecount); + secp256k1_context_set_illegal_callback(both, counting_illegal_callback_fn, &ecount); + + secp256k1_testrand256(sk1); + secp256k1_testrand256(sk2); + secp256k1_testrand256(sk3); + secp256k1_testrand256(msg); + CHECK(secp256k1_keypair_create(ctx, &keypairs[0], sk1) == 1); + CHECK(secp256k1_keypair_create(ctx, &keypairs[1], sk2) == 1); + CHECK(secp256k1_keypair_create(ctx, &keypairs[2], sk3) == 1); + CHECK(secp256k1_keypair_xonly_pub(ctx, &pk[0], NULL, &keypairs[0]) == 1); + CHECK(secp256k1_keypair_xonly_pub(ctx, &pk[1], NULL, &keypairs[1]) == 1); + CHECK(secp256k1_keypair_xonly_pub(ctx, &pk[2], NULL, &keypairs[2]) == 1); + memset(&zero_pk, 0, sizeof(zero_pk)); + + /** main test body **/ + ecount = 0; + CHECK(secp256k1_schnorrsig_sign(none, sig, msg, &keypairs[0], NULL) == 0); + CHECK(ecount == 1); + CHECK(secp256k1_schnorrsig_sign(vrfy, sig, msg, &keypairs[0], NULL) == 0); + CHECK(ecount == 2); + CHECK(secp256k1_schnorrsig_sign(sign, sig, msg, &keypairs[0], NULL) == 1); + CHECK(ecount == 2); + CHECK(secp256k1_schnorrsig_sign(sign, NULL, msg, &keypairs[0], NULL) == 0); + CHECK(ecount == 3); + CHECK(secp256k1_schnorrsig_sign(sign, sig, NULL, &keypairs[0], NULL) == 0); + CHECK(ecount == 4); + CHECK(secp256k1_schnorrsig_sign(sign, sig, msg, NULL, NULL) == 0); + CHECK(ecount == 5); + CHECK(secp256k1_schnorrsig_sign(sign, sig, msg, &invalid_keypair, NULL) == 0); + CHECK(ecount == 6); + + ecount = 0; + CHECK(secp256k1_schnorrsig_sign_custom(none, sig, msg, sizeof(msg), &keypairs[0], &extraparams) == 0); + CHECK(ecount == 1); + CHECK(secp256k1_schnorrsig_sign_custom(vrfy, sig, msg, sizeof(msg), &keypairs[0], &extraparams) == 0); + CHECK(ecount == 2); + CHECK(secp256k1_schnorrsig_sign_custom(sign, sig, msg, sizeof(msg), &keypairs[0], &extraparams) == 1); + CHECK(ecount == 2); + CHECK(secp256k1_schnorrsig_sign_custom(sign, NULL, msg, sizeof(msg), &keypairs[0], &extraparams) == 0); + CHECK(ecount == 3); + CHECK(secp256k1_schnorrsig_sign_custom(sign, sig, NULL, sizeof(msg), &keypairs[0], &extraparams) == 0); + CHECK(ecount == 4); + CHECK(secp256k1_schnorrsig_sign_custom(sign, sig, NULL, 0, &keypairs[0], &extraparams) == 1); + CHECK(ecount == 4); + CHECK(secp256k1_schnorrsig_sign_custom(sign, sig, msg, sizeof(msg), NULL, &extraparams) == 0); + CHECK(ecount == 5); + CHECK(secp256k1_schnorrsig_sign_custom(sign, sig, msg, sizeof(msg), &invalid_keypair, &extraparams) == 0); + CHECK(ecount == 6); + CHECK(secp256k1_schnorrsig_sign_custom(sign, sig, msg, sizeof(msg), &keypairs[0], NULL) == 1); + CHECK(ecount == 6); + CHECK(secp256k1_schnorrsig_sign_custom(sign, sig, msg, sizeof(msg), &keypairs[0], &invalid_extraparams) == 0); + CHECK(ecount == 7); + + ecount = 0; + CHECK(secp256k1_schnorrsig_sign(sign, sig, msg, &keypairs[0], NULL) == 1); + CHECK(secp256k1_schnorrsig_verify(none, sig, msg, sizeof(msg), &pk[0]) == 0); + CHECK(ecount == 1); + CHECK(secp256k1_schnorrsig_verify(sign, sig, msg, sizeof(msg), &pk[0]) == 0); + CHECK(ecount == 2); + CHECK(secp256k1_schnorrsig_verify(vrfy, sig, msg, sizeof(msg), &pk[0]) == 1); + CHECK(ecount == 2); + CHECK(secp256k1_schnorrsig_verify(vrfy, NULL, msg, sizeof(msg), &pk[0]) == 0); + CHECK(ecount == 3); + CHECK(secp256k1_schnorrsig_verify(vrfy, sig, NULL, sizeof(msg), &pk[0]) == 0); + CHECK(ecount == 4); + CHECK(secp256k1_schnorrsig_verify(vrfy, sig, NULL, 0, &pk[0]) == 0); + CHECK(ecount == 4); + CHECK(secp256k1_schnorrsig_verify(vrfy, sig, msg, sizeof(msg), NULL) == 0); + CHECK(ecount == 5); + CHECK(secp256k1_schnorrsig_verify(vrfy, sig, msg, sizeof(msg), &zero_pk) == 0); + CHECK(ecount == 6); + + secp256k1_context_destroy(none); + secp256k1_context_destroy(sign); + secp256k1_context_destroy(vrfy); + secp256k1_context_destroy(both); +} + +/* Checks that hash initialized by secp256k1_schnorrsig_sha256_tagged has the + * expected state. */ +void test_schnorrsig_sha256_tagged(void) { + char tag[17] = "BIP0340/challenge"; + secp256k1_sha256 sha; + secp256k1_sha256 sha_optimized; + + secp256k1_sha256_initialize_tagged(&sha, (unsigned char *) tag, sizeof(tag)); + secp256k1_schnorrsig_sha256_tagged(&sha_optimized); + test_sha256_eq(&sha, &sha_optimized); +} + +/* Helper function for schnorrsig_bip_vectors + * Signs the message and checks that it's the same as expected_sig. */ +void test_schnorrsig_bip_vectors_check_signing(const unsigned char *sk, const unsigned char *pk_serialized, unsigned char *aux_rand, const unsigned char *msg32, const unsigned char *expected_sig) { + unsigned char sig[64]; + secp256k1_keypair keypair; + secp256k1_xonly_pubkey pk, pk_expected; + + CHECK(secp256k1_keypair_create(ctx, &keypair, sk)); + CHECK(secp256k1_schnorrsig_sign(ctx, sig, msg32, &keypair, aux_rand)); + CHECK(secp256k1_memcmp_var(sig, expected_sig, 64) == 0); + + CHECK(secp256k1_xonly_pubkey_parse(ctx, &pk_expected, pk_serialized)); + CHECK(secp256k1_keypair_xonly_pub(ctx, &pk, NULL, &keypair)); + CHECK(secp256k1_memcmp_var(&pk, &pk_expected, sizeof(pk)) == 0); + CHECK(secp256k1_schnorrsig_verify(ctx, sig, msg32, 32, &pk)); +} + +/* Helper function for schnorrsig_bip_vectors + * Checks that both verify and verify_batch (TODO) return the same value as expected. */ +void test_schnorrsig_bip_vectors_check_verify(const unsigned char *pk_serialized, const unsigned char *msg32, const unsigned char *sig, int expected) { + secp256k1_xonly_pubkey pk; + + CHECK(secp256k1_xonly_pubkey_parse(ctx, &pk, pk_serialized)); + CHECK(expected == secp256k1_schnorrsig_verify(ctx, sig, msg32, 32, &pk)); +} + +/* Test vectors according to BIP-340 ("Schnorr Signatures for secp256k1"). See + * https://github.com/bitcoin/bips/blob/master/bip-0340/test-vectors.csv. */ +void test_schnorrsig_bip_vectors(void) { + { + /* Test vector 0 */ + const unsigned char sk[32] = { + 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, + 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, + 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, + 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x03 + }; + const unsigned char pk[32] = { + 0xF9, 0x30, 0x8A, 0x01, 0x92, 0x58, 0xC3, 0x10, + 0x49, 0x34, 0x4F, 0x85, 0xF8, 0x9D, 0x52, 0x29, + 0xB5, 0x31, 0xC8, 0x45, 0x83, 0x6F, 0x99, 0xB0, + 0x86, 0x01, 0xF1, 0x13, 0xBC, 0xE0, 0x36, 0xF9 + }; + unsigned char aux_rand[32] = { + 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, + 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, + 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, + 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 + }; + const unsigned char msg[32] = { + 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, + 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, + 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, + 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 + }; + const unsigned char sig[64] = { + 0xE9, 0x07, 0x83, 0x1F, 0x80, 0x84, 0x8D, 0x10, + 0x69, 0xA5, 0x37, 0x1B, 0x40, 0x24, 0x10, 0x36, + 0x4B, 0xDF, 0x1C, 0x5F, 0x83, 0x07, 0xB0, 0x08, + 0x4C, 0x55, 0xF1, 0xCE, 0x2D, 0xCA, 0x82, 0x15, + 0x25, 0xF6, 0x6A, 0x4A, 0x85, 0xEA, 0x8B, 0x71, + 0xE4, 0x82, 0xA7, 0x4F, 0x38, 0x2D, 0x2C, 0xE5, + 0xEB, 0xEE, 0xE8, 0xFD, 0xB2, 0x17, 0x2F, 0x47, + 0x7D, 0xF4, 0x90, 0x0D, 0x31, 0x05, 0x36, 0xC0 + }; + test_schnorrsig_bip_vectors_check_signing(sk, pk, aux_rand, msg, sig); + test_schnorrsig_bip_vectors_check_verify(pk, msg, sig, 1); + } + { + /* Test vector 1 */ + const unsigned char sk[32] = { + 0xB7, 0xE1, 0x51, 0x62, 0x8A, 0xED, 0x2A, 0x6A, + 0xBF, 0x71, 0x58, 0x80, 0x9C, 0xF4, 0xF3, 0xC7, + 0x62, 0xE7, 0x16, 0x0F, 0x38, 0xB4, 0xDA, 0x56, + 0xA7, 0x84, 0xD9, 0x04, 0x51, 0x90, 0xCF, 0xEF + }; + const unsigned char pk[32] = { + 0xDF, 0xF1, 0xD7, 0x7F, 0x2A, 0x67, 0x1C, 0x5F, + 0x36, 0x18, 0x37, 0x26, 0xDB, 0x23, 0x41, 0xBE, + 0x58, 0xFE, 0xAE, 0x1D, 0xA2, 0xDE, 0xCE, 0xD8, + 0x43, 0x24, 0x0F, 0x7B, 0x50, 0x2B, 0xA6, 0x59 + }; + unsigned char aux_rand[32] = { + 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, + 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, + 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, + 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01 + }; + const unsigned char msg[32] = { + 0x24, 0x3F, 0x6A, 0x88, 0x85, 0xA3, 0x08, 0xD3, + 0x13, 0x19, 0x8A, 0x2E, 0x03, 0x70, 0x73, 0x44, + 0xA4, 0x09, 0x38, 0x22, 0x29, 0x9F, 0x31, 0xD0, + 0x08, 0x2E, 0xFA, 0x98, 0xEC, 0x4E, 0x6C, 0x89 + }; + const unsigned char sig[64] = { + 0x68, 0x96, 0xBD, 0x60, 0xEE, 0xAE, 0x29, 0x6D, + 0xB4, 0x8A, 0x22, 0x9F, 0xF7, 0x1D, 0xFE, 0x07, + 0x1B, 0xDE, 0x41, 0x3E, 0x6D, 0x43, 0xF9, 0x17, + 0xDC, 0x8D, 0xCF, 0x8C, 0x78, 0xDE, 0x33, 0x41, + 0x89, 0x06, 0xD1, 0x1A, 0xC9, 0x76, 0xAB, 0xCC, + 0xB2, 0x0B, 0x09, 0x12, 0x92, 0xBF, 0xF4, 0xEA, + 0x89, 0x7E, 0xFC, 0xB6, 0x39, 0xEA, 0x87, 0x1C, + 0xFA, 0x95, 0xF6, 0xDE, 0x33, 0x9E, 0x4B, 0x0A + }; + test_schnorrsig_bip_vectors_check_signing(sk, pk, aux_rand, msg, sig); + test_schnorrsig_bip_vectors_check_verify(pk, msg, sig, 1); + } + { + /* Test vector 2 */ + const unsigned char sk[32] = { + 0xC9, 0x0F, 0xDA, 0xA2, 0x21, 0x68, 0xC2, 0x34, + 0xC4, 0xC6, 0x62, 0x8B, 0x80, 0xDC, 0x1C, 0xD1, + 0x29, 0x02, 0x4E, 0x08, 0x8A, 0x67, 0xCC, 0x74, + 0x02, 0x0B, 0xBE, 0xA6, 0x3B, 0x14, 0xE5, 0xC9 + }; + const unsigned char pk[32] = { + 0xDD, 0x30, 0x8A, 0xFE, 0xC5, 0x77, 0x7E, 0x13, + 0x12, 0x1F, 0xA7, 0x2B, 0x9C, 0xC1, 0xB7, 0xCC, + 0x01, 0x39, 0x71, 0x53, 0x09, 0xB0, 0x86, 0xC9, + 0x60, 0xE1, 0x8F, 0xD9, 0x69, 0x77, 0x4E, 0xB8 + }; + unsigned char aux_rand[32] = { + 0xC8, 0x7A, 0xA5, 0x38, 0x24, 0xB4, 0xD7, 0xAE, + 0x2E, 0xB0, 0x35, 0xA2, 0xB5, 0xBB, 0xBC, 0xCC, + 0x08, 0x0E, 0x76, 0xCD, 0xC6, 0xD1, 0x69, 0x2C, + 0x4B, 0x0B, 0x62, 0xD7, 0x98, 0xE6, 0xD9, 0x06 + }; + const unsigned char msg[32] = { + 0x7E, 0x2D, 0x58, 0xD8, 0xB3, 0xBC, 0xDF, 0x1A, + 0xBA, 0xDE, 0xC7, 0x82, 0x90, 0x54, 0xF9, 0x0D, + 0xDA, 0x98, 0x05, 0xAA, 0xB5, 0x6C, 0x77, 0x33, + 0x30, 0x24, 0xB9, 0xD0, 0xA5, 0x08, 0xB7, 0x5C + }; + const unsigned char sig[64] = { + 0x58, 0x31, 0xAA, 0xEE, 0xD7, 0xB4, 0x4B, 0xB7, + 0x4E, 0x5E, 0xAB, 0x94, 0xBA, 0x9D, 0x42, 0x94, + 0xC4, 0x9B, 0xCF, 0x2A, 0x60, 0x72, 0x8D, 0x8B, + 0x4C, 0x20, 0x0F, 0x50, 0xDD, 0x31, 0x3C, 0x1B, + 0xAB, 0x74, 0x58, 0x79, 0xA5, 0xAD, 0x95, 0x4A, + 0x72, 0xC4, 0x5A, 0x91, 0xC3, 0xA5, 0x1D, 0x3C, + 0x7A, 0xDE, 0xA9, 0x8D, 0x82, 0xF8, 0x48, 0x1E, + 0x0E, 0x1E, 0x03, 0x67, 0x4A, 0x6F, 0x3F, 0xB7 + }; + test_schnorrsig_bip_vectors_check_signing(sk, pk, aux_rand, msg, sig); + test_schnorrsig_bip_vectors_check_verify(pk, msg, sig, 1); + } + { + /* Test vector 3 */ + const unsigned char sk[32] = { + 0x0B, 0x43, 0x2B, 0x26, 0x77, 0x93, 0x73, 0x81, + 0xAE, 0xF0, 0x5B, 0xB0, 0x2A, 0x66, 0xEC, 0xD0, + 0x12, 0x77, 0x30, 0x62, 0xCF, 0x3F, 0xA2, 0x54, + 0x9E, 0x44, 0xF5, 0x8E, 0xD2, 0x40, 0x17, 0x10 + }; + const unsigned char pk[32] = { + 0x25, 0xD1, 0xDF, 0xF9, 0x51, 0x05, 0xF5, 0x25, + 0x3C, 0x40, 0x22, 0xF6, 0x28, 0xA9, 0x96, 0xAD, + 0x3A, 0x0D, 0x95, 0xFB, 0xF2, 0x1D, 0x46, 0x8A, + 0x1B, 0x33, 0xF8, 0xC1, 0x60, 0xD8, 0xF5, 0x17 + }; + unsigned char aux_rand[32] = { + 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, + 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, + 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, + 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF + }; + const unsigned char msg[32] = { + 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, + 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, + 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, + 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF + }; + const unsigned char sig[64] = { + 0x7E, 0xB0, 0x50, 0x97, 0x57, 0xE2, 0x46, 0xF1, + 0x94, 0x49, 0x88, 0x56, 0x51, 0x61, 0x1C, 0xB9, + 0x65, 0xEC, 0xC1, 0xA1, 0x87, 0xDD, 0x51, 0xB6, + 0x4F, 0xDA, 0x1E, 0xDC, 0x96, 0x37, 0xD5, 0xEC, + 0x97, 0x58, 0x2B, 0x9C, 0xB1, 0x3D, 0xB3, 0x93, + 0x37, 0x05, 0xB3, 0x2B, 0xA9, 0x82, 0xAF, 0x5A, + 0xF2, 0x5F, 0xD7, 0x88, 0x81, 0xEB, 0xB3, 0x27, + 0x71, 0xFC, 0x59, 0x22, 0xEF, 0xC6, 0x6E, 0xA3 + }; + test_schnorrsig_bip_vectors_check_signing(sk, pk, aux_rand, msg, sig); + test_schnorrsig_bip_vectors_check_verify(pk, msg, sig, 1); + } + { + /* Test vector 4 */ + const unsigned char pk[32] = { + 0xD6, 0x9C, 0x35, 0x09, 0xBB, 0x99, 0xE4, 0x12, + 0xE6, 0x8B, 0x0F, 0xE8, 0x54, 0x4E, 0x72, 0x83, + 0x7D, 0xFA, 0x30, 0x74, 0x6D, 0x8B, 0xE2, 0xAA, + 0x65, 0x97, 0x5F, 0x29, 0xD2, 0x2D, 0xC7, 0xB9 + }; + const unsigned char msg[32] = { + 0x4D, 0xF3, 0xC3, 0xF6, 0x8F, 0xCC, 0x83, 0xB2, + 0x7E, 0x9D, 0x42, 0xC9, 0x04, 0x31, 0xA7, 0x24, + 0x99, 0xF1, 0x78, 0x75, 0xC8, 0x1A, 0x59, 0x9B, + 0x56, 0x6C, 0x98, 0x89, 0xB9, 0x69, 0x67, 0x03 + }; + const unsigned char sig[64] = { + 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, + 0x00, 0x00, 0x00, 0x3B, 0x78, 0xCE, 0x56, 0x3F, + 0x89, 0xA0, 0xED, 0x94, 0x14, 0xF5, 0xAA, 0x28, + 0xAD, 0x0D, 0x96, 0xD6, 0x79, 0x5F, 0x9C, 0x63, + 0x76, 0xAF, 0xB1, 0x54, 0x8A, 0xF6, 0x03, 0xB3, + 0xEB, 0x45, 0xC9, 0xF8, 0x20, 0x7D, 0xEE, 0x10, + 0x60, 0xCB, 0x71, 0xC0, 0x4E, 0x80, 0xF5, 0x93, + 0x06, 0x0B, 0x07, 0xD2, 0x83, 0x08, 0xD7, 0xF4 + }; + test_schnorrsig_bip_vectors_check_verify(pk, msg, sig, 1); + } + { + /* Test vector 5 */ + const unsigned char pk[32] = { + 0xEE, 0xFD, 0xEA, 0x4C, 0xDB, 0x67, 0x77, 0x50, + 0xA4, 0x20, 0xFE, 0xE8, 0x07, 0xEA, 0xCF, 0x21, + 0xEB, 0x98, 0x98, 0xAE, 0x79, 0xB9, 0x76, 0x87, + 0x66, 0xE4, 0xFA, 0xA0, 0x4A, 0x2D, 0x4A, 0x34 + }; + secp256k1_xonly_pubkey pk_parsed; + /* No need to check the signature of the test vector as parsing the pubkey already fails */ + CHECK(!secp256k1_xonly_pubkey_parse(ctx, &pk_parsed, pk)); + } + { + /* Test vector 6 */ + const unsigned char pk[32] = { + 0xDF, 0xF1, 0xD7, 0x7F, 0x2A, 0x67, 0x1C, 0x5F, + 0x36, 0x18, 0x37, 0x26, 0xDB, 0x23, 0x41, 0xBE, + 0x58, 0xFE, 0xAE, 0x1D, 0xA2, 0xDE, 0xCE, 0xD8, + 0x43, 0x24, 0x0F, 0x7B, 0x50, 0x2B, 0xA6, 0x59 + }; + const unsigned char msg[32] = { + 0x24, 0x3F, 0x6A, 0x88, 0x85, 0xA3, 0x08, 0xD3, + 0x13, 0x19, 0x8A, 0x2E, 0x03, 0x70, 0x73, 0x44, + 0xA4, 0x09, 0x38, 0x22, 0x29, 0x9F, 0x31, 0xD0, + 0x08, 0x2E, 0xFA, 0x98, 0xEC, 0x4E, 0x6C, 0x89 + }; + const unsigned char sig[64] = { + 0xFF, 0xF9, 0x7B, 0xD5, 0x75, 0x5E, 0xEE, 0xA4, + 0x20, 0x45, 0x3A, 0x14, 0x35, 0x52, 0x35, 0xD3, + 0x82, 0xF6, 0x47, 0x2F, 0x85, 0x68, 0xA1, 0x8B, + 0x2F, 0x05, 0x7A, 0x14, 0x60, 0x29, 0x75, 0x56, + 0x3C, 0xC2, 0x79, 0x44, 0x64, 0x0A, 0xC6, 0x07, + 0xCD, 0x10, 0x7A, 0xE1, 0x09, 0x23, 0xD9, 0xEF, + 0x7A, 0x73, 0xC6, 0x43, 0xE1, 0x66, 0xBE, 0x5E, + 0xBE, 0xAF, 0xA3, 0x4B, 0x1A, 0xC5, 0x53, 0xE2 + }; + test_schnorrsig_bip_vectors_check_verify(pk, msg, sig, 0); + } + { + /* Test vector 7 */ + const unsigned char pk[32] = { + 0xDF, 0xF1, 0xD7, 0x7F, 0x2A, 0x67, 0x1C, 0x5F, + 0x36, 0x18, 0x37, 0x26, 0xDB, 0x23, 0x41, 0xBE, + 0x58, 0xFE, 0xAE, 0x1D, 0xA2, 0xDE, 0xCE, 0xD8, + 0x43, 0x24, 0x0F, 0x7B, 0x50, 0x2B, 0xA6, 0x59 + }; + const unsigned char msg[32] = { + 0x24, 0x3F, 0x6A, 0x88, 0x85, 0xA3, 0x08, 0xD3, + 0x13, 0x19, 0x8A, 0x2E, 0x03, 0x70, 0x73, 0x44, + 0xA4, 0x09, 0x38, 0x22, 0x29, 0x9F, 0x31, 0xD0, + 0x08, 0x2E, 0xFA, 0x98, 0xEC, 0x4E, 0x6C, 0x89 + }; + const unsigned char sig[64] = { + 0x1F, 0xA6, 0x2E, 0x33, 0x1E, 0xDB, 0xC2, 0x1C, + 0x39, 0x47, 0x92, 0xD2, 0xAB, 0x11, 0x00, 0xA7, + 0xB4, 0x32, 0xB0, 0x13, 0xDF, 0x3F, 0x6F, 0xF4, + 0xF9, 0x9F, 0xCB, 0x33, 0xE0, 0xE1, 0x51, 0x5F, + 0x28, 0x89, 0x0B, 0x3E, 0xDB, 0x6E, 0x71, 0x89, + 0xB6, 0x30, 0x44, 0x8B, 0x51, 0x5C, 0xE4, 0xF8, + 0x62, 0x2A, 0x95, 0x4C, 0xFE, 0x54, 0x57, 0x35, + 0xAA, 0xEA, 0x51, 0x34, 0xFC, 0xCD, 0xB2, 0xBD + }; + test_schnorrsig_bip_vectors_check_verify(pk, msg, sig, 0); + } + { + /* Test vector 8 */ + const unsigned char pk[32] = { + 0xDF, 0xF1, 0xD7, 0x7F, 0x2A, 0x67, 0x1C, 0x5F, + 0x36, 0x18, 0x37, 0x26, 0xDB, 0x23, 0x41, 0xBE, + 0x58, 0xFE, 0xAE, 0x1D, 0xA2, 0xDE, 0xCE, 0xD8, + 0x43, 0x24, 0x0F, 0x7B, 0x50, 0x2B, 0xA6, 0x59 + }; + const unsigned char msg[32] = { + 0x24, 0x3F, 0x6A, 0x88, 0x85, 0xA3, 0x08, 0xD3, + 0x13, 0x19, 0x8A, 0x2E, 0x03, 0x70, 0x73, 0x44, + 0xA4, 0x09, 0x38, 0x22, 0x29, 0x9F, 0x31, 0xD0, + 0x08, 0x2E, 0xFA, 0x98, 0xEC, 0x4E, 0x6C, 0x89 + }; + const unsigned char sig[64] = { + 0x6C, 0xFF, 0x5C, 0x3B, 0xA8, 0x6C, 0x69, 0xEA, + 0x4B, 0x73, 0x76, 0xF3, 0x1A, 0x9B, 0xCB, 0x4F, + 0x74, 0xC1, 0x97, 0x60, 0x89, 0xB2, 0xD9, 0x96, + 0x3D, 0xA2, 0xE5, 0x54, 0x3E, 0x17, 0x77, 0x69, + 0x96, 0x17, 0x64, 0xB3, 0xAA, 0x9B, 0x2F, 0xFC, + 0xB6, 0xEF, 0x94, 0x7B, 0x68, 0x87, 0xA2, 0x26, + 0xE8, 0xD7, 0xC9, 0x3E, 0x00, 0xC5, 0xED, 0x0C, + 0x18, 0x34, 0xFF, 0x0D, 0x0C, 0x2E, 0x6D, 0xA6 + }; + test_schnorrsig_bip_vectors_check_verify(pk, msg, sig, 0); + } + { + /* Test vector 9 */ + const unsigned char pk[32] = { + 0xDF, 0xF1, 0xD7, 0x7F, 0x2A, 0x67, 0x1C, 0x5F, + 0x36, 0x18, 0x37, 0x26, 0xDB, 0x23, 0x41, 0xBE, + 0x58, 0xFE, 0xAE, 0x1D, 0xA2, 0xDE, 0xCE, 0xD8, + 0x43, 0x24, 0x0F, 0x7B, 0x50, 0x2B, 0xA6, 0x59 + }; + const unsigned char msg[32] = { + 0x24, 0x3F, 0x6A, 0x88, 0x85, 0xA3, 0x08, 0xD3, + 0x13, 0x19, 0x8A, 0x2E, 0x03, 0x70, 0x73, 0x44, + 0xA4, 0x09, 0x38, 0x22, 0x29, 0x9F, 0x31, 0xD0, + 0x08, 0x2E, 0xFA, 0x98, 0xEC, 0x4E, 0x6C, 0x89 + }; + const unsigned char sig[64] = { + 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, + 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, + 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, + 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, + 0x12, 0x3D, 0xDA, 0x83, 0x28, 0xAF, 0x9C, 0x23, + 0xA9, 0x4C, 0x1F, 0xEE, 0xCF, 0xD1, 0x23, 0xBA, + 0x4F, 0xB7, 0x34, 0x76, 0xF0, 0xD5, 0x94, 0xDC, + 0xB6, 0x5C, 0x64, 0x25, 0xBD, 0x18, 0x60, 0x51 + }; + test_schnorrsig_bip_vectors_check_verify(pk, msg, sig, 0); + } + { + /* Test vector 10 */ + const unsigned char pk[32] = { + 0xDF, 0xF1, 0xD7, 0x7F, 0x2A, 0x67, 0x1C, 0x5F, + 0x36, 0x18, 0x37, 0x26, 0xDB, 0x23, 0x41, 0xBE, + 0x58, 0xFE, 0xAE, 0x1D, 0xA2, 0xDE, 0xCE, 0xD8, + 0x43, 0x24, 0x0F, 0x7B, 0x50, 0x2B, 0xA6, 0x59 + }; + const unsigned char msg[32] = { + 0x24, 0x3F, 0x6A, 0x88, 0x85, 0xA3, 0x08, 0xD3, + 0x13, 0x19, 0x8A, 0x2E, 0x03, 0x70, 0x73, 0x44, + 0xA4, 0x09, 0x38, 0x22, 0x29, 0x9F, 0x31, 0xD0, + 0x08, 0x2E, 0xFA, 0x98, 0xEC, 0x4E, 0x6C, 0x89 + }; + const unsigned char sig[64] = { + 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, + 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, + 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, + 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, + 0x76, 0x15, 0xFB, 0xAF, 0x5A, 0xE2, 0x88, 0x64, + 0x01, 0x3C, 0x09, 0x97, 0x42, 0xDE, 0xAD, 0xB4, + 0xDB, 0xA8, 0x7F, 0x11, 0xAC, 0x67, 0x54, 0xF9, + 0x37, 0x80, 0xD5, 0xA1, 0x83, 0x7C, 0xF1, 0x97 + }; + test_schnorrsig_bip_vectors_check_verify(pk, msg, sig, 0); + } + { + /* Test vector 11 */ + const unsigned char pk[32] = { + 0xDF, 0xF1, 0xD7, 0x7F, 0x2A, 0x67, 0x1C, 0x5F, + 0x36, 0x18, 0x37, 0x26, 0xDB, 0x23, 0x41, 0xBE, + 0x58, 0xFE, 0xAE, 0x1D, 0xA2, 0xDE, 0xCE, 0xD8, + 0x43, 0x24, 0x0F, 0x7B, 0x50, 0x2B, 0xA6, 0x59 + }; + const unsigned char msg[32] = { + 0x24, 0x3F, 0x6A, 0x88, 0x85, 0xA3, 0x08, 0xD3, + 0x13, 0x19, 0x8A, 0x2E, 0x03, 0x70, 0x73, 0x44, + 0xA4, 0x09, 0x38, 0x22, 0x29, 0x9F, 0x31, 0xD0, + 0x08, 0x2E, 0xFA, 0x98, 0xEC, 0x4E, 0x6C, 0x89 + }; + const unsigned char sig[64] = { + 0x4A, 0x29, 0x8D, 0xAC, 0xAE, 0x57, 0x39, 0x5A, + 0x15, 0xD0, 0x79, 0x5D, 0xDB, 0xFD, 0x1D, 0xCB, + 0x56, 0x4D, 0xA8, 0x2B, 0x0F, 0x26, 0x9B, 0xC7, + 0x0A, 0x74, 0xF8, 0x22, 0x04, 0x29, 0xBA, 0x1D, + 0x69, 0xE8, 0x9B, 0x4C, 0x55, 0x64, 0xD0, 0x03, + 0x49, 0x10, 0x6B, 0x84, 0x97, 0x78, 0x5D, 0xD7, + 0xD1, 0xD7, 0x13, 0xA8, 0xAE, 0x82, 0xB3, 0x2F, + 0xA7, 0x9D, 0x5F, 0x7F, 0xC4, 0x07, 0xD3, 0x9B + }; + test_schnorrsig_bip_vectors_check_verify(pk, msg, sig, 0); + } + { + /* Test vector 12 */ + const unsigned char pk[32] = { + 0xDF, 0xF1, 0xD7, 0x7F, 0x2A, 0x67, 0x1C, 0x5F, + 0x36, 0x18, 0x37, 0x26, 0xDB, 0x23, 0x41, 0xBE, + 0x58, 0xFE, 0xAE, 0x1D, 0xA2, 0xDE, 0xCE, 0xD8, + 0x43, 0x24, 0x0F, 0x7B, 0x50, 0x2B, 0xA6, 0x59 + }; + const unsigned char msg[32] = { + 0x24, 0x3F, 0x6A, 0x88, 0x85, 0xA3, 0x08, 0xD3, + 0x13, 0x19, 0x8A, 0x2E, 0x03, 0x70, 0x73, 0x44, + 0xA4, 0x09, 0x38, 0x22, 0x29, 0x9F, 0x31, 0xD0, + 0x08, 0x2E, 0xFA, 0x98, 0xEC, 0x4E, 0x6C, 0x89 + }; + const unsigned char sig[64] = { + 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, + 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, + 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, + 0xFF, 0xFF, 0xFF, 0xFE, 0xFF, 0xFF, 0xFC, 0x2F, + 0x69, 0xE8, 0x9B, 0x4C, 0x55, 0x64, 0xD0, 0x03, + 0x49, 0x10, 0x6B, 0x84, 0x97, 0x78, 0x5D, 0xD7, + 0xD1, 0xD7, 0x13, 0xA8, 0xAE, 0x82, 0xB3, 0x2F, + 0xA7, 0x9D, 0x5F, 0x7F, 0xC4, 0x07, 0xD3, 0x9B + }; + test_schnorrsig_bip_vectors_check_verify(pk, msg, sig, 0); + } + { + /* Test vector 13 */ + const unsigned char pk[32] = { + 0xDF, 0xF1, 0xD7, 0x7F, 0x2A, 0x67, 0x1C, 0x5F, + 0x36, 0x18, 0x37, 0x26, 0xDB, 0x23, 0x41, 0xBE, + 0x58, 0xFE, 0xAE, 0x1D, 0xA2, 0xDE, 0xCE, 0xD8, + 0x43, 0x24, 0x0F, 0x7B, 0x50, 0x2B, 0xA6, 0x59 + }; + const unsigned char msg[32] = { + 0x24, 0x3F, 0x6A, 0x88, 0x85, 0xA3, 0x08, 0xD3, + 0x13, 0x19, 0x8A, 0x2E, 0x03, 0x70, 0x73, 0x44, + 0xA4, 0x09, 0x38, 0x22, 0x29, 0x9F, 0x31, 0xD0, + 0x08, 0x2E, 0xFA, 0x98, 0xEC, 0x4E, 0x6C, 0x89 + }; + const unsigned char sig[64] = { + 0x6C, 0xFF, 0x5C, 0x3B, 0xA8, 0x6C, 0x69, 0xEA, + 0x4B, 0x73, 0x76, 0xF3, 0x1A, 0x9B, 0xCB, 0x4F, + 0x74, 0xC1, 0x97, 0x60, 0x89, 0xB2, 0xD9, 0x96, + 0x3D, 0xA2, 0xE5, 0x54, 0x3E, 0x17, 0x77, 0x69, + 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, + 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFE, + 0xBA, 0xAE, 0xDC, 0xE6, 0xAF, 0x48, 0xA0, 0x3B, + 0xBF, 0xD2, 0x5E, 0x8C, 0xD0, 0x36, 0x41, 0x41 + }; + test_schnorrsig_bip_vectors_check_verify(pk, msg, sig, 0); + } + { + /* Test vector 14 */ + const unsigned char pk[32] = { + 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, + 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, + 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, + 0xFF, 0xFF, 0xFF, 0xFE, 0xFF, 0xFF, 0xFC, 0x30 + }; + secp256k1_xonly_pubkey pk_parsed; + /* No need to check the signature of the test vector as parsing the pubkey already fails */ + CHECK(!secp256k1_xonly_pubkey_parse(ctx, &pk_parsed, pk)); + } +} + +/* Nonce function that returns constant 0 */ +static int nonce_function_failing(unsigned char *nonce32, const unsigned char *msg, size_t msglen, const unsigned char *key32, const unsigned char *xonly_pk32, const unsigned char *algo, size_t algolen, void *data) { + (void) msg; + (void) msglen; + (void) key32; + (void) xonly_pk32; + (void) algo; + (void) algolen; + (void) data; + (void) nonce32; + return 0; +} + +/* Nonce function that sets nonce to 0 */ +static int nonce_function_0(unsigned char *nonce32, const unsigned char *msg, size_t msglen, const unsigned char *key32, const unsigned char *xonly_pk32, const unsigned char *algo, size_t algolen, void *data) { + (void) msg; + (void) msglen; + (void) key32; + (void) xonly_pk32; + (void) algo; + (void) algolen; + (void) data; + + memset(nonce32, 0, 32); + return 1; +} + +/* Nonce function that sets nonce to 0xFF...0xFF */ +static int nonce_function_overflowing(unsigned char *nonce32, const unsigned char *msg, size_t msglen, const unsigned char *key32, const unsigned char *xonly_pk32, const unsigned char *algo, size_t algolen, void *data) { + (void) msg; + (void) msglen; + (void) key32; + (void) xonly_pk32; + (void) algo; + (void) algolen; + (void) data; + + memset(nonce32, 0xFF, 32); + return 1; +} + +void test_schnorrsig_sign(void) { + unsigned char sk[32]; + secp256k1_xonly_pubkey pk; + secp256k1_keypair keypair; + const unsigned char msg[32] = "this is a msg for a schnorrsig.."; + unsigned char sig[64]; + unsigned char sig2[64]; + unsigned char zeros64[64] = { 0 }; + secp256k1_schnorrsig_extraparams extraparams = SECP256K1_SCHNORRSIG_EXTRAPARAMS_INIT; + unsigned char aux_rand[32]; + + secp256k1_testrand256(sk); + secp256k1_testrand256(aux_rand); + CHECK(secp256k1_keypair_create(ctx, &keypair, sk)); + CHECK(secp256k1_keypair_xonly_pub(ctx, &pk, NULL, &keypair)); + CHECK(secp256k1_schnorrsig_sign(ctx, sig, msg, &keypair, NULL) == 1); + CHECK(secp256k1_schnorrsig_verify(ctx, sig, msg, sizeof(msg), &pk)); + + /* Test different nonce functions */ + CHECK(secp256k1_schnorrsig_sign_custom(ctx, sig, msg, sizeof(msg), &keypair, &extraparams) == 1); + CHECK(secp256k1_schnorrsig_verify(ctx, sig, msg, sizeof(msg), &pk)); + memset(sig, 1, sizeof(sig)); + extraparams.noncefp = nonce_function_failing; + CHECK(secp256k1_schnorrsig_sign_custom(ctx, sig, msg, sizeof(msg), &keypair, &extraparams) == 0); + CHECK(secp256k1_memcmp_var(sig, zeros64, sizeof(sig)) == 0); + memset(&sig, 1, sizeof(sig)); + extraparams.noncefp = nonce_function_0; + CHECK(secp256k1_schnorrsig_sign_custom(ctx, sig, msg, sizeof(msg), &keypair, &extraparams) == 0); + CHECK(secp256k1_memcmp_var(sig, zeros64, sizeof(sig)) == 0); + memset(&sig, 1, sizeof(sig)); + extraparams.noncefp = nonce_function_overflowing; + CHECK(secp256k1_schnorrsig_sign_custom(ctx, sig, msg, sizeof(msg), &keypair, &extraparams) == 1); + CHECK(secp256k1_schnorrsig_verify(ctx, sig, msg, sizeof(msg), &pk)); + + /* When using the default nonce function, schnorrsig_sign_custom produces + * the same result as schnorrsig_sign with aux_rand = extraparams.ndata */ + extraparams.noncefp = NULL; + extraparams.ndata = aux_rand; + CHECK(secp256k1_schnorrsig_sign_custom(ctx, sig, msg, sizeof(msg), &keypair, &extraparams) == 1); + CHECK(secp256k1_schnorrsig_sign(ctx, sig2, msg, &keypair, extraparams.ndata) == 1); + CHECK(secp256k1_memcmp_var(sig, sig2, sizeof(sig)) == 0); +} + +#define N_SIGS 3 +/* Creates N_SIGS valid signatures and verifies them with verify and + * verify_batch (TODO). Then flips some bits and checks that verification now + * fails. */ +void test_schnorrsig_sign_verify(void) { + unsigned char sk[32]; + unsigned char msg[N_SIGS][32]; + unsigned char sig[N_SIGS][64]; + size_t i; + secp256k1_keypair keypair; + secp256k1_xonly_pubkey pk; + secp256k1_scalar s; + + secp256k1_testrand256(sk); + CHECK(secp256k1_keypair_create(ctx, &keypair, sk)); + CHECK(secp256k1_keypair_xonly_pub(ctx, &pk, NULL, &keypair)); + + for (i = 0; i < N_SIGS; i++) { + secp256k1_testrand256(msg[i]); + CHECK(secp256k1_schnorrsig_sign(ctx, sig[i], msg[i], &keypair, NULL)); + CHECK(secp256k1_schnorrsig_verify(ctx, sig[i], msg[i], sizeof(msg[i]), &pk)); + } + + { + /* Flip a few bits in the signature and in the message and check that + * verify and verify_batch (TODO) fail */ + size_t sig_idx = secp256k1_testrand_int(N_SIGS); + size_t byte_idx = secp256k1_testrand_int(32); + unsigned char xorbyte = secp256k1_testrand_int(254)+1; + sig[sig_idx][byte_idx] ^= xorbyte; + CHECK(!secp256k1_schnorrsig_verify(ctx, sig[sig_idx], msg[sig_idx], sizeof(msg[sig_idx]), &pk)); + sig[sig_idx][byte_idx] ^= xorbyte; + + byte_idx = secp256k1_testrand_int(32); + sig[sig_idx][32+byte_idx] ^= xorbyte; + CHECK(!secp256k1_schnorrsig_verify(ctx, sig[sig_idx], msg[sig_idx], sizeof(msg[sig_idx]), &pk)); + sig[sig_idx][32+byte_idx] ^= xorbyte; + + byte_idx = secp256k1_testrand_int(32); + msg[sig_idx][byte_idx] ^= xorbyte; + CHECK(!secp256k1_schnorrsig_verify(ctx, sig[sig_idx], msg[sig_idx], sizeof(msg[sig_idx]), &pk)); + msg[sig_idx][byte_idx] ^= xorbyte; + + /* Check that above bitflips have been reversed correctly */ + CHECK(secp256k1_schnorrsig_verify(ctx, sig[sig_idx], msg[sig_idx], sizeof(msg[sig_idx]), &pk)); + } + + /* Test overflowing s */ + CHECK(secp256k1_schnorrsig_sign(ctx, sig[0], msg[0], &keypair, NULL)); + CHECK(secp256k1_schnorrsig_verify(ctx, sig[0], msg[0], sizeof(msg[0]), &pk)); + memset(&sig[0][32], 0xFF, 32); + CHECK(!secp256k1_schnorrsig_verify(ctx, sig[0], msg[0], sizeof(msg[0]), &pk)); + + /* Test negative s */ + CHECK(secp256k1_schnorrsig_sign(ctx, sig[0], msg[0], &keypair, NULL)); + CHECK(secp256k1_schnorrsig_verify(ctx, sig[0], msg[0], sizeof(msg[0]), &pk)); + secp256k1_scalar_set_b32(&s, &sig[0][32], NULL); + secp256k1_scalar_negate(&s, &s); + secp256k1_scalar_get_b32(&sig[0][32], &s); + CHECK(!secp256k1_schnorrsig_verify(ctx, sig[0], msg[0], sizeof(msg[0]), &pk)); + + /* The empty message can be signed & verified */ + CHECK(secp256k1_schnorrsig_sign_custom(ctx, sig[0], NULL, 0, &keypair, NULL) == 1); + CHECK(secp256k1_schnorrsig_verify(ctx, sig[0], NULL, 0, &pk) == 1); + + { + /* Test varying message lengths */ + unsigned char msg_large[32 * 8]; + uint32_t msglen = secp256k1_testrand_int(sizeof(msg_large)); + for (i = 0; i < sizeof(msg_large); i += 32) { + secp256k1_testrand256(&msg_large[i]); + } + CHECK(secp256k1_schnorrsig_sign_custom(ctx, sig[0], msg_large, msglen, &keypair, NULL) == 1); + CHECK(secp256k1_schnorrsig_verify(ctx, sig[0], msg_large, msglen, &pk) == 1); + /* Verification for a random wrong message length fails */ + msglen = (msglen + (sizeof(msg_large) - 1)) % sizeof(msg_large); + CHECK(secp256k1_schnorrsig_verify(ctx, sig[0], msg_large, msglen, &pk) == 0); + } +} +#undef N_SIGS + +void test_schnorrsig_taproot(void) { + unsigned char sk[32]; + secp256k1_keypair keypair; + secp256k1_xonly_pubkey internal_pk; + unsigned char internal_pk_bytes[32]; + secp256k1_xonly_pubkey output_pk; + unsigned char output_pk_bytes[32]; + unsigned char tweak[32]; + int pk_parity; + unsigned char msg[32]; + unsigned char sig[64]; + + /* Create output key */ + secp256k1_testrand256(sk); + CHECK(secp256k1_keypair_create(ctx, &keypair, sk) == 1); + CHECK(secp256k1_keypair_xonly_pub(ctx, &internal_pk, NULL, &keypair) == 1); + /* In actual taproot the tweak would be hash of internal_pk */ + CHECK(secp256k1_xonly_pubkey_serialize(ctx, tweak, &internal_pk) == 1); + CHECK(secp256k1_keypair_xonly_tweak_add(ctx, &keypair, tweak) == 1); + CHECK(secp256k1_keypair_xonly_pub(ctx, &output_pk, &pk_parity, &keypair) == 1); + CHECK(secp256k1_xonly_pubkey_serialize(ctx, output_pk_bytes, &output_pk) == 1); + + /* Key spend */ + secp256k1_testrand256(msg); + CHECK(secp256k1_schnorrsig_sign(ctx, sig, msg, &keypair, NULL) == 1); + /* Verify key spend */ + CHECK(secp256k1_xonly_pubkey_parse(ctx, &output_pk, output_pk_bytes) == 1); + CHECK(secp256k1_schnorrsig_verify(ctx, sig, msg, sizeof(msg), &output_pk) == 1); + + /* Script spend */ + CHECK(secp256k1_xonly_pubkey_serialize(ctx, internal_pk_bytes, &internal_pk) == 1); + /* Verify script spend */ + CHECK(secp256k1_xonly_pubkey_parse(ctx, &internal_pk, internal_pk_bytes) == 1); + CHECK(secp256k1_xonly_pubkey_tweak_add_check(ctx, output_pk_bytes, pk_parity, &internal_pk, tweak) == 1); +} + +void run_schnorrsig_tests(void) { + int i; + run_nonce_function_bip340_tests(); + + test_schnorrsig_api(); + test_schnorrsig_sha256_tagged(); + test_schnorrsig_bip_vectors(); + for (i = 0; i < count; i++) { + test_schnorrsig_sign(); + test_schnorrsig_sign_verify(); + } + test_schnorrsig_taproot(); +} + +#endif diff --git a/src/num.h b/src/num.h deleted file mode 100644 index 49f2dd791d569..0000000000000 --- a/src/num.h +++ /dev/null @@ -1,74 +0,0 @@ -/********************************************************************** - * Copyright (c) 2013, 2014 Pieter Wuille * - * Distributed under the MIT software license, see the accompanying * - * file COPYING or http://www.opensource.org/licenses/mit-license.php.* - **********************************************************************/ - -#ifndef SECP256K1_NUM_H -#define SECP256K1_NUM_H - -#ifndef USE_NUM_NONE - -#if defined HAVE_CONFIG_H -#include "libsecp256k1-config.h" -#endif - -#if defined(USE_NUM_GMP) -#include "num_gmp.h" -#else -#error "Please select num implementation" -#endif - -/** Copy a number. */ -static void secp256k1_num_copy(secp256k1_num *r, const secp256k1_num *a); - -/** Convert a number's absolute value to a binary big-endian string. - * There must be enough place. */ -static void secp256k1_num_get_bin(unsigned char *r, unsigned int rlen, const secp256k1_num *a); - -/** Set a number to the value of a binary big-endian string. */ -static void secp256k1_num_set_bin(secp256k1_num *r, const unsigned char *a, unsigned int alen); - -/** Compute a modular inverse. The input must be less than the modulus. */ -static void secp256k1_num_mod_inverse(secp256k1_num *r, const secp256k1_num *a, const secp256k1_num *m); - -/** Compute the jacobi symbol (a|b). b must be positive and odd. */ -static int secp256k1_num_jacobi(const secp256k1_num *a, const secp256k1_num *b); - -/** Compare the absolute value of two numbers. */ -static int secp256k1_num_cmp(const secp256k1_num *a, const secp256k1_num *b); - -/** Test whether two number are equal (including sign). */ -static int secp256k1_num_eq(const secp256k1_num *a, const secp256k1_num *b); - -/** Add two (signed) numbers. */ -static void secp256k1_num_add(secp256k1_num *r, const secp256k1_num *a, const secp256k1_num *b); - -/** Subtract two (signed) numbers. */ -static void secp256k1_num_sub(secp256k1_num *r, const secp256k1_num *a, const secp256k1_num *b); - -/** Multiply two (signed) numbers. */ -static void secp256k1_num_mul(secp256k1_num *r, const secp256k1_num *a, const secp256k1_num *b); - -/** Replace a number by its remainder modulo m. M's sign is ignored. The result is a number between 0 and m-1, - even if r was negative. */ -static void secp256k1_num_mod(secp256k1_num *r, const secp256k1_num *m); - -/** Right-shift the passed number by bits bits. */ -static void secp256k1_num_shift(secp256k1_num *r, int bits); - -/** Check whether a number is zero. */ -static int secp256k1_num_is_zero(const secp256k1_num *a); - -/** Check whether a number is one. */ -static int secp256k1_num_is_one(const secp256k1_num *a); - -/** Check whether a number is strictly negative. */ -static int secp256k1_num_is_neg(const secp256k1_num *a); - -/** Change a number's sign. */ -static void secp256k1_num_negate(secp256k1_num *r); - -#endif - -#endif /* SECP256K1_NUM_H */ diff --git a/src/num_gmp.h b/src/num_gmp.h deleted file mode 100644 index 3619844bd5127..0000000000000 --- a/src/num_gmp.h +++ /dev/null @@ -1,20 +0,0 @@ -/********************************************************************** - * Copyright (c) 2013, 2014 Pieter Wuille * - * Distributed under the MIT software license, see the accompanying * - * file COPYING or http://www.opensource.org/licenses/mit-license.php.* - **********************************************************************/ - -#ifndef SECP256K1_NUM_REPR_H -#define SECP256K1_NUM_REPR_H - -#include - -#define NUM_LIMBS ((256+GMP_NUMB_BITS-1)/GMP_NUMB_BITS) - -typedef struct { - mp_limb_t data[2*NUM_LIMBS]; - int neg; - int limbs; -} secp256k1_num; - -#endif /* SECP256K1_NUM_REPR_H */ diff --git a/src/num_gmp_impl.h b/src/num_gmp_impl.h deleted file mode 100644 index 0ae2a8ba0ecb7..0000000000000 --- a/src/num_gmp_impl.h +++ /dev/null @@ -1,288 +0,0 @@ -/********************************************************************** - * Copyright (c) 2013, 2014 Pieter Wuille * - * Distributed under the MIT software license, see the accompanying * - * file COPYING or http://www.opensource.org/licenses/mit-license.php.* - **********************************************************************/ - -#ifndef SECP256K1_NUM_REPR_IMPL_H -#define SECP256K1_NUM_REPR_IMPL_H - -#include -#include -#include - -#include "util.h" -#include "num.h" - -#ifdef VERIFY -static void secp256k1_num_sanity(const secp256k1_num *a) { - VERIFY_CHECK(a->limbs == 1 || (a->limbs > 1 && a->data[a->limbs-1] != 0)); -} -#else -#define secp256k1_num_sanity(a) do { } while(0) -#endif - -static void secp256k1_num_copy(secp256k1_num *r, const secp256k1_num *a) { - *r = *a; -} - -static void secp256k1_num_get_bin(unsigned char *r, unsigned int rlen, const secp256k1_num *a) { - unsigned char tmp[65]; - int len = 0; - int shift = 0; - if (a->limbs>1 || a->data[0] != 0) { - len = mpn_get_str(tmp, 256, (mp_limb_t*)a->data, a->limbs); - } - while (shift < len && tmp[shift] == 0) shift++; - VERIFY_CHECK(len-shift <= (int)rlen); - memset(r, 0, rlen - len + shift); - if (len > shift) { - memcpy(r + rlen - len + shift, tmp + shift, len - shift); - } - memset(tmp, 0, sizeof(tmp)); -} - -static void secp256k1_num_set_bin(secp256k1_num *r, const unsigned char *a, unsigned int alen) { - int len; - VERIFY_CHECK(alen > 0); - VERIFY_CHECK(alen <= 64); - len = mpn_set_str(r->data, a, alen, 256); - if (len == 0) { - r->data[0] = 0; - len = 1; - } - VERIFY_CHECK(len <= NUM_LIMBS*2); - r->limbs = len; - r->neg = 0; - while (r->limbs > 1 && r->data[r->limbs-1]==0) { - r->limbs--; - } -} - -static void secp256k1_num_add_abs(secp256k1_num *r, const secp256k1_num *a, const secp256k1_num *b) { - mp_limb_t c = mpn_add(r->data, a->data, a->limbs, b->data, b->limbs); - r->limbs = a->limbs; - if (c != 0) { - VERIFY_CHECK(r->limbs < 2*NUM_LIMBS); - r->data[r->limbs++] = c; - } -} - -static void secp256k1_num_sub_abs(secp256k1_num *r, const secp256k1_num *a, const secp256k1_num *b) { - mp_limb_t c = mpn_sub(r->data, a->data, a->limbs, b->data, b->limbs); - (void)c; - VERIFY_CHECK(c == 0); - r->limbs = a->limbs; - while (r->limbs > 1 && r->data[r->limbs-1]==0) { - r->limbs--; - } -} - -static void secp256k1_num_mod(secp256k1_num *r, const secp256k1_num *m) { - secp256k1_num_sanity(r); - secp256k1_num_sanity(m); - - if (r->limbs >= m->limbs) { - mp_limb_t t[2*NUM_LIMBS]; - mpn_tdiv_qr(t, r->data, 0, r->data, r->limbs, m->data, m->limbs); - memset(t, 0, sizeof(t)); - r->limbs = m->limbs; - while (r->limbs > 1 && r->data[r->limbs-1]==0) { - r->limbs--; - } - } - - if (r->neg && (r->limbs > 1 || r->data[0] != 0)) { - secp256k1_num_sub_abs(r, m, r); - r->neg = 0; - } -} - -static void secp256k1_num_mod_inverse(secp256k1_num *r, const secp256k1_num *a, const secp256k1_num *m) { - int i; - mp_limb_t g[NUM_LIMBS+1]; - mp_limb_t u[NUM_LIMBS+1]; - mp_limb_t v[NUM_LIMBS+1]; - mp_size_t sn; - mp_size_t gn; - secp256k1_num_sanity(a); - secp256k1_num_sanity(m); - - /** mpn_gcdext computes: (G,S) = gcdext(U,V), where - * * G = gcd(U,V) - * * G = U*S + V*T - * * U has equal or more limbs than V, and V has no padding - * If we set U to be (a padded version of) a, and V = m: - * G = a*S + m*T - * G = a*S mod m - * Assuming G=1: - * S = 1/a mod m - */ - VERIFY_CHECK(m->limbs <= NUM_LIMBS); - VERIFY_CHECK(m->data[m->limbs-1] != 0); - for (i = 0; i < m->limbs; i++) { - u[i] = (i < a->limbs) ? a->data[i] : 0; - v[i] = m->data[i]; - } - sn = NUM_LIMBS+1; - gn = mpn_gcdext(g, r->data, &sn, u, m->limbs, v, m->limbs); - (void)gn; - VERIFY_CHECK(gn == 1); - VERIFY_CHECK(g[0] == 1); - r->neg = a->neg ^ m->neg; - if (sn < 0) { - mpn_sub(r->data, m->data, m->limbs, r->data, -sn); - r->limbs = m->limbs; - while (r->limbs > 1 && r->data[r->limbs-1]==0) { - r->limbs--; - } - } else { - r->limbs = sn; - } - memset(g, 0, sizeof(g)); - memset(u, 0, sizeof(u)); - memset(v, 0, sizeof(v)); -} - -static int secp256k1_num_jacobi(const secp256k1_num *a, const secp256k1_num *b) { - int ret; - mpz_t ga, gb; - secp256k1_num_sanity(a); - secp256k1_num_sanity(b); - VERIFY_CHECK(!b->neg && (b->limbs > 0) && (b->data[0] & 1)); - - mpz_inits(ga, gb, NULL); - - mpz_import(gb, b->limbs, -1, sizeof(mp_limb_t), 0, 0, b->data); - mpz_import(ga, a->limbs, -1, sizeof(mp_limb_t), 0, 0, a->data); - if (a->neg) { - mpz_neg(ga, ga); - } - - ret = mpz_jacobi(ga, gb); - - mpz_clears(ga, gb, NULL); - - return ret; -} - -static int secp256k1_num_is_one(const secp256k1_num *a) { - return (a->limbs == 1 && a->data[0] == 1); -} - -static int secp256k1_num_is_zero(const secp256k1_num *a) { - return (a->limbs == 1 && a->data[0] == 0); -} - -static int secp256k1_num_is_neg(const secp256k1_num *a) { - return (a->limbs > 1 || a->data[0] != 0) && a->neg; -} - -static int secp256k1_num_cmp(const secp256k1_num *a, const secp256k1_num *b) { - if (a->limbs > b->limbs) { - return 1; - } - if (a->limbs < b->limbs) { - return -1; - } - return mpn_cmp(a->data, b->data, a->limbs); -} - -static int secp256k1_num_eq(const secp256k1_num *a, const secp256k1_num *b) { - if (a->limbs > b->limbs) { - return 0; - } - if (a->limbs < b->limbs) { - return 0; - } - if ((a->neg && !secp256k1_num_is_zero(a)) != (b->neg && !secp256k1_num_is_zero(b))) { - return 0; - } - return mpn_cmp(a->data, b->data, a->limbs) == 0; -} - -static void secp256k1_num_subadd(secp256k1_num *r, const secp256k1_num *a, const secp256k1_num *b, int bneg) { - if (!(b->neg ^ bneg ^ a->neg)) { /* a and b have the same sign */ - r->neg = a->neg; - if (a->limbs >= b->limbs) { - secp256k1_num_add_abs(r, a, b); - } else { - secp256k1_num_add_abs(r, b, a); - } - } else { - if (secp256k1_num_cmp(a, b) > 0) { - r->neg = a->neg; - secp256k1_num_sub_abs(r, a, b); - } else { - r->neg = b->neg ^ bneg; - secp256k1_num_sub_abs(r, b, a); - } - } -} - -static void secp256k1_num_add(secp256k1_num *r, const secp256k1_num *a, const secp256k1_num *b) { - secp256k1_num_sanity(a); - secp256k1_num_sanity(b); - secp256k1_num_subadd(r, a, b, 0); -} - -static void secp256k1_num_sub(secp256k1_num *r, const secp256k1_num *a, const secp256k1_num *b) { - secp256k1_num_sanity(a); - secp256k1_num_sanity(b); - secp256k1_num_subadd(r, a, b, 1); -} - -static void secp256k1_num_mul(secp256k1_num *r, const secp256k1_num *a, const secp256k1_num *b) { - mp_limb_t tmp[2*NUM_LIMBS+1]; - secp256k1_num_sanity(a); - secp256k1_num_sanity(b); - - VERIFY_CHECK(a->limbs + b->limbs <= 2*NUM_LIMBS+1); - if ((a->limbs==1 && a->data[0]==0) || (b->limbs==1 && b->data[0]==0)) { - r->limbs = 1; - r->neg = 0; - r->data[0] = 0; - return; - } - if (a->limbs >= b->limbs) { - mpn_mul(tmp, a->data, a->limbs, b->data, b->limbs); - } else { - mpn_mul(tmp, b->data, b->limbs, a->data, a->limbs); - } - r->limbs = a->limbs + b->limbs; - if (r->limbs > 1 && tmp[r->limbs - 1]==0) { - r->limbs--; - } - VERIFY_CHECK(r->limbs <= 2*NUM_LIMBS); - mpn_copyi(r->data, tmp, r->limbs); - r->neg = a->neg ^ b->neg; - memset(tmp, 0, sizeof(tmp)); -} - -static void secp256k1_num_shift(secp256k1_num *r, int bits) { - if (bits % GMP_NUMB_BITS) { - /* Shift within limbs. */ - mpn_rshift(r->data, r->data, r->limbs, bits % GMP_NUMB_BITS); - } - if (bits >= GMP_NUMB_BITS) { - int i; - /* Shift full limbs. */ - for (i = 0; i < r->limbs; i++) { - int index = i + (bits / GMP_NUMB_BITS); - if (index < r->limbs && index < 2*NUM_LIMBS) { - r->data[i] = r->data[index]; - } else { - r->data[i] = 0; - } - } - } - while (r->limbs>1 && r->data[r->limbs-1]==0) { - r->limbs--; - } -} - -static void secp256k1_num_negate(secp256k1_num *r) { - r->neg ^= 1; -} - -#endif /* SECP256K1_NUM_REPR_IMPL_H */ diff --git a/src/num_impl.h b/src/num_impl.h deleted file mode 100644 index c45193b033dab..0000000000000 --- a/src/num_impl.h +++ /dev/null @@ -1,24 +0,0 @@ -/********************************************************************** - * Copyright (c) 2013, 2014 Pieter Wuille * - * Distributed under the MIT software license, see the accompanying * - * file COPYING or http://www.opensource.org/licenses/mit-license.php.* - **********************************************************************/ - -#ifndef SECP256K1_NUM_IMPL_H -#define SECP256K1_NUM_IMPL_H - -#if defined HAVE_CONFIG_H -#include "libsecp256k1-config.h" -#endif - -#include "num.h" - -#if defined(USE_NUM_GMP) -#include "num_gmp_impl.h" -#elif defined(USE_NUM_NONE) -/* Nothing. */ -#else -#error "Please select num implementation" -#endif - -#endif /* SECP256K1_NUM_IMPL_H */ diff --git a/src/scalar.h b/src/scalar.h index 59304cb66e905..aaaa3d88277ad 100644 --- a/src/scalar.h +++ b/src/scalar.h @@ -1,13 +1,13 @@ -/********************************************************************** - * Copyright (c) 2014 Pieter Wuille * - * Distributed under the MIT software license, see the accompanying * - * file COPYING or http://www.opensource.org/licenses/mit-license.php.* - **********************************************************************/ +/*********************************************************************** + * Copyright (c) 2014 Pieter Wuille * + * Distributed under the MIT software license, see the accompanying * + * file COPYING or https://www.opensource.org/licenses/mit-license.php.* + ***********************************************************************/ #ifndef SECP256K1_SCALAR_H #define SECP256K1_SCALAR_H -#include "num.h" +#include "util.h" #if defined HAVE_CONFIG_H #include "libsecp256k1-config.h" @@ -15,12 +15,12 @@ #if defined(EXHAUSTIVE_TEST_ORDER) #include "scalar_low.h" -#elif defined(USE_SCALAR_4X64) +#elif defined(SECP256K1_WIDEMUL_INT128) #include "scalar_4x64.h" -#elif defined(USE_SCALAR_8X32) +#elif defined(SECP256K1_WIDEMUL_INT64) #include "scalar_8x32.h" #else -#error "Please select scalar implementation" +#error "Please select wide multiplication implementation" #endif /** Clear a scalar to prevent the leak of sensitive data. */ @@ -32,9 +32,17 @@ static unsigned int secp256k1_scalar_get_bits(const secp256k1_scalar *a, unsigne /** Access bits from a scalar. Not constant time. */ static unsigned int secp256k1_scalar_get_bits_var(const secp256k1_scalar *a, unsigned int offset, unsigned int count); -/** Set a scalar from a big endian byte array. */ +/** Set a scalar from a big endian byte array. The scalar will be reduced modulo group order `n`. + * In: bin: pointer to a 32-byte array. + * Out: r: scalar to be set. + * overflow: non-zero if the scalar was bigger or equal to `n` before reduction, zero otherwise (can be NULL). + */ static void secp256k1_scalar_set_b32(secp256k1_scalar *r, const unsigned char *bin, int *overflow); +/** Set a scalar from a big endian byte array and returns 1 if it is a valid + * seckey and 0 otherwise. */ +static int secp256k1_scalar_set_b32_seckey(secp256k1_scalar *r, const unsigned char *bin); + /** Set a scalar to an unsigned integer. */ static void secp256k1_scalar_set_int(secp256k1_scalar *r, unsigned int v); @@ -54,9 +62,6 @@ static void secp256k1_scalar_mul(secp256k1_scalar *r, const secp256k1_scalar *a, * the low bits that were shifted off */ static int secp256k1_scalar_shr_int(secp256k1_scalar *r, int n); -/** Compute the square of a scalar (modulo the group order). */ -static void secp256k1_scalar_sqr(secp256k1_scalar *r, const secp256k1_scalar *a); - /** Compute the inverse of a scalar (modulo the group order). */ static void secp256k1_scalar_inverse(secp256k1_scalar *r, const secp256k1_scalar *a); @@ -82,25 +87,19 @@ static int secp256k1_scalar_is_high(const secp256k1_scalar *a); * Returns -1 if the number was negated, 1 otherwise */ static int secp256k1_scalar_cond_negate(secp256k1_scalar *a, int flag); -#ifndef USE_NUM_NONE -/** Convert a scalar to a number. */ -static void secp256k1_scalar_get_num(secp256k1_num *r, const secp256k1_scalar *a); - -/** Get the order of the group as a number. */ -static void secp256k1_scalar_order_get_num(secp256k1_num *r); -#endif - /** Compare two scalars. */ static int secp256k1_scalar_eq(const secp256k1_scalar *a, const secp256k1_scalar *b); -#ifdef USE_ENDOMORPHISM -/** Find r1 and r2 such that r1+r2*2^128 = a. */ -static void secp256k1_scalar_split_128(secp256k1_scalar *r1, secp256k1_scalar *r2, const secp256k1_scalar *a); -/** Find r1 and r2 such that r1+r2*lambda = a, and r1 and r2 are maximum 128 bits long (see secp256k1_gej_mul_lambda). */ -static void secp256k1_scalar_split_lambda(secp256k1_scalar *r1, secp256k1_scalar *r2, const secp256k1_scalar *a); -#endif +/** Find r1 and r2 such that r1+r2*2^128 = k. */ +static void secp256k1_scalar_split_128(secp256k1_scalar *r1, secp256k1_scalar *r2, const secp256k1_scalar *k); +/** Find r1 and r2 such that r1+r2*lambda = k, + * where r1 and r2 or their negations are maximum 128 bits long (see secp256k1_ge_mul_lambda). */ +static void secp256k1_scalar_split_lambda(secp256k1_scalar *r1, secp256k1_scalar *r2, const secp256k1_scalar *k); /** Multiply a and b (without taking the modulus!), divide by 2**shift, and round to the nearest integer. Shift must be at least 256. */ static void secp256k1_scalar_mul_shift_var(secp256k1_scalar *r, const secp256k1_scalar *a, const secp256k1_scalar *b, unsigned int shift); +/** If flag is true, set *r equal to *a; otherwise leave it. Constant-time. Both *r and *a must be initialized.*/ +static void secp256k1_scalar_cmov(secp256k1_scalar *r, const secp256k1_scalar *a, int flag); + #endif /* SECP256K1_SCALAR_H */ diff --git a/src/scalar_4x64.h b/src/scalar_4x64.h index 19c7495d1c8e3..700964291ee28 100644 --- a/src/scalar_4x64.h +++ b/src/scalar_4x64.h @@ -1,8 +1,8 @@ -/********************************************************************** - * Copyright (c) 2014 Pieter Wuille * - * Distributed under the MIT software license, see the accompanying * - * file COPYING or http://www.opensource.org/licenses/mit-license.php.* - **********************************************************************/ +/*********************************************************************** + * Copyright (c) 2014 Pieter Wuille * + * Distributed under the MIT software license, see the accompanying * + * file COPYING or https://www.opensource.org/licenses/mit-license.php.* + ***********************************************************************/ #ifndef SECP256K1_SCALAR_REPR_H #define SECP256K1_SCALAR_REPR_H diff --git a/src/scalar_4x64_impl.h b/src/scalar_4x64_impl.h index db1ebf94bee04..a1def26fca7af 100644 --- a/src/scalar_4x64_impl.h +++ b/src/scalar_4x64_impl.h @@ -1,12 +1,14 @@ -/********************************************************************** - * Copyright (c) 2013, 2014 Pieter Wuille * - * Distributed under the MIT software license, see the accompanying * - * file COPYING or http://www.opensource.org/licenses/mit-license.php.* - **********************************************************************/ +/*********************************************************************** + * Copyright (c) 2013, 2014 Pieter Wuille * + * Distributed under the MIT software license, see the accompanying * + * file COPYING or https://www.opensource.org/licenses/mit-license.php.* + ***********************************************************************/ #ifndef SECP256K1_SCALAR_REPR_IMPL_H #define SECP256K1_SCALAR_REPR_IMPL_H +#include "modinv64_impl.h" + /* Limbs of the secp256k1 order. */ #define SECP256K1_N_0 ((uint64_t)0xBFD25E8CD0364141ULL) #define SECP256K1_N_1 ((uint64_t)0xBAAEDCE6AF48A03BULL) @@ -192,9 +194,9 @@ static int secp256k1_scalar_cond_negate(secp256k1_scalar *r, int flag) { tl = t; \ } \ c0 += tl; /* overflow is handled on the next line */ \ - th += (c0 < tl) ? 1 : 0; /* at most 0xFFFFFFFFFFFFFFFF */ \ + th += (c0 < tl); /* at most 0xFFFFFFFFFFFFFFFF */ \ c1 += th; /* overflow is handled on the next line */ \ - c2 += (c1 < th) ? 1 : 0; /* never overflows by contract (verified in the next line) */ \ + c2 += (c1 < th); /* never overflows by contract (verified in the next line) */ \ VERIFY_CHECK((c1 >= th) || (c2 != 0)); \ } @@ -207,46 +209,24 @@ static int secp256k1_scalar_cond_negate(secp256k1_scalar *r, int flag) { tl = t; \ } \ c0 += tl; /* overflow is handled on the next line */ \ - th += (c0 < tl) ? 1 : 0; /* at most 0xFFFFFFFFFFFFFFFF */ \ + th += (c0 < tl); /* at most 0xFFFFFFFFFFFFFFFF */ \ c1 += th; /* never overflows by contract (verified in the next line) */ \ VERIFY_CHECK(c1 >= th); \ } -/** Add 2*a*b to the number defined by (c0,c1,c2). c2 must never overflow. */ -#define muladd2(a,b) { \ - uint64_t tl, th, th2, tl2; \ - { \ - uint128_t t = (uint128_t)a * b; \ - th = t >> 64; /* at most 0xFFFFFFFFFFFFFFFE */ \ - tl = t; \ - } \ - th2 = th + th; /* at most 0xFFFFFFFFFFFFFFFE (in case th was 0x7FFFFFFFFFFFFFFF) */ \ - c2 += (th2 < th) ? 1 : 0; /* never overflows by contract (verified the next line) */ \ - VERIFY_CHECK((th2 >= th) || (c2 != 0)); \ - tl2 = tl + tl; /* at most 0xFFFFFFFFFFFFFFFE (in case the lowest 63 bits of tl were 0x7FFFFFFFFFFFFFFF) */ \ - th2 += (tl2 < tl) ? 1 : 0; /* at most 0xFFFFFFFFFFFFFFFF */ \ - c0 += tl2; /* overflow is handled on the next line */ \ - th2 += (c0 < tl2) ? 1 : 0; /* second overflow is handled on the next line */ \ - c2 += (c0 < tl2) & (th2 == 0); /* never overflows by contract (verified the next line) */ \ - VERIFY_CHECK((c0 >= tl2) || (th2 != 0) || (c2 != 0)); \ - c1 += th2; /* overflow is handled on the next line */ \ - c2 += (c1 < th2) ? 1 : 0; /* never overflows by contract (verified the next line) */ \ - VERIFY_CHECK((c1 >= th2) || (c2 != 0)); \ -} - /** Add a to the number defined by (c0,c1,c2). c2 must never overflow. */ #define sumadd(a) { \ unsigned int over; \ c0 += (a); /* overflow is handled on the next line */ \ - over = (c0 < (a)) ? 1 : 0; \ + over = (c0 < (a)); \ c1 += over; /* overflow is handled on the next line */ \ - c2 += (c1 < over) ? 1 : 0; /* never overflows by contract */ \ + c2 += (c1 < over); /* never overflows by contract */ \ } /** Add a to the number defined by (c0,c1). c1 must never overflow, c2 must be zero. */ #define sumadd_fast(a) { \ c0 += (a); /* overflow is handled on the next line */ \ - c1 += (c0 < (a)) ? 1 : 0; /* never overflows by contract (verified the next line) */ \ + c1 += (c0 < (a)); /* never overflows by contract (verified the next line) */ \ VERIFY_CHECK((c1 != 0) | (c0 >= (a))); \ VERIFY_CHECK(c2 == 0); \ } @@ -376,7 +356,7 @@ static void secp256k1_scalar_reduce_512(secp256k1_scalar *r, const uint64_t *l) /* extract m6 */ "movq %%r8, %q6\n" : "=g"(m0), "=g"(m1), "=g"(m2), "=g"(m3), "=g"(m4), "=g"(m5), "=g"(m6) - : "S"(l), "n"(SECP256K1_N_C_0), "n"(SECP256K1_N_C_1) + : "S"(l), "i"(SECP256K1_N_C_0), "i"(SECP256K1_N_C_1) : "rax", "rdx", "r8", "r9", "r10", "r11", "r12", "r13", "r14", "cc"); /* Reduce 385 bits into 258. */ @@ -455,7 +435,7 @@ static void secp256k1_scalar_reduce_512(secp256k1_scalar *r, const uint64_t *l) /* extract p4 */ "movq %%r9, %q4\n" : "=&g"(p0), "=&g"(p1), "=&g"(p2), "=g"(p3), "=g"(p4) - : "g"(m0), "g"(m1), "g"(m2), "g"(m3), "g"(m4), "g"(m5), "g"(m6), "n"(SECP256K1_N_C_0), "n"(SECP256K1_N_C_1) + : "g"(m0), "g"(m1), "g"(m2), "g"(m3), "g"(m4), "g"(m5), "g"(m6), "i"(SECP256K1_N_C_0), "i"(SECP256K1_N_C_1) : "rax", "rdx", "r8", "r9", "r10", "r11", "r12", "r13", "cc"); /* Reduce 258 bits into 256. */ @@ -501,7 +481,7 @@ static void secp256k1_scalar_reduce_512(secp256k1_scalar *r, const uint64_t *l) /* Extract c */ "movq %%r9, %q0\n" : "=g"(c) - : "g"(p0), "g"(p1), "g"(p2), "g"(p3), "g"(p4), "D"(r), "n"(SECP256K1_N_C_0), "n"(SECP256K1_N_C_1) + : "g"(p0), "g"(p1), "g"(p2), "g"(p3), "g"(p4), "D"(r), "i"(SECP256K1_N_C_0), "i"(SECP256K1_N_C_1) : "rax", "rdx", "r8", "r9", "r10", "cc", "memory"); #else uint128_t c; @@ -743,148 +723,10 @@ static void secp256k1_scalar_mul_512(uint64_t l[8], const secp256k1_scalar *a, c #endif } -static void secp256k1_scalar_sqr_512(uint64_t l[8], const secp256k1_scalar *a) { -#ifdef USE_ASM_X86_64 - __asm__ __volatile__( - /* Preload */ - "movq 0(%%rdi), %%r11\n" - "movq 8(%%rdi), %%r12\n" - "movq 16(%%rdi), %%r13\n" - "movq 24(%%rdi), %%r14\n" - /* (rax,rdx) = a0 * a0 */ - "movq %%r11, %%rax\n" - "mulq %%r11\n" - /* Extract l0 */ - "movq %%rax, 0(%%rsi)\n" - /* (r8,r9,r10) = (rdx,0) */ - "movq %%rdx, %%r8\n" - "xorq %%r9, %%r9\n" - "xorq %%r10, %%r10\n" - /* (r8,r9,r10) += 2 * a0 * a1 */ - "movq %%r11, %%rax\n" - "mulq %%r12\n" - "addq %%rax, %%r8\n" - "adcq %%rdx, %%r9\n" - "adcq $0, %%r10\n" - "addq %%rax, %%r8\n" - "adcq %%rdx, %%r9\n" - "adcq $0, %%r10\n" - /* Extract l1 */ - "movq %%r8, 8(%%rsi)\n" - "xorq %%r8, %%r8\n" - /* (r9,r10,r8) += 2 * a0 * a2 */ - "movq %%r11, %%rax\n" - "mulq %%r13\n" - "addq %%rax, %%r9\n" - "adcq %%rdx, %%r10\n" - "adcq $0, %%r8\n" - "addq %%rax, %%r9\n" - "adcq %%rdx, %%r10\n" - "adcq $0, %%r8\n" - /* (r9,r10,r8) += a1 * a1 */ - "movq %%r12, %%rax\n" - "mulq %%r12\n" - "addq %%rax, %%r9\n" - "adcq %%rdx, %%r10\n" - "adcq $0, %%r8\n" - /* Extract l2 */ - "movq %%r9, 16(%%rsi)\n" - "xorq %%r9, %%r9\n" - /* (r10,r8,r9) += 2 * a0 * a3 */ - "movq %%r11, %%rax\n" - "mulq %%r14\n" - "addq %%rax, %%r10\n" - "adcq %%rdx, %%r8\n" - "adcq $0, %%r9\n" - "addq %%rax, %%r10\n" - "adcq %%rdx, %%r8\n" - "adcq $0, %%r9\n" - /* (r10,r8,r9) += 2 * a1 * a2 */ - "movq %%r12, %%rax\n" - "mulq %%r13\n" - "addq %%rax, %%r10\n" - "adcq %%rdx, %%r8\n" - "adcq $0, %%r9\n" - "addq %%rax, %%r10\n" - "adcq %%rdx, %%r8\n" - "adcq $0, %%r9\n" - /* Extract l3 */ - "movq %%r10, 24(%%rsi)\n" - "xorq %%r10, %%r10\n" - /* (r8,r9,r10) += 2 * a1 * a3 */ - "movq %%r12, %%rax\n" - "mulq %%r14\n" - "addq %%rax, %%r8\n" - "adcq %%rdx, %%r9\n" - "adcq $0, %%r10\n" - "addq %%rax, %%r8\n" - "adcq %%rdx, %%r9\n" - "adcq $0, %%r10\n" - /* (r8,r9,r10) += a2 * a2 */ - "movq %%r13, %%rax\n" - "mulq %%r13\n" - "addq %%rax, %%r8\n" - "adcq %%rdx, %%r9\n" - "adcq $0, %%r10\n" - /* Extract l4 */ - "movq %%r8, 32(%%rsi)\n" - "xorq %%r8, %%r8\n" - /* (r9,r10,r8) += 2 * a2 * a3 */ - "movq %%r13, %%rax\n" - "mulq %%r14\n" - "addq %%rax, %%r9\n" - "adcq %%rdx, %%r10\n" - "adcq $0, %%r8\n" - "addq %%rax, %%r9\n" - "adcq %%rdx, %%r10\n" - "adcq $0, %%r8\n" - /* Extract l5 */ - "movq %%r9, 40(%%rsi)\n" - /* (r10,r8) += a3 * a3 */ - "movq %%r14, %%rax\n" - "mulq %%r14\n" - "addq %%rax, %%r10\n" - "adcq %%rdx, %%r8\n" - /* Extract l6 */ - "movq %%r10, 48(%%rsi)\n" - /* Extract l7 */ - "movq %%r8, 56(%%rsi)\n" - : - : "S"(l), "D"(a->d) - : "rax", "rdx", "r8", "r9", "r10", "r11", "r12", "r13", "r14", "cc", "memory"); -#else - /* 160 bit accumulator. */ - uint64_t c0 = 0, c1 = 0; - uint32_t c2 = 0; - - /* l[0..7] = a[0..3] * b[0..3]. */ - muladd_fast(a->d[0], a->d[0]); - extract_fast(l[0]); - muladd2(a->d[0], a->d[1]); - extract(l[1]); - muladd2(a->d[0], a->d[2]); - muladd(a->d[1], a->d[1]); - extract(l[2]); - muladd2(a->d[0], a->d[3]); - muladd2(a->d[1], a->d[2]); - extract(l[3]); - muladd2(a->d[1], a->d[3]); - muladd(a->d[2], a->d[2]); - extract(l[4]); - muladd2(a->d[2], a->d[3]); - extract(l[5]); - muladd_fast(a->d[3], a->d[3]); - extract_fast(l[6]); - VERIFY_CHECK(c1 == 0); - l[7] = c0; -#endif -} - #undef sumadd #undef sumadd_fast #undef muladd #undef muladd_fast -#undef muladd2 #undef extract #undef extract_fast @@ -906,24 +748,16 @@ static int secp256k1_scalar_shr_int(secp256k1_scalar *r, int n) { return ret; } -static void secp256k1_scalar_sqr(secp256k1_scalar *r, const secp256k1_scalar *a) { - uint64_t l[8]; - secp256k1_scalar_sqr_512(l, a); - secp256k1_scalar_reduce_512(r, l); -} - -#ifdef USE_ENDOMORPHISM -static void secp256k1_scalar_split_128(secp256k1_scalar *r1, secp256k1_scalar *r2, const secp256k1_scalar *a) { - r1->d[0] = a->d[0]; - r1->d[1] = a->d[1]; +static void secp256k1_scalar_split_128(secp256k1_scalar *r1, secp256k1_scalar *r2, const secp256k1_scalar *k) { + r1->d[0] = k->d[0]; + r1->d[1] = k->d[1]; r1->d[2] = 0; r1->d[3] = 0; - r2->d[0] = a->d[2]; - r2->d[1] = a->d[3]; + r2->d[0] = k->d[2]; + r2->d[1] = k->d[3]; r2->d[2] = 0; r2->d[3] = 0; } -#endif SECP256K1_INLINE static int secp256k1_scalar_eq(const secp256k1_scalar *a, const secp256k1_scalar *b) { return ((a->d[0] ^ b->d[0]) | (a->d[1] ^ b->d[1]) | (a->d[2] ^ b->d[2]) | (a->d[3] ^ b->d[3])) == 0; @@ -946,4 +780,89 @@ SECP256K1_INLINE static void secp256k1_scalar_mul_shift_var(secp256k1_scalar *r, secp256k1_scalar_cadd_bit(r, 0, (l[(shift - 1) >> 6] >> ((shift - 1) & 0x3f)) & 1); } +static SECP256K1_INLINE void secp256k1_scalar_cmov(secp256k1_scalar *r, const secp256k1_scalar *a, int flag) { + uint64_t mask0, mask1; + VG_CHECK_VERIFY(r->d, sizeof(r->d)); + mask0 = flag + ~((uint64_t)0); + mask1 = ~mask0; + r->d[0] = (r->d[0] & mask0) | (a->d[0] & mask1); + r->d[1] = (r->d[1] & mask0) | (a->d[1] & mask1); + r->d[2] = (r->d[2] & mask0) | (a->d[2] & mask1); + r->d[3] = (r->d[3] & mask0) | (a->d[3] & mask1); +} + +static void secp256k1_scalar_from_signed62(secp256k1_scalar *r, const secp256k1_modinv64_signed62 *a) { + const uint64_t a0 = a->v[0], a1 = a->v[1], a2 = a->v[2], a3 = a->v[3], a4 = a->v[4]; + + /* The output from secp256k1_modinv64{_var} should be normalized to range [0,modulus), and + * have limbs in [0,2^62). The modulus is < 2^256, so the top limb must be below 2^(256-62*4). + */ + VERIFY_CHECK(a0 >> 62 == 0); + VERIFY_CHECK(a1 >> 62 == 0); + VERIFY_CHECK(a2 >> 62 == 0); + VERIFY_CHECK(a3 >> 62 == 0); + VERIFY_CHECK(a4 >> 8 == 0); + + r->d[0] = a0 | a1 << 62; + r->d[1] = a1 >> 2 | a2 << 60; + r->d[2] = a2 >> 4 | a3 << 58; + r->d[3] = a3 >> 6 | a4 << 56; + +#ifdef VERIFY + VERIFY_CHECK(secp256k1_scalar_check_overflow(r) == 0); +#endif +} + +static void secp256k1_scalar_to_signed62(secp256k1_modinv64_signed62 *r, const secp256k1_scalar *a) { + const uint64_t M62 = UINT64_MAX >> 2; + const uint64_t a0 = a->d[0], a1 = a->d[1], a2 = a->d[2], a3 = a->d[3]; + +#ifdef VERIFY + VERIFY_CHECK(secp256k1_scalar_check_overflow(a) == 0); +#endif + + r->v[0] = a0 & M62; + r->v[1] = (a0 >> 62 | a1 << 2) & M62; + r->v[2] = (a1 >> 60 | a2 << 4) & M62; + r->v[3] = (a2 >> 58 | a3 << 6) & M62; + r->v[4] = a3 >> 56; +} + +static const secp256k1_modinv64_modinfo secp256k1_const_modinfo_scalar = { + {{0x3FD25E8CD0364141LL, 0x2ABB739ABD2280EELL, -0x15LL, 0, 256}}, + 0x34F20099AA774EC1LL +}; + +static void secp256k1_scalar_inverse(secp256k1_scalar *r, const secp256k1_scalar *x) { + secp256k1_modinv64_signed62 s; +#ifdef VERIFY + int zero_in = secp256k1_scalar_is_zero(x); +#endif + secp256k1_scalar_to_signed62(&s, x); + secp256k1_modinv64(&s, &secp256k1_const_modinfo_scalar); + secp256k1_scalar_from_signed62(r, &s); + +#ifdef VERIFY + VERIFY_CHECK(secp256k1_scalar_is_zero(r) == zero_in); +#endif +} + +static void secp256k1_scalar_inverse_var(secp256k1_scalar *r, const secp256k1_scalar *x) { + secp256k1_modinv64_signed62 s; +#ifdef VERIFY + int zero_in = secp256k1_scalar_is_zero(x); +#endif + secp256k1_scalar_to_signed62(&s, x); + secp256k1_modinv64_var(&s, &secp256k1_const_modinfo_scalar); + secp256k1_scalar_from_signed62(r, &s); + +#ifdef VERIFY + VERIFY_CHECK(secp256k1_scalar_is_zero(r) == zero_in); +#endif +} + +SECP256K1_INLINE static int secp256k1_scalar_is_even(const secp256k1_scalar *a) { + return !(a->d[0] & 1); +} + #endif /* SECP256K1_SCALAR_REPR_IMPL_H */ diff --git a/src/scalar_8x32.h b/src/scalar_8x32.h index 2c9a348e24760..17863ef93710b 100644 --- a/src/scalar_8x32.h +++ b/src/scalar_8x32.h @@ -1,8 +1,8 @@ -/********************************************************************** - * Copyright (c) 2014 Pieter Wuille * - * Distributed under the MIT software license, see the accompanying * - * file COPYING or http://www.opensource.org/licenses/mit-license.php.* - **********************************************************************/ +/*********************************************************************** + * Copyright (c) 2014 Pieter Wuille * + * Distributed under the MIT software license, see the accompanying * + * file COPYING or https://www.opensource.org/licenses/mit-license.php.* + ***********************************************************************/ #ifndef SECP256K1_SCALAR_REPR_H #define SECP256K1_SCALAR_REPR_H diff --git a/src/scalar_8x32_impl.h b/src/scalar_8x32_impl.h index 4f9ed61feaecc..62c7ae7156d37 100644 --- a/src/scalar_8x32_impl.h +++ b/src/scalar_8x32_impl.h @@ -1,12 +1,14 @@ -/********************************************************************** - * Copyright (c) 2014 Pieter Wuille * - * Distributed under the MIT software license, see the accompanying * - * file COPYING or http://www.opensource.org/licenses/mit-license.php.* - **********************************************************************/ +/*********************************************************************** + * Copyright (c) 2014 Pieter Wuille * + * Distributed under the MIT software license, see the accompanying * + * file COPYING or https://www.opensource.org/licenses/mit-license.php.* + ***********************************************************************/ #ifndef SECP256K1_SCALAR_REPR_IMPL_H #define SECP256K1_SCALAR_REPR_IMPL_H +#include "modinv32_impl.h" + /* Limbs of the secp256k1 order. */ #define SECP256K1_N_0 ((uint32_t)0xD0364141UL) #define SECP256K1_N_1 ((uint32_t)0xBFD25E8CUL) @@ -271,9 +273,9 @@ static int secp256k1_scalar_cond_negate(secp256k1_scalar *r, int flag) { tl = t; \ } \ c0 += tl; /* overflow is handled on the next line */ \ - th += (c0 < tl) ? 1 : 0; /* at most 0xFFFFFFFF */ \ + th += (c0 < tl); /* at most 0xFFFFFFFF */ \ c1 += th; /* overflow is handled on the next line */ \ - c2 += (c1 < th) ? 1 : 0; /* never overflows by contract (verified in the next line) */ \ + c2 += (c1 < th); /* never overflows by contract (verified in the next line) */ \ VERIFY_CHECK((c1 >= th) || (c2 != 0)); \ } @@ -286,46 +288,24 @@ static int secp256k1_scalar_cond_negate(secp256k1_scalar *r, int flag) { tl = t; \ } \ c0 += tl; /* overflow is handled on the next line */ \ - th += (c0 < tl) ? 1 : 0; /* at most 0xFFFFFFFF */ \ + th += (c0 < tl); /* at most 0xFFFFFFFF */ \ c1 += th; /* never overflows by contract (verified in the next line) */ \ VERIFY_CHECK(c1 >= th); \ } -/** Add 2*a*b to the number defined by (c0,c1,c2). c2 must never overflow. */ -#define muladd2(a,b) { \ - uint32_t tl, th, th2, tl2; \ - { \ - uint64_t t = (uint64_t)a * b; \ - th = t >> 32; /* at most 0xFFFFFFFE */ \ - tl = t; \ - } \ - th2 = th + th; /* at most 0xFFFFFFFE (in case th was 0x7FFFFFFF) */ \ - c2 += (th2 < th) ? 1 : 0; /* never overflows by contract (verified the next line) */ \ - VERIFY_CHECK((th2 >= th) || (c2 != 0)); \ - tl2 = tl + tl; /* at most 0xFFFFFFFE (in case the lowest 63 bits of tl were 0x7FFFFFFF) */ \ - th2 += (tl2 < tl) ? 1 : 0; /* at most 0xFFFFFFFF */ \ - c0 += tl2; /* overflow is handled on the next line */ \ - th2 += (c0 < tl2) ? 1 : 0; /* second overflow is handled on the next line */ \ - c2 += (c0 < tl2) & (th2 == 0); /* never overflows by contract (verified the next line) */ \ - VERIFY_CHECK((c0 >= tl2) || (th2 != 0) || (c2 != 0)); \ - c1 += th2; /* overflow is handled on the next line */ \ - c2 += (c1 < th2) ? 1 : 0; /* never overflows by contract (verified the next line) */ \ - VERIFY_CHECK((c1 >= th2) || (c2 != 0)); \ -} - /** Add a to the number defined by (c0,c1,c2). c2 must never overflow. */ #define sumadd(a) { \ unsigned int over; \ c0 += (a); /* overflow is handled on the next line */ \ - over = (c0 < (a)) ? 1 : 0; \ + over = (c0 < (a)); \ c1 += over; /* overflow is handled on the next line */ \ - c2 += (c1 < over) ? 1 : 0; /* never overflows by contract */ \ + c2 += (c1 < over); /* never overflows by contract */ \ } /** Add a to the number defined by (c0,c1). c1 must never overflow, c2 must be zero. */ #define sumadd_fast(a) { \ c0 += (a); /* overflow is handled on the next line */ \ - c1 += (c0 < (a)) ? 1 : 0; /* never overflows by contract (verified the next line) */ \ + c1 += (c0 < (a)); /* never overflows by contract (verified the next line) */ \ VERIFY_CHECK((c1 != 0) | (c0 >= (a))); \ VERIFY_CHECK(c2 == 0); \ } @@ -576,71 +556,10 @@ static void secp256k1_scalar_mul_512(uint32_t *l, const secp256k1_scalar *a, con l[15] = c0; } -static void secp256k1_scalar_sqr_512(uint32_t *l, const secp256k1_scalar *a) { - /* 96 bit accumulator. */ - uint32_t c0 = 0, c1 = 0, c2 = 0; - - /* l[0..15] = a[0..7]^2. */ - muladd_fast(a->d[0], a->d[0]); - extract_fast(l[0]); - muladd2(a->d[0], a->d[1]); - extract(l[1]); - muladd2(a->d[0], a->d[2]); - muladd(a->d[1], a->d[1]); - extract(l[2]); - muladd2(a->d[0], a->d[3]); - muladd2(a->d[1], a->d[2]); - extract(l[3]); - muladd2(a->d[0], a->d[4]); - muladd2(a->d[1], a->d[3]); - muladd(a->d[2], a->d[2]); - extract(l[4]); - muladd2(a->d[0], a->d[5]); - muladd2(a->d[1], a->d[4]); - muladd2(a->d[2], a->d[3]); - extract(l[5]); - muladd2(a->d[0], a->d[6]); - muladd2(a->d[1], a->d[5]); - muladd2(a->d[2], a->d[4]); - muladd(a->d[3], a->d[3]); - extract(l[6]); - muladd2(a->d[0], a->d[7]); - muladd2(a->d[1], a->d[6]); - muladd2(a->d[2], a->d[5]); - muladd2(a->d[3], a->d[4]); - extract(l[7]); - muladd2(a->d[1], a->d[7]); - muladd2(a->d[2], a->d[6]); - muladd2(a->d[3], a->d[5]); - muladd(a->d[4], a->d[4]); - extract(l[8]); - muladd2(a->d[2], a->d[7]); - muladd2(a->d[3], a->d[6]); - muladd2(a->d[4], a->d[5]); - extract(l[9]); - muladd2(a->d[3], a->d[7]); - muladd2(a->d[4], a->d[6]); - muladd(a->d[5], a->d[5]); - extract(l[10]); - muladd2(a->d[4], a->d[7]); - muladd2(a->d[5], a->d[6]); - extract(l[11]); - muladd2(a->d[5], a->d[7]); - muladd(a->d[6], a->d[6]); - extract(l[12]); - muladd2(a->d[6], a->d[7]); - extract(l[13]); - muladd_fast(a->d[7], a->d[7]); - extract_fast(l[14]); - VERIFY_CHECK(c1 == 0); - l[15] = c0; -} - #undef sumadd #undef sumadd_fast #undef muladd #undef muladd_fast -#undef muladd2 #undef extract #undef extract_fast @@ -666,32 +585,24 @@ static int secp256k1_scalar_shr_int(secp256k1_scalar *r, int n) { return ret; } -static void secp256k1_scalar_sqr(secp256k1_scalar *r, const secp256k1_scalar *a) { - uint32_t l[16]; - secp256k1_scalar_sqr_512(l, a); - secp256k1_scalar_reduce_512(r, l); -} - -#ifdef USE_ENDOMORPHISM -static void secp256k1_scalar_split_128(secp256k1_scalar *r1, secp256k1_scalar *r2, const secp256k1_scalar *a) { - r1->d[0] = a->d[0]; - r1->d[1] = a->d[1]; - r1->d[2] = a->d[2]; - r1->d[3] = a->d[3]; +static void secp256k1_scalar_split_128(secp256k1_scalar *r1, secp256k1_scalar *r2, const secp256k1_scalar *k) { + r1->d[0] = k->d[0]; + r1->d[1] = k->d[1]; + r1->d[2] = k->d[2]; + r1->d[3] = k->d[3]; r1->d[4] = 0; r1->d[5] = 0; r1->d[6] = 0; r1->d[7] = 0; - r2->d[0] = a->d[4]; - r2->d[1] = a->d[5]; - r2->d[2] = a->d[6]; - r2->d[3] = a->d[7]; + r2->d[0] = k->d[4]; + r2->d[1] = k->d[5]; + r2->d[2] = k->d[6]; + r2->d[3] = k->d[7]; r2->d[4] = 0; r2->d[5] = 0; r2->d[6] = 0; r2->d[7] = 0; } -#endif SECP256K1_INLINE static int secp256k1_scalar_eq(const secp256k1_scalar *a, const secp256k1_scalar *b) { return ((a->d[0] ^ b->d[0]) | (a->d[1] ^ b->d[1]) | (a->d[2] ^ b->d[2]) | (a->d[3] ^ b->d[3]) | (a->d[4] ^ b->d[4]) | (a->d[5] ^ b->d[5]) | (a->d[6] ^ b->d[6]) | (a->d[7] ^ b->d[7])) == 0; @@ -718,4 +629,107 @@ SECP256K1_INLINE static void secp256k1_scalar_mul_shift_var(secp256k1_scalar *r, secp256k1_scalar_cadd_bit(r, 0, (l[(shift - 1) >> 5] >> ((shift - 1) & 0x1f)) & 1); } +static SECP256K1_INLINE void secp256k1_scalar_cmov(secp256k1_scalar *r, const secp256k1_scalar *a, int flag) { + uint32_t mask0, mask1; + VG_CHECK_VERIFY(r->d, sizeof(r->d)); + mask0 = flag + ~((uint32_t)0); + mask1 = ~mask0; + r->d[0] = (r->d[0] & mask0) | (a->d[0] & mask1); + r->d[1] = (r->d[1] & mask0) | (a->d[1] & mask1); + r->d[2] = (r->d[2] & mask0) | (a->d[2] & mask1); + r->d[3] = (r->d[3] & mask0) | (a->d[3] & mask1); + r->d[4] = (r->d[4] & mask0) | (a->d[4] & mask1); + r->d[5] = (r->d[5] & mask0) | (a->d[5] & mask1); + r->d[6] = (r->d[6] & mask0) | (a->d[6] & mask1); + r->d[7] = (r->d[7] & mask0) | (a->d[7] & mask1); +} + +static void secp256k1_scalar_from_signed30(secp256k1_scalar *r, const secp256k1_modinv32_signed30 *a) { + const uint32_t a0 = a->v[0], a1 = a->v[1], a2 = a->v[2], a3 = a->v[3], a4 = a->v[4], + a5 = a->v[5], a6 = a->v[6], a7 = a->v[7], a8 = a->v[8]; + + /* The output from secp256k1_modinv32{_var} should be normalized to range [0,modulus), and + * have limbs in [0,2^30). The modulus is < 2^256, so the top limb must be below 2^(256-30*8). + */ + VERIFY_CHECK(a0 >> 30 == 0); + VERIFY_CHECK(a1 >> 30 == 0); + VERIFY_CHECK(a2 >> 30 == 0); + VERIFY_CHECK(a3 >> 30 == 0); + VERIFY_CHECK(a4 >> 30 == 0); + VERIFY_CHECK(a5 >> 30 == 0); + VERIFY_CHECK(a6 >> 30 == 0); + VERIFY_CHECK(a7 >> 30 == 0); + VERIFY_CHECK(a8 >> 16 == 0); + + r->d[0] = a0 | a1 << 30; + r->d[1] = a1 >> 2 | a2 << 28; + r->d[2] = a2 >> 4 | a3 << 26; + r->d[3] = a3 >> 6 | a4 << 24; + r->d[4] = a4 >> 8 | a5 << 22; + r->d[5] = a5 >> 10 | a6 << 20; + r->d[6] = a6 >> 12 | a7 << 18; + r->d[7] = a7 >> 14 | a8 << 16; + +#ifdef VERIFY + VERIFY_CHECK(secp256k1_scalar_check_overflow(r) == 0); +#endif +} + +static void secp256k1_scalar_to_signed30(secp256k1_modinv32_signed30 *r, const secp256k1_scalar *a) { + const uint32_t M30 = UINT32_MAX >> 2; + const uint32_t a0 = a->d[0], a1 = a->d[1], a2 = a->d[2], a3 = a->d[3], + a4 = a->d[4], a5 = a->d[5], a6 = a->d[6], a7 = a->d[7]; + +#ifdef VERIFY + VERIFY_CHECK(secp256k1_scalar_check_overflow(a) == 0); +#endif + + r->v[0] = a0 & M30; + r->v[1] = (a0 >> 30 | a1 << 2) & M30; + r->v[2] = (a1 >> 28 | a2 << 4) & M30; + r->v[3] = (a2 >> 26 | a3 << 6) & M30; + r->v[4] = (a3 >> 24 | a4 << 8) & M30; + r->v[5] = (a4 >> 22 | a5 << 10) & M30; + r->v[6] = (a5 >> 20 | a6 << 12) & M30; + r->v[7] = (a6 >> 18 | a7 << 14) & M30; + r->v[8] = a7 >> 16; +} + +static const secp256k1_modinv32_modinfo secp256k1_const_modinfo_scalar = { + {{0x10364141L, 0x3F497A33L, 0x348A03BBL, 0x2BB739ABL, -0x146L, 0, 0, 0, 65536}}, + 0x2A774EC1L +}; + +static void secp256k1_scalar_inverse(secp256k1_scalar *r, const secp256k1_scalar *x) { + secp256k1_modinv32_signed30 s; +#ifdef VERIFY + int zero_in = secp256k1_scalar_is_zero(x); +#endif + secp256k1_scalar_to_signed30(&s, x); + secp256k1_modinv32(&s, &secp256k1_const_modinfo_scalar); + secp256k1_scalar_from_signed30(r, &s); + +#ifdef VERIFY + VERIFY_CHECK(secp256k1_scalar_is_zero(r) == zero_in); +#endif +} + +static void secp256k1_scalar_inverse_var(secp256k1_scalar *r, const secp256k1_scalar *x) { + secp256k1_modinv32_signed30 s; +#ifdef VERIFY + int zero_in = secp256k1_scalar_is_zero(x); +#endif + secp256k1_scalar_to_signed30(&s, x); + secp256k1_modinv32_var(&s, &secp256k1_const_modinfo_scalar); + secp256k1_scalar_from_signed30(r, &s); + +#ifdef VERIFY + VERIFY_CHECK(secp256k1_scalar_is_zero(r) == zero_in); +#endif +} + +SECP256K1_INLINE static int secp256k1_scalar_is_even(const secp256k1_scalar *a) { + return !(a->d[0] & 1); +} + #endif /* SECP256K1_SCALAR_REPR_IMPL_H */ diff --git a/src/scalar_impl.h b/src/scalar_impl.h index fa790570ff837..e124474773c3e 100644 --- a/src/scalar_impl.h +++ b/src/scalar_impl.h @@ -1,14 +1,18 @@ -/********************************************************************** - * Copyright (c) 2014 Pieter Wuille * - * Distributed under the MIT software license, see the accompanying * - * file COPYING or http://www.opensource.org/licenses/mit-license.php.* - **********************************************************************/ +/*********************************************************************** + * Copyright (c) 2014 Pieter Wuille * + * Distributed under the MIT software license, see the accompanying * + * file COPYING or https://www.opensource.org/licenses/mit-license.php.* + ***********************************************************************/ #ifndef SECP256K1_SCALAR_IMPL_H #define SECP256K1_SCALAR_IMPL_H -#include "group.h" +#ifdef VERIFY +#include +#endif + #include "scalar.h" +#include "util.h" #if defined HAVE_CONFIG_H #include "libsecp256k1-config.h" @@ -16,264 +20,82 @@ #if defined(EXHAUSTIVE_TEST_ORDER) #include "scalar_low_impl.h" -#elif defined(USE_SCALAR_4X64) +#elif defined(SECP256K1_WIDEMUL_INT128) #include "scalar_4x64_impl.h" -#elif defined(USE_SCALAR_8X32) +#elif defined(SECP256K1_WIDEMUL_INT64) #include "scalar_8x32_impl.h" #else -#error "Please select scalar implementation" +#error "Please select wide multiplication implementation" #endif -#ifndef USE_NUM_NONE -static void secp256k1_scalar_get_num(secp256k1_num *r, const secp256k1_scalar *a) { - unsigned char c[32]; - secp256k1_scalar_get_b32(c, a); - secp256k1_num_set_bin(r, c, 32); -} +static const secp256k1_scalar secp256k1_scalar_one = SECP256K1_SCALAR_CONST(0, 0, 0, 0, 0, 0, 0, 1); +static const secp256k1_scalar secp256k1_scalar_zero = SECP256K1_SCALAR_CONST(0, 0, 0, 0, 0, 0, 0, 0); -/** secp256k1 curve order, see secp256k1_ecdsa_const_order_as_fe in ecdsa_impl.h */ -static void secp256k1_scalar_order_get_num(secp256k1_num *r) { -#if defined(EXHAUSTIVE_TEST_ORDER) - static const unsigned char order[32] = { - 0,0,0,0,0,0,0,0, - 0,0,0,0,0,0,0,0, - 0,0,0,0,0,0,0,0, - 0,0,0,0,0,0,0,EXHAUSTIVE_TEST_ORDER - }; -#else - static const unsigned char order[32] = { - 0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF, - 0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFE, - 0xBA,0xAE,0xDC,0xE6,0xAF,0x48,0xA0,0x3B, - 0xBF,0xD2,0x5E,0x8C,0xD0,0x36,0x41,0x41 - }; -#endif - secp256k1_num_set_bin(r, order, 32); +static int secp256k1_scalar_set_b32_seckey(secp256k1_scalar *r, const unsigned char *bin) { + int overflow; + secp256k1_scalar_set_b32(r, bin, &overflow); + return (!overflow) & (!secp256k1_scalar_is_zero(r)); } -#endif -static void secp256k1_scalar_inverse(secp256k1_scalar *r, const secp256k1_scalar *x) { +/* These parameters are generated using sage/gen_exhaustive_groups.sage. */ #if defined(EXHAUSTIVE_TEST_ORDER) - int i; - *r = 0; - for (i = 0; i < EXHAUSTIVE_TEST_ORDER; i++) - if ((i * *x) % EXHAUSTIVE_TEST_ORDER == 1) - *r = i; - /* If this VERIFY_CHECK triggers we were given a noninvertible scalar (and thus - * have a composite group order; fix it in exhaustive_tests.c). */ - VERIFY_CHECK(*r != 0); -} -#else - secp256k1_scalar *t; - int i; - /* First compute xN as x ^ (2^N - 1) for some values of N, - * and uM as x ^ M for some values of M. */ - secp256k1_scalar x2, x3, x6, x8, x14, x28, x56, x112, x126; - secp256k1_scalar u2, u5, u9, u11, u13; - - secp256k1_scalar_sqr(&u2, x); - secp256k1_scalar_mul(&x2, &u2, x); - secp256k1_scalar_mul(&u5, &u2, &x2); - secp256k1_scalar_mul(&x3, &u5, &u2); - secp256k1_scalar_mul(&u9, &x3, &u2); - secp256k1_scalar_mul(&u11, &u9, &u2); - secp256k1_scalar_mul(&u13, &u11, &u2); - - secp256k1_scalar_sqr(&x6, &u13); - secp256k1_scalar_sqr(&x6, &x6); - secp256k1_scalar_mul(&x6, &x6, &u11); - - secp256k1_scalar_sqr(&x8, &x6); - secp256k1_scalar_sqr(&x8, &x8); - secp256k1_scalar_mul(&x8, &x8, &x2); - - secp256k1_scalar_sqr(&x14, &x8); - for (i = 0; i < 5; i++) { - secp256k1_scalar_sqr(&x14, &x14); - } - secp256k1_scalar_mul(&x14, &x14, &x6); - - secp256k1_scalar_sqr(&x28, &x14); - for (i = 0; i < 13; i++) { - secp256k1_scalar_sqr(&x28, &x28); - } - secp256k1_scalar_mul(&x28, &x28, &x14); - - secp256k1_scalar_sqr(&x56, &x28); - for (i = 0; i < 27; i++) { - secp256k1_scalar_sqr(&x56, &x56); - } - secp256k1_scalar_mul(&x56, &x56, &x28); - - secp256k1_scalar_sqr(&x112, &x56); - for (i = 0; i < 55; i++) { - secp256k1_scalar_sqr(&x112, &x112); - } - secp256k1_scalar_mul(&x112, &x112, &x56); +# if EXHAUSTIVE_TEST_ORDER == 13 +# define EXHAUSTIVE_TEST_LAMBDA 9 +# elif EXHAUSTIVE_TEST_ORDER == 199 +# define EXHAUSTIVE_TEST_LAMBDA 92 +# else +# error No known lambda for the specified exhaustive test group order. +# endif - secp256k1_scalar_sqr(&x126, &x112); - for (i = 0; i < 13; i++) { - secp256k1_scalar_sqr(&x126, &x126); - } - secp256k1_scalar_mul(&x126, &x126, &x14); - - /* Then accumulate the final result (t starts at x126). */ - t = &x126; - for (i = 0; i < 3; i++) { - secp256k1_scalar_sqr(t, t); - } - secp256k1_scalar_mul(t, t, &u5); /* 101 */ - for (i = 0; i < 4; i++) { /* 0 */ - secp256k1_scalar_sqr(t, t); - } - secp256k1_scalar_mul(t, t, &x3); /* 111 */ - for (i = 0; i < 4; i++) { /* 0 */ - secp256k1_scalar_sqr(t, t); - } - secp256k1_scalar_mul(t, t, &u5); /* 101 */ - for (i = 0; i < 5; i++) { /* 0 */ - secp256k1_scalar_sqr(t, t); - } - secp256k1_scalar_mul(t, t, &u11); /* 1011 */ - for (i = 0; i < 4; i++) { - secp256k1_scalar_sqr(t, t); - } - secp256k1_scalar_mul(t, t, &u11); /* 1011 */ - for (i = 0; i < 4; i++) { /* 0 */ - secp256k1_scalar_sqr(t, t); - } - secp256k1_scalar_mul(t, t, &x3); /* 111 */ - for (i = 0; i < 5; i++) { /* 00 */ - secp256k1_scalar_sqr(t, t); - } - secp256k1_scalar_mul(t, t, &x3); /* 111 */ - for (i = 0; i < 6; i++) { /* 00 */ - secp256k1_scalar_sqr(t, t); - } - secp256k1_scalar_mul(t, t, &u13); /* 1101 */ - for (i = 0; i < 4; i++) { /* 0 */ - secp256k1_scalar_sqr(t, t); - } - secp256k1_scalar_mul(t, t, &u5); /* 101 */ - for (i = 0; i < 3; i++) { - secp256k1_scalar_sqr(t, t); - } - secp256k1_scalar_mul(t, t, &x3); /* 111 */ - for (i = 0; i < 5; i++) { /* 0 */ - secp256k1_scalar_sqr(t, t); - } - secp256k1_scalar_mul(t, t, &u9); /* 1001 */ - for (i = 0; i < 6; i++) { /* 000 */ - secp256k1_scalar_sqr(t, t); - } - secp256k1_scalar_mul(t, t, &u5); /* 101 */ - for (i = 0; i < 10; i++) { /* 0000000 */ - secp256k1_scalar_sqr(t, t); - } - secp256k1_scalar_mul(t, t, &x3); /* 111 */ - for (i = 0; i < 4; i++) { /* 0 */ - secp256k1_scalar_sqr(t, t); - } - secp256k1_scalar_mul(t, t, &x3); /* 111 */ - for (i = 0; i < 9; i++) { /* 0 */ - secp256k1_scalar_sqr(t, t); - } - secp256k1_scalar_mul(t, t, &x8); /* 11111111 */ - for (i = 0; i < 5; i++) { /* 0 */ - secp256k1_scalar_sqr(t, t); - } - secp256k1_scalar_mul(t, t, &u9); /* 1001 */ - for (i = 0; i < 6; i++) { /* 00 */ - secp256k1_scalar_sqr(t, t); - } - secp256k1_scalar_mul(t, t, &u11); /* 1011 */ - for (i = 0; i < 4; i++) { - secp256k1_scalar_sqr(t, t); - } - secp256k1_scalar_mul(t, t, &u13); /* 1101 */ - for (i = 0; i < 5; i++) { - secp256k1_scalar_sqr(t, t); - } - secp256k1_scalar_mul(t, t, &x2); /* 11 */ - for (i = 0; i < 6; i++) { /* 00 */ - secp256k1_scalar_sqr(t, t); - } - secp256k1_scalar_mul(t, t, &u13); /* 1101 */ - for (i = 0; i < 10; i++) { /* 000000 */ - secp256k1_scalar_sqr(t, t); - } - secp256k1_scalar_mul(t, t, &u13); /* 1101 */ - for (i = 0; i < 4; i++) { - secp256k1_scalar_sqr(t, t); - } - secp256k1_scalar_mul(t, t, &u9); /* 1001 */ - for (i = 0; i < 6; i++) { /* 00000 */ - secp256k1_scalar_sqr(t, t); - } - secp256k1_scalar_mul(t, t, x); /* 1 */ - for (i = 0; i < 8; i++) { /* 00 */ - secp256k1_scalar_sqr(t, t); - } - secp256k1_scalar_mul(r, t, &x6); /* 111111 */ -} - -SECP256K1_INLINE static int secp256k1_scalar_is_even(const secp256k1_scalar *a) { - return !(a->d[0] & 1); -} -#endif - -static void secp256k1_scalar_inverse_var(secp256k1_scalar *r, const secp256k1_scalar *x) { -#if defined(USE_SCALAR_INV_BUILTIN) - secp256k1_scalar_inverse(r, x); -#elif defined(USE_SCALAR_INV_NUM) - unsigned char b[32]; - secp256k1_num n, m; - secp256k1_scalar t = *x; - secp256k1_scalar_get_b32(b, &t); - secp256k1_num_set_bin(&n, b, 32); - secp256k1_scalar_order_get_num(&m); - secp256k1_num_mod_inverse(&n, &n, &m); - secp256k1_num_get_bin(b, 32, &n); - secp256k1_scalar_set_b32(r, b, NULL); - /* Verify that the inverse was computed correctly, without GMP code. */ - secp256k1_scalar_mul(&t, &t, r); - CHECK(secp256k1_scalar_is_one(&t)); -#else -#error "Please select scalar inverse implementation" -#endif -} - -#ifdef USE_ENDOMORPHISM -#if defined(EXHAUSTIVE_TEST_ORDER) /** - * Find k1 and k2 given k, such that k1 + k2 * lambda == k mod n; unlike in the - * full case we don't bother making k1 and k2 be small, we just want them to be + * Find r1 and r2 given k, such that r1 + r2 * lambda == k mod n; unlike in the + * full case we don't bother making r1 and r2 be small, we just want them to be * nontrivial to get full test coverage for the exhaustive tests. We therefore - * (arbitrarily) set k2 = k + 5 and k1 = k - k2 * lambda. + * (arbitrarily) set r2 = k + 5 (mod n) and r1 = k - r2 * lambda (mod n). */ -static void secp256k1_scalar_split_lambda(secp256k1_scalar *r1, secp256k1_scalar *r2, const secp256k1_scalar *a) { - *r2 = (*a + 5) % EXHAUSTIVE_TEST_ORDER; - *r1 = (*a + (EXHAUSTIVE_TEST_ORDER - *r2) * EXHAUSTIVE_TEST_LAMBDA) % EXHAUSTIVE_TEST_ORDER; +static void secp256k1_scalar_split_lambda(secp256k1_scalar *r1, secp256k1_scalar *r2, const secp256k1_scalar *k) { + *r2 = (*k + 5) % EXHAUSTIVE_TEST_ORDER; + *r1 = (*k + (EXHAUSTIVE_TEST_ORDER - *r2) * EXHAUSTIVE_TEST_LAMBDA) % EXHAUSTIVE_TEST_ORDER; } #else /** * The Secp256k1 curve has an endomorphism, where lambda * (x, y) = (beta * x, y), where - * lambda is {0x53,0x63,0xad,0x4c,0xc0,0x5c,0x30,0xe0,0xa5,0x26,0x1c,0x02,0x88,0x12,0x64,0x5a, - * 0x12,0x2e,0x22,0xea,0x20,0x81,0x66,0x78,0xdf,0x02,0x96,0x7c,0x1b,0x23,0xbd,0x72} + * lambda is: */ +static const secp256k1_scalar secp256k1_const_lambda = SECP256K1_SCALAR_CONST( + 0x5363AD4CUL, 0xC05C30E0UL, 0xA5261C02UL, 0x8812645AUL, + 0x122E22EAUL, 0x20816678UL, 0xDF02967CUL, 0x1B23BD72UL +); + +#ifdef VERIFY +static void secp256k1_scalar_split_lambda_verify(const secp256k1_scalar *r1, const secp256k1_scalar *r2, const secp256k1_scalar *k); +#endif + +/* + * Both lambda and beta are primitive cube roots of unity. That is lamba^3 == 1 mod n and + * beta^3 == 1 mod p, where n is the curve order and p is the field order. * - * "Guide to Elliptic Curve Cryptography" (Hankerson, Menezes, Vanstone) gives an algorithm - * (algorithm 3.74) to find k1 and k2 given k, such that k1 + k2 * lambda == k mod n, and k1 - * and k2 have a small size. - * It relies on constants a1, b1, a2, b2. These constants for the value of lambda above are: + * Futhermore, because (X^3 - 1) = (X - 1)(X^2 + X + 1), the primitive cube roots of unity are + * roots of X^2 + X + 1. Therefore lambda^2 + lamba == -1 mod n and beta^2 + beta == -1 mod p. + * (The other primitive cube roots of unity are lambda^2 and beta^2 respectively.) + * + * Let l = -1/2 + i*sqrt(3)/2, the complex root of X^2 + X + 1. We can define a ring + * homomorphism phi : Z[l] -> Z_n where phi(a + b*l) == a + b*lambda mod n. The kernel of phi + * is a lattice over Z[l] (considering Z[l] as a Z-module). This lattice is generated by a + * reduced basis {a1 + b1*l, a2 + b2*l} where * * - a1 = {0x30,0x86,0xd2,0x21,0xa7,0xd4,0x6b,0xcd,0xe8,0x6c,0x90,0xe4,0x92,0x84,0xeb,0x15} * - b1 = -{0xe4,0x43,0x7e,0xd6,0x01,0x0e,0x88,0x28,0x6f,0x54,0x7f,0xa9,0x0a,0xbf,0xe4,0xc3} * - a2 = {0x01,0x14,0xca,0x50,0xf7,0xa8,0xe2,0xf3,0xf6,0x57,0xc1,0x10,0x8d,0x9d,0x44,0xcf,0xd8} * - b2 = {0x30,0x86,0xd2,0x21,0xa7,0xd4,0x6b,0xcd,0xe8,0x6c,0x90,0xe4,0x92,0x84,0xeb,0x15} * - * The algorithm then computes c1 = round(b1 * k / n) and c2 = round(b2 * k / n), and gives + * "Guide to Elliptic Curve Cryptography" (Hankerson, Menezes, Vanstone) gives an algorithm + * (algorithm 3.74) to find k1 and k2 given k, such that k1 + k2 * lambda == k mod n, and k1 + * and k2 are small in absolute value. + * + * The algorithm computes c1 = round(b2 * k / n) and c2 = round((-b1) * k / n), and gives * k1 = k - (c1*a1 + c2*a2) and k2 = -(c1*b1 + c2*b2). Instead, we use modular arithmetic, and - * compute k1 as k - k2 * lambda, avoiding the need for constants a1 and a2. + * compute r2 = k2 mod n, and r1 = k1 mod n = (k - r2 * lambda) mod n, avoiding the need for + * the constants a1 and a2. * * g1, g2 are precomputed constants used to replace division with a rounded multiplication * when decomposing the scalar for an endomorphism-based point multiplication. @@ -285,21 +107,21 @@ static void secp256k1_scalar_split_lambda(secp256k1_scalar *r1, secp256k1_scalar * Cryptography on Sensor Networks Using the MSP430X Microcontroller" (Gouvea, Oliveira, Lopez), * Section 4.3 (here we use a somewhat higher-precision estimate): * d = a1*b2 - b1*a2 - * g1 = round((2^272)*b2/d) - * g2 = round((2^272)*b1/d) + * g1 = round(2^384 * b2/d) + * g2 = round(2^384 * (-b1)/d) + * + * (Note that d is also equal to the curve order, n, here because [a1,b1] and [a2,b2] + * can be found as outputs of the Extended Euclidean Algorithm on inputs n and lambda). * - * (Note that 'd' is also equal to the curve order here because [a1,b1] and [a2,b2] are found - * as outputs of the Extended Euclidean Algorithm on inputs 'order' and 'lambda'). + * The function below splits k into r1 and r2, such that + * - r1 + lambda * r2 == k (mod n) + * - either r1 < 2^128 or -r1 mod n < 2^128 + * - either r2 < 2^128 or -r2 mod n < 2^128 * - * The function below splits a in r1 and r2, such that r1 + lambda * r2 == a (mod order). + * See proof below. */ - -static void secp256k1_scalar_split_lambda(secp256k1_scalar *r1, secp256k1_scalar *r2, const secp256k1_scalar *a) { +static void secp256k1_scalar_split_lambda(secp256k1_scalar *r1, secp256k1_scalar *r2, const secp256k1_scalar *k) { secp256k1_scalar c1, c2; - static const secp256k1_scalar minus_lambda = SECP256K1_SCALAR_CONST( - 0xAC9C52B3UL, 0x3FA3CF1FUL, 0x5AD9E3FDUL, 0x77ED9BA4UL, - 0xA880B9FCUL, 0x8EC739C2UL, 0xE0CFC810UL, 0xB51283CFUL - ); static const secp256k1_scalar minus_b1 = SECP256K1_SCALAR_CONST( 0x00000000UL, 0x00000000UL, 0x00000000UL, 0x00000000UL, 0xE4437ED6UL, 0x010E8828UL, 0x6F547FA9UL, 0x0ABFE4C3UL @@ -309,25 +131,167 @@ static void secp256k1_scalar_split_lambda(secp256k1_scalar *r1, secp256k1_scalar 0x8A280AC5UL, 0x0774346DUL, 0xD765CDA8UL, 0x3DB1562CUL ); static const secp256k1_scalar g1 = SECP256K1_SCALAR_CONST( - 0x00000000UL, 0x00000000UL, 0x00000000UL, 0x00003086UL, - 0xD221A7D4UL, 0x6BCDE86CUL, 0x90E49284UL, 0xEB153DABUL + 0x3086D221UL, 0xA7D46BCDUL, 0xE86C90E4UL, 0x9284EB15UL, + 0x3DAA8A14UL, 0x71E8CA7FUL, 0xE893209AUL, 0x45DBB031UL ); static const secp256k1_scalar g2 = SECP256K1_SCALAR_CONST( - 0x00000000UL, 0x00000000UL, 0x00000000UL, 0x0000E443UL, - 0x7ED6010EUL, 0x88286F54UL, 0x7FA90ABFUL, 0xE4C42212UL + 0xE4437ED6UL, 0x010E8828UL, 0x6F547FA9UL, 0x0ABFE4C4UL, + 0x221208ACUL, 0x9DF506C6UL, 0x1571B4AEUL, 0x8AC47F71UL ); - VERIFY_CHECK(r1 != a); - VERIFY_CHECK(r2 != a); + VERIFY_CHECK(r1 != k); + VERIFY_CHECK(r2 != k); /* these _var calls are constant time since the shift amount is constant */ - secp256k1_scalar_mul_shift_var(&c1, a, &g1, 272); - secp256k1_scalar_mul_shift_var(&c2, a, &g2, 272); + secp256k1_scalar_mul_shift_var(&c1, k, &g1, 384); + secp256k1_scalar_mul_shift_var(&c2, k, &g2, 384); secp256k1_scalar_mul(&c1, &c1, &minus_b1); secp256k1_scalar_mul(&c2, &c2, &minus_b2); secp256k1_scalar_add(r2, &c1, &c2); - secp256k1_scalar_mul(r1, r2, &minus_lambda); - secp256k1_scalar_add(r1, r1, a); -} -#endif + secp256k1_scalar_mul(r1, r2, &secp256k1_const_lambda); + secp256k1_scalar_negate(r1, r1); + secp256k1_scalar_add(r1, r1, k); + +#ifdef VERIFY + secp256k1_scalar_split_lambda_verify(r1, r2, k); #endif +} + +#ifdef VERIFY +/* + * Proof for secp256k1_scalar_split_lambda's bounds. + * + * Let + * - epsilon1 = 2^256 * |g1/2^384 - b2/d| + * - epsilon2 = 2^256 * |g2/2^384 - (-b1)/d| + * - c1 = round(k*g1/2^384) + * - c2 = round(k*g2/2^384) + * + * Lemma 1: |c1 - k*b2/d| < 2^-1 + epsilon1 + * + * |c1 - k*b2/d| + * = + * |c1 - k*g1/2^384 + k*g1/2^384 - k*b2/d| + * <= {triangle inequality} + * |c1 - k*g1/2^384| + |k*g1/2^384 - k*b2/d| + * = + * |c1 - k*g1/2^384| + k*|g1/2^384 - b2/d| + * < {rounding in c1 and 0 <= k < 2^256} + * 2^-1 + 2^256 * |g1/2^384 - b2/d| + * = {definition of epsilon1} + * 2^-1 + epsilon1 + * + * Lemma 2: |c2 - k*(-b1)/d| < 2^-1 + epsilon2 + * + * |c2 - k*(-b1)/d| + * = + * |c2 - k*g2/2^384 + k*g2/2^384 - k*(-b1)/d| + * <= {triangle inequality} + * |c2 - k*g2/2^384| + |k*g2/2^384 - k*(-b1)/d| + * = + * |c2 - k*g2/2^384| + k*|g2/2^384 - (-b1)/d| + * < {rounding in c2 and 0 <= k < 2^256} + * 2^-1 + 2^256 * |g2/2^384 - (-b1)/d| + * = {definition of epsilon2} + * 2^-1 + epsilon2 + * + * Let + * - k1 = k - c1*a1 - c2*a2 + * - k2 = - c1*b1 - c2*b2 + * + * Lemma 3: |k1| < (a1 + a2 + 1)/2 < 2^128 + * + * |k1| + * = {definition of k1} + * |k - c1*a1 - c2*a2| + * = {(a1*b2 - b1*a2)/n = 1} + * |k*(a1*b2 - b1*a2)/n - c1*a1 - c2*a2| + * = + * |a1*(k*b2/n - c1) + a2*(k*(-b1)/n - c2)| + * <= {triangle inequality} + * a1*|k*b2/n - c1| + a2*|k*(-b1)/n - c2| + * < {Lemma 1 and Lemma 2} + * a1*(2^-1 + epslion1) + a2*(2^-1 + epsilon2) + * < {rounding up to an integer} + * (a1 + a2 + 1)/2 + * < {rounding up to a power of 2} + * 2^128 + * + * Lemma 4: |k2| < (-b1 + b2)/2 + 1 < 2^128 + * + * |k2| + * = {definition of k2} + * |- c1*a1 - c2*a2| + * = {(b1*b2 - b1*b2)/n = 0} + * |k*(b1*b2 - b1*b2)/n - c1*b1 - c2*b2| + * = + * |b1*(k*b2/n - c1) + b2*(k*(-b1)/n - c2)| + * <= {triangle inequality} + * (-b1)*|k*b2/n - c1| + b2*|k*(-b1)/n - c2| + * < {Lemma 1 and Lemma 2} + * (-b1)*(2^-1 + epslion1) + b2*(2^-1 + epsilon2) + * < {rounding up to an integer} + * (-b1 + b2)/2 + 1 + * < {rounding up to a power of 2} + * 2^128 + * + * Let + * - r2 = k2 mod n + * - r1 = k - r2*lambda mod n. + * + * Notice that r1 is defined such that r1 + r2 * lambda == k (mod n). + * + * Lemma 5: r1 == k1 mod n. + * + * r1 + * == {definition of r1 and r2} + * k - k2*lambda + * == {definition of k2} + * k - (- c1*b1 - c2*b2)*lambda + * == + * k + c1*b1*lambda + c2*b2*lambda + * == {a1 + b1*lambda == 0 mod n and a2 + b2*lambda == 0 mod n} + * k - c1*a1 - c2*a2 + * == {definition of k1} + * k1 + * + * From Lemma 3, Lemma 4, Lemma 5 and the definition of r2, we can conclude that + * + * - either r1 < 2^128 or -r1 mod n < 2^128 + * - either r2 < 2^128 or -r2 mod n < 2^128. + * + * Q.E.D. + */ +static void secp256k1_scalar_split_lambda_verify(const secp256k1_scalar *r1, const secp256k1_scalar *r2, const secp256k1_scalar *k) { + secp256k1_scalar s; + unsigned char buf1[32]; + unsigned char buf2[32]; + + /* (a1 + a2 + 1)/2 is 0xa2a8918ca85bafe22016d0b917e4dd77 */ + static const unsigned char k1_bound[32] = { + 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, + 0xa2, 0xa8, 0x91, 0x8c, 0xa8, 0x5b, 0xaf, 0xe2, 0x20, 0x16, 0xd0, 0xb9, 0x17, 0xe4, 0xdd, 0x77 + }; + + /* (-b1 + b2)/2 + 1 is 0x8a65287bd47179fb2be08846cea267ed */ + static const unsigned char k2_bound[32] = { + 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, + 0x8a, 0x65, 0x28, 0x7b, 0xd4, 0x71, 0x79, 0xfb, 0x2b, 0xe0, 0x88, 0x46, 0xce, 0xa2, 0x67, 0xed + }; + + secp256k1_scalar_mul(&s, &secp256k1_const_lambda, r2); + secp256k1_scalar_add(&s, &s, r1); + VERIFY_CHECK(secp256k1_scalar_eq(&s, k)); + + secp256k1_scalar_negate(&s, r1); + secp256k1_scalar_get_b32(buf1, r1); + secp256k1_scalar_get_b32(buf2, &s); + VERIFY_CHECK(secp256k1_memcmp_var(buf1, k1_bound, 32) < 0 || secp256k1_memcmp_var(buf2, k1_bound, 32) < 0); + + secp256k1_scalar_negate(&s, r2); + secp256k1_scalar_get_b32(buf1, r2); + secp256k1_scalar_get_b32(buf2, &s); + VERIFY_CHECK(secp256k1_memcmp_var(buf1, k2_bound, 32) < 0 || secp256k1_memcmp_var(buf2, k2_bound, 32) < 0); +} +#endif /* VERIFY */ +#endif /* !defined(EXHAUSTIVE_TEST_ORDER) */ #endif /* SECP256K1_SCALAR_IMPL_H */ diff --git a/src/scalar_low.h b/src/scalar_low.h index 5836febc5b729..67051bd30b788 100644 --- a/src/scalar_low.h +++ b/src/scalar_low.h @@ -1,8 +1,8 @@ -/********************************************************************** - * Copyright (c) 2015 Andrew Poelstra * - * Distributed under the MIT software license, see the accompanying * - * file COPYING or http://www.opensource.org/licenses/mit-license.php.* - **********************************************************************/ +/*********************************************************************** + * Copyright (c) 2015 Andrew Poelstra * + * Distributed under the MIT software license, see the accompanying * + * file COPYING or https://www.opensource.org/licenses/mit-license.php.* + ***********************************************************************/ #ifndef SECP256K1_SCALAR_REPR_H #define SECP256K1_SCALAR_REPR_H @@ -12,4 +12,6 @@ /** A scalar modulo the group order of the secp256k1 curve. */ typedef uint32_t secp256k1_scalar; +#define SECP256K1_SCALAR_CONST(d7, d6, d5, d4, d3, d2, d1, d0) (d0) + #endif /* SECP256K1_SCALAR_REPR_H */ diff --git a/src/scalar_low_impl.h b/src/scalar_low_impl.h index c80e70c5a2ad2..7176f0b2caeab 100644 --- a/src/scalar_low_impl.h +++ b/src/scalar_low_impl.h @@ -1,8 +1,8 @@ -/********************************************************************** - * Copyright (c) 2015 Andrew Poelstra * - * Distributed under the MIT software license, see the accompanying * - * file COPYING or http://www.opensource.org/licenses/mit-license.php.* - **********************************************************************/ +/*********************************************************************** + * Copyright (c) 2015 Andrew Poelstra * + * Distributed under the MIT software license, see the accompanying * + * file COPYING or https://www.opensource.org/licenses/mit-license.php.* + ***********************************************************************/ #ifndef SECP256K1_SCALAR_REPR_IMPL_H #define SECP256K1_SCALAR_REPR_IMPL_H @@ -38,21 +38,27 @@ static int secp256k1_scalar_add(secp256k1_scalar *r, const secp256k1_scalar *a, static void secp256k1_scalar_cadd_bit(secp256k1_scalar *r, unsigned int bit, int flag) { if (flag && bit < 32) - *r += (1 << bit); + *r += ((uint32_t)1 << bit); #ifdef VERIFY + VERIFY_CHECK(bit < 32); + /* Verify that adding (1 << bit) will not overflow any in-range scalar *r by overflowing the underlying uint32_t. */ + VERIFY_CHECK(((uint32_t)1 << bit) - 1 <= UINT32_MAX - EXHAUSTIVE_TEST_ORDER); VERIFY_CHECK(secp256k1_scalar_check_overflow(r) == 0); #endif } static void secp256k1_scalar_set_b32(secp256k1_scalar *r, const unsigned char *b32, int *overflow) { - const int base = 0x100 % EXHAUSTIVE_TEST_ORDER; int i; + int over = 0; *r = 0; for (i = 0; i < 32; i++) { - *r = ((*r * base) + b32[i]) % EXHAUSTIVE_TEST_ORDER; + *r = (*r * 0x100) + b32[i]; + if (*r >= EXHAUSTIVE_TEST_ORDER) { + over = 1; + *r %= EXHAUSTIVE_TEST_ORDER; + } } - /* just deny overflow, it basically always happens */ - if (overflow) *overflow = 0; + if (overflow) *overflow = over; } static void secp256k1_scalar_get_b32(unsigned char *bin, const secp256k1_scalar* a) { @@ -98,10 +104,6 @@ static int secp256k1_scalar_shr_int(secp256k1_scalar *r, int n) { return ret; } -static void secp256k1_scalar_sqr(secp256k1_scalar *r, const secp256k1_scalar *a) { - *r = (*a * *a) % EXHAUSTIVE_TEST_ORDER; -} - static void secp256k1_scalar_split_128(secp256k1_scalar *r1, secp256k1_scalar *r2, const secp256k1_scalar *a) { *r1 = *a; *r2 = 0; @@ -111,4 +113,27 @@ SECP256K1_INLINE static int secp256k1_scalar_eq(const secp256k1_scalar *a, const return *a == *b; } +static SECP256K1_INLINE void secp256k1_scalar_cmov(secp256k1_scalar *r, const secp256k1_scalar *a, int flag) { + uint32_t mask0, mask1; + VG_CHECK_VERIFY(r, sizeof(*r)); + mask0 = flag + ~((uint32_t)0); + mask1 = ~mask0; + *r = (*r & mask0) | (*a & mask1); +} + +static void secp256k1_scalar_inverse(secp256k1_scalar *r, const secp256k1_scalar *x) { + int i; + *r = 0; + for (i = 0; i < EXHAUSTIVE_TEST_ORDER; i++) + if ((i * *x) % EXHAUSTIVE_TEST_ORDER == 1) + *r = i; + /* If this VERIFY_CHECK triggers we were given a noninvertible scalar (and thus + * have a composite group order; fix it in exhaustive_tests.c). */ + VERIFY_CHECK(*r != 0); +} + +static void secp256k1_scalar_inverse_var(secp256k1_scalar *r, const secp256k1_scalar *x) { + secp256k1_scalar_inverse(r, x); +} + #endif /* SECP256K1_SCALAR_REPR_IMPL_H */ diff --git a/src/scratch.h b/src/scratch.h index fef377af0d942..9dcb7581f6fc4 100644 --- a/src/scratch.h +++ b/src/scratch.h @@ -1,39 +1,42 @@ -/********************************************************************** - * Copyright (c) 2017 Andrew Poelstra * - * Distributed under the MIT software license, see the accompanying * - * file COPYING or http://www.opensource.org/licenses/mit-license.php.* - **********************************************************************/ +/*********************************************************************** + * Copyright (c) 2017 Andrew Poelstra * + * Distributed under the MIT software license, see the accompanying * + * file COPYING or https://www.opensource.org/licenses/mit-license.php.* + ***********************************************************************/ -#ifndef _SECP256K1_SCRATCH_ -#define _SECP256K1_SCRATCH_ - -#define SECP256K1_SCRATCH_MAX_FRAMES 5 +#ifndef SECP256K1_SCRATCH_H +#define SECP256K1_SCRATCH_H /* The typedef is used internally; the struct name is used in the public API * (where it is exposed as a different typedef) */ typedef struct secp256k1_scratch_space_struct { - void *data[SECP256K1_SCRATCH_MAX_FRAMES]; - size_t offset[SECP256K1_SCRATCH_MAX_FRAMES]; - size_t frame_size[SECP256K1_SCRATCH_MAX_FRAMES]; - size_t frame; + /** guard against interpreting this object as other types */ + unsigned char magic[8]; + /** actual allocated data */ + void *data; + /** amount that has been allocated (i.e. `data + offset` is the next + * available pointer) */ + size_t alloc_size; + /** maximum size available to allocate */ size_t max_size; - const secp256k1_callback* error_callback; } secp256k1_scratch; static secp256k1_scratch* secp256k1_scratch_create(const secp256k1_callback* error_callback, size_t max_size); -static void secp256k1_scratch_destroy(secp256k1_scratch* scratch); +static void secp256k1_scratch_destroy(const secp256k1_callback* error_callback, secp256k1_scratch* scratch); -/** Attempts to allocate a new stack frame with `n` available bytes. Returns 1 on success, 0 on failure */ -static int secp256k1_scratch_allocate_frame(secp256k1_scratch* scratch, size_t n, size_t objects); +/** Returns an opaque object used to "checkpoint" a scratch space. Used + * with `secp256k1_scratch_apply_checkpoint` to undo allocations. */ +static size_t secp256k1_scratch_checkpoint(const secp256k1_callback* error_callback, const secp256k1_scratch* scratch); -/** Deallocates a stack frame */ -static void secp256k1_scratch_deallocate_frame(secp256k1_scratch* scratch); +/** Applies a check point received from `secp256k1_scratch_checkpoint`, + * undoing all allocations since that point. */ +static void secp256k1_scratch_apply_checkpoint(const secp256k1_callback* error_callback, secp256k1_scratch* scratch, size_t checkpoint); /** Returns the maximum allocation the scratch space will allow */ -static size_t secp256k1_scratch_max_allocation(const secp256k1_scratch* scratch, size_t n_objects); +static size_t secp256k1_scratch_max_allocation(const secp256k1_callback* error_callback, const secp256k1_scratch* scratch, size_t n_objects); /** Returns a pointer into the most recently allocated frame, or NULL if there is insufficient available space */ -static void *secp256k1_scratch_alloc(secp256k1_scratch* scratch, size_t n); +static void *secp256k1_scratch_alloc(const secp256k1_callback* error_callback, secp256k1_scratch* scratch, size_t n); #endif diff --git a/src/scratch_impl.h b/src/scratch_impl.h index abed713b21d2a..688e18eb66208 100644 --- a/src/scratch_impl.h +++ b/src/scratch_impl.h @@ -1,84 +1,97 @@ -/********************************************************************** - * Copyright (c) 2017 Andrew Poelstra * - * Distributed under the MIT software license, see the accompanying * - * file COPYING or http://www.opensource.org/licenses/mit-license.php.* - **********************************************************************/ +/*********************************************************************** + * Copyright (c) 2017 Andrew Poelstra * + * Distributed under the MIT software license, see the accompanying * + * file COPYING or https://www.opensource.org/licenses/mit-license.php.* + ***********************************************************************/ -#ifndef _SECP256K1_SCRATCH_IMPL_H_ -#define _SECP256K1_SCRATCH_IMPL_H_ +#ifndef SECP256K1_SCRATCH_IMPL_H +#define SECP256K1_SCRATCH_IMPL_H +#include "util.h" #include "scratch.h" -/* Using 16 bytes alignment because common architectures never have alignment - * requirements above 8 for any of the types we care about. In addition we - * leave some room because currently we don't care about a few bytes. - * TODO: Determine this at configure time. */ -#define ALIGNMENT 16 - -static secp256k1_scratch* secp256k1_scratch_create(const secp256k1_callback* error_callback, size_t max_size) { - secp256k1_scratch* ret = (secp256k1_scratch*)checked_malloc(error_callback, sizeof(*ret)); +static secp256k1_scratch* secp256k1_scratch_create(const secp256k1_callback* error_callback, size_t size) { + const size_t base_alloc = ROUND_TO_ALIGN(sizeof(secp256k1_scratch)); + void *alloc = checked_malloc(error_callback, base_alloc + size); + secp256k1_scratch* ret = (secp256k1_scratch *)alloc; if (ret != NULL) { memset(ret, 0, sizeof(*ret)); - ret->max_size = max_size; - ret->error_callback = error_callback; + memcpy(ret->magic, "scratch", 8); + ret->data = (void *) ((char *) alloc + base_alloc); + ret->max_size = size; } return ret; } -static void secp256k1_scratch_destroy(secp256k1_scratch* scratch) { +static void secp256k1_scratch_destroy(const secp256k1_callback* error_callback, secp256k1_scratch* scratch) { if (scratch != NULL) { - VERIFY_CHECK(scratch->frame == 0); + VERIFY_CHECK(scratch->alloc_size == 0); /* all checkpoints should be applied */ + if (secp256k1_memcmp_var(scratch->magic, "scratch", 8) != 0) { + secp256k1_callback_call(error_callback, "invalid scratch space"); + return; + } + memset(scratch->magic, 0, sizeof(scratch->magic)); free(scratch); } } -static size_t secp256k1_scratch_max_allocation(const secp256k1_scratch* scratch, size_t objects) { - size_t i = 0; - size_t allocated = 0; - for (i = 0; i < scratch->frame; i++) { - allocated += scratch->frame_size[i]; - } - if (scratch->max_size - allocated <= objects * ALIGNMENT) { +static size_t secp256k1_scratch_checkpoint(const secp256k1_callback* error_callback, const secp256k1_scratch* scratch) { + if (secp256k1_memcmp_var(scratch->magic, "scratch", 8) != 0) { + secp256k1_callback_call(error_callback, "invalid scratch space"); return 0; } - return scratch->max_size - allocated - objects * ALIGNMENT; + return scratch->alloc_size; } -static int secp256k1_scratch_allocate_frame(secp256k1_scratch* scratch, size_t n, size_t objects) { - VERIFY_CHECK(scratch->frame < SECP256K1_SCRATCH_MAX_FRAMES); - - if (n <= secp256k1_scratch_max_allocation(scratch, objects)) { - n += objects * ALIGNMENT; - scratch->data[scratch->frame] = checked_malloc(scratch->error_callback, n); - if (scratch->data[scratch->frame] == NULL) { - return 0; - } - scratch->frame_size[scratch->frame] = n; - scratch->offset[scratch->frame] = 0; - scratch->frame++; - return 1; - } else { - return 0; +static void secp256k1_scratch_apply_checkpoint(const secp256k1_callback* error_callback, secp256k1_scratch* scratch, size_t checkpoint) { + if (secp256k1_memcmp_var(scratch->magic, "scratch", 8) != 0) { + secp256k1_callback_call(error_callback, "invalid scratch space"); + return; + } + if (checkpoint > scratch->alloc_size) { + secp256k1_callback_call(error_callback, "invalid checkpoint"); + return; } + scratch->alloc_size = checkpoint; } -static void secp256k1_scratch_deallocate_frame(secp256k1_scratch* scratch) { - VERIFY_CHECK(scratch->frame > 0); - scratch->frame -= 1; - free(scratch->data[scratch->frame]); +static size_t secp256k1_scratch_max_allocation(const secp256k1_callback* error_callback, const secp256k1_scratch* scratch, size_t objects) { + if (secp256k1_memcmp_var(scratch->magic, "scratch", 8) != 0) { + secp256k1_callback_call(error_callback, "invalid scratch space"); + return 0; + } + /* Ensure that multiplication will not wrap around */ + if (ALIGNMENT > 1 && objects > SIZE_MAX/(ALIGNMENT - 1)) { + return 0; + } + if (scratch->max_size - scratch->alloc_size <= objects * (ALIGNMENT - 1)) { + return 0; + } + return scratch->max_size - scratch->alloc_size - objects * (ALIGNMENT - 1); } -static void *secp256k1_scratch_alloc(secp256k1_scratch* scratch, size_t size) { +static void *secp256k1_scratch_alloc(const secp256k1_callback* error_callback, secp256k1_scratch* scratch, size_t size) { void *ret; - size_t frame = scratch->frame - 1; - size = ((size + ALIGNMENT - 1) / ALIGNMENT) * ALIGNMENT; + size_t rounded_size; + + rounded_size = ROUND_TO_ALIGN(size); + /* Check that rounding did not wrap around */ + if (rounded_size < size) { + return NULL; + } + size = rounded_size; + + if (secp256k1_memcmp_var(scratch->magic, "scratch", 8) != 0) { + secp256k1_callback_call(error_callback, "invalid scratch space"); + return NULL; + } - if (scratch->frame == 0 || size + scratch->offset[frame] > scratch->frame_size[frame]) { + if (size > scratch->max_size - scratch->alloc_size) { return NULL; } - ret = (void *) ((unsigned char *) scratch->data[frame] + scratch->offset[frame]); + ret = (void *) ((char *) scratch->data + scratch->alloc_size); memset(ret, 0, size); - scratch->offset[frame] += size; + scratch->alloc_size += size; return ret; } diff --git a/src/secp256k1.c b/src/secp256k1.c index cd0972dfaf464..9908cab8642a5 100644 --- a/src/secp256k1.c +++ b/src/secp256k1.c @@ -1,13 +1,16 @@ -/********************************************************************** - * Copyright (c) 2013-2015 Pieter Wuille * - * Distributed under the MIT software license, see the accompanying * - * file COPYING or http://www.opensource.org/licenses/mit-license.php.* - **********************************************************************/ +/*********************************************************************** + * Copyright (c) 2013-2015 Pieter Wuille * + * Distributed under the MIT software license, see the accompanying * + * file COPYING or https://www.opensource.org/licenses/mit-license.php.* + ***********************************************************************/ -#include "include/secp256k1.h" +#define SECP256K1_BUILD +#include "../include/secp256k1.h" +#include "../include/secp256k1_preallocated.h" + +#include "assumptions.h" #include "util.h" -#include "num_impl.h" #include "field_impl.h" #include "scalar_impl.h" #include "group_impl.h" @@ -18,6 +21,15 @@ #include "eckey_impl.h" #include "hash_impl.h" #include "scratch_impl.h" +#include "selftest.h" + +#ifdef SECP256K1_NO_BUILD +# error "secp256k1.h processed without SECP256K1_BUILD defined while building secp256k1.c" +#endif + +#if defined(VALGRIND) +# include +#endif #define ARG_CHECK(cond) do { \ if (EXPECT(!(cond), 0)) { \ @@ -26,90 +38,187 @@ } \ } while(0) -static void default_illegal_callback_fn(const char* str, void* data) { +#define ARG_CHECK_NO_RETURN(cond) do { \ + if (EXPECT(!(cond), 0)) { \ + secp256k1_callback_call(&ctx->illegal_callback, #cond); \ + } \ +} while(0) + +#ifndef USE_EXTERNAL_DEFAULT_CALLBACKS +#include +#include +static void secp256k1_default_illegal_callback_fn(const char* str, void* data) { (void)data; fprintf(stderr, "[libsecp256k1] illegal argument: %s\n", str); abort(); } - -static const secp256k1_callback default_illegal_callback = { - default_illegal_callback_fn, - NULL -}; - -static void default_error_callback_fn(const char* str, void* data) { +static void secp256k1_default_error_callback_fn(const char* str, void* data) { (void)data; fprintf(stderr, "[libsecp256k1] internal consistency check failed: %s\n", str); abort(); } +#else +void secp256k1_default_illegal_callback_fn(const char* str, void* data); +void secp256k1_default_error_callback_fn(const char* str, void* data); +#endif -static const secp256k1_callback default_error_callback = { - default_error_callback_fn, +static const secp256k1_callback default_illegal_callback = { + secp256k1_default_illegal_callback_fn, NULL }; +static const secp256k1_callback default_error_callback = { + secp256k1_default_error_callback_fn, + NULL +}; struct secp256k1_context_struct { secp256k1_ecmult_context ecmult_ctx; secp256k1_ecmult_gen_context ecmult_gen_ctx; secp256k1_callback illegal_callback; secp256k1_callback error_callback; + int declassify; }; -secp256k1_context* secp256k1_context_create(unsigned int flags) { - secp256k1_context* ret = (secp256k1_context*)checked_malloc(&default_error_callback, sizeof(secp256k1_context)); - ret->illegal_callback = default_illegal_callback; - ret->error_callback = default_error_callback; +static const secp256k1_context secp256k1_context_no_precomp_ = { + { 0 }, + { 0 }, + { secp256k1_default_illegal_callback_fn, 0 }, + { secp256k1_default_error_callback_fn, 0 }, + 0 +}; +const secp256k1_context *secp256k1_context_no_precomp = &secp256k1_context_no_precomp_; + +size_t secp256k1_context_preallocated_size(unsigned int flags) { + size_t ret = ROUND_TO_ALIGN(sizeof(secp256k1_context)); + /* A return value of 0 is reserved as an indicator for errors when we call this function internally. */ + VERIFY_CHECK(ret != 0); if (EXPECT((flags & SECP256K1_FLAGS_TYPE_MASK) != SECP256K1_FLAGS_TYPE_CONTEXT, 0)) { - secp256k1_callback_call(&ret->illegal_callback, + secp256k1_callback_call(&default_illegal_callback, "Invalid flags"); - free(ret); - return NULL; + return 0; + } + + if (flags & SECP256K1_FLAGS_BIT_CONTEXT_SIGN) { + ret += SECP256K1_ECMULT_GEN_CONTEXT_PREALLOCATED_SIZE; + } + if (flags & SECP256K1_FLAGS_BIT_CONTEXT_VERIFY) { + ret += SECP256K1_ECMULT_CONTEXT_PREALLOCATED_SIZE; + } + return ret; +} + +size_t secp256k1_context_preallocated_clone_size(const secp256k1_context* ctx) { + size_t ret = ROUND_TO_ALIGN(sizeof(secp256k1_context)); + VERIFY_CHECK(ctx != NULL); + if (secp256k1_ecmult_gen_context_is_built(&ctx->ecmult_gen_ctx)) { + ret += SECP256K1_ECMULT_GEN_CONTEXT_PREALLOCATED_SIZE; + } + if (secp256k1_ecmult_context_is_built(&ctx->ecmult_ctx)) { + ret += SECP256K1_ECMULT_CONTEXT_PREALLOCATED_SIZE; + } + return ret; +} + +secp256k1_context* secp256k1_context_preallocated_create(void* prealloc, unsigned int flags) { + void* const base = prealloc; + size_t prealloc_size; + secp256k1_context* ret; + + if (!secp256k1_selftest()) { + secp256k1_callback_call(&default_error_callback, "self test failed"); } + prealloc_size = secp256k1_context_preallocated_size(flags); + if (prealloc_size == 0) { + return NULL; + } + VERIFY_CHECK(prealloc != NULL); + ret = (secp256k1_context*)manual_alloc(&prealloc, sizeof(secp256k1_context), base, prealloc_size); + ret->illegal_callback = default_illegal_callback; + ret->error_callback = default_error_callback; + secp256k1_ecmult_context_init(&ret->ecmult_ctx); secp256k1_ecmult_gen_context_init(&ret->ecmult_gen_ctx); + /* Flags have been checked by secp256k1_context_preallocated_size. */ + VERIFY_CHECK((flags & SECP256K1_FLAGS_TYPE_MASK) == SECP256K1_FLAGS_TYPE_CONTEXT); if (flags & SECP256K1_FLAGS_BIT_CONTEXT_SIGN) { - secp256k1_ecmult_gen_context_build(&ret->ecmult_gen_ctx, &ret->error_callback); + secp256k1_ecmult_gen_context_build(&ret->ecmult_gen_ctx, &prealloc); } if (flags & SECP256K1_FLAGS_BIT_CONTEXT_VERIFY) { - secp256k1_ecmult_context_build(&ret->ecmult_ctx, &ret->error_callback); + secp256k1_ecmult_context_build(&ret->ecmult_ctx, &prealloc); } + ret->declassify = !!(flags & SECP256K1_FLAGS_BIT_CONTEXT_DECLASSIFY); + + return (secp256k1_context*) ret; +} +secp256k1_context* secp256k1_context_create(unsigned int flags) { + size_t const prealloc_size = secp256k1_context_preallocated_size(flags); + secp256k1_context* ctx = (secp256k1_context*)checked_malloc(&default_error_callback, prealloc_size); + if (EXPECT(secp256k1_context_preallocated_create(ctx, flags) == NULL, 0)) { + free(ctx); + return NULL; + } + + return ctx; +} + +secp256k1_context* secp256k1_context_preallocated_clone(const secp256k1_context* ctx, void* prealloc) { + size_t prealloc_size; + secp256k1_context* ret; + VERIFY_CHECK(ctx != NULL); + ARG_CHECK(prealloc != NULL); + + prealloc_size = secp256k1_context_preallocated_clone_size(ctx); + ret = (secp256k1_context*)prealloc; + memcpy(ret, ctx, prealloc_size); + secp256k1_ecmult_gen_context_finalize_memcpy(&ret->ecmult_gen_ctx, &ctx->ecmult_gen_ctx); + secp256k1_ecmult_context_finalize_memcpy(&ret->ecmult_ctx, &ctx->ecmult_ctx); return ret; } secp256k1_context* secp256k1_context_clone(const secp256k1_context* ctx) { - secp256k1_context* ret = (secp256k1_context*)checked_malloc(&ctx->error_callback, sizeof(secp256k1_context)); - ret->illegal_callback = ctx->illegal_callback; - ret->error_callback = ctx->error_callback; - secp256k1_ecmult_context_clone(&ret->ecmult_ctx, &ctx->ecmult_ctx, &ctx->error_callback); - secp256k1_ecmult_gen_context_clone(&ret->ecmult_gen_ctx, &ctx->ecmult_gen_ctx, &ctx->error_callback); + secp256k1_context* ret; + size_t prealloc_size; + + VERIFY_CHECK(ctx != NULL); + prealloc_size = secp256k1_context_preallocated_clone_size(ctx); + ret = (secp256k1_context*)checked_malloc(&ctx->error_callback, prealloc_size); + ret = secp256k1_context_preallocated_clone(ctx, ret); return ret; } -void secp256k1_context_destroy(secp256k1_context* ctx) { +void secp256k1_context_preallocated_destroy(secp256k1_context* ctx) { + ARG_CHECK_NO_RETURN(ctx != secp256k1_context_no_precomp); if (ctx != NULL) { secp256k1_ecmult_context_clear(&ctx->ecmult_ctx); secp256k1_ecmult_gen_context_clear(&ctx->ecmult_gen_ctx); + } +} +void secp256k1_context_destroy(secp256k1_context* ctx) { + if (ctx != NULL) { + secp256k1_context_preallocated_destroy(ctx); free(ctx); } } void secp256k1_context_set_illegal_callback(secp256k1_context* ctx, void (*fun)(const char* message, void* data), const void* data) { + ARG_CHECK_NO_RETURN(ctx != secp256k1_context_no_precomp); if (fun == NULL) { - fun = default_illegal_callback_fn; + fun = secp256k1_default_illegal_callback_fn; } ctx->illegal_callback.fn = fun; ctx->illegal_callback.data = data; } void secp256k1_context_set_error_callback(secp256k1_context* ctx, void (*fun)(const char* message, void* data), const void* data) { + ARG_CHECK_NO_RETURN(ctx != secp256k1_context_no_precomp); if (fun == NULL) { - fun = default_error_callback_fn; + fun = secp256k1_default_error_callback_fn; } ctx->error_callback.fn = fun; ctx->error_callback.data = data; @@ -120,8 +229,23 @@ secp256k1_scratch_space* secp256k1_scratch_space_create(const secp256k1_context* return secp256k1_scratch_create(&ctx->error_callback, max_size); } -void secp256k1_scratch_space_destroy(secp256k1_scratch_space* scratch) { - secp256k1_scratch_destroy(scratch); +void secp256k1_scratch_space_destroy(const secp256k1_context *ctx, secp256k1_scratch_space* scratch) { + VERIFY_CHECK(ctx != NULL); + secp256k1_scratch_destroy(&ctx->error_callback, scratch); +} + +/* Mark memory as no-longer-secret for the purpose of analysing constant-time behaviour + * of the software. This is setup for use with valgrind but could be substituted with + * the appropriate instrumentation for other analysis tools. + */ +static SECP256K1_INLINE void secp256k1_declassify(const secp256k1_context* ctx, const void *p, size_t len) { +#if defined(VALGRIND) + if (EXPECT(ctx->declassify,0)) VALGRIND_MAKE_MEM_DEFINED(p, len); +#else + (void)ctx; + (void)p; + (void)len; +#endif } static int secp256k1_pubkey_load(const secp256k1_context* ctx, secp256k1_ge* ge, const secp256k1_pubkey* pubkey) { @@ -167,6 +291,9 @@ int secp256k1_ec_pubkey_parse(const secp256k1_context* ctx, secp256k1_pubkey* pu if (!secp256k1_eckey_pubkey_parse(&Q, input, inputlen)) { return 0; } + if (!secp256k1_ge_is_in_correct_subgroup(&Q)) { + return 0; + } secp256k1_pubkey_save(pubkey, &Q); secp256k1_ge_clear(&Q); return 1; @@ -179,7 +306,7 @@ int secp256k1_ec_pubkey_serialize(const secp256k1_context* ctx, unsigned char *o VERIFY_CHECK(ctx != NULL); ARG_CHECK(outputlen != NULL); - ARG_CHECK(*outputlen >= ((flags & SECP256K1_FLAGS_BIT_COMPRESSION) ? 33 : 65)); + ARG_CHECK(*outputlen >= ((flags & SECP256K1_FLAGS_BIT_COMPRESSION) ? 33u : 65u)); len = *outputlen; *outputlen = 0; ARG_CHECK(output != NULL); @@ -195,6 +322,32 @@ int secp256k1_ec_pubkey_serialize(const secp256k1_context* ctx, unsigned char *o return ret; } +int secp256k1_ec_pubkey_cmp(const secp256k1_context* ctx, const secp256k1_pubkey* pubkey0, const secp256k1_pubkey* pubkey1) { + unsigned char out[2][33]; + const secp256k1_pubkey* pk[2]; + int i; + + VERIFY_CHECK(ctx != NULL); + pk[0] = pubkey0; pk[1] = pubkey1; + for (i = 0; i < 2; i++) { + size_t out_size = sizeof(out[i]); + /* If the public key is NULL or invalid, ec_pubkey_serialize will call + * the illegal_callback and return 0. In that case we will serialize the + * key as all zeros which is less than any valid public key. This + * results in consistent comparisons even if NULL or invalid pubkeys are + * involved and prevents edge cases such as sorting algorithms that use + * this function and do not terminate as a result. */ + if (!secp256k1_ec_pubkey_serialize(ctx, out[i], &out_size, pk[i], SECP256K1_EC_COMPRESSED)) { + /* Note that ec_pubkey_serialize should already set the output to + * zero in that case, but it's not guaranteed by the API, we can't + * test it and writing a VERIFY_CHECK is more complex than + * explicitly memsetting (again). */ + memset(out[i], 0, sizeof(out[i])); + } + } + return secp256k1_memcmp_var(out[0], out[1], sizeof(out[0])); +} + static void secp256k1_ecdsa_signature_load(const secp256k1_context* ctx, secp256k1_scalar* r, secp256k1_scalar* s, const secp256k1_ecdsa_signature* sig) { (void)ctx; if (sizeof(secp256k1_scalar) == 32) { @@ -300,17 +453,17 @@ int secp256k1_ecdsa_signature_normalize(const secp256k1_context* ctx, secp256k1_ return ret; } -int secp256k1_ecdsa_verify(const secp256k1_context* ctx, const secp256k1_ecdsa_signature *sig, const unsigned char *msg32, const secp256k1_pubkey *pubkey) { +int secp256k1_ecdsa_verify(const secp256k1_context* ctx, const secp256k1_ecdsa_signature *sig, const unsigned char *msghash32, const secp256k1_pubkey *pubkey) { secp256k1_ge q; secp256k1_scalar r, s; secp256k1_scalar m; VERIFY_CHECK(ctx != NULL); ARG_CHECK(secp256k1_ecmult_context_is_built(&ctx->ecmult_ctx)); - ARG_CHECK(msg32 != NULL); + ARG_CHECK(msghash32 != NULL); ARG_CHECK(sig != NULL); ARG_CHECK(pubkey != NULL); - secp256k1_scalar_set_b32(&m, msg32, NULL); + secp256k1_scalar_set_b32(&m, msghash32, NULL); secp256k1_ecdsa_signature_load(ctx, &r, &s, sig); return (!secp256k1_scalar_is_high(&s) && secp256k1_pubkey_load(ctx, &q, pubkey) && @@ -355,70 +508,102 @@ static int nonce_function_rfc6979(unsigned char *nonce32, const unsigned char *m const secp256k1_nonce_function secp256k1_nonce_function_rfc6979 = nonce_function_rfc6979; const secp256k1_nonce_function secp256k1_nonce_function_default = nonce_function_rfc6979; -int secp256k1_ecdsa_sign(const secp256k1_context* ctx, secp256k1_ecdsa_signature *signature, const unsigned char *msg32, const unsigned char *seckey, secp256k1_nonce_function noncefp, const void* noncedata) { - secp256k1_scalar r, s; +static int secp256k1_ecdsa_sign_inner(const secp256k1_context* ctx, secp256k1_scalar* r, secp256k1_scalar* s, int* recid, const unsigned char *msg32, const unsigned char *seckey, secp256k1_nonce_function noncefp, const void* noncedata) { secp256k1_scalar sec, non, msg; int ret = 0; - int overflow = 0; - VERIFY_CHECK(ctx != NULL); - ARG_CHECK(secp256k1_ecmult_gen_context_is_built(&ctx->ecmult_gen_ctx)); - ARG_CHECK(msg32 != NULL); - ARG_CHECK(signature != NULL); - ARG_CHECK(seckey != NULL); + int is_sec_valid; + unsigned char nonce32[32]; + unsigned int count = 0; + /* Default initialization here is important so we won't pass uninit values to the cmov in the end */ + *r = secp256k1_scalar_zero; + *s = secp256k1_scalar_zero; + if (recid) { + *recid = 0; + } if (noncefp == NULL) { noncefp = secp256k1_nonce_function_default; } - secp256k1_scalar_set_b32(&sec, seckey, &overflow); /* Fail if the secret key is invalid. */ - if (!overflow && !secp256k1_scalar_is_zero(&sec)) { - unsigned char nonce32[32]; - unsigned int count = 0; - secp256k1_scalar_set_b32(&msg, msg32, NULL); - while (1) { - ret = noncefp(nonce32, msg32, seckey, NULL, (void*)noncedata, count); - if (!ret) { + is_sec_valid = secp256k1_scalar_set_b32_seckey(&sec, seckey); + secp256k1_scalar_cmov(&sec, &secp256k1_scalar_one, !is_sec_valid); + secp256k1_scalar_set_b32(&msg, msg32, NULL); + while (1) { + int is_nonce_valid; + ret = !!noncefp(nonce32, msg32, seckey, NULL, (void*)noncedata, count); + if (!ret) { + break; + } + is_nonce_valid = secp256k1_scalar_set_b32_seckey(&non, nonce32); + /* The nonce is still secret here, but it being invalid is is less likely than 1:2^255. */ + secp256k1_declassify(ctx, &is_nonce_valid, sizeof(is_nonce_valid)); + if (is_nonce_valid) { + ret = secp256k1_ecdsa_sig_sign(&ctx->ecmult_gen_ctx, r, s, &sec, &msg, &non, recid); + /* The final signature is no longer a secret, nor is the fact that we were successful or not. */ + secp256k1_declassify(ctx, &ret, sizeof(ret)); + if (ret) { break; } - secp256k1_scalar_set_b32(&non, nonce32, &overflow); - if (!overflow && !secp256k1_scalar_is_zero(&non)) { - if (secp256k1_ecdsa_sig_sign(&ctx->ecmult_gen_ctx, &r, &s, &sec, &msg, &non, NULL)) { - break; - } - } - count++; } - memset(nonce32, 0, 32); - secp256k1_scalar_clear(&msg); - secp256k1_scalar_clear(&non); - secp256k1_scalar_clear(&sec); + count++; } - if (ret) { - secp256k1_ecdsa_signature_save(signature, &r, &s); - } else { - memset(signature, 0, sizeof(*signature)); + /* We don't want to declassify is_sec_valid and therefore the range of + * seckey. As a result is_sec_valid is included in ret only after ret was + * used as a branching variable. */ + ret &= is_sec_valid; + memset(nonce32, 0, 32); + secp256k1_scalar_clear(&msg); + secp256k1_scalar_clear(&non); + secp256k1_scalar_clear(&sec); + secp256k1_scalar_cmov(r, &secp256k1_scalar_zero, !ret); + secp256k1_scalar_cmov(s, &secp256k1_scalar_zero, !ret); + if (recid) { + const int zero = 0; + secp256k1_int_cmov(recid, &zero, !ret); } return ret; } +int secp256k1_ecdsa_sign(const secp256k1_context* ctx, secp256k1_ecdsa_signature *signature, const unsigned char *msghash32, const unsigned char *seckey, secp256k1_nonce_function noncefp, const void* noncedata) { + secp256k1_scalar r, s; + int ret; + VERIFY_CHECK(ctx != NULL); + ARG_CHECK(secp256k1_ecmult_gen_context_is_built(&ctx->ecmult_gen_ctx)); + ARG_CHECK(msghash32 != NULL); + ARG_CHECK(signature != NULL); + ARG_CHECK(seckey != NULL); + + ret = secp256k1_ecdsa_sign_inner(ctx, &r, &s, NULL, msghash32, seckey, noncefp, noncedata); + secp256k1_ecdsa_signature_save(signature, &r, &s); + return ret; +} + int secp256k1_ec_seckey_verify(const secp256k1_context* ctx, const unsigned char *seckey) { secp256k1_scalar sec; int ret; - int overflow; VERIFY_CHECK(ctx != NULL); ARG_CHECK(seckey != NULL); - secp256k1_scalar_set_b32(&sec, seckey, &overflow); - ret = !overflow && !secp256k1_scalar_is_zero(&sec); + ret = secp256k1_scalar_set_b32_seckey(&sec, seckey); secp256k1_scalar_clear(&sec); return ret; } -int secp256k1_ec_pubkey_create(const secp256k1_context* ctx, secp256k1_pubkey *pubkey, const unsigned char *seckey) { +static int secp256k1_ec_pubkey_create_helper(const secp256k1_ecmult_gen_context *ecmult_gen_ctx, secp256k1_scalar *seckey_scalar, secp256k1_ge *p, const unsigned char *seckey) { secp256k1_gej pj; + int ret; + + ret = secp256k1_scalar_set_b32_seckey(seckey_scalar, seckey); + secp256k1_scalar_cmov(seckey_scalar, &secp256k1_scalar_one, !ret); + + secp256k1_ecmult_gen(ecmult_gen_ctx, &pj, seckey_scalar); + secp256k1_ge_set_gej(p, &pj); + return ret; +} + +int secp256k1_ec_pubkey_create(const secp256k1_context* ctx, secp256k1_pubkey *pubkey, const unsigned char *seckey) { secp256k1_ge p; - secp256k1_scalar sec; - int overflow; + secp256k1_scalar seckey_scalar; int ret = 0; VERIFY_CHECK(ctx != NULL); ARG_CHECK(pubkey != NULL); @@ -426,27 +611,31 @@ int secp256k1_ec_pubkey_create(const secp256k1_context* ctx, secp256k1_pubkey *p ARG_CHECK(secp256k1_ecmult_gen_context_is_built(&ctx->ecmult_gen_ctx)); ARG_CHECK(seckey != NULL); - secp256k1_scalar_set_b32(&sec, seckey, &overflow); - ret = (!overflow) & (!secp256k1_scalar_is_zero(&sec)); - if (ret) { - secp256k1_ecmult_gen(&ctx->ecmult_gen_ctx, &pj, &sec); - secp256k1_ge_set_gej(&p, &pj); - secp256k1_pubkey_save(pubkey, &p); - } - secp256k1_scalar_clear(&sec); + ret = secp256k1_ec_pubkey_create_helper(&ctx->ecmult_gen_ctx, &seckey_scalar, &p, seckey); + secp256k1_pubkey_save(pubkey, &p); + secp256k1_memczero(pubkey, sizeof(*pubkey), !ret); + + secp256k1_scalar_clear(&seckey_scalar); return ret; } -int secp256k1_ec_privkey_negate(const secp256k1_context* ctx, unsigned char *seckey) { +int secp256k1_ec_seckey_negate(const secp256k1_context* ctx, unsigned char *seckey) { secp256k1_scalar sec; + int ret = 0; VERIFY_CHECK(ctx != NULL); ARG_CHECK(seckey != NULL); - secp256k1_scalar_set_b32(&sec, seckey, NULL); + ret = secp256k1_scalar_set_b32_seckey(&sec, seckey); + secp256k1_scalar_cmov(&sec, &secp256k1_scalar_zero, !ret); secp256k1_scalar_negate(&sec, &sec); secp256k1_scalar_get_b32(seckey, &sec); - return 1; + secp256k1_scalar_clear(&sec); + return ret; +} + +int secp256k1_ec_privkey_negate(const secp256k1_context* ctx, unsigned char *seckey) { + return secp256k1_ec_seckey_negate(ctx, seckey); } int secp256k1_ec_pubkey_negate(const secp256k1_context* ctx, secp256k1_pubkey *pubkey) { @@ -464,76 +653,88 @@ int secp256k1_ec_pubkey_negate(const secp256k1_context* ctx, secp256k1_pubkey *p return ret; } -int secp256k1_ec_privkey_tweak_add(const secp256k1_context* ctx, unsigned char *seckey, const unsigned char *tweak) { + +static int secp256k1_ec_seckey_tweak_add_helper(secp256k1_scalar *sec, const unsigned char *tweak32) { secp256k1_scalar term; + int overflow = 0; + int ret = 0; + + secp256k1_scalar_set_b32(&term, tweak32, &overflow); + ret = (!overflow) & secp256k1_eckey_privkey_tweak_add(sec, &term); + secp256k1_scalar_clear(&term); + return ret; +} + +int secp256k1_ec_seckey_tweak_add(const secp256k1_context* ctx, unsigned char *seckey, const unsigned char *tweak32) { secp256k1_scalar sec; int ret = 0; - int overflow = 0; VERIFY_CHECK(ctx != NULL); ARG_CHECK(seckey != NULL); - ARG_CHECK(tweak != NULL); - - secp256k1_scalar_set_b32(&term, tweak, &overflow); - secp256k1_scalar_set_b32(&sec, seckey, NULL); + ARG_CHECK(tweak32 != NULL); - ret = !overflow && secp256k1_eckey_privkey_tweak_add(&sec, &term); - memset(seckey, 0, 32); - if (ret) { - secp256k1_scalar_get_b32(seckey, &sec); - } + ret = secp256k1_scalar_set_b32_seckey(&sec, seckey); + ret &= secp256k1_ec_seckey_tweak_add_helper(&sec, tweak32); + secp256k1_scalar_cmov(&sec, &secp256k1_scalar_zero, !ret); + secp256k1_scalar_get_b32(seckey, &sec); secp256k1_scalar_clear(&sec); - secp256k1_scalar_clear(&term); return ret; } -int secp256k1_ec_pubkey_tweak_add(const secp256k1_context* ctx, secp256k1_pubkey *pubkey, const unsigned char *tweak) { - secp256k1_ge p; +int secp256k1_ec_privkey_tweak_add(const secp256k1_context* ctx, unsigned char *seckey, const unsigned char *tweak32) { + return secp256k1_ec_seckey_tweak_add(ctx, seckey, tweak32); +} + +static int secp256k1_ec_pubkey_tweak_add_helper(const secp256k1_ecmult_context* ecmult_ctx, secp256k1_ge *p, const unsigned char *tweak32) { secp256k1_scalar term; - int ret = 0; int overflow = 0; + secp256k1_scalar_set_b32(&term, tweak32, &overflow); + return !overflow && secp256k1_eckey_pubkey_tweak_add(ecmult_ctx, p, &term); +} + +int secp256k1_ec_pubkey_tweak_add(const secp256k1_context* ctx, secp256k1_pubkey *pubkey, const unsigned char *tweak32) { + secp256k1_ge p; + int ret = 0; VERIFY_CHECK(ctx != NULL); ARG_CHECK(secp256k1_ecmult_context_is_built(&ctx->ecmult_ctx)); ARG_CHECK(pubkey != NULL); - ARG_CHECK(tweak != NULL); + ARG_CHECK(tweak32 != NULL); - secp256k1_scalar_set_b32(&term, tweak, &overflow); - ret = !overflow && secp256k1_pubkey_load(ctx, &p, pubkey); + ret = secp256k1_pubkey_load(ctx, &p, pubkey); memset(pubkey, 0, sizeof(*pubkey)); + ret = ret && secp256k1_ec_pubkey_tweak_add_helper(&ctx->ecmult_ctx, &p, tweak32); if (ret) { - if (secp256k1_eckey_pubkey_tweak_add(&ctx->ecmult_ctx, &p, &term)) { - secp256k1_pubkey_save(pubkey, &p); - } else { - ret = 0; - } + secp256k1_pubkey_save(pubkey, &p); } return ret; } -int secp256k1_ec_privkey_tweak_mul(const secp256k1_context* ctx, unsigned char *seckey, const unsigned char *tweak) { +int secp256k1_ec_seckey_tweak_mul(const secp256k1_context* ctx, unsigned char *seckey, const unsigned char *tweak32) { secp256k1_scalar factor; secp256k1_scalar sec; int ret = 0; int overflow = 0; VERIFY_CHECK(ctx != NULL); ARG_CHECK(seckey != NULL); - ARG_CHECK(tweak != NULL); + ARG_CHECK(tweak32 != NULL); - secp256k1_scalar_set_b32(&factor, tweak, &overflow); - secp256k1_scalar_set_b32(&sec, seckey, NULL); - ret = !overflow && secp256k1_eckey_privkey_tweak_mul(&sec, &factor); - memset(seckey, 0, 32); - if (ret) { - secp256k1_scalar_get_b32(seckey, &sec); - } + secp256k1_scalar_set_b32(&factor, tweak32, &overflow); + ret = secp256k1_scalar_set_b32_seckey(&sec, seckey); + ret &= (!overflow) & secp256k1_eckey_privkey_tweak_mul(&sec, &factor); + secp256k1_scalar_cmov(&sec, &secp256k1_scalar_zero, !ret); + secp256k1_scalar_get_b32(seckey, &sec); secp256k1_scalar_clear(&sec); secp256k1_scalar_clear(&factor); return ret; } -int secp256k1_ec_pubkey_tweak_mul(const secp256k1_context* ctx, secp256k1_pubkey *pubkey, const unsigned char *tweak) { +int secp256k1_ec_privkey_tweak_mul(const secp256k1_context* ctx, unsigned char *seckey, const unsigned char *tweak32) { + return secp256k1_ec_seckey_tweak_mul(ctx, seckey, tweak32); +} + +int secp256k1_ec_pubkey_tweak_mul(const secp256k1_context* ctx, secp256k1_pubkey *pubkey, const unsigned char *tweak32) { secp256k1_ge p; secp256k1_scalar factor; int ret = 0; @@ -541,9 +742,9 @@ int secp256k1_ec_pubkey_tweak_mul(const secp256k1_context* ctx, secp256k1_pubkey VERIFY_CHECK(ctx != NULL); ARG_CHECK(secp256k1_ecmult_context_is_built(&ctx->ecmult_ctx)); ARG_CHECK(pubkey != NULL); - ARG_CHECK(tweak != NULL); + ARG_CHECK(tweak32 != NULL); - secp256k1_scalar_set_b32(&factor, tweak, &overflow); + secp256k1_scalar_set_b32(&factor, tweak32, &overflow); ret = !overflow && secp256k1_pubkey_load(ctx, &p, pubkey); memset(pubkey, 0, sizeof(*pubkey)); if (ret) { @@ -559,8 +760,9 @@ int secp256k1_ec_pubkey_tweak_mul(const secp256k1_context* ctx, secp256k1_pubkey int secp256k1_context_randomize(secp256k1_context* ctx, const unsigned char *seed32) { VERIFY_CHECK(ctx != NULL); - ARG_CHECK(secp256k1_ecmult_gen_context_is_built(&ctx->ecmult_gen_ctx)); - secp256k1_ecmult_gen_blind(&ctx->ecmult_gen_ctx, seed32); + if (secp256k1_ecmult_gen_context_is_built(&ctx->ecmult_gen_ctx)) { + secp256k1_ecmult_gen_blind(&ctx->ecmult_gen_ctx, seed32); + } return 1; } @@ -588,6 +790,19 @@ int secp256k1_ec_pubkey_combine(const secp256k1_context* ctx, secp256k1_pubkey * return 1; } +int secp256k1_tagged_sha256(const secp256k1_context* ctx, unsigned char *hash32, const unsigned char *tag, size_t taglen, const unsigned char *msg, size_t msglen) { + secp256k1_sha256 sha; + VERIFY_CHECK(ctx != NULL); + ARG_CHECK(hash32 != NULL); + ARG_CHECK(tag != NULL); + ARG_CHECK(msg != NULL); + + secp256k1_sha256_initialize_tagged(&sha, tag, taglen); + secp256k1_sha256_write(&sha, msg, msglen); + secp256k1_sha256_finalize(&sha, hash32); + return 1; +} + #ifdef ENABLE_MODULE_ECDH # include "modules/ecdh/main_impl.h" #endif @@ -595,3 +810,11 @@ int secp256k1_ec_pubkey_combine(const secp256k1_context* ctx, secp256k1_pubkey * #ifdef ENABLE_MODULE_RECOVERY # include "modules/recovery/main_impl.h" #endif + +#ifdef ENABLE_MODULE_EXTRAKEYS +# include "modules/extrakeys/main_impl.h" +#endif + +#ifdef ENABLE_MODULE_SCHNORRSIG +# include "modules/schnorrsig/main_impl.h" +#endif diff --git a/src/selftest.h b/src/selftest.h new file mode 100644 index 0000000000000..52f1b8442e712 --- /dev/null +++ b/src/selftest.h @@ -0,0 +1,32 @@ +/*********************************************************************** + * Copyright (c) 2020 Pieter Wuille * + * Distributed under the MIT software license, see the accompanying * + * file COPYING or https://www.opensource.org/licenses/mit-license.php.* + ***********************************************************************/ + +#ifndef SECP256K1_SELFTEST_H +#define SECP256K1_SELFTEST_H + +#include "hash.h" + +#include + +static int secp256k1_selftest_sha256(void) { + static const char *input63 = "For this sample, this 63-byte string will be used as input data"; + static const unsigned char output32[32] = { + 0xf0, 0x8a, 0x78, 0xcb, 0xba, 0xee, 0x08, 0x2b, 0x05, 0x2a, 0xe0, 0x70, 0x8f, 0x32, 0xfa, 0x1e, + 0x50, 0xc5, 0xc4, 0x21, 0xaa, 0x77, 0x2b, 0xa5, 0xdb, 0xb4, 0x06, 0xa2, 0xea, 0x6b, 0xe3, 0x42, + }; + unsigned char out[32]; + secp256k1_sha256 hasher; + secp256k1_sha256_initialize(&hasher); + secp256k1_sha256_write(&hasher, (const unsigned char*)input63, 63); + secp256k1_sha256_finalize(&hasher, out); + return secp256k1_memcmp_var(out, output32, 32) == 0; +} + +static int secp256k1_selftest(void) { + return secp256k1_selftest_sha256(); +} + +#endif /* SECP256K1_SELFTEST_H */ diff --git a/src/testrand.h b/src/testrand.h index f1f9be077e378..667d1867bd615 100644 --- a/src/testrand.h +++ b/src/testrand.h @@ -1,8 +1,8 @@ -/********************************************************************** - * Copyright (c) 2013, 2014 Pieter Wuille * - * Distributed under the MIT software license, see the accompanying * - * file COPYING or http://www.opensource.org/licenses/mit-license.php.* - **********************************************************************/ +/*********************************************************************** + * Copyright (c) 2013, 2014 Pieter Wuille * + * Distributed under the MIT software license, see the accompanying * + * file COPYING or https://www.opensource.org/licenses/mit-license.php.* + ***********************************************************************/ #ifndef SECP256K1_TESTRAND_H #define SECP256K1_TESTRAND_H @@ -14,25 +14,34 @@ /* A non-cryptographic RNG used only for test infrastructure. */ /** Seed the pseudorandom number generator for testing. */ -SECP256K1_INLINE static void secp256k1_rand_seed(const unsigned char *seed16); +SECP256K1_INLINE static void secp256k1_testrand_seed(const unsigned char *seed16); /** Generate a pseudorandom number in the range [0..2**32-1]. */ -static uint32_t secp256k1_rand32(void); +static uint32_t secp256k1_testrand32(void); /** Generate a pseudorandom number in the range [0..2**bits-1]. Bits must be 1 or * more. */ -static uint32_t secp256k1_rand_bits(int bits); +static uint32_t secp256k1_testrand_bits(int bits); /** Generate a pseudorandom number in the range [0..range-1]. */ -static uint32_t secp256k1_rand_int(uint32_t range); +static uint32_t secp256k1_testrand_int(uint32_t range); /** Generate a pseudorandom 32-byte array. */ -static void secp256k1_rand256(unsigned char *b32); +static void secp256k1_testrand256(unsigned char *b32); /** Generate a pseudorandom 32-byte array with long sequences of zero and one bits. */ -static void secp256k1_rand256_test(unsigned char *b32); +static void secp256k1_testrand256_test(unsigned char *b32); /** Generate pseudorandom bytes with long sequences of zero and one bits. */ -static void secp256k1_rand_bytes_test(unsigned char *bytes, size_t len); +static void secp256k1_testrand_bytes_test(unsigned char *bytes, size_t len); + +/** Flip a single random bit in a byte array */ +static void secp256k1_testrand_flip(unsigned char *b, size_t len); + +/** Initialize the test RNG using (hex encoded) array up to 16 bytes, or randomly if hexseed is NULL. */ +static void secp256k1_testrand_init(const char* hexseed); + +/** Print final test information. */ +static void secp256k1_testrand_finish(void); #endif /* SECP256K1_TESTRAND_H */ diff --git a/src/testrand_impl.h b/src/testrand_impl.h index 30a91e5296137..c8d30ef6a814b 100644 --- a/src/testrand_impl.h +++ b/src/testrand_impl.h @@ -1,13 +1,14 @@ -/********************************************************************** - * Copyright (c) 2013-2015 Pieter Wuille * - * Distributed under the MIT software license, see the accompanying * - * file COPYING or http://www.opensource.org/licenses/mit-license.php.* - **********************************************************************/ +/*********************************************************************** + * Copyright (c) 2013-2015 Pieter Wuille * + * Distributed under the MIT software license, see the accompanying * + * file COPYING or https://www.opensource.org/licenses/mit-license.php.* + ***********************************************************************/ #ifndef SECP256K1_TESTRAND_IMPL_H #define SECP256K1_TESTRAND_IMPL_H #include +#include #include #include "testrand.h" @@ -19,11 +20,11 @@ static int secp256k1_test_rng_precomputed_used = 8; static uint64_t secp256k1_test_rng_integer; static int secp256k1_test_rng_integer_bits_left = 0; -SECP256K1_INLINE static void secp256k1_rand_seed(const unsigned char *seed16) { +SECP256K1_INLINE static void secp256k1_testrand_seed(const unsigned char *seed16) { secp256k1_rfc6979_hmac_sha256_initialize(&secp256k1_test_rng, seed16, 16); } -SECP256K1_INLINE static uint32_t secp256k1_rand32(void) { +SECP256K1_INLINE static uint32_t secp256k1_testrand32(void) { if (secp256k1_test_rng_precomputed_used == 8) { secp256k1_rfc6979_hmac_sha256_generate(&secp256k1_test_rng, (unsigned char*)(&secp256k1_test_rng_precomputed[0]), sizeof(secp256k1_test_rng_precomputed)); secp256k1_test_rng_precomputed_used = 0; @@ -31,10 +32,10 @@ SECP256K1_INLINE static uint32_t secp256k1_rand32(void) { return secp256k1_test_rng_precomputed[secp256k1_test_rng_precomputed_used++]; } -static uint32_t secp256k1_rand_bits(int bits) { +static uint32_t secp256k1_testrand_bits(int bits) { uint32_t ret; if (secp256k1_test_rng_integer_bits_left < bits) { - secp256k1_test_rng_integer |= (((uint64_t)secp256k1_rand32()) << secp256k1_test_rng_integer_bits_left); + secp256k1_test_rng_integer |= (((uint64_t)secp256k1_testrand32()) << secp256k1_test_rng_integer_bits_left); secp256k1_test_rng_integer_bits_left += 32; } ret = secp256k1_test_rng_integer; @@ -44,7 +45,7 @@ static uint32_t secp256k1_rand_bits(int bits) { return ret; } -static uint32_t secp256k1_rand_int(uint32_t range) { +static uint32_t secp256k1_testrand_int(uint32_t range) { /* We want a uniform integer between 0 and range-1, inclusive. * B is the smallest number such that range <= 2**B. * two mechanisms implemented here: @@ -76,25 +77,25 @@ static uint32_t secp256k1_rand_int(uint32_t range) { mult = 1; } while(1) { - uint32_t x = secp256k1_rand_bits(bits); + uint32_t x = secp256k1_testrand_bits(bits); if (x < trange) { return (mult == 1) ? x : (x % range); } } } -static void secp256k1_rand256(unsigned char *b32) { +static void secp256k1_testrand256(unsigned char *b32) { secp256k1_rfc6979_hmac_sha256_generate(&secp256k1_test_rng, b32, 32); } -static void secp256k1_rand_bytes_test(unsigned char *bytes, size_t len) { +static void secp256k1_testrand_bytes_test(unsigned char *bytes, size_t len) { size_t bits = 0; memset(bytes, 0, len); while (bits < len * 8) { int now; uint32_t val; - now = 1 + (secp256k1_rand_bits(6) * secp256k1_rand_bits(5) + 16) / 31; - val = secp256k1_rand_bits(1); + now = 1 + (secp256k1_testrand_bits(6) * secp256k1_testrand_bits(5) + 16) / 31; + val = secp256k1_testrand_bits(1); while (now > 0 && bits < len * 8) { bytes[bits / 8] |= val << (bits % 8); now--; @@ -103,8 +104,55 @@ static void secp256k1_rand_bytes_test(unsigned char *bytes, size_t len) { } } -static void secp256k1_rand256_test(unsigned char *b32) { - secp256k1_rand_bytes_test(b32, 32); +static void secp256k1_testrand256_test(unsigned char *b32) { + secp256k1_testrand_bytes_test(b32, 32); +} + +static void secp256k1_testrand_flip(unsigned char *b, size_t len) { + b[secp256k1_testrand_int(len)] ^= (1 << secp256k1_testrand_int(8)); +} + +static void secp256k1_testrand_init(const char* hexseed) { + unsigned char seed16[16] = {0}; + if (hexseed && strlen(hexseed) != 0) { + int pos = 0; + while (pos < 16 && hexseed[0] != 0 && hexseed[1] != 0) { + unsigned short sh; + if ((sscanf(hexseed, "%2hx", &sh)) == 1) { + seed16[pos] = sh; + } else { + break; + } + hexseed += 2; + pos++; + } + } else { + FILE *frand = fopen("/dev/urandom", "rb"); + if ((frand == NULL) || fread(&seed16, 1, sizeof(seed16), frand) != sizeof(seed16)) { + uint64_t t = time(NULL) * (uint64_t)1337; + fprintf(stderr, "WARNING: could not read 16 bytes from /dev/urandom; falling back to insecure PRNG\n"); + seed16[0] ^= t; + seed16[1] ^= t >> 8; + seed16[2] ^= t >> 16; + seed16[3] ^= t >> 24; + seed16[4] ^= t >> 32; + seed16[5] ^= t >> 40; + seed16[6] ^= t >> 48; + seed16[7] ^= t >> 56; + } + if (frand) { + fclose(frand); + } + } + + printf("random seed = %02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x\n", seed16[0], seed16[1], seed16[2], seed16[3], seed16[4], seed16[5], seed16[6], seed16[7], seed16[8], seed16[9], seed16[10], seed16[11], seed16[12], seed16[13], seed16[14], seed16[15]); + secp256k1_testrand_seed(seed16); +} + +static void secp256k1_testrand_finish(void) { + unsigned char run32[32]; + secp256k1_testrand256(run32); + printf("random run = %02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x\n", run32[0], run32[1], run32[2], run32[3], run32[4], run32[5], run32[6], run32[7], run32[8], run32[9], run32[10], run32[11], run32[12], run32[13], run32[14], run32[15]); } #endif /* SECP256K1_TESTRAND_IMPL_H */ diff --git a/src/tests.c b/src/tests.c index 15f44914b2e5d..b72e5f8eb8172 100644 --- a/src/tests.c +++ b/src/tests.c @@ -1,8 +1,8 @@ -/********************************************************************** - * Copyright (c) 2013, 2014, 2015 Pieter Wuille, Gregory Maxwell * - * Distributed under the MIT software license, see the accompanying * - * file COPYING or http://www.opensource.org/licenses/mit-license.php.* - **********************************************************************/ +/*********************************************************************** + * Copyright (c) 2013, 2014, 2015 Pieter Wuille, Gregory Maxwell * + * Distributed under the MIT software license, see the accompanying * + * file COPYING or https://www.opensource.org/licenses/mit-license.php.* + ***********************************************************************/ #if defined HAVE_CONFIG_H #include "libsecp256k1-config.h" @@ -15,31 +15,27 @@ #include #include "secp256k1.c" -#include "include/secp256k1.h" +#include "../include/secp256k1.h" +#include "../include/secp256k1_preallocated.h" #include "testrand_impl.h" +#include "util.h" #ifdef ENABLE_OPENSSL_TESTS -#include "openssl/bn.h" -#include "openssl/ec.h" -#include "openssl/ecdsa.h" -#include "openssl/obj_mac.h" +#include +#include +#include +#include # if OPENSSL_VERSION_NUMBER < 0x10100000L void ECDSA_SIG_get0(const ECDSA_SIG *sig, const BIGNUM **pr, const BIGNUM **ps) {*pr = sig->r; *ps = sig->s;} # endif #endif -#include "contrib/lax_der_parsing.c" -#include "contrib/lax_der_privatekey_parsing.c" - -#if !defined(VG_CHECK) -# if defined(VALGRIND) -# include -# define VG_UNDEF(x,y) VALGRIND_MAKE_MEM_UNDEFINED((x),(y)) -# define VG_CHECK(x,y) VALGRIND_CHECK_MEM_IS_DEFINED((x),(y)) -# else -# define VG_UNDEF(x,y) -# define VG_CHECK(x,y) -# endif +#include "../contrib/lax_der_parsing.c" +#include "../contrib/lax_der_privatekey_parsing.c" + +#include "modinv32_impl.h" +#ifdef SECP256K1_WIDEMUL_INT128 +#include "modinv64_impl.h" #endif static int count = 64; @@ -64,7 +60,7 @@ static void uncounting_illegal_callback_fn(const char* str, void* data) { void random_field_element_test(secp256k1_fe *fe) { do { unsigned char b32[32]; - secp256k1_rand256_test(b32); + secp256k1_testrand256_test(b32); if (secp256k1_fe_set_b32(fe, b32)) { break; } @@ -73,7 +69,7 @@ void random_field_element_test(secp256k1_fe *fe) { void random_field_element_magnitude(secp256k1_fe *fe) { secp256k1_fe zero; - int n = secp256k1_rand_int(9); + int n = secp256k1_testrand_int(9); secp256k1_fe_normalize(fe); if (n == 0) { return; @@ -82,18 +78,21 @@ void random_field_element_magnitude(secp256k1_fe *fe) { secp256k1_fe_negate(&zero, &zero, 0); secp256k1_fe_mul_int(&zero, n - 1); secp256k1_fe_add(fe, &zero); - VERIFY_CHECK(fe->magnitude == n); +#ifdef VERIFY + CHECK(fe->magnitude == n); +#endif } void random_group_element_test(secp256k1_ge *ge) { secp256k1_fe fe; do { random_field_element_test(&fe); - if (secp256k1_ge_set_xo_var(ge, &fe, secp256k1_rand_bits(1))) { + if (secp256k1_ge_set_xo_var(ge, &fe, secp256k1_testrand_bits(1))) { secp256k1_fe_normalize(&ge->y); break; } } while(1); + ge->infinity = 0; } void random_group_element_jacobian_test(secp256k1_gej *gej, const secp256k1_ge *ge) { @@ -115,7 +114,7 @@ void random_scalar_order_test(secp256k1_scalar *num) { do { unsigned char b32[32]; int overflow = 0; - secp256k1_rand256_test(b32); + secp256k1_testrand256_test(b32); secp256k1_scalar_set_b32(num, b32, &overflow); if (overflow || secp256k1_scalar_is_zero(num)) { continue; @@ -128,7 +127,7 @@ void random_scalar_order(secp256k1_scalar *num) { do { unsigned char b32[32]; int overflow = 0; - secp256k1_rand256(b32); + secp256k1_testrand256(b32); secp256k1_scalar_set_b32(num, b32, &overflow); if (overflow || secp256k1_scalar_is_zero(num)) { continue; @@ -137,44 +136,120 @@ void random_scalar_order(secp256k1_scalar *num) { } while(1); } -void run_context_tests(void) { +void random_scalar_order_b32(unsigned char *b32) { + secp256k1_scalar num; + random_scalar_order(&num); + secp256k1_scalar_get_b32(b32, &num); +} + +void run_context_tests(int use_prealloc) { secp256k1_pubkey pubkey; secp256k1_pubkey zero_pubkey; secp256k1_ecdsa_signature sig; unsigned char ctmp[32]; int32_t ecount; int32_t ecount2; - secp256k1_context *none = secp256k1_context_create(SECP256K1_CONTEXT_NONE); - secp256k1_context *sign = secp256k1_context_create(SECP256K1_CONTEXT_SIGN); - secp256k1_context *vrfy = secp256k1_context_create(SECP256K1_CONTEXT_VERIFY); - secp256k1_context *both = secp256k1_context_create(SECP256K1_CONTEXT_SIGN | SECP256K1_CONTEXT_VERIFY); + secp256k1_context *none; + secp256k1_context *sign; + secp256k1_context *vrfy; + secp256k1_context *both; + void *none_prealloc = NULL; + void *sign_prealloc = NULL; + void *vrfy_prealloc = NULL; + void *both_prealloc = NULL; secp256k1_gej pubj; secp256k1_ge pub; secp256k1_scalar msg, key, nonce; secp256k1_scalar sigr, sigs; + if (use_prealloc) { + none_prealloc = malloc(secp256k1_context_preallocated_size(SECP256K1_CONTEXT_NONE)); + sign_prealloc = malloc(secp256k1_context_preallocated_size(SECP256K1_CONTEXT_SIGN)); + vrfy_prealloc = malloc(secp256k1_context_preallocated_size(SECP256K1_CONTEXT_VERIFY)); + both_prealloc = malloc(secp256k1_context_preallocated_size(SECP256K1_CONTEXT_SIGN | SECP256K1_CONTEXT_VERIFY)); + CHECK(none_prealloc != NULL); + CHECK(sign_prealloc != NULL); + CHECK(vrfy_prealloc != NULL); + CHECK(both_prealloc != NULL); + none = secp256k1_context_preallocated_create(none_prealloc, SECP256K1_CONTEXT_NONE); + sign = secp256k1_context_preallocated_create(sign_prealloc, SECP256K1_CONTEXT_SIGN); + vrfy = secp256k1_context_preallocated_create(vrfy_prealloc, SECP256K1_CONTEXT_VERIFY); + both = secp256k1_context_preallocated_create(both_prealloc, SECP256K1_CONTEXT_SIGN | SECP256K1_CONTEXT_VERIFY); + } else { + none = secp256k1_context_create(SECP256K1_CONTEXT_NONE); + sign = secp256k1_context_create(SECP256K1_CONTEXT_SIGN); + vrfy = secp256k1_context_create(SECP256K1_CONTEXT_VERIFY); + both = secp256k1_context_create(SECP256K1_CONTEXT_SIGN | SECP256K1_CONTEXT_VERIFY); + } + memset(&zero_pubkey, 0, sizeof(zero_pubkey)); ecount = 0; ecount2 = 10; secp256k1_context_set_illegal_callback(vrfy, counting_illegal_callback_fn, &ecount); secp256k1_context_set_illegal_callback(sign, counting_illegal_callback_fn, &ecount2); - secp256k1_context_set_error_callback(sign, counting_illegal_callback_fn, NULL); - CHECK(vrfy->error_callback.fn != sign->error_callback.fn); + /* set error callback (to a function that still aborts in case malloc() fails in secp256k1_context_clone() below) */ + secp256k1_context_set_error_callback(sign, secp256k1_default_illegal_callback_fn, NULL); + CHECK(sign->error_callback.fn != vrfy->error_callback.fn); + CHECK(sign->error_callback.fn == secp256k1_default_illegal_callback_fn); + + /* check if sizes for cloning are consistent */ + CHECK(secp256k1_context_preallocated_clone_size(none) == secp256k1_context_preallocated_size(SECP256K1_CONTEXT_NONE)); + CHECK(secp256k1_context_preallocated_clone_size(sign) == secp256k1_context_preallocated_size(SECP256K1_CONTEXT_SIGN)); + CHECK(secp256k1_context_preallocated_clone_size(vrfy) == secp256k1_context_preallocated_size(SECP256K1_CONTEXT_VERIFY)); + CHECK(secp256k1_context_preallocated_clone_size(both) == secp256k1_context_preallocated_size(SECP256K1_CONTEXT_SIGN | SECP256K1_CONTEXT_VERIFY)); /*** clone and destroy all of them to make sure cloning was complete ***/ { secp256k1_context *ctx_tmp; - ctx_tmp = none; none = secp256k1_context_clone(none); secp256k1_context_destroy(ctx_tmp); - ctx_tmp = sign; sign = secp256k1_context_clone(sign); secp256k1_context_destroy(ctx_tmp); - ctx_tmp = vrfy; vrfy = secp256k1_context_clone(vrfy); secp256k1_context_destroy(ctx_tmp); - ctx_tmp = both; both = secp256k1_context_clone(both); secp256k1_context_destroy(ctx_tmp); + if (use_prealloc) { + /* clone into a non-preallocated context and then again into a new preallocated one. */ + ctx_tmp = none; none = secp256k1_context_clone(none); secp256k1_context_preallocated_destroy(ctx_tmp); + free(none_prealloc); none_prealloc = malloc(secp256k1_context_preallocated_size(SECP256K1_CONTEXT_NONE)); CHECK(none_prealloc != NULL); + ctx_tmp = none; none = secp256k1_context_preallocated_clone(none, none_prealloc); secp256k1_context_destroy(ctx_tmp); + + ctx_tmp = sign; sign = secp256k1_context_clone(sign); secp256k1_context_preallocated_destroy(ctx_tmp); + free(sign_prealloc); sign_prealloc = malloc(secp256k1_context_preallocated_size(SECP256K1_CONTEXT_SIGN)); CHECK(sign_prealloc != NULL); + ctx_tmp = sign; sign = secp256k1_context_preallocated_clone(sign, sign_prealloc); secp256k1_context_destroy(ctx_tmp); + + ctx_tmp = vrfy; vrfy = secp256k1_context_clone(vrfy); secp256k1_context_preallocated_destroy(ctx_tmp); + free(vrfy_prealloc); vrfy_prealloc = malloc(secp256k1_context_preallocated_size(SECP256K1_CONTEXT_VERIFY)); CHECK(vrfy_prealloc != NULL); + ctx_tmp = vrfy; vrfy = secp256k1_context_preallocated_clone(vrfy, vrfy_prealloc); secp256k1_context_destroy(ctx_tmp); + + ctx_tmp = both; both = secp256k1_context_clone(both); secp256k1_context_preallocated_destroy(ctx_tmp); + free(both_prealloc); both_prealloc = malloc(secp256k1_context_preallocated_size(SECP256K1_CONTEXT_SIGN | SECP256K1_CONTEXT_VERIFY)); CHECK(both_prealloc != NULL); + ctx_tmp = both; both = secp256k1_context_preallocated_clone(both, both_prealloc); secp256k1_context_destroy(ctx_tmp); + } else { + /* clone into a preallocated context and then again into a new non-preallocated one. */ + void *prealloc_tmp; + + prealloc_tmp = malloc(secp256k1_context_preallocated_size(SECP256K1_CONTEXT_NONE)); CHECK(prealloc_tmp != NULL); + ctx_tmp = none; none = secp256k1_context_preallocated_clone(none, prealloc_tmp); secp256k1_context_destroy(ctx_tmp); + ctx_tmp = none; none = secp256k1_context_clone(none); secp256k1_context_preallocated_destroy(ctx_tmp); + free(prealloc_tmp); + + prealloc_tmp = malloc(secp256k1_context_preallocated_size(SECP256K1_CONTEXT_SIGN)); CHECK(prealloc_tmp != NULL); + ctx_tmp = sign; sign = secp256k1_context_preallocated_clone(sign, prealloc_tmp); secp256k1_context_destroy(ctx_tmp); + ctx_tmp = sign; sign = secp256k1_context_clone(sign); secp256k1_context_preallocated_destroy(ctx_tmp); + free(prealloc_tmp); + + prealloc_tmp = malloc(secp256k1_context_preallocated_size(SECP256K1_CONTEXT_VERIFY)); CHECK(prealloc_tmp != NULL); + ctx_tmp = vrfy; vrfy = secp256k1_context_preallocated_clone(vrfy, prealloc_tmp); secp256k1_context_destroy(ctx_tmp); + ctx_tmp = vrfy; vrfy = secp256k1_context_clone(vrfy); secp256k1_context_preallocated_destroy(ctx_tmp); + free(prealloc_tmp); + + prealloc_tmp = malloc(secp256k1_context_preallocated_size(SECP256K1_CONTEXT_SIGN | SECP256K1_CONTEXT_VERIFY)); CHECK(prealloc_tmp != NULL); + ctx_tmp = both; both = secp256k1_context_preallocated_clone(both, prealloc_tmp); secp256k1_context_destroy(ctx_tmp); + ctx_tmp = both; both = secp256k1_context_clone(both); secp256k1_context_preallocated_destroy(ctx_tmp); + free(prealloc_tmp); + } } /* Verify that the error callback makes it across the clone. */ - CHECK(vrfy->error_callback.fn != sign->error_callback.fn); + CHECK(sign->error_callback.fn != vrfy->error_callback.fn); + CHECK(sign->error_callback.fn == secp256k1_default_illegal_callback_fn); /* And that it resets back to default. */ secp256k1_context_set_error_callback(sign, NULL, NULL); CHECK(vrfy->error_callback.fn == sign->error_callback.fn); @@ -218,17 +293,17 @@ void run_context_tests(void) { CHECK(ecount == 3); CHECK(secp256k1_ec_pubkey_tweak_mul(vrfy, &pubkey, ctmp) == 1); CHECK(ecount == 3); - CHECK(secp256k1_context_randomize(vrfy, ctmp) == 0); - CHECK(ecount == 4); + CHECK(secp256k1_context_randomize(vrfy, ctmp) == 1); + CHECK(ecount == 3); + CHECK(secp256k1_context_randomize(vrfy, NULL) == 1); + CHECK(ecount == 3); + CHECK(secp256k1_context_randomize(sign, ctmp) == 1); + CHECK(ecount2 == 14); CHECK(secp256k1_context_randomize(sign, NULL) == 1); CHECK(ecount2 == 14); secp256k1_context_set_illegal_callback(vrfy, NULL, NULL); secp256k1_context_set_illegal_callback(sign, NULL, NULL); - /* This shouldn't leak memory, due to already-set tests. */ - secp256k1_ecmult_gen_context_build(&sign->ecmult_gen_ctx, NULL); - secp256k1_ecmult_context_build(&vrfy->ecmult_ctx, NULL); - /* obtain a working nonce */ do { random_scalar_order_test(&nonce); @@ -243,52 +318,129 @@ void run_context_tests(void) { CHECK(secp256k1_ecdsa_sig_verify(&both->ecmult_ctx, &sigr, &sigs, &pub, &msg)); /* cleanup */ - secp256k1_context_destroy(none); - secp256k1_context_destroy(sign); - secp256k1_context_destroy(vrfy); - secp256k1_context_destroy(both); + if (use_prealloc) { + secp256k1_context_preallocated_destroy(none); + secp256k1_context_preallocated_destroy(sign); + secp256k1_context_preallocated_destroy(vrfy); + secp256k1_context_preallocated_destroy(both); + free(none_prealloc); + free(sign_prealloc); + free(vrfy_prealloc); + free(both_prealloc); + } else { + secp256k1_context_destroy(none); + secp256k1_context_destroy(sign); + secp256k1_context_destroy(vrfy); + secp256k1_context_destroy(both); + } /* Defined as no-op. */ secp256k1_context_destroy(NULL); + secp256k1_context_preallocated_destroy(NULL); + } void run_scratch_tests(void) { + const size_t adj_alloc = ((500 + ALIGNMENT - 1) / ALIGNMENT) * ALIGNMENT; + int32_t ecount = 0; + size_t checkpoint; + size_t checkpoint_2; secp256k1_context *none = secp256k1_context_create(SECP256K1_CONTEXT_NONE); secp256k1_scratch_space *scratch; + secp256k1_scratch_space local_scratch; /* Test public API */ secp256k1_context_set_illegal_callback(none, counting_illegal_callback_fn, &ecount); + secp256k1_context_set_error_callback(none, counting_illegal_callback_fn, &ecount); scratch = secp256k1_scratch_space_create(none, 1000); CHECK(scratch != NULL); CHECK(ecount == 0); /* Test internal API */ - CHECK(secp256k1_scratch_max_allocation(scratch, 0) == 1000); - CHECK(secp256k1_scratch_max_allocation(scratch, 1) < 1000); - - /* Allocating 500 bytes with no frame fails */ - CHECK(secp256k1_scratch_alloc(scratch, 500) == NULL); - CHECK(secp256k1_scratch_max_allocation(scratch, 0) == 1000); - - /* ...but pushing a new stack frame does affect the max allocation */ - CHECK(secp256k1_scratch_allocate_frame(scratch, 500, 1 == 1)); - CHECK(secp256k1_scratch_max_allocation(scratch, 1) < 500); /* 500 - ALIGNMENT */ - CHECK(secp256k1_scratch_alloc(scratch, 500) != NULL); - CHECK(secp256k1_scratch_alloc(scratch, 500) == NULL); + CHECK(secp256k1_scratch_max_allocation(&none->error_callback, scratch, 0) == 1000); + CHECK(secp256k1_scratch_max_allocation(&none->error_callback, scratch, 1) == 1000 - (ALIGNMENT - 1)); + CHECK(scratch->alloc_size == 0); + CHECK(scratch->alloc_size % ALIGNMENT == 0); + + /* Allocating 500 bytes succeeds */ + checkpoint = secp256k1_scratch_checkpoint(&none->error_callback, scratch); + CHECK(secp256k1_scratch_alloc(&none->error_callback, scratch, 500) != NULL); + CHECK(secp256k1_scratch_max_allocation(&none->error_callback, scratch, 0) == 1000 - adj_alloc); + CHECK(secp256k1_scratch_max_allocation(&none->error_callback, scratch, 1) == 1000 - adj_alloc - (ALIGNMENT - 1)); + CHECK(scratch->alloc_size != 0); + CHECK(scratch->alloc_size % ALIGNMENT == 0); + + /* Allocating another 501 bytes fails */ + CHECK(secp256k1_scratch_alloc(&none->error_callback, scratch, 501) == NULL); + CHECK(secp256k1_scratch_max_allocation(&none->error_callback, scratch, 0) == 1000 - adj_alloc); + CHECK(secp256k1_scratch_max_allocation(&none->error_callback, scratch, 1) == 1000 - adj_alloc - (ALIGNMENT - 1)); + CHECK(scratch->alloc_size != 0); + CHECK(scratch->alloc_size % ALIGNMENT == 0); + + /* ...but it succeeds once we apply the checkpoint to undo it */ + secp256k1_scratch_apply_checkpoint(&none->error_callback, scratch, checkpoint); + CHECK(scratch->alloc_size == 0); + CHECK(secp256k1_scratch_max_allocation(&none->error_callback, scratch, 0) == 1000); + CHECK(secp256k1_scratch_alloc(&none->error_callback, scratch, 500) != NULL); + CHECK(scratch->alloc_size != 0); + + /* try to apply a bad checkpoint */ + checkpoint_2 = secp256k1_scratch_checkpoint(&none->error_callback, scratch); + secp256k1_scratch_apply_checkpoint(&none->error_callback, scratch, checkpoint); + CHECK(ecount == 0); + secp256k1_scratch_apply_checkpoint(&none->error_callback, scratch, checkpoint_2); /* checkpoint_2 is after checkpoint */ + CHECK(ecount == 1); + secp256k1_scratch_apply_checkpoint(&none->error_callback, scratch, (size_t) -1); /* this is just wildly invalid */ + CHECK(ecount == 2); - CHECK(secp256k1_scratch_allocate_frame(scratch, 500, 1) == 0); + /* try to use badly initialized scratch space */ + secp256k1_scratch_space_destroy(none, scratch); + memset(&local_scratch, 0, sizeof(local_scratch)); + scratch = &local_scratch; + CHECK(!secp256k1_scratch_max_allocation(&none->error_callback, scratch, 0)); + CHECK(ecount == 3); + CHECK(secp256k1_scratch_alloc(&none->error_callback, scratch, 500) == NULL); + CHECK(ecount == 4); + secp256k1_scratch_space_destroy(none, scratch); + CHECK(ecount == 5); - /* ...and this effect is undone by popping the frame */ - secp256k1_scratch_deallocate_frame(scratch); - CHECK(secp256k1_scratch_max_allocation(scratch, 0) == 1000); - CHECK(secp256k1_scratch_alloc(scratch, 500) == NULL); + /* Test that large integers do not wrap around in a bad way */ + scratch = secp256k1_scratch_space_create(none, 1000); + /* Try max allocation with a large number of objects. Only makes sense if + * ALIGNMENT is greater than 1 because otherwise the objects take no extra + * space. */ + CHECK(ALIGNMENT <= 1 || !secp256k1_scratch_max_allocation(&none->error_callback, scratch, (SIZE_MAX / (ALIGNMENT - 1)) + 1)); + /* Try allocating SIZE_MAX to test wrap around which only happens if + * ALIGNMENT > 1, otherwise it returns NULL anyway because the scratch + * space is too small. */ + CHECK(secp256k1_scratch_alloc(&none->error_callback, scratch, SIZE_MAX) == NULL); + secp256k1_scratch_space_destroy(none, scratch); /* cleanup */ - secp256k1_scratch_space_destroy(scratch); + secp256k1_scratch_space_destroy(none, NULL); /* no-op */ secp256k1_context_destroy(none); } +void run_ctz_tests(void) { + static const uint32_t b32[] = {1, 0xffffffff, 0x5e56968f, 0xe0d63129}; + static const uint64_t b64[] = {1, 0xffffffffffffffff, 0xbcd02462139b3fc3, 0x98b5f80c769693ef}; + int shift; + unsigned i; + for (i = 0; i < sizeof(b32) / sizeof(b32[0]); ++i) { + for (shift = 0; shift < 32; ++shift) { + CHECK(secp256k1_ctz32_var_debruijn(b32[i] << shift) == shift); + CHECK(secp256k1_ctz32_var(b32[i] << shift) == shift); + } + } + for (i = 0; i < sizeof(b64) / sizeof(b64[0]); ++i) { + for (shift = 0; shift < 64; ++shift) { + CHECK(secp256k1_ctz64_var_debruijn(b64[i] << shift) == shift); + CHECK(secp256k1_ctz64_var(b64[i] << shift) == shift); + } + } +} + /***** HASH TESTS *****/ void run_sha256_tests(void) { @@ -315,14 +467,14 @@ void run_sha256_tests(void) { secp256k1_sha256_initialize(&hasher); secp256k1_sha256_write(&hasher, (const unsigned char*)(inputs[i]), strlen(inputs[i])); secp256k1_sha256_finalize(&hasher, out); - CHECK(memcmp(out, outputs[i], 32) == 0); + CHECK(secp256k1_memcmp_var(out, outputs[i], 32) == 0); if (strlen(inputs[i]) > 0) { - int split = secp256k1_rand_int(strlen(inputs[i])); + int split = secp256k1_testrand_int(strlen(inputs[i])); secp256k1_sha256_initialize(&hasher); secp256k1_sha256_write(&hasher, (const unsigned char*)(inputs[i]), split); secp256k1_sha256_write(&hasher, (const unsigned char*)(inputs[i] + split), strlen(inputs[i]) - split); secp256k1_sha256_finalize(&hasher, out); - CHECK(memcmp(out, outputs[i], 32) == 0); + CHECK(secp256k1_memcmp_var(out, outputs[i], 32) == 0); } } } @@ -359,14 +511,14 @@ void run_hmac_sha256_tests(void) { secp256k1_hmac_sha256_initialize(&hasher, (const unsigned char*)(keys[i]), strlen(keys[i])); secp256k1_hmac_sha256_write(&hasher, (const unsigned char*)(inputs[i]), strlen(inputs[i])); secp256k1_hmac_sha256_finalize(&hasher, out); - CHECK(memcmp(out, outputs[i], 32) == 0); + CHECK(secp256k1_memcmp_var(out, outputs[i], 32) == 0); if (strlen(inputs[i]) > 0) { - int split = secp256k1_rand_int(strlen(inputs[i])); + int split = secp256k1_testrand_int(strlen(inputs[i])); secp256k1_hmac_sha256_initialize(&hasher, (const unsigned char*)(keys[i]), strlen(keys[i])); secp256k1_hmac_sha256_write(&hasher, (const unsigned char*)(inputs[i]), split); secp256k1_hmac_sha256_write(&hasher, (const unsigned char*)(inputs[i] + split), strlen(inputs[i]) - split); secp256k1_hmac_sha256_finalize(&hasher, out); - CHECK(memcmp(out, outputs[i], 32) == 0); + CHECK(secp256k1_memcmp_var(out, outputs[i], 32) == 0); } } } @@ -393,25 +545,57 @@ void run_rfc6979_hmac_sha256_tests(void) { secp256k1_rfc6979_hmac_sha256_initialize(&rng, key1, 64); for (i = 0; i < 3; i++) { secp256k1_rfc6979_hmac_sha256_generate(&rng, out, 32); - CHECK(memcmp(out, out1[i], 32) == 0); + CHECK(secp256k1_memcmp_var(out, out1[i], 32) == 0); } secp256k1_rfc6979_hmac_sha256_finalize(&rng); secp256k1_rfc6979_hmac_sha256_initialize(&rng, key1, 65); for (i = 0; i < 3; i++) { secp256k1_rfc6979_hmac_sha256_generate(&rng, out, 32); - CHECK(memcmp(out, out1[i], 32) != 0); + CHECK(secp256k1_memcmp_var(out, out1[i], 32) != 0); } secp256k1_rfc6979_hmac_sha256_finalize(&rng); secp256k1_rfc6979_hmac_sha256_initialize(&rng, key2, 64); for (i = 0; i < 3; i++) { secp256k1_rfc6979_hmac_sha256_generate(&rng, out, 32); - CHECK(memcmp(out, out2[i], 32) == 0); + CHECK(secp256k1_memcmp_var(out, out2[i], 32) == 0); } secp256k1_rfc6979_hmac_sha256_finalize(&rng); } +void run_tagged_sha256_tests(void) { + int ecount = 0; + secp256k1_context *none = secp256k1_context_create(SECP256K1_CONTEXT_NONE); + unsigned char tag[32] = { 0 }; + unsigned char msg[32] = { 0 }; + unsigned char hash32[32]; + unsigned char hash_expected[32] = { + 0x04, 0x7A, 0x5E, 0x17, 0xB5, 0x86, 0x47, 0xC1, + 0x3C, 0xC6, 0xEB, 0xC0, 0xAA, 0x58, 0x3B, 0x62, + 0xFB, 0x16, 0x43, 0x32, 0x68, 0x77, 0x40, 0x6C, + 0xE2, 0x76, 0x55, 0x9A, 0x3B, 0xDE, 0x55, 0xB3 + }; + + secp256k1_context_set_illegal_callback(none, counting_illegal_callback_fn, &ecount); + + /* API test */ + CHECK(secp256k1_tagged_sha256(none, hash32, tag, sizeof(tag), msg, sizeof(msg)) == 1); + CHECK(secp256k1_tagged_sha256(none, NULL, tag, sizeof(tag), msg, sizeof(msg)) == 0); + CHECK(ecount == 1); + CHECK(secp256k1_tagged_sha256(none, hash32, NULL, 0, msg, sizeof(msg)) == 0); + CHECK(ecount == 2); + CHECK(secp256k1_tagged_sha256(none, hash32, tag, sizeof(tag), NULL, 0) == 0); + CHECK(ecount == 3); + + /* Static test vector */ + memcpy(tag, "tag", 3); + memcpy(msg, "msg", 3); + CHECK(secp256k1_tagged_sha256(none, hash32, tag, 3, msg, 3) == 1); + CHECK(secp256k1_memcmp_var(hash32, hash_expected, sizeof(hash32)) == 0); + secp256k1_context_destroy(none); +} + /***** RANDOM TESTS *****/ void test_rand_bits(int rand32, int bits) { @@ -431,7 +615,7 @@ void test_rand_bits(int rand32, int bits) { /* Multiply the output of all rand calls with the odd number m, which should not change the uniformity of its distribution. */ for (i = 0; i < rounds[usebits]; i++) { - uint32_t r = (rand32 ? secp256k1_rand32() : secp256k1_rand_bits(bits)); + uint32_t r = (rand32 ? secp256k1_testrand32() : secp256k1_testrand_bits(bits)); CHECK((((uint64_t)r) >> bits) == 0); for (m = 0; m < sizeof(mults) / sizeof(mults[0]); m++) { uint32_t rm = r * mults[m]; @@ -456,7 +640,7 @@ void test_rand_int(uint32_t range, uint32_t subrange) { uint64_t x = 0; CHECK((range % subrange) == 0); for (i = 0; i < rounds; i++) { - uint32_t r = secp256k1_rand_int(range); + uint32_t r = secp256k1_testrand_int(range); CHECK(r < range); r = r % subrange; x |= (((uint64_t)1) << r); @@ -484,202 +668,924 @@ void run_rand_int(void) { } } -/***** NUM TESTS *****/ +/***** MODINV TESTS *****/ + +/* Compute the modular inverse of (odd) x mod 2^64. */ +uint64_t modinv2p64(uint64_t x) { + /* If w = 1/x mod 2^(2^L), then w*(2 - w*x) = 1/x mod 2^(2^(L+1)). See + * Hacker's Delight second edition, Henry S. Warren, Jr., pages 245-247 for + * why. Start with L=0, for which it is true for every odd x that + * 1/x=1 mod 2. Iterating 6 times gives us 1/x mod 2^64. */ + int l; + uint64_t w = 1; + CHECK(x & 1); + for (l = 0; l < 6; ++l) w *= (2 - w*x); + return w; +} + +/* compute out = (a*b) mod m; if b=NULL, treat b=1. + * + * Out is a 512-bit number (represented as 32 uint16_t's in LE order). The other + * arguments are 256-bit numbers (represented as 16 uint16_t's in LE order). */ +void mulmod256(uint16_t* out, const uint16_t* a, const uint16_t* b, const uint16_t* m) { + uint16_t mul[32]; + uint64_t c = 0; + int i, j; + int m_bitlen = 0; + int mul_bitlen = 0; + + if (b != NULL) { + /* Compute the product of a and b, and put it in mul. */ + for (i = 0; i < 32; ++i) { + for (j = i <= 15 ? 0 : i - 15; j <= i && j <= 15; j++) { + c += (uint64_t)a[j] * b[i - j]; + } + mul[i] = c & 0xFFFF; + c >>= 16; + } + CHECK(c == 0); -#ifndef USE_NUM_NONE -void random_num_negate(secp256k1_num *num) { - if (secp256k1_rand_bits(1)) { - secp256k1_num_negate(num); + /* compute the highest set bit in mul */ + for (i = 511; i >= 0; --i) { + if ((mul[i >> 4] >> (i & 15)) & 1) { + mul_bitlen = i; + break; + } + } + } else { + /* if b==NULL, set mul=a. */ + memcpy(mul, a, 32); + memset(mul + 16, 0, 32); + /* compute the highest set bit in mul */ + for (i = 255; i >= 0; --i) { + if ((mul[i >> 4] >> (i & 15)) & 1) { + mul_bitlen = i; + break; + } + } } + + /* Compute the highest set bit in m. */ + for (i = 255; i >= 0; --i) { + if ((m[i >> 4] >> (i & 15)) & 1) { + m_bitlen = i; + break; + } + } + + /* Try do mul -= m<= 0; --i) { + uint16_t mul2[32]; + int64_t cs; + + /* Compute mul2 = mul - m<= 0 && bitpos < 256) { + sub |= ((m[bitpos >> 4] >> (bitpos & 15)) & 1) << p; + } + } + /* Add mul[j]-sub to accumulator, and shift bottom 16 bits out to mul2[j]. */ + cs += mul[j]; + cs -= sub; + mul2[j] = (cs & 0xFFFF); + cs >>= 16; + } + /* If remainder of subtraction is 0, set mul = mul2. */ + if (cs == 0) { + memcpy(mul, mul2, sizeof(mul)); + } + } + /* Sanity check: test that all limbs higher than m's highest are zero */ + for (i = (m_bitlen >> 4) + 1; i < 32; ++i) { + CHECK(mul[i] == 0); + } + memcpy(out, mul, 32); } -void random_num_order_test(secp256k1_num *num) { - secp256k1_scalar sc; - random_scalar_order_test(&sc); - secp256k1_scalar_get_num(num, &sc); +/* Convert a 256-bit number represented as 16 uint16_t's to signed30 notation. */ +void uint16_to_signed30(secp256k1_modinv32_signed30* out, const uint16_t* in) { + int i; + memset(out->v, 0, sizeof(out->v)); + for (i = 0; i < 256; ++i) { + out->v[i / 30] |= (int32_t)(((in[i >> 4]) >> (i & 15)) & 1) << (i % 30); + } } -void random_num_order(secp256k1_num *num) { - secp256k1_scalar sc; - random_scalar_order(&sc); - secp256k1_scalar_get_num(num, &sc); +/* Convert a 256-bit number in signed30 notation to a representation as 16 uint16_t's. */ +void signed30_to_uint16(uint16_t* out, const secp256k1_modinv32_signed30* in) { + int i; + memset(out, 0, 32); + for (i = 0; i < 256; ++i) { + out[i >> 4] |= (((in->v[i / 30]) >> (i % 30)) & 1) << (i & 15); + } } -void test_num_negate(void) { - secp256k1_num n1; - secp256k1_num n2; - random_num_order_test(&n1); /* n1 = R */ - random_num_negate(&n1); - secp256k1_num_copy(&n2, &n1); /* n2 = R */ - secp256k1_num_sub(&n1, &n2, &n1); /* n1 = n2-n1 = 0 */ - CHECK(secp256k1_num_is_zero(&n1)); - secp256k1_num_copy(&n1, &n2); /* n1 = R */ - secp256k1_num_negate(&n1); /* n1 = -R */ - CHECK(!secp256k1_num_is_zero(&n1)); - secp256k1_num_add(&n1, &n2, &n1); /* n1 = n2+n1 = 0 */ - CHECK(secp256k1_num_is_zero(&n1)); - secp256k1_num_copy(&n1, &n2); /* n1 = R */ - secp256k1_num_negate(&n1); /* n1 = -R */ - CHECK(secp256k1_num_is_neg(&n1) != secp256k1_num_is_neg(&n2)); - secp256k1_num_negate(&n1); /* n1 = R */ - CHECK(secp256k1_num_eq(&n1, &n2)); +/* Randomly mutate the sign of limbs in signed30 representation, without changing the value. */ +void mutate_sign_signed30(secp256k1_modinv32_signed30* x) { + int i; + for (i = 0; i < 16; ++i) { + int pos = secp256k1_testrand_int(8); + if (x->v[pos] > 0 && x->v[pos + 1] <= 0x3fffffff) { + x->v[pos] -= 0x40000000; + x->v[pos + 1] += 1; + } else if (x->v[pos] < 0 && x->v[pos + 1] >= 0x3fffffff) { + x->v[pos] += 0x40000000; + x->v[pos + 1] -= 1; + } + } } -void test_num_add_sub(void) { +/* Test secp256k1_modinv32{_var}, using inputs in 16-bit limb format, and returning inverse. */ +void test_modinv32_uint16(uint16_t* out, const uint16_t* in, const uint16_t* mod) { + uint16_t tmp[16]; + secp256k1_modinv32_signed30 x; + secp256k1_modinv32_modinfo m; + int i, vartime, nonzero; + + uint16_to_signed30(&x, in); + nonzero = (x.v[0] | x.v[1] | x.v[2] | x.v[3] | x.v[4] | x.v[5] | x.v[6] | x.v[7] | x.v[8]) != 0; + uint16_to_signed30(&m.modulus, mod); + mutate_sign_signed30(&m.modulus); + + /* compute 1/modulus mod 2^30 */ + m.modulus_inv30 = modinv2p64(m.modulus.v[0]) & 0x3fffffff; + CHECK(((m.modulus_inv30 * m.modulus.v[0]) & 0x3fffffff) == 1); + + for (vartime = 0; vartime < 2; ++vartime) { + /* compute inverse */ + (vartime ? secp256k1_modinv32_var : secp256k1_modinv32)(&x, &m); + + /* produce output */ + signed30_to_uint16(out, &x); + + /* check if the inverse times the input is 1 (mod m), unless x is 0. */ + mulmod256(tmp, out, in, mod); + CHECK(tmp[0] == nonzero); + for (i = 1; i < 16; ++i) CHECK(tmp[i] == 0); + + /* invert again */ + (vartime ? secp256k1_modinv32_var : secp256k1_modinv32)(&x, &m); + + /* check if the result is equal to the input */ + signed30_to_uint16(tmp, &x); + for (i = 0; i < 16; ++i) CHECK(tmp[i] == in[i]); + } +} + +#ifdef SECP256K1_WIDEMUL_INT128 +/* Convert a 256-bit number represented as 16 uint16_t's to signed62 notation. */ +void uint16_to_signed62(secp256k1_modinv64_signed62* out, const uint16_t* in) { int i; - secp256k1_scalar s; - secp256k1_num n1; - secp256k1_num n2; - secp256k1_num n1p2, n2p1, n1m2, n2m1; - random_num_order_test(&n1); /* n1 = R1 */ - if (secp256k1_rand_bits(1)) { - random_num_negate(&n1); - } - random_num_order_test(&n2); /* n2 = R2 */ - if (secp256k1_rand_bits(1)) { - random_num_negate(&n2); - } - secp256k1_num_add(&n1p2, &n1, &n2); /* n1p2 = R1 + R2 */ - secp256k1_num_add(&n2p1, &n2, &n1); /* n2p1 = R2 + R1 */ - secp256k1_num_sub(&n1m2, &n1, &n2); /* n1m2 = R1 - R2 */ - secp256k1_num_sub(&n2m1, &n2, &n1); /* n2m1 = R2 - R1 */ - CHECK(secp256k1_num_eq(&n1p2, &n2p1)); - CHECK(!secp256k1_num_eq(&n1p2, &n1m2)); - secp256k1_num_negate(&n2m1); /* n2m1 = -R2 + R1 */ - CHECK(secp256k1_num_eq(&n2m1, &n1m2)); - CHECK(!secp256k1_num_eq(&n2m1, &n1)); - secp256k1_num_add(&n2m1, &n2m1, &n2); /* n2m1 = -R2 + R1 + R2 = R1 */ - CHECK(secp256k1_num_eq(&n2m1, &n1)); - CHECK(!secp256k1_num_eq(&n2p1, &n1)); - secp256k1_num_sub(&n2p1, &n2p1, &n2); /* n2p1 = R2 + R1 - R2 = R1 */ - CHECK(secp256k1_num_eq(&n2p1, &n1)); - - /* check is_one */ - secp256k1_scalar_set_int(&s, 1); - secp256k1_scalar_get_num(&n1, &s); - CHECK(secp256k1_num_is_one(&n1)); - /* check that 2^n + 1 is never 1 */ - secp256k1_scalar_get_num(&n2, &s); - for (i = 0; i < 250; ++i) { - secp256k1_num_add(&n1, &n1, &n1); /* n1 *= 2 */ - secp256k1_num_add(&n1p2, &n1, &n2); /* n1p2 = n1 + 1 */ - CHECK(!secp256k1_num_is_one(&n1p2)); + memset(out->v, 0, sizeof(out->v)); + for (i = 0; i < 256; ++i) { + out->v[i / 62] |= (int64_t)(((in[i >> 4]) >> (i & 15)) & 1) << (i % 62); } } -void test_num_mod(void) { +/* Convert a 256-bit number in signed62 notation to a representation as 16 uint16_t's. */ +void signed62_to_uint16(uint16_t* out, const secp256k1_modinv64_signed62* in) { int i; - secp256k1_scalar s; - secp256k1_num order, n; + memset(out, 0, 32); + for (i = 0; i < 256; ++i) { + out[i >> 4] |= (((in->v[i / 62]) >> (i % 62)) & 1) << (i & 15); + } +} - /* check that 0 mod anything is 0 */ - random_scalar_order_test(&s); - secp256k1_scalar_get_num(&order, &s); - secp256k1_scalar_set_int(&s, 0); - secp256k1_scalar_get_num(&n, &s); - secp256k1_num_mod(&n, &order); - CHECK(secp256k1_num_is_zero(&n)); - - /* check that anything mod 1 is 0 */ - secp256k1_scalar_set_int(&s, 1); - secp256k1_scalar_get_num(&order, &s); - secp256k1_scalar_get_num(&n, &s); - secp256k1_num_mod(&n, &order); - CHECK(secp256k1_num_is_zero(&n)); - - /* check that increasing the number past 2^256 does not break this */ - random_scalar_order_test(&s); - secp256k1_scalar_get_num(&n, &s); - /* multiply by 2^8, which'll test this case with high probability */ +/* Randomly mutate the sign of limbs in signed62 representation, without changing the value. */ +void mutate_sign_signed62(secp256k1_modinv64_signed62* x) { + static const int64_t M62 = (int64_t)(UINT64_MAX >> 2); + int i; for (i = 0; i < 8; ++i) { - secp256k1_num_add(&n, &n, &n); + int pos = secp256k1_testrand_int(4); + if (x->v[pos] > 0 && x->v[pos + 1] <= M62) { + x->v[pos] -= (M62 + 1); + x->v[pos + 1] += 1; + } else if (x->v[pos] < 0 && x->v[pos + 1] >= -M62) { + x->v[pos] += (M62 + 1); + x->v[pos + 1] -= 1; + } } - secp256k1_num_mod(&n, &order); - CHECK(secp256k1_num_is_zero(&n)); } -void test_num_jacobi(void) { - secp256k1_scalar sqr; - secp256k1_scalar small; - secp256k1_scalar five; /* five is not a quadratic residue */ - secp256k1_num order, n; - int i; - /* squares mod 5 are 1, 4 */ - const int jacobi5[10] = { 0, 1, -1, -1, 1, 0, 1, -1, -1, 1 }; +/* Test secp256k1_modinv64{_var}, using inputs in 16-bit limb format, and returning inverse. */ +void test_modinv64_uint16(uint16_t* out, const uint16_t* in, const uint16_t* mod) { + static const int64_t M62 = (int64_t)(UINT64_MAX >> 2); + uint16_t tmp[16]; + secp256k1_modinv64_signed62 x; + secp256k1_modinv64_modinfo m; + int i, vartime, nonzero; - /* check some small values with 5 as the order */ - secp256k1_scalar_set_int(&five, 5); - secp256k1_scalar_get_num(&order, &five); - for (i = 0; i < 10; ++i) { - secp256k1_scalar_set_int(&small, i); - secp256k1_scalar_get_num(&n, &small); - CHECK(secp256k1_num_jacobi(&n, &order) == jacobi5[i]); - } + uint16_to_signed62(&x, in); + nonzero = (x.v[0] | x.v[1] | x.v[2] | x.v[3] | x.v[4]) != 0; + uint16_to_signed62(&m.modulus, mod); + mutate_sign_signed62(&m.modulus); - /** test large values with 5 as group order */ - secp256k1_scalar_get_num(&order, &five); - /* we first need a scalar which is not a multiple of 5 */ - do { - secp256k1_num fiven; - random_scalar_order_test(&sqr); - secp256k1_scalar_get_num(&fiven, &five); - secp256k1_scalar_get_num(&n, &sqr); - secp256k1_num_mod(&n, &fiven); - } while (secp256k1_num_is_zero(&n)); - /* next force it to be a residue. 2 is a nonresidue mod 5 so we can - * just multiply by two, i.e. add the number to itself */ - if (secp256k1_num_jacobi(&n, &order) == -1) { - secp256k1_num_add(&n, &n, &n); - } - - /* test residue */ - CHECK(secp256k1_num_jacobi(&n, &order) == 1); - /* test nonresidue */ - secp256k1_num_add(&n, &n, &n); - CHECK(secp256k1_num_jacobi(&n, &order) == -1); - - /** test with secp group order as order */ - secp256k1_scalar_order_get_num(&order); - random_scalar_order_test(&sqr); - secp256k1_scalar_sqr(&sqr, &sqr); - /* test residue */ - secp256k1_scalar_get_num(&n, &sqr); - CHECK(secp256k1_num_jacobi(&n, &order) == 1); - /* test nonresidue */ - secp256k1_scalar_mul(&sqr, &sqr, &five); - secp256k1_scalar_get_num(&n, &sqr); - CHECK(secp256k1_num_jacobi(&n, &order) == -1); - /* test multiple of the order*/ - CHECK(secp256k1_num_jacobi(&order, &order) == 0); - - /* check one less than the order */ - secp256k1_scalar_set_int(&small, 1); - secp256k1_scalar_get_num(&n, &small); - secp256k1_num_sub(&n, &order, &n); - CHECK(secp256k1_num_jacobi(&n, &order) == 1); /* sage confirms this is 1 */ + /* compute 1/modulus mod 2^62 */ + m.modulus_inv62 = modinv2p64(m.modulus.v[0]) & M62; + CHECK(((m.modulus_inv62 * m.modulus.v[0]) & M62) == 1); + + for (vartime = 0; vartime < 2; ++vartime) { + /* compute inverse */ + (vartime ? secp256k1_modinv64_var : secp256k1_modinv64)(&x, &m); + + /* produce output */ + signed62_to_uint16(out, &x); + + /* check if the inverse times the input is 1 (mod m), unless x is 0. */ + mulmod256(tmp, out, in, mod); + CHECK(tmp[0] == nonzero); + for (i = 1; i < 16; ++i) CHECK(tmp[i] == 0); + + /* invert again */ + (vartime ? secp256k1_modinv64_var : secp256k1_modinv64)(&x, &m); + + /* check if the result is equal to the input */ + signed62_to_uint16(tmp, &x); + for (i = 0; i < 16; ++i) CHECK(tmp[i] == in[i]); + } } +#endif -void run_num_smalltests(void) { +/* test if a and b are coprime */ +int coprime(const uint16_t* a, const uint16_t* b) { + uint16_t x[16], y[16], t[16]; int i; - for (i = 0; i < 100*count; i++) { - test_num_negate(); - test_num_add_sub(); - test_num_mod(); - test_num_jacobi(); + int iszero; + memcpy(x, a, 32); + memcpy(y, b, 32); + + /* simple gcd loop: while x!=0, (x,y)=(y%x,x) */ + while (1) { + iszero = 1; + for (i = 0; i < 16; ++i) { + if (x[i] != 0) { + iszero = 0; + break; + } + } + if (iszero) break; + mulmod256(t, y, NULL, x); + memcpy(y, x, 32); + memcpy(x, t, 32); } + + /* return whether y=1 */ + if (y[0] != 1) return 0; + for (i = 1; i < 16; ++i) { + if (y[i] != 0) return 0; + } + return 1; } + +void run_modinv_tests(void) { + /* Fixed test cases. Each tuple is (input, modulus, output), each as 16x16 bits in LE order. */ + static const uint16_t CASES[][3][16] = { + /* Test cases triggering edge cases in divsteps */ + + /* Test case known to need 713 divsteps */ + {{0x1513, 0x5389, 0x54e9, 0x2798, 0x1957, 0x66a0, 0x8057, 0x3477, + 0x7784, 0x1052, 0x326a, 0x9331, 0x6506, 0xa95c, 0x91f3, 0xfb5e}, + {0x2bdd, 0x8df4, 0xcc61, 0x481f, 0xdae5, 0x5ca7, 0xf43b, 0x7d54, + 0x13d6, 0x469b, 0x2294, 0x20f4, 0xb2a4, 0xa2d1, 0x3ff1, 0xfd4b}, + {0xffd8, 0xd9a0, 0x456e, 0x81bb, 0xbabd, 0x6cea, 0x6dbd, 0x73ab, + 0xbb94, 0x3d3c, 0xdf08, 0x31c4, 0x3e32, 0xc179, 0x2486, 0xb86b}}, + /* Test case known to need 589 divsteps, reaching delta=-140 and + delta=141. */ + {{0x3fb1, 0x903b, 0x4eb7, 0x4813, 0xd863, 0x26bf, 0xd89f, 0xa8a9, + 0x02fe, 0x57c6, 0x554a, 0x4eab, 0x165e, 0x3d61, 0xee1e, 0x456c}, + {0x9295, 0x823b, 0x5c1f, 0x5386, 0x48e0, 0x02ff, 0x4c2a, 0xa2da, + 0xe58f, 0x967c, 0xc97e, 0x3f5a, 0x69fb, 0x52d9, 0x0a86, 0xb4a3}, + {0x3d30, 0xb893, 0xa809, 0xa7a8, 0x26f5, 0x5b42, 0x55be, 0xf4d0, + 0x12c2, 0x7e6a, 0xe41a, 0x90c7, 0xebfa, 0xf920, 0x304e, 0x1419}}, + /* Test case known to need 650 divsteps, and doing 65 consecutive (f,g/2) steps. */ + {{0x8583, 0x5058, 0xbeae, 0xeb69, 0x48bc, 0x52bb, 0x6a9d, 0xcc94, + 0x2a21, 0x87d5, 0x5b0d, 0x42f6, 0x5b8a, 0x2214, 0xe9d6, 0xa040}, + {0x7531, 0x27cb, 0x7e53, 0xb739, 0x6a5f, 0x83f5, 0xa45c, 0xcb1d, + 0x8a87, 0x1c9c, 0x51d7, 0x851c, 0xb9d8, 0x1fbe, 0xc241, 0xd4a3}, + {0xcdb4, 0x275c, 0x7d22, 0xa906, 0x0173, 0xc054, 0x7fdf, 0x5005, + 0x7fb8, 0x9059, 0xdf51, 0x99df, 0x2654, 0x8f6e, 0x070f, 0xb347}}, + /* example needing 713 divsteps; delta=-2..3 */ + {{0xe2e9, 0xee91, 0x4345, 0xe5ad, 0xf3ec, 0x8f42, 0x0364, 0xd5c9, + 0xff49, 0xbef5, 0x4544, 0x4c7c, 0xae4b, 0xfd9d, 0xb35b, 0xda9d}, + {0x36e7, 0x8cca, 0x2ed0, 0x47b3, 0xaca4, 0xb374, 0x7d2a, 0x0772, + 0x6bdb, 0xe0a7, 0x900b, 0xfe10, 0x788c, 0x6f22, 0xd909, 0xf298}, + {0xd8c6, 0xba39, 0x13ed, 0x198c, 0x16c8, 0xb837, 0xa5f2, 0x9797, + 0x0113, 0x882a, 0x15b5, 0x324c, 0xabee, 0xe465, 0x8170, 0x85ac}}, + /* example needing 713 divsteps; delta=-2..3 */ + {{0xd5b7, 0x2966, 0x040e, 0xf59a, 0x0387, 0xd96d, 0xbfbc, 0xd850, + 0x2d96, 0x872a, 0xad81, 0xc03c, 0xbb39, 0xb7fa, 0xd904, 0xef78}, + {0x6279, 0x4314, 0xfdd3, 0x1568, 0x0982, 0x4d13, 0x625f, 0x010c, + 0x22b1, 0x0cc3, 0xf22d, 0x5710, 0x1109, 0x5751, 0x7714, 0xfcf2}, + {0xdb13, 0x5817, 0x232e, 0xe456, 0xbbbc, 0x6fbe, 0x4572, 0xa358, + 0xc76d, 0x928e, 0x0162, 0x5314, 0x8325, 0x5683, 0xe21b, 0xda88}}, + /* example needing 713 divsteps; delta=-2..3 */ + {{0xa06f, 0x71ee, 0x3bac, 0x9ebb, 0xdeaa, 0x09ed, 0x1cf7, 0x9ec9, + 0x7158, 0x8b72, 0x5d53, 0x5479, 0x5c75, 0xbb66, 0x9125, 0xeccc}, + {0x2941, 0xd46c, 0x3cd4, 0x4a9d, 0x5c4a, 0x256b, 0xbd6c, 0x9b8e, + 0x8fe0, 0x8a14, 0xffe8, 0x2496, 0x618d, 0xa9d7, 0x5018, 0xfb29}, + {0x437c, 0xbd60, 0x7590, 0x94bb, 0x0095, 0xd35e, 0xd4fe, 0xd6da, + 0x0d4e, 0x5342, 0x4cd2, 0x169b, 0x661c, 0x1380, 0xed2d, 0x85c1}}, + /* example reaching delta=-64..65; 661 divsteps */ + {{0xfde4, 0x68d6, 0x6c48, 0x7f77, 0x1c78, 0x96de, 0x2fd9, 0xa6c2, + 0xbbb5, 0xd319, 0x69cf, 0xd4b3, 0xa321, 0xcda0, 0x172e, 0xe530}, + {0xd9e3, 0x0f60, 0x3d86, 0xeeab, 0x25ee, 0x9582, 0x2d50, 0xfe16, + 0xd4e2, 0xe3ba, 0x94e2, 0x9833, 0x6c5e, 0x8982, 0x13b6, 0xe598}, + {0xe675, 0xf55a, 0x10f6, 0xabde, 0x5113, 0xecaa, 0x61ae, 0xad9f, + 0x0c27, 0xef33, 0x62e5, 0x211d, 0x08fa, 0xa78d, 0xc675, 0x8bae}}, + /* example reaching delta=-64..65; 661 divsteps */ + {{0x21bf, 0x52d5, 0x8fd4, 0xaa18, 0x156a, 0x7247, 0xebb8, 0x5717, + 0x4eb5, 0x1421, 0xb58f, 0x3b0b, 0x5dff, 0xe533, 0xb369, 0xd28a}, + {0x9f6b, 0xe463, 0x2563, 0xc74d, 0x6d81, 0x636a, 0x8fc8, 0x7a94, + 0x9429, 0x1585, 0xf35e, 0x7ff5, 0xb64f, 0x9720, 0xba74, 0xe108}, + {0xa5ab, 0xea7b, 0xfe5e, 0x8a85, 0x13be, 0x7934, 0xe8a0, 0xa187, + 0x86b5, 0xe477, 0xb9a4, 0x75d7, 0x538f, 0xdd70, 0xc781, 0xb67d}}, + /* example reaching delta=-64..65; 661 divsteps */ + {{0xa41a, 0x3e8d, 0xf1f5, 0x9493, 0x868c, 0x5103, 0x2725, 0x3ceb, + 0x6032, 0x3624, 0xdc6b, 0x9120, 0xbf4c, 0x8821, 0x91ad, 0xb31a}, + {0x5c0b, 0xdda5, 0x20f8, 0x32a1, 0xaf73, 0x6ec5, 0x4779, 0x43d6, + 0xd454, 0x9573, 0xbf84, 0x5a58, 0xe04e, 0x307e, 0xd1d5, 0xe230}, + {0xda15, 0xbcd6, 0x7180, 0xabd3, 0x04e6, 0x6986, 0xc0d7, 0x90bb, + 0x3a4d, 0x7c95, 0xaaab, 0x9ab3, 0xda34, 0xa7f6, 0x9636, 0x6273}}, + /* example doing 123 consecutive (f,g/2) steps; 615 divsteps */ + {{0xb4d6, 0xb38f, 0x00aa, 0xebda, 0xd4c2, 0x70b8, 0x9dad, 0x58ee, + 0x68f8, 0x48d3, 0xb5ff, 0xf422, 0x9e46, 0x2437, 0x18d0, 0xd9cc}, + {0x5c83, 0xfed7, 0x97f5, 0x3f07, 0xcaad, 0x95b1, 0xb4a4, 0xb005, + 0x23af, 0xdd27, 0x6c0d, 0x932c, 0xe2b2, 0xe3ae, 0xfb96, 0xdf67}, + {0x3105, 0x0127, 0xfd48, 0x039b, 0x35f1, 0xbc6f, 0x6c0a, 0xb572, + 0xe4df, 0xebad, 0x8edc, 0xb89d, 0x9555, 0x4c26, 0x1fef, 0x997c}}, + /* example doing 123 consecutive (f,g/2) steps; 614 divsteps */ + {{0x5138, 0xd474, 0x385f, 0xc964, 0x00f2, 0x6df7, 0x862d, 0xb185, + 0xb264, 0xe9e1, 0x466c, 0xf39e, 0xafaf, 0x5f41, 0x47e2, 0xc89d}, + {0x8607, 0x9c81, 0x46a2, 0x7dcc, 0xcb0c, 0x9325, 0xe149, 0x2bde, + 0x6632, 0x2869, 0xa261, 0xb163, 0xccee, 0x22ae, 0x91e0, 0xcfd5}, + {0x831c, 0xda22, 0xb080, 0xba7a, 0x26e2, 0x54b0, 0x073b, 0x5ea0, + 0xed4b, 0xcb3d, 0xbba1, 0xbec8, 0xf2ad, 0xae0d, 0x349b, 0x17d1}}, + /* example doing 123 consecutive (f,g/2) steps; 614 divsteps */ + {{0xe9a5, 0xb4ad, 0xd995, 0x9953, 0xcdff, 0x50d7, 0xf715, 0x9dc7, + 0x3e28, 0x15a9, 0x95a3, 0x8554, 0x5b5e, 0xad1d, 0x6d57, 0x3d50}, + {0x3ad9, 0xbd60, 0x5cc7, 0x6b91, 0xadeb, 0x71f6, 0x7cc4, 0xa58a, + 0x2cce, 0xf17c, 0x38c9, 0x97ed, 0x65fb, 0x3fa6, 0xa6bc, 0xeb24}, + {0xf96c, 0x1963, 0x8151, 0xa0cc, 0x299b, 0xf277, 0x001a, 0x16bb, + 0xfd2e, 0x532d, 0x0410, 0xe117, 0x6b00, 0x44ec, 0xca6a, 0x1745}}, + /* example doing 446 (f,g/2) steps; 523 divsteps */ + {{0x3758, 0xa56c, 0xe41e, 0x4e47, 0x0975, 0xa82b, 0x107c, 0x89cf, + 0x2093, 0x5a0c, 0xda37, 0xe007, 0x6074, 0x4f68, 0x2f5a, 0xbb8a}, + {0x4beb, 0xa40f, 0x2c42, 0xd9d6, 0x97e8, 0xca7c, 0xd395, 0x894f, + 0x1f50, 0x8067, 0xa233, 0xb850, 0x1746, 0x1706, 0xbcda, 0xdf32}, + {0x762a, 0xceda, 0x4c45, 0x1ca0, 0x8c37, 0xd8c5, 0xef57, 0x7a2c, + 0x6e98, 0xe38a, 0xc50e, 0x2ca9, 0xcb85, 0x24d5, 0xc29c, 0x61f6}}, + /* example doing 446 (f,g/2) steps; 523 divsteps */ + {{0x6f38, 0x74ad, 0x7332, 0x4073, 0x6521, 0xb876, 0xa370, 0xa6bd, + 0xcea5, 0xbd06, 0x969f, 0x77c6, 0x1e69, 0x7c49, 0x7d51, 0xb6e7}, + {0x3f27, 0x4be4, 0xd81e, 0x1396, 0xb21f, 0x92aa, 0x6dc3, 0x6283, + 0x6ada, 0x3ca2, 0xc1e5, 0x8b9b, 0xd705, 0x5598, 0x8ba1, 0xe087}, + {0x6a22, 0xe834, 0xbc8d, 0xcee9, 0x42fc, 0xfc77, 0x9c45, 0x1ca8, + 0xeb66, 0xed74, 0xaaf9, 0xe75f, 0xfe77, 0x46d2, 0x179b, 0xbf3e}}, + /* example doing 336 (f,(f+g)/2) steps; 693 divsteps */ + {{0x7ea7, 0x444e, 0x84ea, 0xc447, 0x7c1f, 0xab97, 0x3de6, 0x5878, + 0x4e8b, 0xc017, 0x03e0, 0xdc40, 0xbbd0, 0x74ce, 0x0169, 0x7ab5}, + {0x4023, 0x154f, 0xfbe4, 0x8195, 0xfda0, 0xef54, 0x9e9a, 0xc703, + 0x2803, 0xf760, 0x6302, 0xed5b, 0x7157, 0x6456, 0xdd7d, 0xf14b}, + {0xb6fb, 0xe3b3, 0x0733, 0xa77e, 0x44c5, 0x3003, 0xc937, 0xdd4d, + 0x5355, 0x14e9, 0x184e, 0xcefe, 0xe6b5, 0xf2e0, 0x0a28, 0x5b74}}, + /* example doing 336 (f,(f+g)/2) steps; 687 divsteps */ + {{0xa893, 0xb5f4, 0x1ede, 0xa316, 0x242c, 0xbdcc, 0xb017, 0x0836, + 0x3a37, 0x27fb, 0xfb85, 0x251e, 0xa189, 0xb15d, 0xa4b8, 0xc24c}, + {0xb0b7, 0x57ba, 0xbb6d, 0x9177, 0xc896, 0xc7f2, 0x43b4, 0x85a6, + 0xe6c4, 0xe50e, 0x3109, 0x7ca5, 0xd73d, 0x13ff, 0x0c3d, 0xcd62}, + {0x48ca, 0xdb34, 0xe347, 0x2cef, 0x4466, 0x10fb, 0x7ee1, 0x6344, + 0x4308, 0x966d, 0xd4d1, 0xb099, 0x994f, 0xd025, 0x2187, 0x5866}}, + /* example doing 267 (g,(g-f)/2) steps; 678 divsteps */ + {{0x0775, 0x1754, 0x01f6, 0xdf37, 0xc0be, 0x8197, 0x072f, 0x6cf5, + 0x8b36, 0x8069, 0x5590, 0xb92d, 0x6084, 0x47a4, 0x23fe, 0xddd5}, + {0x8e1b, 0xda37, 0x27d9, 0x312e, 0x3a2f, 0xef6d, 0xd9eb, 0x8153, + 0xdcba, 0x9fa3, 0x9f80, 0xead5, 0x134d, 0x2ebb, 0x5ec0, 0xe032}, + {0x1cb6, 0x5a61, 0x1bed, 0x77d6, 0xd5d1, 0x7498, 0xef33, 0x2dd2, + 0x1089, 0xedbd, 0x6958, 0x16ae, 0x336c, 0x45e6, 0x4361, 0xbadc}}, + /* example doing 267 (g,(g-f)/2) steps; 676 divsteps */ + {{0x0207, 0xf948, 0xc430, 0xf36b, 0xf0a7, 0x5d36, 0x751f, 0x132c, + 0x6f25, 0xa630, 0xca1f, 0xc967, 0xaf9c, 0x34e7, 0xa38f, 0xbe9f}, + {0x5fb9, 0x7321, 0x6561, 0x5fed, 0x54ec, 0x9c3a, 0xee0e, 0x6717, + 0x49af, 0xb896, 0xf4f5, 0x451c, 0x722a, 0xf116, 0x64a9, 0xcf0b}, + {0xf4d7, 0xdb47, 0xfef2, 0x4806, 0x4cb8, 0x18c7, 0xd9a7, 0x4951, + 0x14d8, 0x5c3a, 0xd22d, 0xd7b2, 0x750c, 0x3de7, 0x8b4a, 0x19aa}}, + + /* Test cases triggering edge cases in divsteps variant starting with delta=1/2 */ + + /* example needing 590 divsteps; delta=-5/2..7/2 */ + {{0x9118, 0xb640, 0x53d7, 0x30ab, 0x2a23, 0xd907, 0x9323, 0x5b3a, + 0xb6d4, 0x538a, 0x7637, 0xfe97, 0xfd05, 0x3cc0, 0x453a, 0xfb7e}, + {0x6983, 0x4f75, 0x4ad1, 0x48ad, 0xb2d9, 0x521d, 0x3dbc, 0x9cc0, + 0x4b60, 0x0ac6, 0xd3be, 0x0fb6, 0xd305, 0x3895, 0x2da5, 0xfdf8}, + {0xcec1, 0x33ac, 0xa801, 0x8194, 0xe36c, 0x65ef, 0x103b, 0xca54, + 0xfa9b, 0xb41d, 0x9b52, 0xb6f7, 0xa611, 0x84aa, 0x3493, 0xbf54}}, + /* example needing 590 divsteps; delta=-3/2..5/2 */ + {{0xb5f2, 0x42d0, 0x35e8, 0x8ca0, 0x4b62, 0x6e1d, 0xbdf3, 0x890e, + 0x8c82, 0x23d8, 0xc79a, 0xc8e8, 0x789e, 0x353d, 0x9766, 0xea9d}, + {0x6fa1, 0xacba, 0x4b7a, 0x5de1, 0x95d0, 0xc845, 0xebbf, 0x6f5a, + 0x30cf, 0x52db, 0x69b7, 0xe278, 0x4b15, 0x8411, 0x2ab2, 0xf3e7}, + {0xf12c, 0x9d6d, 0x95fa, 0x1878, 0x9f13, 0x4fb5, 0x3c8b, 0xa451, + 0x7182, 0xc4b6, 0x7e2a, 0x7bb7, 0x6e0e, 0x5b68, 0xde55, 0x9927}}, + /* example needing 590 divsteps; delta=-3/2..5/2 */ + {{0x229c, 0x4ef8, 0x1e93, 0xe5dc, 0xcde5, 0x6d62, 0x263b, 0xad11, + 0xced0, 0x88ff, 0xae8e, 0x3183, 0x11d2, 0xa50b, 0x350d, 0xeb40}, + {0x3157, 0xe2ea, 0x8a02, 0x0aa3, 0x5ae1, 0xb26c, 0xea27, 0x6805, + 0x87e2, 0x9461, 0x37c1, 0x2f8d, 0x85d2, 0x77a8, 0xf805, 0xeec9}, + {0x6f4e, 0x2748, 0xf7e5, 0xd8d3, 0xabe2, 0x7270, 0xc4e0, 0xedc7, + 0xf196, 0x78ca, 0x9139, 0xd8af, 0x72c6, 0xaf2f, 0x85d2, 0x6cd3}}, + /* example needing 590 divsteps; delta=-5/2..7/2 */ + {{0xdce8, 0xf1fe, 0x6708, 0x021e, 0xf1ca, 0xd609, 0x5443, 0x85ce, + 0x7a05, 0x8f9c, 0x90c3, 0x52e7, 0x8e1d, 0x97b8, 0xc0bf, 0xf2a1}, + {0xbd3d, 0xed11, 0x1625, 0xb4c5, 0x844c, 0xa413, 0x2569, 0xb9ba, + 0xcd35, 0xff84, 0xcd6e, 0x7f0b, 0x7d5d, 0x10df, 0x3efe, 0xfbe5}, + {0xa9dd, 0xafef, 0xb1b7, 0x4c8d, 0x50e4, 0xafbf, 0x2d5a, 0xb27c, + 0x0653, 0x66b6, 0x5d36, 0x4694, 0x7e35, 0xc47c, 0x857f, 0x32c5}}, + /* example needing 590 divsteps; delta=-3/2..5/2 */ + {{0x7902, 0xc9f8, 0x926b, 0xaaeb, 0x90f8, 0x1c89, 0xcce3, 0x96b7, + 0x28b2, 0x87a2, 0x136d, 0x695a, 0xa8df, 0x9061, 0x9e31, 0xee82}, + {0xd3a9, 0x3c02, 0x818c, 0x6b81, 0x34b3, 0xebbb, 0xe2c8, 0x7712, + 0xbfd6, 0x8248, 0xa6f4, 0xba6f, 0x03bb, 0xfb54, 0x7575, 0xfe89}, + {0x8246, 0x0d63, 0x478e, 0xf946, 0xf393, 0x0451, 0x08c2, 0x5919, + 0x5fd6, 0x4c61, 0xbeb7, 0x9a15, 0x30e1, 0x55fc, 0x6a01, 0x3724}}, + /* example reaching delta=-127/2..129/2; 571 divsteps */ + {{0x3eff, 0x926a, 0x77f5, 0x1fff, 0x1a5b, 0xf3ef, 0xf64b, 0x8681, + 0xf800, 0xf9bc, 0x761d, 0xe268, 0x62b0, 0xa032, 0xba9c, 0xbe56}, + {0xb8f9, 0x00e7, 0x47b7, 0xdffc, 0xfd9d, 0x5abb, 0xa19b, 0x1868, + 0x31fd, 0x3b29, 0x3674, 0x5449, 0xf54d, 0x1d19, 0x6ac7, 0xff6f}, + {0xf1d7, 0x3551, 0x5682, 0x9adf, 0xe8aa, 0x19a5, 0x8340, 0x71db, + 0xb7ab, 0x4cfd, 0xf661, 0x632c, 0xc27e, 0xd3c6, 0xdf42, 0xd306}}, + /* example reaching delta=-127/2..129/2; 571 divsteps */ + {{0x0000, 0x0000, 0x0000, 0x0000, 0x3aff, 0x2ed7, 0xf2e0, 0xabc7, + 0x8aee, 0x166e, 0x7ed0, 0x9ac7, 0x714a, 0xb9c5, 0x4d58, 0xad6c}, + {0x9cf9, 0x47e2, 0xa421, 0xb277, 0xffc2, 0x2747, 0x6486, 0x94c1, + 0x1d99, 0xd49b, 0x1096, 0x991a, 0xe986, 0xae02, 0xe89b, 0xea36}, + {0x1fb4, 0x98d8, 0x19b7, 0x80e9, 0xcdac, 0xaa5a, 0xf1e6, 0x0074, + 0xe393, 0xed8b, 0x8d5c, 0xe17d, 0x81b3, 0xc16d, 0x54d3, 0x9be3}}, + /* example reaching delta=-127/2..129/2; 571 divsteps */ + {{0xd047, 0x7e36, 0x3157, 0x7ab6, 0xb4d9, 0x8dae, 0x7534, 0x4f5d, + 0x489e, 0xa8ab, 0x8a3d, 0xd52c, 0x62af, 0xa032, 0xba9c, 0xbe56}, + {0xb1f1, 0x737f, 0x5964, 0x5afb, 0x3712, 0x8ef9, 0x19f7, 0x9669, + 0x664d, 0x03ad, 0xc352, 0xf7a5, 0xf545, 0x1d19, 0x6ac7, 0xff6f}, + {0xa834, 0x5256, 0x27bc, 0x33bd, 0xba11, 0x5a7b, 0x791e, 0xe6c0, + 0x9ac4, 0x9370, 0x1130, 0x28b4, 0x2b2e, 0x231b, 0x082a, 0x796e}}, + /* example doing 123 consecutive (f,g/2) steps; 554 divsteps */ + {{0x6ab1, 0x6ea0, 0x1a99, 0xe0c2, 0xdd45, 0x645d, 0x8dbc, 0x466a, + 0xfa64, 0x4289, 0xd3f7, 0xfc8f, 0x2894, 0xe3c5, 0xa008, 0xcc14}, + {0xc75f, 0xc083, 0x4cc2, 0x64f2, 0x2aff, 0x4c12, 0x8461, 0xc4ae, + 0xbbfa, 0xb336, 0xe4b2, 0x3ac5, 0x2c22, 0xf56c, 0x5381, 0xe943}, + {0xcd80, 0x760d, 0x4395, 0xb3a6, 0xd497, 0xf583, 0x82bd, 0x1daa, + 0xbe92, 0x2613, 0xfdfb, 0x869b, 0x0425, 0xa333, 0x7056, 0xc9c5}}, + /* example doing 123 consecutive (f,g/2) steps; 554 divsteps */ + {{0x71d4, 0x64df, 0xec4f, 0x74d8, 0x7e0c, 0x40d3, 0x7073, 0x4cc8, + 0x2a2a, 0xb1ff, 0x8518, 0x6513, 0xb0ea, 0x640a, 0x62d9, 0xd5f4}, + {0xdc75, 0xd937, 0x3b13, 0x1d36, 0xdf83, 0xd034, 0x1c1c, 0x4332, + 0x4cc3, 0xeeec, 0x7d94, 0x6771, 0x3384, 0x74b0, 0x947d, 0xf2c4}, + {0x0a82, 0x37a4, 0x12d5, 0xec97, 0x972c, 0xe6bf, 0xc348, 0xa0a9, + 0xc50c, 0xdc7c, 0xae30, 0x19d1, 0x0fca, 0x35e1, 0xd6f6, 0x81ee}}, + /* example doing 123 consecutive (f,g/2) steps; 554 divsteps */ + {{0xa6b1, 0xabc5, 0x5bbc, 0x7f65, 0xdd32, 0xaa73, 0xf5a3, 0x1982, + 0xced4, 0xe949, 0x0fd6, 0x2bc4, 0x2bd7, 0xe3c5, 0xa008, 0xcc14}, + {0x4b5f, 0x8f96, 0xa375, 0xfbcf, 0x1c7d, 0xf1ec, 0x03f5, 0xb35d, + 0xb999, 0xdb1f, 0xc9a1, 0xb4c7, 0x1dd5, 0xf56c, 0x5381, 0xe943}, + {0xaa3d, 0x38b9, 0xf17d, 0xeed9, 0x9988, 0x69ee, 0xeb88, 0x1495, + 0x203f, 0x18c8, 0x82b7, 0xdcb2, 0x34a7, 0x6b00, 0x6998, 0x589a}}, + /* example doing 453 (f,g/2) steps; 514 divsteps */ + {{0xa478, 0xe60d, 0x3244, 0x60e6, 0xada3, 0xfe50, 0xb6b1, 0x2eae, + 0xd0ef, 0xa7b1, 0xef63, 0x05c0, 0xe213, 0x443e, 0x4427, 0x2448}, + {0x258f, 0xf9ef, 0xe02b, 0x92dd, 0xd7f3, 0x252b, 0xa503, 0x9089, + 0xedff, 0x96c1, 0xfe3a, 0x3a39, 0x198a, 0x981d, 0x0627, 0xedb7}, + {0x595a, 0x45be, 0x8fb0, 0x2265, 0xc210, 0x02b8, 0xdce9, 0xe241, + 0xcab6, 0xbf0d, 0x0049, 0x8d9a, 0x2f51, 0xae54, 0x5785, 0xb411}}, + /* example doing 453 (f,g/2) steps; 514 divsteps */ + {{0x48f0, 0x7db3, 0xdafe, 0x1c92, 0x5912, 0xe11a, 0xab52, 0xede1, + 0x3182, 0x8980, 0x5d2b, 0x9b5b, 0x8718, 0xda27, 0x1683, 0x1de2}, + {0x168f, 0x6f36, 0xce7a, 0xf435, 0x19d4, 0xda5e, 0x2351, 0x9af5, + 0xb003, 0x0ef5, 0x3b4c, 0xecec, 0xa9f0, 0x78e1, 0xdfef, 0xe823}, + {0x5f55, 0xfdcc, 0xb233, 0x2914, 0x84f0, 0x97d1, 0x9cf4, 0x2159, + 0xbf56, 0xb79c, 0x17a3, 0x7cef, 0xd5de, 0x34f0, 0x5311, 0x4c54}}, + /* example doing 510 (f,(f+g)/2) steps; 512 divsteps */ + {{0x2789, 0x2e04, 0x6e0e, 0xb6cd, 0xe4de, 0x4dbf, 0x228d, 0x7877, + 0xc335, 0x806b, 0x38cd, 0x8049, 0xa73b, 0xcfa2, 0x82f7, 0x9e19}, + {0xc08d, 0xb99d, 0xb8f3, 0x663d, 0xbbb3, 0x1284, 0x1485, 0x1d49, + 0xc98f, 0x9e78, 0x1588, 0x11e3, 0xd91a, 0xa2c7, 0xfff1, 0xc7b9}, + {0x1e1f, 0x411d, 0x7c49, 0x0d03, 0xe789, 0x2f8e, 0x5d55, 0xa95e, + 0x826e, 0x8de5, 0x52a0, 0x1abc, 0x4cd7, 0xd13a, 0x4395, 0x63e1}}, + /* example doing 510 (f,(f+g)/2) steps; 512 divsteps */ + {{0xd5a1, 0xf786, 0x555c, 0xb14b, 0x44ae, 0x535f, 0x4a49, 0xffc3, + 0xf497, 0x70d1, 0x57c8, 0xa933, 0xc85a, 0x1910, 0x75bf, 0x960b}, + {0xfe53, 0x5058, 0x496d, 0xfdff, 0x6fb8, 0x4100, 0x92bd, 0xe0c4, + 0xda89, 0xe0a4, 0x841b, 0x43d4, 0xa388, 0x957f, 0x99ca, 0x9abf}, + {0xe530, 0x05bc, 0xfeec, 0xfc7e, 0xbcd3, 0x1239, 0x54cb, 0x7042, + 0xbccb, 0x139e, 0x9076, 0x0203, 0x6068, 0x90c7, 0x1ddf, 0x488d}}, + /* example doing 228 (g,(g-f)/2) steps; 538 divsteps */ + {{0x9488, 0xe54b, 0x0e43, 0x81d2, 0x06e7, 0x4b66, 0x36d0, 0x53d6, + 0x2b68, 0x22ec, 0x3fa9, 0xc1a7, 0x9ad2, 0xa596, 0xb3ac, 0xdf42}, + {0xe31f, 0x0b28, 0x5f3b, 0xc1ff, 0x344c, 0xbf5f, 0xd2ec, 0x2936, + 0x9995, 0xdeb2, 0xae6c, 0x2852, 0xa2c6, 0xb306, 0x8120, 0xe305}, + {0xa56e, 0xfb98, 0x1537, 0x4d85, 0x619e, 0x866c, 0x3cd4, 0x779a, + 0xdd66, 0xa80d, 0xdc2f, 0xcae4, 0xc74c, 0x5175, 0xa65d, 0x605e}}, + /* example doing 228 (g,(g-f)/2) steps; 537 divsteps */ + {{0x8cd5, 0x376d, 0xd01b, 0x7176, 0x19ef, 0xcf09, 0x8403, 0x5e52, + 0x83c1, 0x44de, 0xb91e, 0xb33d, 0xe15c, 0x51e7, 0xbad8, 0x6359}, + {0x3b75, 0xf812, 0x5f9e, 0xa04e, 0x92d3, 0x226e, 0x540e, 0x7c9a, + 0x31c6, 0x46d2, 0x0b7b, 0xdb4a, 0xe662, 0x4950, 0x0265, 0xf76f}, + {0x09ed, 0x692f, 0xe8f1, 0x3482, 0xab54, 0x36b4, 0x8442, 0x6ae9, + 0x4329, 0x6505, 0x183b, 0x1c1d, 0x482d, 0x7d63, 0xb44f, 0xcc09}}, + + /* Test cases with the group order as modulus. */ + + /* Test case with the group order as modulus, needing 635 divsteps. */ + {{0x95ed, 0x6c01, 0xd113, 0x5ff1, 0xd7d0, 0x29cc, 0x5817, 0x6120, + 0xca8e, 0xaad1, 0x25ae, 0x8e84, 0x9af6, 0x30bf, 0xf0ed, 0x1686}, + {0x4141, 0xd036, 0x5e8c, 0xbfd2, 0xa03b, 0xaf48, 0xdce6, 0xbaae, + 0xfffe, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff}, + {0x1631, 0xbf4a, 0x286a, 0x2716, 0x469f, 0x2ac8, 0x1312, 0xe9bc, + 0x04f4, 0x304b, 0x9931, 0x113b, 0xd932, 0xc8f4, 0x0d0d, 0x01a1}}, + /* example with group size as modulus needing 631 divsteps */ + {{0x85ed, 0xc284, 0x9608, 0x3c56, 0x19b6, 0xbb5b, 0x2850, 0xdab7, + 0xa7f5, 0xe9ab, 0x06a4, 0x5bbb, 0x1135, 0xa186, 0xc424, 0xc68b}, + {0x4141, 0xd036, 0x5e8c, 0xbfd2, 0xa03b, 0xaf48, 0xdce6, 0xbaae, + 0xfffe, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff}, + {0x8479, 0x450a, 0x8fa3, 0xde05, 0xb2f5, 0x7793, 0x7269, 0xbabb, + 0xc3b3, 0xd49b, 0x3377, 0x03c6, 0xe694, 0xc760, 0xd3cb, 0x2811}}, + /* example with group size as modulus needing 565 divsteps starting at delta=1/2 */ + {{0x8432, 0x5ceb, 0xa847, 0x6f1e, 0x51dd, 0x535a, 0x6ddc, 0x70ce, + 0x6e70, 0xc1f6, 0x18f2, 0x2a7e, 0xc8e7, 0x39f8, 0x7e96, 0xebbf}, + {0x4141, 0xd036, 0x5e8c, 0xbfd2, 0xa03b, 0xaf48, 0xdce6, 0xbaae, + 0xfffe, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff}, + {0x257e, 0x449f, 0x689f, 0x89aa, 0x3989, 0xb661, 0x376c, 0x1e32, + 0x654c, 0xee2e, 0xf4e2, 0x33c8, 0x3f2f, 0x9716, 0x6046, 0xcaa3}}, + /* Test case with the group size as modulus, needing 981 divsteps with + broken eta handling. */ + {{0xfeb9, 0xb877, 0xee41, 0x7fa3, 0x87da, 0x94c4, 0x9d04, 0xc5ae, + 0x5708, 0x0994, 0xfc79, 0x0916, 0xbf32, 0x3ad8, 0xe11c, 0x5ca2}, + {0x4141, 0xd036, 0x5e8c, 0xbfd2, 0xa03b, 0xaf48, 0xdce6, 0xbaae, + 0xfffe, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff}, + {0x0f12, 0x075e, 0xce1c, 0x6f92, 0xc80f, 0xca92, 0x9a04, 0x6126, + 0x4b6c, 0x57d6, 0xca31, 0x97f3, 0x1f99, 0xf4fd, 0xda4d, 0x42ce}}, + /* Test case with the group size as modulus, input = 0. */ + {{0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, + 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000}, + {0x4141, 0xd036, 0x5e8c, 0xbfd2, 0xa03b, 0xaf48, 0xdce6, 0xbaae, + 0xfffe, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff}, + {0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, + 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000}}, + /* Test case with the group size as modulus, input = 1. */ + {{0x0001, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, + 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000}, + {0x4141, 0xd036, 0x5e8c, 0xbfd2, 0xa03b, 0xaf48, 0xdce6, 0xbaae, + 0xfffe, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff}, + {0x0001, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, + 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000}}, + /* Test case with the group size as modulus, input = 2. */ + {{0x0002, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, + 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000}, + {0x4141, 0xd036, 0x5e8c, 0xbfd2, 0xa03b, 0xaf48, 0xdce6, 0xbaae, + 0xfffe, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff}, + {0x20a1, 0x681b, 0x2f46, 0xdfe9, 0x501d, 0x57a4, 0x6e73, 0x5d57, + 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0x7fff}}, + /* Test case with the group size as modulus, input = group - 1. */ + {{0x4140, 0xd036, 0x5e8c, 0xbfd2, 0xa03b, 0xaf48, 0xdce6, 0xbaae, + 0xfffe, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff}, + {0x4141, 0xd036, 0x5e8c, 0xbfd2, 0xa03b, 0xaf48, 0xdce6, 0xbaae, + 0xfffe, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff}, + {0x4140, 0xd036, 0x5e8c, 0xbfd2, 0xa03b, 0xaf48, 0xdce6, 0xbaae, + 0xfffe, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff}}, + + /* Test cases with the field size as modulus. */ + + /* Test case with the field size as modulus, needing 637 divsteps. */ + {{0x9ec3, 0x1919, 0xca84, 0x7c11, 0xf996, 0x06f3, 0x5408, 0x6688, + 0x1320, 0xdb8a, 0x632a, 0x0dcb, 0x8a84, 0x6bee, 0x9c95, 0xe34e}, + {0xfc2f, 0xffff, 0xfffe, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, + 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff}, + {0x18e5, 0x19b6, 0xdf92, 0x1aaa, 0x09fb, 0x8a3f, 0x52b0, 0x8701, + 0xac0c, 0x2582, 0xda44, 0x9bcc, 0x6828, 0x1c53, 0xbd8f, 0xbd2c}}, + /* example with field size as modulus needing 637 divsteps */ + {{0xaec3, 0xa7cf, 0x2f2d, 0x0693, 0x5ad5, 0xa8ff, 0x7ec7, 0x30ff, + 0x0c8b, 0xc242, 0xcab2, 0x063a, 0xf86e, 0x6057, 0x9cbd, 0xf6d8}, + {0xfc2f, 0xffff, 0xfffe, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, + 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff}, + {0x0310, 0x579d, 0xcb38, 0x9030, 0x3ded, 0x9bb9, 0x1234, 0x63ce, + 0x0c63, 0x8e3d, 0xacfe, 0x3c20, 0xdc85, 0xf859, 0x919e, 0x1d45}}, + /* example with field size as modulus needing 564 divsteps starting at delta=1/2 */ + {{0x63ae, 0x8d10, 0x0071, 0xdb5c, 0xb454, 0x78d1, 0x744a, 0x5f8e, + 0xe4d8, 0x87b1, 0x8e62, 0x9590, 0xcede, 0xa070, 0x36b4, 0x7f6f}, + {0xfc2f, 0xffff, 0xfffe, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, + 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff}, + {0xfdc8, 0xe8d5, 0xbe15, 0x9f86, 0xa5fe, 0xf18e, 0xa7ff, 0xd291, + 0xf4c2, 0x9c87, 0xf150, 0x073e, 0x69b8, 0xf7c4, 0xee4b, 0xc7e6}}, + /* Test case with the field size as modulus, needing 935 divsteps with + broken eta handling. */ + {{0x1b37, 0xbdc3, 0x8bcd, 0x25e3, 0x1eae, 0x567d, 0x30b6, 0xf0d8, + 0x9277, 0x0cf8, 0x9c2e, 0xecd7, 0x631d, 0xe38f, 0xd4f8, 0x5c93}, + {0xfc2f, 0xffff, 0xfffe, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, + 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff}, + {0x1622, 0xe05b, 0xe880, 0x7de9, 0x3e45, 0xb682, 0xee6c, 0x67ed, + 0xa179, 0x15db, 0x6b0d, 0xa656, 0x7ccb, 0x8ef7, 0xa2ff, 0xe279}}, + /* Test case with the field size as modulus, input = 0. */ + {{0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, + 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000}, + {0xfc2f, 0xffff, 0xfffe, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, + 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff}, + {0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, + 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000}}, + /* Test case with the field size as modulus, input = 1. */ + {{0x0001, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, + 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000}, + {0xfc2f, 0xffff, 0xfffe, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, + 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff}, + {0x0001, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, + 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000}}, + /* Test case with the field size as modulus, input = 2. */ + {{0x0002, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, + 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000}, + {0xfc2f, 0xffff, 0xfffe, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, + 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff}, + {0xfe18, 0x7fff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, + 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0x7fff}}, + /* Test case with the field size as modulus, input = field - 1. */ + {{0xfc2e, 0xffff, 0xfffe, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, + 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff}, + {0xfc2f, 0xffff, 0xfffe, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, + 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff}, + {0xfc2e, 0xffff, 0xfffe, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, + 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff}}, + + /* Selected from a large number of random inputs to reach small/large + * d/e values in various configurations. */ + {{0x3a08, 0x23e1, 0x4d8c, 0xe606, 0x3263, 0x67af, 0x9bf1, 0x9d70, + 0xf5fd, 0x12e4, 0x03c8, 0xb9ca, 0xe847, 0x8c5d, 0x6322, 0xbd30}, + {0x8359, 0x59dd, 0x1831, 0x7c1a, 0x1e83, 0xaee1, 0x770d, 0xcea8, + 0xfbb1, 0xeed6, 0x10b5, 0xe2c6, 0x36ea, 0xee17, 0xe32c, 0xffff}, + {0x1727, 0x0f36, 0x6f85, 0x5d0c, 0xca6c, 0x3072, 0x9628, 0x5842, + 0xcb44, 0x7c2b, 0xca4f, 0x62e5, 0x29b1, 0x6ffd, 0x9055, 0xc196}}, + {{0x905d, 0x41c8, 0xa2ff, 0x295b, 0x72bb, 0x4679, 0x6d01, 0x2c98, + 0xb3e0, 0xc537, 0xa310, 0xe07e, 0xe72f, 0x4999, 0x1148, 0xf65e}, + {0x5b41, 0x4239, 0x3c37, 0x5130, 0x30e3, 0xff35, 0xc51f, 0x1a43, + 0xdb23, 0x13cf, 0x9f49, 0xf70c, 0x5e70, 0xd411, 0x3005, 0xf8c6}, + {0xc30e, 0x68f0, 0x201a, 0xe10c, 0x864a, 0x6243, 0xe946, 0x43ae, + 0xf3f1, 0x52dc, 0x1f7f, 0x50d4, 0x2797, 0x064c, 0x5ca4, 0x90e3}}, + {{0xf1b5, 0xc6e5, 0xd2c4, 0xff95, 0x27c5, 0x0c92, 0x5d19, 0x7ae5, + 0x4fbe, 0x5438, 0x99e1, 0x880d, 0xd892, 0xa05c, 0x6ffd, 0x7eac}, + {0x2153, 0xcc9d, 0xfc6c, 0x8358, 0x49a1, 0x01e2, 0xcef0, 0x4969, + 0xd69a, 0x8cef, 0xf5b2, 0xfd95, 0xdcc2, 0x71f4, 0x6ae2, 0xceeb}, + {0x9b2e, 0xcdc6, 0x0a5c, 0x7317, 0x9084, 0xe228, 0x56cf, 0xd512, + 0x628a, 0xce21, 0x3473, 0x4e13, 0x8823, 0x1ed0, 0x34d0, 0xbfa3}}, + {{0x5bae, 0x53e5, 0x5f4d, 0x21ca, 0xb875, 0x8ecf, 0x9aa6, 0xbe3c, + 0x9f96, 0x7b82, 0x375d, 0x4d3e, 0x491c, 0xb1eb, 0x04c9, 0xb6c8}, + {0xfcfd, 0x10b7, 0x73b2, 0xd23b, 0xa357, 0x67da, 0x0d9f, 0x8702, + 0xa037, 0xff8e, 0x0e8b, 0x1801, 0x2c5c, 0x4e6e, 0x4558, 0xfff2}, + {0xc50f, 0x5654, 0x6713, 0x5ef5, 0xa7ce, 0xa647, 0xc832, 0x69ce, + 0x1d5c, 0x4310, 0x0746, 0x5a01, 0x96ea, 0xde4b, 0xa88b, 0x5543}}, + {{0xdc7f, 0x5e8c, 0x89d1, 0xb077, 0xd521, 0xcf90, 0x32fa, 0x5737, + 0x839e, 0x1464, 0x007c, 0x09c6, 0x9371, 0xe8ea, 0xc1cb, 0x75c4}, + {0xe3a3, 0x107f, 0xa82a, 0xa375, 0x4578, 0x60f4, 0x75c9, 0x5ee4, + 0x3fd7, 0x2736, 0x2871, 0xd3d2, 0x5f1d, 0x1abb, 0xa764, 0xffff}, + {0x45c6, 0x1f2e, 0xb14c, 0x84d7, 0x7bb7, 0x5a04, 0x0504, 0x3f33, + 0x5cc1, 0xb07a, 0x6a6c, 0x786f, 0x647f, 0xe1d7, 0x78a2, 0x4cf4}}, + {{0xc006, 0x356f, 0x8cd2, 0x967b, 0xb49e, 0x2d4e, 0x14bf, 0x4bcb, + 0xddab, 0xd3f9, 0xa068, 0x2c1c, 0xd242, 0xa56d, 0xf2c7, 0x5f97}, + {0x465b, 0xb745, 0x0e0d, 0x69a9, 0x987d, 0xcb37, 0xf637, 0xb311, + 0xc4d6, 0x2ddb, 0xf68f, 0x2af9, 0x959d, 0x3f53, 0x98f2, 0xf640}, + {0xc0f2, 0x6bfb, 0xf5c3, 0x91c1, 0x6b05, 0x0825, 0x5ca0, 0x7df7, + 0x9d55, 0x6d9e, 0xfe94, 0x2ad9, 0xd9f0, 0xe68b, 0xa72b, 0xd1b2}}, + {{0x2279, 0x61ba, 0x5bc6, 0x136b, 0xf544, 0x717c, 0xafda, 0x02bd, + 0x79af, 0x1fad, 0xea09, 0x81bb, 0x932b, 0x32c9, 0xdf1d, 0xe576}, + {0x8215, 0x7817, 0xca82, 0x43b0, 0x9b06, 0xea65, 0x1291, 0x0621, + 0x0089, 0x46fe, 0xc5a6, 0xddd7, 0x8065, 0xc6a0, 0x214b, 0xfc64}, + {0x04bf, 0x6f2a, 0x86b2, 0x841a, 0x4a95, 0xc632, 0x97b7, 0x5821, + 0x2b18, 0x1bb0, 0x3e97, 0x935e, 0xcc7d, 0x066b, 0xd513, 0xc251}}, + {{0x76e8, 0x5bc2, 0x3eaa, 0x04fc, 0x9974, 0x92c1, 0x7c15, 0xfa89, + 0x1151, 0x36ee, 0x48b2, 0x049c, 0x5f16, 0xcee4, 0x925b, 0xe98e}, + {0x913f, 0x0a2d, 0xa185, 0x9fea, 0xda5a, 0x4025, 0x40d7, 0x7cfa, + 0x88ca, 0xbbe8, 0xb265, 0xb7e4, 0x6cb1, 0xed64, 0xc6f9, 0xffb5}, + {0x6ab1, 0x1a86, 0x5009, 0x152b, 0x1cc4, 0xe2c8, 0x960b, 0x19d0, + 0x3554, 0xc562, 0xd013, 0xcf91, 0x10e1, 0x7933, 0xe195, 0xcf49}}, + {{0x9cb5, 0xd2d7, 0xc6ed, 0xa818, 0xb495, 0x06ee, 0x0f4a, 0x06e3, + 0x4c5a, 0x80ce, 0xd49a, 0x4cd7, 0x7487, 0x92af, 0xe516, 0x676c}, + {0xd6e9, 0x6b85, 0x619a, 0xb52c, 0x20a0, 0x2f79, 0x3545, 0x1edd, + 0x5a6f, 0x8082, 0x9b80, 0xf8f8, 0xc78a, 0xd0a3, 0xadf4, 0xffff}, + {0x01c2, 0x2118, 0xef5e, 0xa877, 0x046a, 0xd2c2, 0x2ad5, 0x951c, + 0x8900, 0xa5c9, 0x8d0f, 0x6b61, 0x55d3, 0xd572, 0x48de, 0x9219}}, + {{0x5114, 0x0644, 0x23dd, 0x01d3, 0xc101, 0xa659, 0xea17, 0x640f, + 0xf767, 0x2644, 0x9cec, 0xd8ba, 0xd6da, 0x9156, 0x8aeb, 0x875a}, + {0xc1bf, 0xdae9, 0xe96b, 0xce77, 0xf7a1, 0x3e99, 0x5c2e, 0x973b, + 0xd048, 0x5bd0, 0x4e8a, 0xcb85, 0xce39, 0x37f5, 0x815d, 0xffff}, + {0x48cc, 0x35b6, 0x26d4, 0x2ea6, 0x50d6, 0xa2f9, 0x64b6, 0x03bf, + 0xd00c, 0xe057, 0x3343, 0xfb79, 0x3ce5, 0xf717, 0xc5af, 0xe185}}, + {{0x13ff, 0x6c76, 0x2077, 0x16e0, 0xd5ca, 0xf2ad, 0x8dba, 0x8f49, + 0x7887, 0x16f9, 0xb646, 0xfc87, 0xfa31, 0x5096, 0xf08c, 0x3fbe}, + {0x8139, 0x6fd7, 0xf6df, 0xa7bf, 0x6699, 0x5361, 0x6f65, 0x13c8, + 0xf4d1, 0xe28f, 0xc545, 0x0a8c, 0x5274, 0xb0a6, 0xffff, 0xffff}, + {0x22ca, 0x0cd6, 0xc1b5, 0xb064, 0x44a7, 0x297b, 0x495f, 0x34ac, + 0xfa95, 0xec62, 0xf08d, 0x621c, 0x66a6, 0xba94, 0x84c6, 0x8ee0}}, + {{0xaa30, 0x312e, 0x439c, 0x4e88, 0x2e2f, 0x32dc, 0xb880, 0xa28e, + 0xf795, 0xc910, 0xb406, 0x8dd7, 0xb187, 0xa5a5, 0x38f1, 0xe49e}, + {0xfb19, 0xf64a, 0xba6a, 0x8ec2, 0x7255, 0xce89, 0x2cf9, 0x9cba, + 0xe1fe, 0x50da, 0x1705, 0xac52, 0xe3d4, 0x4269, 0x0648, 0xfd77}, + {0xb4c8, 0x6e8a, 0x2b5f, 0x4c2d, 0x5a67, 0xa7bb, 0x7d6d, 0x5569, + 0xa0ea, 0x244a, 0xc0f2, 0xf73d, 0x58cf, 0xac7f, 0xd32b, 0x3018}}, + {{0xc953, 0x1ae1, 0xae46, 0x8709, 0x19c2, 0xa986, 0x9abe, 0x1611, + 0x0395, 0xd5ab, 0xf0f6, 0xb5b0, 0x5b2b, 0x0317, 0x80ba, 0x376d}, + {0xfe77, 0xbc03, 0xac2f, 0x9d00, 0xa175, 0x293d, 0x3b56, 0x0e3a, + 0x0a9c, 0xf40c, 0x690e, 0x1508, 0x95d4, 0xddc4, 0xe805, 0xffff}, + {0xb1ce, 0x0929, 0xa5fe, 0x4b50, 0x9d5d, 0x8187, 0x2557, 0x4376, + 0x11ba, 0xdcef, 0xc1f3, 0xd531, 0x1824, 0x93f6, 0xd81f, 0x8f83}}, + {{0xb8d2, 0xb900, 0x4a0c, 0x7188, 0xa5bf, 0x1b0b, 0x2ae5, 0xa35b, + 0x98e0, 0x610c, 0x86db, 0x2487, 0xa267, 0x002c, 0xebb6, 0xc5f4}, + {0x9cdd, 0x1c1b, 0x2f06, 0x43d1, 0xce47, 0xc334, 0x6e60, 0xc016, + 0x989e, 0x0ab2, 0x0cac, 0x1196, 0xe2d9, 0x2e04, 0xc62b, 0xffff}, + {0xdc36, 0x1f05, 0x6aa9, 0x7a20, 0x944f, 0x2fd3, 0xa553, 0xdb4f, + 0xbd5c, 0x3a75, 0x25d4, 0xe20e, 0xa387, 0x1410, 0xdbb1, 0x1b60}}, + {{0x76b3, 0x2207, 0x4930, 0x5dd7, 0x65a0, 0xd55c, 0xb443, 0x53b7, + 0x5c22, 0x818a, 0xb2e7, 0x9de8, 0x9985, 0xed45, 0x33b1, 0x53e8}, + {0x7913, 0x44e1, 0xf15b, 0x5edd, 0x34f3, 0x4eba, 0x0758, 0x7104, + 0x32d9, 0x28f3, 0x4401, 0x85c5, 0xb695, 0xb899, 0xc0f2, 0xffff}, + {0x7f43, 0xd202, 0x24c9, 0x69f3, 0x74dc, 0x1a69, 0xeaee, 0x5405, + 0x1755, 0x4bb8, 0x04e3, 0x2fd2, 0xada8, 0x39eb, 0x5b4d, 0x96ca}}, + {{0x807b, 0x7112, 0xc088, 0xdafd, 0x02fa, 0x9d95, 0x5e42, 0xc033, + 0xde0a, 0xeecf, 0x8e90, 0x8da1, 0xb17e, 0x9a5b, 0x4c6d, 0x1914}, + {0x4871, 0xd1cb, 0x47d7, 0x327f, 0x09ec, 0x97bb, 0x2fae, 0xd346, + 0x6b78, 0x3707, 0xfeb2, 0xa6ab, 0x13df, 0x76b0, 0x8fb9, 0xffb3}, + {0x179e, 0xb63b, 0x4784, 0x231e, 0x9f42, 0x7f1a, 0xa3fb, 0xdd8c, + 0xd1eb, 0xb4c9, 0x8ca7, 0x018c, 0xf691, 0x576c, 0xa7d6, 0xce27}}, + {{0x5f45, 0x7c64, 0x083d, 0xedd5, 0x08a0, 0x0c64, 0x6c6f, 0xec3c, + 0xe2fb, 0x352c, 0x9303, 0x75e4, 0xb4e0, 0x8b09, 0xaca4, 0x7025}, + {0x1025, 0xb482, 0xfed5, 0xa678, 0x8966, 0x9359, 0x5329, 0x98bb, + 0x85b2, 0x73ba, 0x9982, 0x6fdc, 0xf190, 0xbe8c, 0xdc5c, 0xfd93}, + {0x83a2, 0x87a4, 0xa680, 0x52a1, 0x1ba1, 0x8848, 0x5db7, 0x9744, + 0x409c, 0x0745, 0x0e1e, 0x1cfc, 0x00cd, 0xf573, 0x2071, 0xccaa}}, + {{0xf61f, 0x63d4, 0x536c, 0x9eb9, 0x5ddd, 0xbb11, 0x9014, 0xe904, + 0xfe01, 0x6b45, 0x1858, 0xcb5b, 0x4c38, 0x43e1, 0x381d, 0x7f94}, + {0xf61f, 0x63d4, 0xd810, 0x7ca3, 0x8a04, 0x4b83, 0x11fc, 0xdf94, + 0x4169, 0xbd05, 0x608e, 0x7151, 0x4fbf, 0xb31a, 0x38a7, 0xa29b}, + {0xe621, 0xdfa5, 0x3d06, 0x1d03, 0x81e6, 0x00da, 0x53a6, 0x965e, + 0x93e5, 0x2164, 0x5b61, 0x59b8, 0xa629, 0x8d73, 0x699a, 0x6111}}, + {{0x4cc3, 0xd29e, 0xf4a3, 0x3428, 0x2048, 0xeec9, 0x5f50, 0x99a4, + 0x6de9, 0x05f2, 0x5aa9, 0x5fd2, 0x98b4, 0x1adc, 0x225f, 0x777f}, + {0xe649, 0x37da, 0x5ba6, 0x5765, 0x3f4a, 0x8a1c, 0x2e79, 0xf550, + 0x1a54, 0xcd1e, 0x7218, 0x3c3c, 0x6311, 0xfe28, 0x95fb, 0xed97}, + {0xe9b6, 0x0c47, 0x3f0e, 0x849b, 0x11f8, 0xe599, 0x5e4d, 0xd618, + 0xa06d, 0x33a0, 0x9a3e, 0x44db, 0xded8, 0x10f0, 0x94d2, 0x81fb}}, + {{0x2e59, 0x7025, 0xd413, 0x455a, 0x1ce3, 0xbd45, 0x7263, 0x27f7, + 0x23e3, 0x518e, 0xbe06, 0xc8c4, 0xe332, 0x4276, 0x68b4, 0xb166}, + {0x596f, 0x0cf6, 0xc8ec, 0x787b, 0x04c1, 0x473c, 0xd2b8, 0x8d54, + 0x9cdf, 0x77f2, 0xd3f3, 0x6735, 0x0638, 0xf80e, 0x9467, 0xc6aa}, + {0xc7e7, 0x1822, 0xb62a, 0xec0d, 0x89cd, 0x7846, 0xbfa2, 0x35d5, + 0xfa38, 0x870f, 0x494b, 0x1697, 0x8b17, 0xf904, 0x10b6, 0x9822}}, + {{0x6d5b, 0x1d4f, 0x0aaf, 0x807b, 0x35fb, 0x7ee8, 0x00c6, 0x059a, + 0xddf0, 0x1fb1, 0xc38a, 0xd78e, 0x2aa4, 0x79e7, 0xad28, 0xc3f1}, + {0xe3bb, 0x174e, 0xe0a8, 0x74b6, 0xbd5b, 0x35f6, 0x6d23, 0x6328, + 0xc11f, 0x83e1, 0xf928, 0xa918, 0x838e, 0xbf43, 0xe243, 0xfffb}, + {0x9cf2, 0x6b8b, 0x3476, 0x9d06, 0xdcf2, 0xdb8a, 0x89cd, 0x4857, + 0x75c2, 0xabb8, 0x490b, 0xc9bd, 0x890e, 0xe36e, 0xd552, 0xfffa}}, + {{0x2f09, 0x9d62, 0xa9fc, 0xf090, 0xd6d1, 0x9d1d, 0x1828, 0xe413, + 0xc92b, 0x3d5a, 0x1373, 0x368c, 0xbaf2, 0x2158, 0x71eb, 0x08a3}, + {0x2f09, 0x1d62, 0x4630, 0x0de1, 0x06dc, 0xf7f1, 0xc161, 0x1e92, + 0x7495, 0x97e4, 0x94b6, 0xa39e, 0x4f1b, 0x18f8, 0x7bd4, 0x0c4c}, + {0xeb3d, 0x723d, 0x0907, 0x525b, 0x463a, 0x49a8, 0xc6b8, 0xce7f, + 0x740c, 0x0d7d, 0xa83b, 0x457f, 0xae8e, 0xc6af, 0xd331, 0x0475}}, + {{0x6abd, 0xc7af, 0x3e4e, 0x95fd, 0x8fc4, 0xee25, 0x1f9c, 0x0afe, + 0x291d, 0xcde0, 0x48f4, 0xb2e8, 0xf7af, 0x8f8d, 0x0bd6, 0x078d}, + {0x4037, 0xbf0e, 0x2081, 0xf363, 0x13b2, 0x381e, 0xfb6e, 0x818e, + 0x27e4, 0x5662, 0x18b0, 0x0cd2, 0x81f5, 0x9415, 0x0d6c, 0xf9fb}, + {0xd205, 0x0981, 0x0498, 0x1f08, 0xdb93, 0x1732, 0x0579, 0x1424, + 0xad95, 0x642f, 0x050c, 0x1d6d, 0xfc95, 0xfc4a, 0xd41b, 0x3521}}, + {{0xf23a, 0x4633, 0xaef4, 0x1a92, 0x3c8b, 0x1f09, 0x30f3, 0x4c56, + 0x2a2f, 0x4f62, 0xf5e4, 0x8329, 0x63cc, 0xb593, 0xec6a, 0xc428}, + {0x93a7, 0xfcf6, 0x606d, 0xd4b2, 0x2aad, 0x28b4, 0xc65b, 0x8998, + 0x4e08, 0xd178, 0x0900, 0xc82b, 0x7470, 0xa342, 0x7c0f, 0xffff}, + {0x315f, 0xf304, 0xeb7b, 0xe5c3, 0x1451, 0x6311, 0x8f37, 0x93a8, + 0x4a38, 0xa6c6, 0xe393, 0x1087, 0x6301, 0xd673, 0x4ec4, 0xffff}}, + {{0x892e, 0xeed0, 0x1165, 0xcbc1, 0x5545, 0xa280, 0x7243, 0x10c9, + 0x9536, 0x36af, 0xb3fc, 0x2d7c, 0xe8a5, 0x09d6, 0xe1d4, 0xe85d}, + {0xae09, 0xc28a, 0xd777, 0xbd80, 0x23d6, 0xf980, 0xeb7c, 0x4e0e, + 0xf7dc, 0x6475, 0xf10a, 0x2d33, 0x5dfd, 0x797a, 0x7f1c, 0xf71a}, + {0x4064, 0x8717, 0xd091, 0x80b0, 0x4527, 0x8442, 0xac8b, 0x9614, + 0xc633, 0x35f5, 0x7714, 0x2e83, 0x4aaa, 0xd2e4, 0x1acd, 0x0562}}, + {{0xdb64, 0x0937, 0x308b, 0x53b0, 0x00e8, 0xc77f, 0x2f30, 0x37f7, + 0x79ce, 0xeb7f, 0xde81, 0x9286, 0xafda, 0x0e62, 0xae00, 0x0067}, + {0x2cc7, 0xd362, 0xb161, 0x0557, 0x4ff2, 0xb9c8, 0x06fe, 0x5f2b, + 0xde33, 0x0190, 0x28c6, 0xb886, 0xee2b, 0x5a4e, 0x3289, 0x0185}, + {0x4215, 0x923e, 0xf34f, 0xb362, 0x88f8, 0xceec, 0xafdd, 0x7f42, + 0x0c57, 0x56b2, 0xa366, 0x6a08, 0x0826, 0xfb8f, 0x1b03, 0x0163}}, + {{0xa4ba, 0x8408, 0x810a, 0xdeba, 0x47a3, 0x853a, 0xeb64, 0x2f74, + 0x3039, 0x038c, 0x7fbb, 0x498e, 0xd1e9, 0x46fb, 0x5691, 0x32a4}, + {0xd749, 0xb49d, 0x20b7, 0x2af6, 0xd34a, 0xd2da, 0x0a10, 0xf781, + 0x58c9, 0x171f, 0x3cb6, 0x6337, 0x88cd, 0xcf1e, 0xb246, 0x7351}, + {0xf729, 0xcf0a, 0x96ea, 0x032c, 0x4a8f, 0x42fe, 0xbac8, 0xec65, + 0x1510, 0x0d75, 0x4c17, 0x8d29, 0xa03f, 0x8b7e, 0x2c49, 0x0000}}, + {{0x0fa4, 0x8e1c, 0x3788, 0xba3c, 0x8d52, 0xd89d, 0x12c8, 0xeced, + 0x9fe6, 0x9b88, 0xecf3, 0xe3c8, 0xac48, 0x76ed, 0xf23e, 0xda79}, + {0x1103, 0x227c, 0x5b00, 0x3fcf, 0xc5d0, 0x2d28, 0x8020, 0x4d1c, + 0xc6b9, 0x67f9, 0x6f39, 0x989a, 0xda53, 0x3847, 0xd416, 0xe0d0}, + {0xdd8e, 0xcf31, 0x3710, 0x7e44, 0xa511, 0x933c, 0x0cc3, 0x5145, + 0xf632, 0x5e1d, 0x038f, 0x5ce7, 0x7265, 0xda9d, 0xded6, 0x08f8}}, + {{0xe2c8, 0x91d5, 0xa5f5, 0x735f, 0x6b58, 0x56dc, 0xb39d, 0x5c4a, + 0x57d0, 0xa1c2, 0xd92f, 0x9ad4, 0xf7c4, 0x51dd, 0xaf5c, 0x0096}, + {0x1739, 0x7207, 0x7505, 0xbf35, 0x42de, 0x0a29, 0xa962, 0xdedf, + 0x53e8, 0x12bf, 0xcde7, 0xd8e2, 0x8d4d, 0x2c4b, 0xb1b1, 0x0628}, + {0x992d, 0xe3a7, 0xb422, 0xc198, 0x23ab, 0xa6ef, 0xb45d, 0x50da, + 0xa738, 0x014a, 0x2310, 0x85fb, 0x5fe8, 0x1b18, 0x1774, 0x03a7}}, + {{0x1f16, 0x2b09, 0x0236, 0xee90, 0xccf9, 0x9775, 0x8130, 0x4c91, + 0x9091, 0x310b, 0x6dc4, 0x86f6, 0xc2e8, 0xef60, 0xfc0e, 0xf3a4}, + {0x9f49, 0xac15, 0x02af, 0x110f, 0xc59d, 0x5677, 0xa1a9, 0x38d5, + 0x914f, 0xa909, 0x3a3a, 0x4a39, 0x3703, 0xea30, 0x73da, 0xffad}, + {0x15ed, 0xdd16, 0x83c7, 0x270a, 0x862f, 0xd8ad, 0xcaa1, 0x5f41, + 0x99a9, 0x3fc8, 0x7bb2, 0x360a, 0xb06d, 0xfadc, 0x1b36, 0xffa8}}, + {{0xc4e0, 0xb8fd, 0x5106, 0xe169, 0x754c, 0xa58c, 0xc413, 0x8224, + 0x5483, 0x63ec, 0xd477, 0x8473, 0x4778, 0x9281, 0x0000, 0x0000}, + {0x85e1, 0xff54, 0xb200, 0xe413, 0xf4f4, 0x4c0f, 0xfcec, 0xc183, + 0x60d3, 0x1b0c, 0x3834, 0x601c, 0x943c, 0xbe6e, 0x0002, 0x0000}, + {0xf4f8, 0xfd5e, 0x61ef, 0xece8, 0x9199, 0xe5c4, 0x05a6, 0xe6c3, + 0xc4ae, 0x8b28, 0x66b1, 0x8a95, 0x9ece, 0x8f4a, 0x0001, 0x0000}}, + {{0xeae9, 0xa1b4, 0xc6d8, 0x2411, 0x2b5a, 0x1dd0, 0x2dc9, 0xb57b, + 0x5ccd, 0x4957, 0xaf59, 0xa04b, 0x5f42, 0xab7c, 0x2826, 0x526f}, + {0xf407, 0x165a, 0xb724, 0x2f12, 0x2ea1, 0x470b, 0x4464, 0xbd35, + 0x606f, 0xd73e, 0x50d3, 0x8a7f, 0x8029, 0x7ffc, 0xbe31, 0x6cfb}, + {0x8171, 0x1f4c, 0xced2, 0x9c99, 0x6d7e, 0x5a0f, 0xfefb, 0x59e3, + 0xa0c8, 0xabd9, 0xc4c5, 0x57d3, 0xbfa3, 0x4f11, 0x96a2, 0x5a7d}}, + {{0xe068, 0x4cc0, 0x8bcd, 0xc903, 0x9e52, 0xb3e1, 0xd745, 0x0995, + 0xdd8f, 0xf14b, 0xd2ac, 0xd65a, 0xda1d, 0xa742, 0xbac5, 0x474c}, + {0x7481, 0xf2ad, 0x9757, 0x2d82, 0xb683, 0xb16b, 0x0002, 0x7b60, + 0x8f0c, 0x2594, 0x8f64, 0x3b7a, 0x3552, 0x8d9d, 0xb9d7, 0x67eb}, + {0xcaab, 0xb9a1, 0xf966, 0xe311, 0x5b34, 0x0fa0, 0x6abc, 0x8134, + 0xab3d, 0x90f6, 0x1984, 0x9232, 0xec17, 0x74e5, 0x2ceb, 0x434e}}, + {{0x0fb1, 0x7a55, 0x1a5c, 0x53eb, 0xd7b3, 0x7a01, 0xca32, 0x31f6, + 0x3b74, 0x679e, 0x1501, 0x6c57, 0xdb20, 0x8b7c, 0xd7d0, 0x8097}, + {0xb127, 0xb20c, 0xe3a2, 0x96f3, 0xe0d8, 0xd50c, 0x14b4, 0x0b40, + 0x6eeb, 0xa258, 0x99db, 0x3c8c, 0x0f51, 0x4198, 0x3887, 0xffd0}, + {0x0273, 0x9f8c, 0x9669, 0xbbba, 0x1c49, 0x767c, 0xc2af, 0x59f0, + 0x1366, 0xd397, 0x63ac, 0x6fe8, 0x1a9a, 0x1259, 0x01d0, 0x0016}}, + {{0x7876, 0x2a35, 0xa24a, 0x433e, 0x5501, 0x573c, 0xd76d, 0xcb82, + 0x1334, 0xb4a6, 0xf290, 0xc797, 0xeae9, 0x2b83, 0x1e2b, 0x8b14}, + {0x3885, 0x8aef, 0x9dea, 0x2b8c, 0xdd7c, 0xd7cd, 0xb0cc, 0x05ee, + 0x361b, 0x3800, 0xb0d4, 0x4c23, 0xbd3f, 0x5180, 0x9783, 0xff80}, + {0xab36, 0x3104, 0xdae8, 0x0704, 0x4a28, 0x6714, 0x824b, 0x0051, + 0x8134, 0x1f6a, 0x712d, 0x1f03, 0x03b2, 0xecac, 0x377d, 0xfef9}} + }; + + int i, j, ok; + + /* Test known inputs/outputs */ + for (i = 0; (size_t)i < sizeof(CASES) / sizeof(CASES[0]); ++i) { + uint16_t out[16]; + test_modinv32_uint16(out, CASES[i][0], CASES[i][1]); + for (j = 0; j < 16; ++j) CHECK(out[j] == CASES[i][2][j]); +#ifdef SECP256K1_WIDEMUL_INT128 + test_modinv64_uint16(out, CASES[i][0], CASES[i][1]); + for (j = 0; j < 16; ++j) CHECK(out[j] == CASES[i][2][j]); #endif + } + + for (i = 0; i < 100 * count; ++i) { + /* 256-bit numbers in 16-uint16_t's notation */ + static const uint16_t ZERO[16] = {0}; + uint16_t xd[16]; /* the number (in range [0,2^256)) to be inverted */ + uint16_t md[16]; /* the modulus (odd, in range [3,2^256)) */ + uint16_t id[16]; /* the inverse of xd mod md */ + + /* generate random xd and md, so that md is odd, md>1, xd 256) { now = 256 - i; } @@ -741,80 +1637,6 @@ void scalar_test(void) { CHECK(secp256k1_scalar_eq(&n, &s)); } -#ifndef USE_NUM_NONE - { - /* Test that adding the scalars together is equal to adding their numbers together modulo the order. */ - secp256k1_num rnum; - secp256k1_num r2num; - secp256k1_scalar r; - secp256k1_num_add(&rnum, &snum, &s2num); - secp256k1_num_mod(&rnum, &order); - secp256k1_scalar_add(&r, &s, &s2); - secp256k1_scalar_get_num(&r2num, &r); - CHECK(secp256k1_num_eq(&rnum, &r2num)); - } - - { - /* Test that multiplying the scalars is equal to multiplying their numbers modulo the order. */ - secp256k1_scalar r; - secp256k1_num r2num; - secp256k1_num rnum; - secp256k1_num_mul(&rnum, &snum, &s2num); - secp256k1_num_mod(&rnum, &order); - secp256k1_scalar_mul(&r, &s, &s2); - secp256k1_scalar_get_num(&r2num, &r); - CHECK(secp256k1_num_eq(&rnum, &r2num)); - /* The result can only be zero if at least one of the factors was zero. */ - CHECK(secp256k1_scalar_is_zero(&r) == (secp256k1_scalar_is_zero(&s) || secp256k1_scalar_is_zero(&s2))); - /* The results can only be equal to one of the factors if that factor was zero, or the other factor was one. */ - CHECK(secp256k1_num_eq(&rnum, &snum) == (secp256k1_scalar_is_zero(&s) || secp256k1_scalar_is_one(&s2))); - CHECK(secp256k1_num_eq(&rnum, &s2num) == (secp256k1_scalar_is_zero(&s2) || secp256k1_scalar_is_one(&s))); - } - - { - secp256k1_scalar neg; - secp256k1_num negnum; - secp256k1_num negnum2; - /* Check that comparison with zero matches comparison with zero on the number. */ - CHECK(secp256k1_num_is_zero(&snum) == secp256k1_scalar_is_zero(&s)); - /* Check that comparison with the half order is equal to testing for high scalar. */ - CHECK(secp256k1_scalar_is_high(&s) == (secp256k1_num_cmp(&snum, &half_order) > 0)); - secp256k1_scalar_negate(&neg, &s); - secp256k1_num_sub(&negnum, &order, &snum); - secp256k1_num_mod(&negnum, &order); - /* Check that comparison with the half order is equal to testing for high scalar after negation. */ - CHECK(secp256k1_scalar_is_high(&neg) == (secp256k1_num_cmp(&negnum, &half_order) > 0)); - /* Negating should change the high property, unless the value was already zero. */ - CHECK((secp256k1_scalar_is_high(&s) == secp256k1_scalar_is_high(&neg)) == secp256k1_scalar_is_zero(&s)); - secp256k1_scalar_get_num(&negnum2, &neg); - /* Negating a scalar should be equal to (order - n) mod order on the number. */ - CHECK(secp256k1_num_eq(&negnum, &negnum2)); - secp256k1_scalar_add(&neg, &neg, &s); - /* Adding a number to its negation should result in zero. */ - CHECK(secp256k1_scalar_is_zero(&neg)); - secp256k1_scalar_negate(&neg, &neg); - /* Negating zero should still result in zero. */ - CHECK(secp256k1_scalar_is_zero(&neg)); - } - - { - /* Test secp256k1_scalar_mul_shift_var. */ - secp256k1_scalar r; - secp256k1_num one; - secp256k1_num rnum; - secp256k1_num rnum2; - unsigned char cone[1] = {0x01}; - unsigned int shift = 256 + secp256k1_rand_int(257); - secp256k1_scalar_mul_shift_var(&r, &s1, &s2, shift); - secp256k1_num_mul(&rnum, &s1num, &s2num); - secp256k1_num_shift(&rnum, shift - 1); - secp256k1_num_set_bin(&one, cone, 1); - secp256k1_num_add(&rnum, &rnum, &one); - secp256k1_num_shift(&rnum, 1); - secp256k1_scalar_get_num(&rnum2, &r); - CHECK(secp256k1_num_eq(&rnum, &rnum2)); - } - { /* test secp256k1_scalar_shr_int */ secp256k1_scalar r; @@ -822,40 +1644,12 @@ void scalar_test(void) { random_scalar_order_test(&r); for (i = 0; i < 100; ++i) { int low; - int shift = 1 + secp256k1_rand_int(15); + int shift = 1 + secp256k1_testrand_int(15); int expected = r.d[0] % (1 << shift); low = secp256k1_scalar_shr_int(&r, shift); CHECK(expected == low); } } -#endif - - { - /* Test that scalar inverses are equal to the inverse of their number modulo the order. */ - if (!secp256k1_scalar_is_zero(&s)) { - secp256k1_scalar inv; -#ifndef USE_NUM_NONE - secp256k1_num invnum; - secp256k1_num invnum2; -#endif - secp256k1_scalar_inverse(&inv, &s); -#ifndef USE_NUM_NONE - secp256k1_num_mod_inverse(&invnum, &snum, &order); - secp256k1_scalar_get_num(&invnum2, &inv); - CHECK(secp256k1_num_eq(&invnum, &invnum2)); -#endif - secp256k1_scalar_mul(&inv, &inv, &s); - /* Multiplying a scalar with its inverse must result in one. */ - CHECK(secp256k1_scalar_is_one(&inv)); - secp256k1_scalar_inverse(&inv, &inv); - /* Inverting one must result in one. */ - CHECK(secp256k1_scalar_is_one(&inv)); -#ifndef USE_NUM_NONE - secp256k1_scalar_get_num(&invnum, &inv); - CHECK(secp256k1_num_is_one(&invnum)); -#endif - } - } { /* Test commutativity of add. */ @@ -870,7 +1664,7 @@ void scalar_test(void) { secp256k1_scalar b; int i; /* Test add_bit. */ - int bit = secp256k1_rand_bits(8); + int bit = secp256k1_testrand_bits(8); secp256k1_scalar_set_int(&b, 1); CHECK(secp256k1_scalar_is_one(&b)); for (i = 0; i < bit; i++) { @@ -927,14 +1721,6 @@ void scalar_test(void) { CHECK(secp256k1_scalar_eq(&r1, &r2)); } - { - /* Test square. */ - secp256k1_scalar r1, r2; - secp256k1_scalar_sqr(&r1, &s1); - secp256k1_scalar_mul(&r2, &s1, &s1); - CHECK(secp256k1_scalar_eq(&r1, &r2)); - } - { /* Test multiplicative identity. */ secp256k1_scalar r1, v1; @@ -961,11 +1747,31 @@ void scalar_test(void) { } +void run_scalar_set_b32_seckey_tests(void) { + unsigned char b32[32]; + secp256k1_scalar s1; + secp256k1_scalar s2; + + /* Usually set_b32 and set_b32_seckey give the same result */ + random_scalar_order_b32(b32); + secp256k1_scalar_set_b32(&s1, b32, NULL); + CHECK(secp256k1_scalar_set_b32_seckey(&s2, b32) == 1); + CHECK(secp256k1_scalar_eq(&s1, &s2) == 1); + + memset(b32, 0, sizeof(b32)); + CHECK(secp256k1_scalar_set_b32_seckey(&s2, b32) == 0); + memset(b32, 0xFF, sizeof(b32)); + CHECK(secp256k1_scalar_set_b32_seckey(&s2, b32) == 0); +} + void run_scalar_tests(void) { int i; for (i = 0; i < 128 * count; i++) { scalar_test(); } + for (i = 0; i < count; i++) { + run_scalar_set_b32_seckey_tests(); + } { /* (-1)+1 should be zero. */ @@ -979,21 +1785,6 @@ void run_scalar_tests(void) { CHECK(secp256k1_scalar_is_zero(&o)); } -#ifndef USE_NUM_NONE - { - /* A scalar with value of the curve order should be 0. */ - secp256k1_num order; - secp256k1_scalar zero; - unsigned char bin[32]; - int overflow = 0; - secp256k1_scalar_order_get_num(&order); - secp256k1_num_get_bin(bin, 32, &order); - secp256k1_scalar_set_b32(&zero, bin, &overflow); - CHECK(overflow == 1); - CHECK(secp256k1_scalar_is_zero(&zero)); - } -#endif - { /* Does check_overflow check catch all ones? */ static const secp256k1_scalar overflowed = SECP256K1_SCALAR_CONST( @@ -1016,9 +1807,7 @@ void run_scalar_tests(void) { secp256k1_scalar one; secp256k1_scalar r1; secp256k1_scalar r2; -#if defined(USE_SCALAR_INV_NUM) secp256k1_scalar zzv; -#endif int overflow; unsigned char chal[33][2][32] = { {{0xff, 0xff, 0x03, 0x07, 0x00, 0x00, 0x00, 0x00, @@ -1568,10 +2357,8 @@ void run_scalar_tests(void) { if (!secp256k1_scalar_is_zero(&y)) { secp256k1_scalar_inverse(&zz, &y); CHECK(!secp256k1_scalar_check_overflow(&zz)); -#if defined(USE_SCALAR_INV_NUM) secp256k1_scalar_inverse_var(&zzv, &y); CHECK(secp256k1_scalar_eq(&zzv, &zz)); -#endif secp256k1_scalar_mul(&z, &z, &zz); CHECK(!secp256k1_scalar_check_overflow(&z)); CHECK(secp256k1_scalar_eq(&x, &z)); @@ -1579,12 +2366,6 @@ void run_scalar_tests(void) { CHECK(!secp256k1_scalar_check_overflow(&zz)); CHECK(secp256k1_scalar_eq(&one, &zz)); } - secp256k1_scalar_mul(&z, &x, &x); - CHECK(!secp256k1_scalar_check_overflow(&z)); - secp256k1_scalar_sqr(&zz, &x); - CHECK(!secp256k1_scalar_check_overflow(&zz)); - CHECK(secp256k1_scalar_eq(&zz, &z)); - CHECK(secp256k1_scalar_eq(&r2, &zz)); } } } @@ -1594,7 +2375,7 @@ void run_scalar_tests(void) { void random_fe(secp256k1_fe *x) { unsigned char bin[32]; do { - secp256k1_rand256(bin); + secp256k1_testrand256(bin); if (secp256k1_fe_set_b32(x, bin)) { return; } @@ -1604,7 +2385,7 @@ void random_fe(secp256k1_fe *x) { void random_fe_test(secp256k1_fe *x) { unsigned char bin[32]; do { - secp256k1_rand256_test(bin); + secp256k1_testrand256_test(bin); if (secp256k1_fe_set_b32(x, bin)) { return; } @@ -1640,13 +2421,6 @@ int check_fe_equal(const secp256k1_fe *a, const secp256k1_fe *b) { return secp256k1_fe_equal_var(&an, &bn); } -int check_fe_inverse(const secp256k1_fe *a, const secp256k1_fe *ai) { - secp256k1_fe x; - secp256k1_fe one = SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 1); - secp256k1_fe_mul(&x, a, ai); - return check_fe_equal(&x, &one); -} - void run_field_convert(void) { static const unsigned char b32[32] = { 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, @@ -1672,18 +2446,18 @@ void run_field_convert(void) { CHECK(secp256k1_fe_equal_var(&fe, &fe2)); /* Check conversion from fe. */ secp256k1_fe_get_b32(b322, &fe); - CHECK(memcmp(b322, b32, 32) == 0); + CHECK(secp256k1_memcmp_var(b322, b32, 32) == 0); secp256k1_fe_to_storage(&fes2, &fe); - CHECK(memcmp(&fes2, &fes, sizeof(fes)) == 0); + CHECK(secp256k1_memcmp_var(&fes2, &fes, sizeof(fes)) == 0); } -int fe_memcmp(const secp256k1_fe *a, const secp256k1_fe *b) { +int fe_secp256k1_memcmp_var(const secp256k1_fe *a, const secp256k1_fe *b) { secp256k1_fe t = *b; #ifdef VERIFY t.magnitude = a->magnitude; t.normalized = a->normalized; #endif - return memcmp(a, &t, sizeof(secp256k1_fe)); + return secp256k1_memcmp_var(a, &t, sizeof(secp256k1_fe)); } void run_field_misc(void) { @@ -1705,24 +2479,32 @@ void run_field_misc(void) { /* Test fe conditional move; z is not normalized here. */ q = x; secp256k1_fe_cmov(&x, &z, 0); - VERIFY_CHECK(!x.normalized && x.magnitude == z.magnitude); +#ifdef VERIFY + CHECK(x.normalized && x.magnitude == 1); +#endif secp256k1_fe_cmov(&x, &x, 1); - CHECK(fe_memcmp(&x, &z) != 0); - CHECK(fe_memcmp(&x, &q) == 0); + CHECK(fe_secp256k1_memcmp_var(&x, &z) != 0); + CHECK(fe_secp256k1_memcmp_var(&x, &q) == 0); secp256k1_fe_cmov(&q, &z, 1); - VERIFY_CHECK(!q.normalized && q.magnitude == z.magnitude); - CHECK(fe_memcmp(&q, &z) == 0); +#ifdef VERIFY + CHECK(!q.normalized && q.magnitude == z.magnitude); +#endif + CHECK(fe_secp256k1_memcmp_var(&q, &z) == 0); secp256k1_fe_normalize_var(&x); secp256k1_fe_normalize_var(&z); CHECK(!secp256k1_fe_equal_var(&x, &z)); secp256k1_fe_normalize_var(&q); secp256k1_fe_cmov(&q, &z, (i&1)); - VERIFY_CHECK(q.normalized && q.magnitude == 1); +#ifdef VERIFY + CHECK(q.normalized && q.magnitude == 1); +#endif for (j = 0; j < 6; j++) { secp256k1_fe_negate(&z, &z, j+1); secp256k1_fe_normalize_var(&q); secp256k1_fe_cmov(&q, &z, (j&1)); - VERIFY_CHECK(!q.normalized && q.magnitude == (j+2)); +#ifdef VERIFY + CHECK((q.normalized != (j&1)) && q.magnitude == ((j&1) ? z.magnitude : 1)); +#endif } secp256k1_fe_normalize_var(&z); /* Test storage conversion and conditional moves. */ @@ -1731,9 +2513,9 @@ void run_field_misc(void) { secp256k1_fe_to_storage(&zs, &z); secp256k1_fe_storage_cmov(&zs, &xs, 0); secp256k1_fe_storage_cmov(&zs, &zs, 1); - CHECK(memcmp(&xs, &zs, sizeof(xs)) != 0); + CHECK(secp256k1_memcmp_var(&xs, &zs, sizeof(xs)) != 0); secp256k1_fe_storage_cmov(&ys, &xs, 1); - CHECK(memcmp(&xs, &ys, sizeof(xs)) == 0); + CHECK(secp256k1_memcmp_var(&xs, &ys, sizeof(xs)) == 0); secp256k1_fe_from_storage(&x, &xs); secp256k1_fe_from_storage(&y, &ys); secp256k1_fe_from_storage(&z, &zs); @@ -1758,52 +2540,6 @@ void run_field_misc(void) { } } -void run_field_inv(void) { - secp256k1_fe x, xi, xii; - int i; - for (i = 0; i < 10*count; i++) { - random_fe_non_zero(&x); - secp256k1_fe_inv(&xi, &x); - CHECK(check_fe_inverse(&x, &xi)); - secp256k1_fe_inv(&xii, &xi); - CHECK(check_fe_equal(&x, &xii)); - } -} - -void run_field_inv_var(void) { - secp256k1_fe x, xi, xii; - int i; - for (i = 0; i < 10*count; i++) { - random_fe_non_zero(&x); - secp256k1_fe_inv_var(&xi, &x); - CHECK(check_fe_inverse(&x, &xi)); - secp256k1_fe_inv_var(&xii, &xi); - CHECK(check_fe_equal(&x, &xii)); - } -} - -void run_field_inv_all_var(void) { - secp256k1_fe x[16], xi[16], xii[16]; - int i; - /* Check it's safe to call for 0 elements */ - secp256k1_fe_inv_all_var(xi, x, 0); - for (i = 0; i < count; i++) { - size_t j; - size_t len = secp256k1_rand_int(15) + 1; - for (j = 0; j < len; j++) { - random_fe_non_zero(&x[j]); - } - secp256k1_fe_inv_all_var(xi, x, len); - for (j = 0; j < len; j++) { - CHECK(check_fe_inverse(&x[j], &xi[j])); - } - secp256k1_fe_inv_all_var(xii, xi, len); - for (j = 0; j < len; j++) { - CHECK(check_fe_equal(&x[j], &xii[j])); - } - } -} - void run_sqr(void) { secp256k1_fe x, s; @@ -1868,6 +2604,318 @@ void run_sqrt(void) { } } +/***** FIELD/SCALAR INVERSE TESTS *****/ + +static const secp256k1_scalar scalar_minus_one = SECP256K1_SCALAR_CONST( + 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFE, + 0xBAAEDCE6, 0xAF48A03B, 0xBFD25E8C, 0xD0364140 +); + +static const secp256k1_fe fe_minus_one = SECP256K1_FE_CONST( + 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, + 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFE, 0xFFFFFC2E +); + +/* These tests test the following identities: + * + * for x==0: 1/x == 0 + * for x!=0: x*(1/x) == 1 + * for x!=0 and x!=1: 1/(1/x - 1) + 1 == -1/(x-1) + */ + +void test_inverse_scalar(secp256k1_scalar* out, const secp256k1_scalar* x, int var) +{ + secp256k1_scalar l, r, t; + + (var ? secp256k1_scalar_inverse_var : secp256k1_scalar_inverse_var)(&l, x); /* l = 1/x */ + if (out) *out = l; + if (secp256k1_scalar_is_zero(x)) { + CHECK(secp256k1_scalar_is_zero(&l)); + return; + } + secp256k1_scalar_mul(&t, x, &l); /* t = x*(1/x) */ + CHECK(secp256k1_scalar_is_one(&t)); /* x*(1/x) == 1 */ + secp256k1_scalar_add(&r, x, &scalar_minus_one); /* r = x-1 */ + if (secp256k1_scalar_is_zero(&r)) return; + (var ? secp256k1_scalar_inverse_var : secp256k1_scalar_inverse_var)(&r, &r); /* r = 1/(x-1) */ + secp256k1_scalar_add(&l, &scalar_minus_one, &l); /* l = 1/x-1 */ + (var ? secp256k1_scalar_inverse_var : secp256k1_scalar_inverse_var)(&l, &l); /* l = 1/(1/x-1) */ + secp256k1_scalar_add(&l, &l, &secp256k1_scalar_one); /* l = 1/(1/x-1)+1 */ + secp256k1_scalar_add(&l, &r, &l); /* l = 1/(1/x-1)+1 + 1/(x-1) */ + CHECK(secp256k1_scalar_is_zero(&l)); /* l == 0 */ +} + +void test_inverse_field(secp256k1_fe* out, const secp256k1_fe* x, int var) +{ + secp256k1_fe l, r, t; + + (var ? secp256k1_fe_inv_var : secp256k1_fe_inv)(&l, x) ; /* l = 1/x */ + if (out) *out = l; + t = *x; /* t = x */ + if (secp256k1_fe_normalizes_to_zero_var(&t)) { + CHECK(secp256k1_fe_normalizes_to_zero(&l)); + return; + } + secp256k1_fe_mul(&t, x, &l); /* t = x*(1/x) */ + secp256k1_fe_add(&t, &fe_minus_one); /* t = x*(1/x)-1 */ + CHECK(secp256k1_fe_normalizes_to_zero(&t)); /* x*(1/x)-1 == 0 */ + r = *x; /* r = x */ + secp256k1_fe_add(&r, &fe_minus_one); /* r = x-1 */ + if (secp256k1_fe_normalizes_to_zero_var(&r)) return; + (var ? secp256k1_fe_inv_var : secp256k1_fe_inv)(&r, &r); /* r = 1/(x-1) */ + secp256k1_fe_add(&l, &fe_minus_one); /* l = 1/x-1 */ + (var ? secp256k1_fe_inv_var : secp256k1_fe_inv)(&l, &l); /* l = 1/(1/x-1) */ + secp256k1_fe_add(&l, &secp256k1_fe_one); /* l = 1/(1/x-1)+1 */ + secp256k1_fe_add(&l, &r); /* l = 1/(1/x-1)+1 + 1/(x-1) */ + CHECK(secp256k1_fe_normalizes_to_zero_var(&l)); /* l == 0 */ +} + +void run_inverse_tests(void) +{ + /* Fixed test cases for field inverses: pairs of (x, 1/x) mod p. */ + static const secp256k1_fe fe_cases[][2] = { + /* 0 */ + {SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), + SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0)}, + /* 1 */ + {SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 1), + SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 1)}, + /* -1 */ + {SECP256K1_FE_CONST(0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff, 0xfffffffe, 0xfffffc2e), + SECP256K1_FE_CONST(0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff, 0xfffffffe, 0xfffffc2e)}, + /* 2 */ + {SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 2), + SECP256K1_FE_CONST(0x7fffffff, 0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff, 0x7ffffe18)}, + /* 2**128 */ + {SECP256K1_FE_CONST(0, 0, 0, 1, 0, 0, 0, 0), + SECP256K1_FE_CONST(0xbcb223fe, 0xdc24a059, 0xd838091d, 0xd2253530, 0xffffffff, 0xffffffff, 0xffffffff, 0x434dd931)}, + /* Input known to need 637 divsteps */ + {SECP256K1_FE_CONST(0xe34e9c95, 0x6bee8a84, 0x0dcb632a, 0xdb8a1320, 0x66885408, 0x06f3f996, 0x7c11ca84, 0x19199ec3), + SECP256K1_FE_CONST(0xbd2cbd8f, 0x1c536828, 0x9bccda44, 0x2582ac0c, 0x870152b0, 0x8a3f09fb, 0x1aaadf92, 0x19b618e5)}, + /* Input known to need 567 divsteps starting with delta=1/2. */ + {SECP256K1_FE_CONST(0xf6bc3ba3, 0x636451c4, 0x3e46357d, 0x2c21d619, 0x0988e234, 0x15985661, 0x6672982b, 0xa7549bfc), + SECP256K1_FE_CONST(0xb024fdc7, 0x5547451e, 0x426c585f, 0xbd481425, 0x73df6b75, 0xeef6d9d0, 0x389d87d4, 0xfbb440ba)}, + /* Input known to need 566 divsteps starting with delta=1/2. */ + {SECP256K1_FE_CONST(0xb595d81b, 0x2e3c1e2f, 0x482dbc65, 0xe4865af7, 0x9a0a50aa, 0x29f9e618, 0x6f87d7a5, 0x8d1063ae), + SECP256K1_FE_CONST(0xc983337c, 0x5d5c74e1, 0x49918330, 0x0b53afb5, 0xa0428a0b, 0xce6eef86, 0x059bd8ef, 0xe5b908de)}, + /* Set of 10 inputs accessing all 128 entries in the modinv32 divsteps_var table */ + {SECP256K1_FE_CONST(0x00000000, 0x00000000, 0xe0ff1f80, 0x1f000000, 0x00000000, 0x00000000, 0xfeff0100, 0x00000000), + SECP256K1_FE_CONST(0x9faf9316, 0x77e5049d, 0x0b5e7a1b, 0xef70b893, 0x18c9e30c, 0x045e7fd7, 0x29eddf8c, 0xd62e9e3d)}, + {SECP256K1_FE_CONST(0x621a538d, 0x511b2780, 0x35688252, 0x53f889a4, 0x6317c3ac, 0x32ba0a46, 0x6277c0d1, 0xccd31192), + SECP256K1_FE_CONST(0x38513b0c, 0x5eba856f, 0xe29e882e, 0x9b394d8c, 0x34bda011, 0xeaa66943, 0x6a841a4c, 0x6ae8bcff)}, + {SECP256K1_FE_CONST(0x00000200, 0xf0ffff1f, 0x00000000, 0x0000e0ff, 0xffffffff, 0xfffcffff, 0xffffffff, 0xffff0100), + SECP256K1_FE_CONST(0x5da42a52, 0x3640de9e, 0x13e64343, 0x0c7591b7, 0x6c1e3519, 0xf048c5b6, 0x0484217c, 0xedbf8b2f)}, + {SECP256K1_FE_CONST(0xd1343ef9, 0x4b952621, 0x7c52a2ee, 0x4ea1281b, 0x4ab46410, 0x9f26998d, 0xa686a8ff, 0x9f2103e8), + SECP256K1_FE_CONST(0x84044385, 0x9a4619bf, 0x74e35b6d, 0xa47e0c46, 0x6b7fb47d, 0x9ffab128, 0xb0775aa3, 0xcb318bd1)}, + {SECP256K1_FE_CONST(0xb27235d2, 0xc56a52be, 0x210db37a, 0xd50d23a4, 0xbe621bdd, 0x5df22c6a, 0xe926ba62, 0xd2e4e440), + SECP256K1_FE_CONST(0x67a26e54, 0x483a9d3c, 0xa568469e, 0xd258ab3d, 0xb9ec9981, 0xdca9b1bd, 0x8d2775fe, 0x53ae429b)}, + {SECP256K1_FE_CONST(0x00000000, 0x00000000, 0x00e0ffff, 0xffffff83, 0xffffffff, 0x3f00f00f, 0x000000e0, 0xffffffff), + SECP256K1_FE_CONST(0x310e10f8, 0x23bbfab0, 0xac94907d, 0x076c9a45, 0x8d357d7f, 0xc763bcee, 0x00d0e615, 0x5a6acef6)}, + {SECP256K1_FE_CONST(0xfeff0300, 0x001c0000, 0xf80700c0, 0x0ff0ffff, 0xffffffff, 0x0fffffff, 0xffff0100, 0x7f0000fe), + SECP256K1_FE_CONST(0x28e2fdb4, 0x0709168b, 0x86f598b0, 0x3453a370, 0x530cf21f, 0x32f978d5, 0x1d527a71, 0x59269b0c)}, + {SECP256K1_FE_CONST(0xc2591afa, 0x7bb98ef7, 0x090bb273, 0x85c14f87, 0xbb0b28e0, 0x54d3c453, 0x85c66753, 0xd5574d2f), + SECP256K1_FE_CONST(0xfdca70a2, 0x70ce627c, 0x95e66fae, 0x848a6dbb, 0x07ffb15c, 0x5f63a058, 0xba4140ed, 0x6113b503)}, + {SECP256K1_FE_CONST(0xf5475db3, 0xedc7b5a3, 0x411c047e, 0xeaeb452f, 0xc625828e, 0x1cf5ad27, 0x8eec1060, 0xc7d3e690), + SECP256K1_FE_CONST(0x5eb756c0, 0xf963f4b9, 0xdc6a215e, 0xec8cc2d8, 0x2e9dec01, 0xde5eb88d, 0x6aba7164, 0xaecb2c5a)}, + {SECP256K1_FE_CONST(0x00000000, 0x00f8ffff, 0xffffffff, 0x01000000, 0xe0ff1f00, 0x00000000, 0xffffff7f, 0x00000000), + SECP256K1_FE_CONST(0xe0d2e3d8, 0x49b6157d, 0xe54e88c2, 0x1a7f02ca, 0x7dd28167, 0xf1125d81, 0x7bfa444e, 0xbe110037)}, + /* Selection of randomly generated inputs that reach high/low d/e values in various configurations. */ + {SECP256K1_FE_CONST(0x13cc08a4, 0xd8c41f0f, 0x179c3e67, 0x54c46c67, 0xc4109221, 0x09ab3b13, 0xe24d9be1, 0xffffe950), + SECP256K1_FE_CONST(0xb80c8006, 0xd16abaa7, 0xcabd71e5, 0xcf6714f4, 0x966dd3d0, 0x64767a2d, 0xe92c4441, 0x51008cd1)}, + {SECP256K1_FE_CONST(0xaa6db990, 0x95efbca1, 0x3cc6ff71, 0x0602e24a, 0xf49ff938, 0x99fffc16, 0x46f40993, 0xc6e72057), + SECP256K1_FE_CONST(0xd5d3dd69, 0xb0c195e5, 0x285f1d49, 0xe639e48c, 0x9223f8a9, 0xca1d731d, 0x9ca482f9, 0xa5b93e06)}, + {SECP256K1_FE_CONST(0x1c680eac, 0xaeabffd8, 0x9bdc4aee, 0x1781e3de, 0xa3b08108, 0x0015f2e0, 0x94449e1b, 0x2f67a058), + SECP256K1_FE_CONST(0x7f083f8d, 0x31254f29, 0x6510f475, 0x245c373d, 0xc5622590, 0x4b323393, 0x32ed1719, 0xc127444b)}, + {SECP256K1_FE_CONST(0x147d44b3, 0x012d83f8, 0xc160d386, 0x1a44a870, 0x9ba6be96, 0x8b962707, 0x267cbc1a, 0xb65b2f0a), + SECP256K1_FE_CONST(0x555554ff, 0x170aef1e, 0x50a43002, 0xe51fbd36, 0xafadb458, 0x7a8aded1, 0x0ca6cd33, 0x6ed9087c)}, + {SECP256K1_FE_CONST(0x12423796, 0x22f0fe61, 0xf9ca017c, 0x5384d107, 0xa1fbf3b2, 0x3b018013, 0x916a3c37, 0x4000b98c), + SECP256K1_FE_CONST(0x20257700, 0x08668f94, 0x1177e306, 0x136c01f5, 0x8ed1fbd2, 0x95ec4589, 0xae38edb9, 0xfd19b6d7)}, + {SECP256K1_FE_CONST(0xdcf2d030, 0x9ab42cb4, 0x93ffa181, 0xdcd23619, 0x39699b52, 0x08909a20, 0xb5a17695, 0x3a9dcf21), + SECP256K1_FE_CONST(0x1f701dea, 0xe211fb1f, 0x4f37180d, 0x63a0f51c, 0x29fe1e40, 0xa40b6142, 0x2e7b12eb, 0x982b06b6)}, + {SECP256K1_FE_CONST(0x79a851f6, 0xa6314ed3, 0xb35a55e6, 0xca1c7d7f, 0xe32369ea, 0xf902432e, 0x375308c5, 0xdfd5b600), + SECP256K1_FE_CONST(0xcaae00c5, 0xe6b43851, 0x9dabb737, 0x38cba42c, 0xa02c8549, 0x7895dcbf, 0xbd183d71, 0xafe4476a)}, + {SECP256K1_FE_CONST(0xede78fdd, 0xcfc92bf1, 0x4fec6c6c, 0xdb8d37e2, 0xfb66bc7b, 0x28701870, 0x7fa27c9a, 0x307196ec), + SECP256K1_FE_CONST(0x68193a6c, 0x9a8b87a7, 0x2a760c64, 0x13e473f6, 0x23ae7bed, 0x1de05422, 0x88865427, 0xa3418265)}, + {SECP256K1_FE_CONST(0xa40b2079, 0xb8f88e89, 0xa7617997, 0x89baf5ae, 0x174df343, 0x75138eae, 0x2711595d, 0x3fc3e66c), + SECP256K1_FE_CONST(0x9f99c6a5, 0x6d685267, 0xd4b87c37, 0x9d9c4576, 0x358c692b, 0x6bbae0ed, 0x3389c93d, 0x7fdd2655)}, + {SECP256K1_FE_CONST(0x7c74c6b6, 0xe98d9151, 0x72645cf1, 0x7f06e321, 0xcefee074, 0x15b2113a, 0x10a9be07, 0x08a45696), + SECP256K1_FE_CONST(0x8c919a88, 0x898bc1e0, 0x77f26f97, 0x12e655b7, 0x9ba0ac40, 0xe15bb19e, 0x8364cc3b, 0xe227a8ee)}, + {SECP256K1_FE_CONST(0x109ba1ce, 0xdafa6d4a, 0xa1cec2b2, 0xeb1069f4, 0xb7a79e5b, 0xec6eb99b, 0xaec5f643, 0xee0e723e), + SECP256K1_FE_CONST(0x93d13eb8, 0x4bb0bcf9, 0xe64f5a71, 0xdbe9f359, 0x7191401c, 0x6f057a4a, 0xa407fe1b, 0x7ecb65cc)}, + {SECP256K1_FE_CONST(0x3db076cd, 0xec74a5c9, 0xf61dd138, 0x90e23e06, 0xeeedd2d0, 0x74cbc4e0, 0x3dbe1e91, 0xded36a78), + SECP256K1_FE_CONST(0x3f07f966, 0x8e2a1e09, 0x706c71df, 0x02b5e9d5, 0xcb92ddbf, 0xcdd53010, 0x16545564, 0xe660b107)}, + {SECP256K1_FE_CONST(0xe31c73ed, 0xb4c4b82c, 0x02ae35f7, 0x4cdec153, 0x98b522fd, 0xf7d2460c, 0x6bf7c0f8, 0x4cf67b0d), + SECP256K1_FE_CONST(0x4b8f1faf, 0x94e8b070, 0x19af0ff6, 0xa319cd31, 0xdf0a7ffb, 0xefaba629, 0x59c50666, 0x1fe5b843)}, + {SECP256K1_FE_CONST(0x4c8b0e6e, 0x83392ab6, 0xc0e3e9f1, 0xbbd85497, 0x16698897, 0xf552d50d, 0x79652ddb, 0x12f99870), + SECP256K1_FE_CONST(0x56d5101f, 0xd23b7949, 0x17dc38d6, 0xf24022ef, 0xcf18e70a, 0x5cc34424, 0x438544c3, 0x62da4bca)}, + {SECP256K1_FE_CONST(0xb0e040e2, 0x40cc35da, 0x7dd5c611, 0x7fccb178, 0x28888137, 0xbc930358, 0xea2cbc90, 0x775417dc), + SECP256K1_FE_CONST(0xca37f0d4, 0x016dd7c8, 0xab3ae576, 0x96e08d69, 0x68ed9155, 0xa9b44270, 0x900ae35d, 0x7c7800cd)}, + {SECP256K1_FE_CONST(0x8a32ea49, 0x7fbb0bae, 0x69724a9d, 0x8e2105b2, 0xbdf69178, 0x862577ef, 0x35055590, 0x667ddaef), + SECP256K1_FE_CONST(0xd02d7ead, 0xc5e190f0, 0x559c9d72, 0xdaef1ffc, 0x64f9f425, 0xf43645ea, 0x7341e08d, 0x11768e96)}, + {SECP256K1_FE_CONST(0xa3592d98, 0x9abe289d, 0x579ebea6, 0xbb0857a8, 0xe242ab73, 0x85f9a2ce, 0xb6998f0f, 0xbfffbfc6), + SECP256K1_FE_CONST(0x093c1533, 0x32032efa, 0x6aa46070, 0x0039599e, 0x589c35f4, 0xff525430, 0x7fe3777a, 0x44b43ddc)}, + {SECP256K1_FE_CONST(0x647178a3, 0x229e607b, 0xcc98521a, 0xcce3fdd9, 0x1e1bc9c9, 0x97fb7c6a, 0x61b961e0, 0x99b10709), + SECP256K1_FE_CONST(0x98217c13, 0xd51ddf78, 0x96310e77, 0xdaebd908, 0x602ca683, 0xcb46d07a, 0xa1fcf17e, 0xc8e2feb3)}, + {SECP256K1_FE_CONST(0x7334627c, 0x73f98968, 0x99464b4b, 0xf5964958, 0x1b95870d, 0xc658227e, 0x5e3235d8, 0xdcab5787), + SECP256K1_FE_CONST(0x000006fd, 0xc7e9dd94, 0x40ae367a, 0xe51d495c, 0x07603b9b, 0x2d088418, 0x6cc5c74c, 0x98514307)}, + {SECP256K1_FE_CONST(0x82e83876, 0x96c28938, 0xa50dd1c5, 0x605c3ad1, 0xc048637d, 0x7a50825f, 0x335ed01a, 0x00005760), + SECP256K1_FE_CONST(0xb0393f9f, 0x9f2aa55e, 0xf5607e2e, 0x5287d961, 0x60b3e704, 0xf3e16e80, 0xb4f9a3ea, 0xfec7f02d)}, + {SECP256K1_FE_CONST(0xc97b6cec, 0x3ee6b8dc, 0x98d24b58, 0x3c1970a1, 0xfe06297a, 0xae813529, 0xe76bb6bd, 0x771ae51d), + SECP256K1_FE_CONST(0x0507c702, 0xd407d097, 0x47ddeb06, 0xf6625419, 0x79f48f79, 0x7bf80d0b, 0xfc34b364, 0x253a5db1)}, + {SECP256K1_FE_CONST(0xd559af63, 0x77ea9bc4, 0x3cf1ad14, 0x5c7a4bbb, 0x10e7d18b, 0x7ce0dfac, 0x380bb19d, 0x0bb99bd3), + SECP256K1_FE_CONST(0x00196119, 0xb9b00d92, 0x34edfdb5, 0xbbdc42fc, 0xd2daa33a, 0x163356ca, 0xaa8754c8, 0xb0ec8b0b)}, + {SECP256K1_FE_CONST(0x8ddfa3dc, 0x52918da0, 0x640519dc, 0x0af8512a, 0xca2d33b2, 0xbde52514, 0xda9c0afc, 0xcb29fce4), + SECP256K1_FE_CONST(0xb3e4878d, 0x5cb69148, 0xcd54388b, 0xc23acce0, 0x62518ba8, 0xf09def92, 0x7b31e6aa, 0x6ba35b02)}, + {SECP256K1_FE_CONST(0xf8207492, 0xe3049f0a, 0x65285f2b, 0x0bfff996, 0x00ca112e, 0xc05da837, 0x546d41f9, 0x5194fb91), + SECP256K1_FE_CONST(0x7b7ee50b, 0xa8ed4bbd, 0xf6469930, 0x81419a5c, 0x071441c7, 0x290d046e, 0x3b82ea41, 0x611c5f95)}, + {SECP256K1_FE_CONST(0x050f7c80, 0x5bcd3c6b, 0x823cb724, 0x5ce74db7, 0xa4e39f5c, 0xbd8828d7, 0xfd4d3e07, 0x3ec2926a), + SECP256K1_FE_CONST(0x000d6730, 0xb0171314, 0x4764053d, 0xee157117, 0x48fd61da, 0xdea0b9db, 0x1d5e91c6, 0xbdc3f59e)}, + {SECP256K1_FE_CONST(0x3e3ea8eb, 0x05d760cf, 0x23009263, 0xb3cb3ac9, 0x088f6f0d, 0x3fc182a3, 0xbd57087c, 0xe67c62f9), + SECP256K1_FE_CONST(0xbe988716, 0xa29c1bf6, 0x4456aed6, 0xab1e4720, 0x49929305, 0x51043bf4, 0xebd833dd, 0xdd511e8b)}, + {SECP256K1_FE_CONST(0x6964d2a9, 0xa7fa6501, 0xa5959249, 0x142f4029, 0xea0c1b5f, 0x2f487ef6, 0x301ac80a, 0x768be5cd), + SECP256K1_FE_CONST(0x3918ffe4, 0x07492543, 0xed24d0b7, 0x3df95f8f, 0xaffd7cb4, 0x0de2191c, 0x9ec2f2ad, 0x2c0cb3c6)}, + {SECP256K1_FE_CONST(0x37c93520, 0xf6ddca57, 0x2b42fd5e, 0xb5c7e4de, 0x11b5b81c, 0xb95e91f3, 0x95c4d156, 0x39877ccb), + SECP256K1_FE_CONST(0x9a94b9b5, 0x57eb71ee, 0x4c975b8b, 0xac5262a8, 0x077b0595, 0xe12a6b1f, 0xd728edef, 0x1a6bf956)} + }; + /* Fixed test cases for scalar inverses: pairs of (x, 1/x) mod n. */ + static const secp256k1_scalar scalar_cases[][2] = { + /* 0 */ + {SECP256K1_SCALAR_CONST(0, 0, 0, 0, 0, 0, 0, 0), + SECP256K1_SCALAR_CONST(0, 0, 0, 0, 0, 0, 0, 0)}, + /* 1 */ + {SECP256K1_SCALAR_CONST(0, 0, 0, 0, 0, 0, 0, 1), + SECP256K1_SCALAR_CONST(0, 0, 0, 0, 0, 0, 0, 1)}, + /* -1 */ + {SECP256K1_SCALAR_CONST(0xffffffff, 0xffffffff, 0xffffffff, 0xfffffffe, 0xbaaedce6, 0xaf48a03b, 0xbfd25e8c, 0xd0364140), + SECP256K1_SCALAR_CONST(0xffffffff, 0xffffffff, 0xffffffff, 0xfffffffe, 0xbaaedce6, 0xaf48a03b, 0xbfd25e8c, 0xd0364140)}, + /* 2 */ + {SECP256K1_SCALAR_CONST(0, 0, 0, 0, 0, 0, 0, 2), + SECP256K1_SCALAR_CONST(0x7fffffff, 0xffffffff, 0xffffffff, 0xffffffff, 0x5d576e73, 0x57a4501d, 0xdfe92f46, 0x681b20a1)}, + /* 2**128 */ + {SECP256K1_SCALAR_CONST(0, 0, 0, 1, 0, 0, 0, 0), + SECP256K1_SCALAR_CONST(0x50a51ac8, 0x34b9ec24, 0x4b0dff66, 0x5588b13e, 0x9984d5b3, 0xcf80ef0f, 0xd6a23766, 0xa3ee9f22)}, + /* Input known to need 635 divsteps */ + {SECP256K1_SCALAR_CONST(0xcb9f1d35, 0xdd4416c2, 0xcd71bf3f, 0x6365da66, 0x3c9b3376, 0x8feb7ae9, 0x32a5ef60, 0x19199ec3), + SECP256K1_SCALAR_CONST(0x1d7c7bba, 0xf1893d53, 0xb834bd09, 0x36b411dc, 0x42c2e42f, 0xec72c428, 0x5e189791, 0x8e9bc708)}, + /* Input known to need 566 divsteps starting with delta=1/2. */ + {SECP256K1_SCALAR_CONST(0x7e3c993d, 0xa4272488, 0xbc015b49, 0x2db54174, 0xd382083a, 0xebe6db35, 0x80f82eff, 0xcd132c72), + SECP256K1_SCALAR_CONST(0x086f34a0, 0x3e631f76, 0x77418f28, 0xcc84ac95, 0x6304439d, 0x365db268, 0x312c6ded, 0xd0b934f8)}, + /* Input known to need 565 divsteps starting with delta=1/2. */ + {SECP256K1_SCALAR_CONST(0xbad7e587, 0x3f307859, 0x60d93147, 0x8a18491e, 0xb38a9fd5, 0x254350d3, 0x4b1f0e4b, 0x7dd6edc4), + SECP256K1_SCALAR_CONST(0x89f2df26, 0x39e2b041, 0xf19bd876, 0xd039c8ac, 0xc2223add, 0x29c4943e, 0x6632d908, 0x515f467b)}, + /* Selection of randomly generated inputs that reach low/high d/e values in various configurations. */ + {SECP256K1_SCALAR_CONST(0x1950d757, 0xb37a5809, 0x435059bb, 0x0bb8997e, 0x07e1e3c8, 0x5e5d7d2c, 0x6a0ed8e3, 0xdbde180e), + SECP256K1_SCALAR_CONST(0xbf72af9b, 0x750309e2, 0x8dda230b, 0xfe432b93, 0x7e25e475, 0x4388251e, 0x633d894b, 0x3bcb6f8c)}, + {SECP256K1_SCALAR_CONST(0x9bccf4e7, 0xc5a515e3, 0x50637aa9, 0xbb65a13f, 0x391749a1, 0x62de7d4e, 0xf6d7eabb, 0x3cd10ce0), + SECP256K1_SCALAR_CONST(0xaf2d5623, 0xb6385a33, 0xcd0365be, 0x5e92a70d, 0x7f09179c, 0x3baaf30f, 0x8f9cc83b, 0x20092f67)}, + {SECP256K1_SCALAR_CONST(0x73a57111, 0xb242952a, 0x5c5dee59, 0xf3be2ace, 0xa30a7659, 0xa46e5f47, 0xd21267b1, 0x39e642c9), + SECP256K1_SCALAR_CONST(0xa711df07, 0xcbcf13ef, 0xd61cc6be, 0xbcd058ce, 0xb02cf157, 0x272d4a18, 0x86d0feb3, 0xcd5fa004)}, + {SECP256K1_SCALAR_CONST(0x04884963, 0xce0580b1, 0xba547030, 0x3c691db3, 0x9cd2c84f, 0x24c7cebd, 0x97ebfdba, 0x3e785ec2), + SECP256K1_SCALAR_CONST(0xaaaaaf14, 0xd7c99ba7, 0x517ce2c1, 0x78a28b4c, 0x3769a851, 0xe5c5a03d, 0x4cc28f33, 0x0ec4dc5d)}, + {SECP256K1_SCALAR_CONST(0x1679ed49, 0x21f537b1, 0x815cb8ae, 0x9efc511c, 0x5b9fa037, 0x0b0f275e, 0x6c985281, 0x6c4a9905), + SECP256K1_SCALAR_CONST(0xb14ac3d5, 0x62b52999, 0xef34ead1, 0xffca4998, 0x0294341a, 0x1f8172aa, 0xea1624f9, 0x302eea62)}, + {SECP256K1_SCALAR_CONST(0x626b37c0, 0xf0057c35, 0xee982f83, 0x452a1fd3, 0xea826506, 0x48b08a9d, 0x1d2c4799, 0x4ad5f6ec), + SECP256K1_SCALAR_CONST(0xe38643b7, 0x567bfc2f, 0x5d2f1c15, 0xe327239c, 0x07112443, 0x69509283, 0xfd98e77a, 0xdb71c1e8)}, + {SECP256K1_SCALAR_CONST(0x1850a3a7, 0x759efc56, 0x54f287b2, 0x14d1234b, 0xe263bbc9, 0xcf4d8927, 0xd5f85f27, 0x965bd816), + SECP256K1_SCALAR_CONST(0x3b071831, 0xcac9619a, 0xcceb0596, 0xf614d63b, 0x95d0db2f, 0xc6a00901, 0x8eaa2621, 0xabfa0009)}, + {SECP256K1_SCALAR_CONST(0x94ae5d06, 0xa27dc400, 0x487d72be, 0xaa51ebed, 0xe475b5c0, 0xea675ffc, 0xf4df627a, 0xdca4222f), + SECP256K1_SCALAR_CONST(0x01b412ed, 0xd7830956, 0x1532537e, 0xe5e3dc99, 0x8fd3930a, 0x54f8d067, 0x32ef5760, 0x594438a5)}, + {SECP256K1_SCALAR_CONST(0x1f24278a, 0xb5bfe374, 0xa328dbbc, 0xebe35f48, 0x6620e009, 0xd58bb1b4, 0xb5a6bf84, 0x8815f63a), + SECP256K1_SCALAR_CONST(0xfe928416, 0xca5ba2d3, 0xfde513da, 0x903a60c7, 0x9e58ad8a, 0x8783bee4, 0x083a3843, 0xa608c914)}, + {SECP256K1_SCALAR_CONST(0xdc107d58, 0x274f6330, 0x67dba8bc, 0x26093111, 0x5201dfb8, 0x968ce3f5, 0xf34d1bd4, 0xf2146504), + SECP256K1_SCALAR_CONST(0x660cfa90, 0x13c3d93e, 0x7023b1e5, 0xedd09e71, 0x6d9c9d10, 0x7a3d2cdb, 0xdd08edc3, 0xaa78fcfb)}, + {SECP256K1_SCALAR_CONST(0x7cd1e905, 0xc6f02776, 0x2f551cc7, 0x5da61cff, 0x7da05389, 0x1119d5a4, 0x631c7442, 0x894fd4f7), + SECP256K1_SCALAR_CONST(0xff20862a, 0x9d3b1a37, 0x1628803b, 0x3004ccae, 0xaa23282a, 0xa89a1109, 0xd94ece5e, 0x181bdc46)}, + {SECP256K1_SCALAR_CONST(0x5b9dade8, 0x23d26c58, 0xcd12d818, 0x25b8ae97, 0x3dea04af, 0xf482c96b, 0xa062f254, 0x9e453640), + SECP256K1_SCALAR_CONST(0x50c38800, 0x15fa53f4, 0xbe1e5392, 0x5c9b120a, 0x262c22c7, 0x18fa0816, 0x5f2baab4, 0x8cb5db46)}, + {SECP256K1_SCALAR_CONST(0x11cdaeda, 0x969c464b, 0xef1f4ab0, 0x5b01d22e, 0x656fd098, 0x882bea84, 0x65cdbe7a, 0x0c19ff03), + SECP256K1_SCALAR_CONST(0x1968d0fa, 0xac46f103, 0xb55f1f72, 0xb3820bed, 0xec6b359a, 0x4b1ae0ad, 0x7e38e1fb, 0x295ccdfb)}, + {SECP256K1_SCALAR_CONST(0x2c351aa1, 0x26e91589, 0x194f8a1e, 0x06561f66, 0x0cb97b7f, 0x10914454, 0x134d1c03, 0x157266b4), + SECP256K1_SCALAR_CONST(0xbe49ada6, 0x92bd8711, 0x41b176c4, 0xa478ba95, 0x14883434, 0x9d1cd6f3, 0xcc4b847d, 0x22af80f5)}, + {SECP256K1_SCALAR_CONST(0x6ba07c6e, 0x13a60edb, 0x6247f5c3, 0x84b5fa56, 0x76fe3ec5, 0x80426395, 0xf65ec2ae, 0x623ba730), + SECP256K1_SCALAR_CONST(0x25ac23f7, 0x418cd747, 0x98376f9d, 0x4a11c7bf, 0x24c8ebfe, 0x4c8a8655, 0x345f4f52, 0x1c515595)}, + {SECP256K1_SCALAR_CONST(0x9397a712, 0x8abb6951, 0x2d4a3d54, 0x703b1c2a, 0x0661dca8, 0xd75c9b31, 0xaed4d24b, 0xd2ab2948), + SECP256K1_SCALAR_CONST(0xc52e8bef, 0xd55ce3eb, 0x1c897739, 0xeb9fb606, 0x36b9cd57, 0x18c51cc2, 0x6a87489e, 0xffd0dcf3)}, + {SECP256K1_SCALAR_CONST(0xe6a808cc, 0xeb437888, 0xe97798df, 0x4e224e44, 0x7e3b380a, 0x207c1653, 0x889f3212, 0xc6738b6f), + SECP256K1_SCALAR_CONST(0x31f9ae13, 0xd1e08b20, 0x757a2e5e, 0x5243a0eb, 0x8ae35f73, 0x19bb6122, 0xb910f26b, 0xda70aa55)}, + {SECP256K1_SCALAR_CONST(0xd0320548, 0xab0effe7, 0xa70779e0, 0x61a347a6, 0xb8c1e010, 0x9d5281f8, 0x2ee588a6, 0x80000000), + SECP256K1_SCALAR_CONST(0x1541897e, 0x78195c90, 0x7583dd9e, 0x728b6100, 0xbce8bc6d, 0x7a53b471, 0x5dcd9e45, 0x4425fcaf)}, + {SECP256K1_SCALAR_CONST(0x93d623f1, 0xd45b50b0, 0x796e9186, 0x9eac9407, 0xd30edc20, 0xef6304cf, 0x250494e7, 0xba503de9), + SECP256K1_SCALAR_CONST(0x7026d638, 0x1178b548, 0x92043952, 0x3c7fb47c, 0xcd3ea236, 0x31d82b01, 0x612fc387, 0x80b9b957)}, + {SECP256K1_SCALAR_CONST(0xf860ab39, 0x55f5d412, 0xa4d73bcc, 0x3b48bd90, 0xc248ffd3, 0x13ca10be, 0x8fba84cc, 0xdd28d6a3), + SECP256K1_SCALAR_CONST(0x5c32fc70, 0xe0b15d67, 0x76694700, 0xfe62be4d, 0xeacdb229, 0x7a4433d9, 0x52155cd0, 0x7649ab59)}, + {SECP256K1_SCALAR_CONST(0x4e41311c, 0x0800af58, 0x7a690a8e, 0xe175c9ba, 0x6981ab73, 0xac532ea8, 0x5c1f5e63, 0x6ac1f189), + SECP256K1_SCALAR_CONST(0xfffffff9, 0xd075982c, 0x7fbd3825, 0xc05038a2, 0x4533b91f, 0x94ec5f45, 0xb280b28f, 0x842324dc)}, + {SECP256K1_SCALAR_CONST(0x48e473bf, 0x3555eade, 0xad5d7089, 0x2424c4e4, 0x0a99397c, 0x2dc796d8, 0xb7a43a69, 0xd0364141), + SECP256K1_SCALAR_CONST(0x634976b2, 0xa0e47895, 0x1ec38593, 0x266d6fd0, 0x6f602644, 0x9bb762f1, 0x7180c704, 0xe23a4daa)}, + {SECP256K1_SCALAR_CONST(0xbe83878d, 0x3292fc54, 0x26e71c62, 0x556ccedc, 0x7cbb8810, 0x4032a720, 0x34ead589, 0xe4d6bd13), + SECP256K1_SCALAR_CONST(0x6cd150ad, 0x25e59d0f, 0x74cbae3d, 0x6377534a, 0x1e6562e8, 0xb71b9d18, 0xe1e5d712, 0x8480abb3)}, + {SECP256K1_SCALAR_CONST(0xcdddf2e5, 0xefc15f88, 0xc9ee06de, 0x8a846ca9, 0x28561581, 0x68daa5fb, 0xd1cf3451, 0xeb1782d0), + SECP256K1_SCALAR_CONST(0xffffffd9, 0xed8d2af4, 0x993c865a, 0x23e9681a, 0x3ca3a3dc, 0xe6d5a46e, 0xbd86bd87, 0x61b55c70)}, + {SECP256K1_SCALAR_CONST(0xb6a18f1f, 0x04872df9, 0x08165ec4, 0x319ca19c, 0x6c0359ab, 0x1f7118fb, 0xc2ef8082, 0xca8b7785), + SECP256K1_SCALAR_CONST(0xff55b19b, 0x0f1ac78c, 0x0f0c88c2, 0x2358d5ad, 0x5f455e4e, 0x3330b72f, 0x274dc153, 0xffbf272b)}, + {SECP256K1_SCALAR_CONST(0xea4898e5, 0x30eba3e8, 0xcf0e5c3d, 0x06ec6844, 0x01e26fb6, 0x75636225, 0xc5d08f4c, 0x1decafa0), + SECP256K1_SCALAR_CONST(0xe5a014a8, 0xe3c4ec1e, 0xea4f9b32, 0xcfc7b386, 0x00630806, 0x12c08d02, 0x6407ccc2, 0xb067d90e)}, + {SECP256K1_SCALAR_CONST(0x70e9aea9, 0x7e933af0, 0x8a23bfab, 0x23e4b772, 0xff951863, 0x5ffcf47d, 0x6bebc918, 0x2ca58265), + SECP256K1_SCALAR_CONST(0xf4e00006, 0x81bc6441, 0x4eb6ec02, 0xc194a859, 0x80ad7c48, 0xba4e9afb, 0x8b6bdbe0, 0x989d8f77)}, + {SECP256K1_SCALAR_CONST(0x3c56c774, 0x46efe6f0, 0xe93618b8, 0xf9b5a846, 0xd247df61, 0x83b1e215, 0x06dc8bcc, 0xeefc1bf5), + SECP256K1_SCALAR_CONST(0xfff8937a, 0x2cd9586b, 0x43c25e57, 0xd1cefa7a, 0x9fb91ed3, 0x95b6533d, 0x8ad0de5b, 0xafb93f00)}, + {SECP256K1_SCALAR_CONST(0xfb5c2772, 0x5cb30e83, 0xe38264df, 0xe4e3ebf3, 0x392aa92e, 0xa68756a1, 0x51279ac5, 0xb50711a8), + SECP256K1_SCALAR_CONST(0x000013af, 0x1105bfe7, 0xa6bbd7fb, 0x3d638f99, 0x3b266b02, 0x072fb8bc, 0x39251130, 0x2e0fd0ea)} + }; + int i, var, testrand; + unsigned char b32[32]; + secp256k1_fe x_fe; + secp256k1_scalar x_scalar; + memset(b32, 0, sizeof(b32)); + /* Test fixed test cases through test_inverse_{scalar,field}, both ways. */ + for (i = 0; (size_t)i < sizeof(fe_cases)/sizeof(fe_cases[0]); ++i) { + for (var = 0; var <= 1; ++var) { + test_inverse_field(&x_fe, &fe_cases[i][0], var); + check_fe_equal(&x_fe, &fe_cases[i][1]); + test_inverse_field(&x_fe, &fe_cases[i][1], var); + check_fe_equal(&x_fe, &fe_cases[i][0]); + } + } + for (i = 0; (size_t)i < sizeof(scalar_cases)/sizeof(scalar_cases[0]); ++i) { + for (var = 0; var <= 1; ++var) { + test_inverse_scalar(&x_scalar, &scalar_cases[i][0], var); + CHECK(secp256k1_scalar_eq(&x_scalar, &scalar_cases[i][1])); + test_inverse_scalar(&x_scalar, &scalar_cases[i][1], var); + CHECK(secp256k1_scalar_eq(&x_scalar, &scalar_cases[i][0])); + } + } + /* Test inputs 0..999 and their respective negations. */ + for (i = 0; i < 1000; ++i) { + b32[31] = i & 0xff; + b32[30] = (i >> 8) & 0xff; + secp256k1_scalar_set_b32(&x_scalar, b32, NULL); + secp256k1_fe_set_b32(&x_fe, b32); + for (var = 0; var <= 1; ++var) { + test_inverse_scalar(NULL, &x_scalar, var); + test_inverse_field(NULL, &x_fe, var); + } + secp256k1_scalar_negate(&x_scalar, &x_scalar); + secp256k1_fe_negate(&x_fe, &x_fe, 1); + for (var = 0; var <= 1; ++var) { + test_inverse_scalar(NULL, &x_scalar, var); + test_inverse_field(NULL, &x_fe, var); + } + } + /* test 128*count random inputs; half with testrand256_test, half with testrand256 */ + for (testrand = 0; testrand <= 1; ++testrand) { + for (i = 0; i < 64 * count; ++i) { + (testrand ? secp256k1_testrand256_test : secp256k1_testrand256)(b32); + secp256k1_scalar_set_b32(&x_scalar, b32, NULL); + secp256k1_fe_set_b32(&x_fe, b32); + for (var = 0; var <= 1; ++var) { + test_inverse_scalar(NULL, &x_scalar, var); + test_inverse_field(NULL, &x_fe, var); + } + } + } +} + /***** GROUP TESTS *****/ void ge_equals_ge(const secp256k1_ge *a, const secp256k1_ge *b) { @@ -1920,21 +2968,15 @@ void ge_equals_gej(const secp256k1_ge *a, const secp256k1_gej *b) { void test_ge(void) { int i, i1; -#ifdef USE_ENDOMORPHISM int runs = 6; -#else - int runs = 4; -#endif - /* Points: (infinity, p1, p1, -p1, -p1, p2, p2, -p2, -p2, p3, p3, -p3, -p3, p4, p4, -p4, -p4). - * The second in each pair of identical points uses a random Z coordinate in the Jacobian form. - * All magnitudes are randomized. - * All 17*17 combinations of points are added to each other, using all applicable methods. - * - * When the endomorphism code is compiled in, p5 = lambda*p1 and p6 = lambda^2*p1 are added as well. + /* 25 points are used: + * - infinity + * - for each of four random points p1 p2 p3 p4, we add the point, its + * negation, and then those two again but with randomized Z coordinate. + * - The same is then done for lambda*p1 and lambda^2*p1. */ secp256k1_ge *ge = (secp256k1_ge *)checked_malloc(&ctx->error_callback, sizeof(secp256k1_ge) * (1 + 4 * runs)); secp256k1_gej *gej = (secp256k1_gej *)checked_malloc(&ctx->error_callback, sizeof(secp256k1_gej) * (1 + 4 * runs)); - secp256k1_fe *zinv = (secp256k1_fe *)checked_malloc(&ctx->error_callback, sizeof(secp256k1_fe) * (1 + 4 * runs)); secp256k1_fe zf; secp256k1_fe zfi2, zfi3; @@ -1945,14 +2987,12 @@ void test_ge(void) { int j; secp256k1_ge g; random_group_element_test(&g); -#ifdef USE_ENDOMORPHISM if (i >= runs - 2) { secp256k1_ge_mul_lambda(&g, &ge[1]); } if (i >= runs - 1) { secp256k1_ge_mul_lambda(&g, &g); } -#endif ge[1 + 4 * i] = g; ge[2 + 4 * i] = g; secp256k1_ge_neg(&ge[3 + 4 * i], &g); @@ -1970,23 +3010,6 @@ void test_ge(void) { } } - /* Compute z inverses. */ - { - secp256k1_fe *zs = checked_malloc(&ctx->error_callback, sizeof(secp256k1_fe) * (1 + 4 * runs)); - for (i = 0; i < 4 * runs + 1; i++) { - if (i == 0) { - /* The point at infinity does not have a meaningful z inverse. Any should do. */ - do { - random_field_element_test(&zs[i]); - } while(secp256k1_fe_is_zero(&zs[i])); - } else { - zs[i] = gej[i].z; - } - } - secp256k1_fe_inv_all_var(zinv, zs, 4 * runs + 1); - free(zs); - } - /* Generate random zf, and zfi2 = 1/zf^2, zfi3 = 1/zf^3 */ do { random_field_element_test(&zf); @@ -2049,6 +3072,9 @@ void test_ge(void) { /* Normal doubling. */ secp256k1_gej_double_var(&resj, &gej[i2], NULL); ge_equals_gej(&ref, &resj); + /* Constant-time doubling. */ + secp256k1_gej_double(&resj, &gej[i2]); + ge_equals_gej(&ref, &resj); } /* Test adding opposites. */ @@ -2078,7 +3104,7 @@ void test_ge(void) { gej_shuffled[i] = gej[i]; } for (i = 0; i < 4 * runs + 1; i++) { - int swap = i + secp256k1_rand_int(4 * runs + 1 - i); + int swap = i + secp256k1_testrand_int(4 * runs + 1 - i); if (swap != i) { secp256k1_gej t = gej_shuffled[i]; gej_shuffled[i] = gej_shuffled[swap]; @@ -2092,34 +3118,84 @@ void test_ge(void) { free(gej_shuffled); } - /* Test batch gej -> ge conversion with and without known z ratios. */ + /* Test batch gej -> ge conversion without known z ratios. */ { - secp256k1_fe *zr = (secp256k1_fe *)checked_malloc(&ctx->error_callback, (4 * runs + 1) * sizeof(secp256k1_fe)); - secp256k1_ge *ge_set_table = (secp256k1_ge *)checked_malloc(&ctx->error_callback, (4 * runs + 1) * sizeof(secp256k1_ge)); secp256k1_ge *ge_set_all = (secp256k1_ge *)checked_malloc(&ctx->error_callback, (4 * runs + 1) * sizeof(secp256k1_ge)); - for (i = 0; i < 4 * runs + 1; i++) { - /* Compute gej[i + 1].z / gez[i].z (with gej[n].z taken to be 1). */ - if (i < 4 * runs) { - secp256k1_fe_mul(&zr[i + 1], &zinv[i], &gej[i + 1].z); - } - } - secp256k1_ge_set_table_gej_var(ge_set_table, gej, zr, 4 * runs + 1); - secp256k1_ge_set_all_gej_var(ge_set_all, gej, 4 * runs + 1, &ctx->error_callback); + secp256k1_ge_set_all_gej_var(ge_set_all, gej, 4 * runs + 1); for (i = 0; i < 4 * runs + 1; i++) { secp256k1_fe s; random_fe_non_zero(&s); secp256k1_gej_rescale(&gej[i], &s); - ge_equals_gej(&ge_set_table[i], &gej[i]); ge_equals_gej(&ge_set_all[i], &gej[i]); } - free(ge_set_table); free(ge_set_all); - free(zr); + } + + /* Test batch gej -> ge conversion with many infinities. */ + for (i = 0; i < 4 * runs + 1; i++) { + int odd; + random_group_element_test(&ge[i]); + odd = secp256k1_fe_is_odd(&ge[i].x); + CHECK(odd == 0 || odd == 1); + /* randomly set half the points to infinity */ + if (odd == i % 2) { + secp256k1_ge_set_infinity(&ge[i]); + } + secp256k1_gej_set_ge(&gej[i], &ge[i]); + } + /* batch convert */ + secp256k1_ge_set_all_gej_var(ge, gej, 4 * runs + 1); + /* check result */ + for (i = 0; i < 4 * runs + 1; i++) { + ge_equals_gej(&ge[i], &gej[i]); + } + + /* Test batch gej -> ge conversion with all infinities. */ + for (i = 0; i < 4 * runs + 1; i++) { + secp256k1_gej_set_infinity(&gej[i]); + } + /* batch convert */ + secp256k1_ge_set_all_gej_var(ge, gej, 4 * runs + 1); + /* check result */ + for (i = 0; i < 4 * runs + 1; i++) { + CHECK(secp256k1_ge_is_infinity(&ge[i])); } free(ge); free(gej); - free(zinv); +} + + +void test_intialized_inf(void) { + secp256k1_ge p; + secp256k1_gej pj, npj, infj1, infj2, infj3; + secp256k1_fe zinv; + + /* Test that adding P+(-P) results in a fully initalized infinity*/ + random_group_element_test(&p); + secp256k1_gej_set_ge(&pj, &p); + secp256k1_gej_neg(&npj, &pj); + + secp256k1_gej_add_var(&infj1, &pj, &npj, NULL); + CHECK(secp256k1_gej_is_infinity(&infj1)); + CHECK(secp256k1_fe_is_zero(&infj1.x)); + CHECK(secp256k1_fe_is_zero(&infj1.y)); + CHECK(secp256k1_fe_is_zero(&infj1.z)); + + secp256k1_gej_add_ge_var(&infj2, &npj, &p, NULL); + CHECK(secp256k1_gej_is_infinity(&infj2)); + CHECK(secp256k1_fe_is_zero(&infj2.x)); + CHECK(secp256k1_fe_is_zero(&infj2.y)); + CHECK(secp256k1_fe_is_zero(&infj2.z)); + + secp256k1_fe_set_int(&zinv, 1); + secp256k1_gej_add_zinv_var(&infj3, &npj, &p, &zinv); + CHECK(secp256k1_gej_is_infinity(&infj3)); + CHECK(secp256k1_fe_is_zero(&infj3.x)); + CHECK(secp256k1_fe_is_zero(&infj3.y)); + CHECK(secp256k1_fe_is_zero(&infj3.z)); + + } void test_add_neg_y_diff_x(void) { @@ -2195,6 +3271,7 @@ void run_ge(void) { test_ge(); } test_add_neg_y_diff_x(); + test_intialized_inf(); } void test_ec_combine(void) { @@ -2218,7 +3295,7 @@ void test_ec_combine(void) { secp256k1_ge_set_gej(&Q, &Qj); secp256k1_pubkey_save(&sd, &Q); CHECK(secp256k1_ec_pubkey_combine(ctx, &sd2, d, i) == 1); - CHECK(memcmp(&sd, &sd2, sizeof(sd)) == 0); + CHECK(secp256k1_memcmp_var(&sd, &sd2, sizeof(sd)) == 0); } } @@ -2232,64 +3309,35 @@ void run_ec_combine(void) { void test_group_decompress(const secp256k1_fe* x) { /* The input itself, normalized. */ secp256k1_fe fex = *x; - secp256k1_fe fez; - /* Results of set_xquad_var, set_xo_var(..., 0), set_xo_var(..., 1). */ - secp256k1_ge ge_quad, ge_even, ge_odd; - secp256k1_gej gej_quad; + /* Results of set_xo_var(..., 0), set_xo_var(..., 1). */ + secp256k1_ge ge_even, ge_odd; /* Return values of the above calls. */ - int res_quad, res_even, res_odd; + int res_even, res_odd; secp256k1_fe_normalize_var(&fex); - res_quad = secp256k1_ge_set_xquad(&ge_quad, &fex); res_even = secp256k1_ge_set_xo_var(&ge_even, &fex, 0); res_odd = secp256k1_ge_set_xo_var(&ge_odd, &fex, 1); - CHECK(res_quad == res_even); - CHECK(res_quad == res_odd); + CHECK(res_even == res_odd); - if (res_quad) { - secp256k1_fe_normalize_var(&ge_quad.x); + if (res_even) { secp256k1_fe_normalize_var(&ge_odd.x); secp256k1_fe_normalize_var(&ge_even.x); - secp256k1_fe_normalize_var(&ge_quad.y); secp256k1_fe_normalize_var(&ge_odd.y); secp256k1_fe_normalize_var(&ge_even.y); /* No infinity allowed. */ - CHECK(!ge_quad.infinity); CHECK(!ge_even.infinity); CHECK(!ge_odd.infinity); /* Check that the x coordinates check out. */ - CHECK(secp256k1_fe_equal_var(&ge_quad.x, x)); CHECK(secp256k1_fe_equal_var(&ge_even.x, x)); CHECK(secp256k1_fe_equal_var(&ge_odd.x, x)); - /* Check that the Y coordinate result in ge_quad is a square. */ - CHECK(secp256k1_fe_is_quad_var(&ge_quad.y)); - /* Check odd/even Y in ge_odd, ge_even. */ CHECK(secp256k1_fe_is_odd(&ge_odd.y)); CHECK(!secp256k1_fe_is_odd(&ge_even.y)); - - /* Check secp256k1_gej_has_quad_y_var. */ - secp256k1_gej_set_ge(&gej_quad, &ge_quad); - CHECK(secp256k1_gej_has_quad_y_var(&gej_quad)); - do { - random_fe_test(&fez); - } while (secp256k1_fe_is_zero(&fez)); - secp256k1_gej_rescale(&gej_quad, &fez); - CHECK(secp256k1_gej_has_quad_y_var(&gej_quad)); - secp256k1_gej_neg(&gej_quad, &gej_quad); - CHECK(!secp256k1_gej_has_quad_y_var(&gej_quad)); - do { - random_fe_test(&fez); - } while (secp256k1_fe_is_zero(&fez)); - secp256k1_gej_rescale(&gej_quad, &fez); - CHECK(!secp256k1_gej_has_quad_y_var(&gej_quad)); - secp256k1_gej_neg(&gej_quad, &gej_quad); - CHECK(secp256k1_gej_has_quad_y_var(&gej_quad)); } } @@ -2384,7 +3432,6 @@ void test_point_times_order(const secp256k1_gej *point) { secp256k1_ecmult(&ctx->ecmult_ctx, &res2, point, &nx, &nx); /* calc res2 = (order - x) * point + (order - x) * G; */ secp256k1_gej_add_var(&res1, &res1, &res2, NULL); CHECK(secp256k1_gej_is_infinity(&res1)); - CHECK(secp256k1_gej_is_valid_var(&res1) == 0); secp256k1_ge_set_gej(&res3, &res1); CHECK(secp256k1_ge_is_infinity(&res3)); CHECK(secp256k1_ge_is_valid_var(&res3) == 0); @@ -2403,6 +3450,87 @@ void test_point_times_order(const secp256k1_gej *point) { ge_equals_ge(&res3, &secp256k1_ge_const_g); } +/* These scalars reach large (in absolute value) outputs when fed to secp256k1_scalar_split_lambda. + * + * They are computed as: + * - For a in [-2, -1, 0, 1, 2]: + * - For b in [-3, -1, 1, 3]: + * - Output (a*LAMBDA + (ORDER+b)/2) % ORDER + */ +static const secp256k1_scalar scalars_near_split_bounds[20] = { + SECP256K1_SCALAR_CONST(0xd938a566, 0x7f479e3e, 0xb5b3c7fa, 0xefdb3749, 0x3aa0585c, 0xc5ea2367, 0xe1b660db, 0x0209e6fc), + SECP256K1_SCALAR_CONST(0xd938a566, 0x7f479e3e, 0xb5b3c7fa, 0xefdb3749, 0x3aa0585c, 0xc5ea2367, 0xe1b660db, 0x0209e6fd), + SECP256K1_SCALAR_CONST(0xd938a566, 0x7f479e3e, 0xb5b3c7fa, 0xefdb3749, 0x3aa0585c, 0xc5ea2367, 0xe1b660db, 0x0209e6fe), + SECP256K1_SCALAR_CONST(0xd938a566, 0x7f479e3e, 0xb5b3c7fa, 0xefdb3749, 0x3aa0585c, 0xc5ea2367, 0xe1b660db, 0x0209e6ff), + SECP256K1_SCALAR_CONST(0x2c9c52b3, 0x3fa3cf1f, 0x5ad9e3fd, 0x77ed9ba5, 0xb294b893, 0x3722e9a5, 0x00e698ca, 0x4cf7632d), + SECP256K1_SCALAR_CONST(0x2c9c52b3, 0x3fa3cf1f, 0x5ad9e3fd, 0x77ed9ba5, 0xb294b893, 0x3722e9a5, 0x00e698ca, 0x4cf7632e), + SECP256K1_SCALAR_CONST(0x2c9c52b3, 0x3fa3cf1f, 0x5ad9e3fd, 0x77ed9ba5, 0xb294b893, 0x3722e9a5, 0x00e698ca, 0x4cf7632f), + SECP256K1_SCALAR_CONST(0x2c9c52b3, 0x3fa3cf1f, 0x5ad9e3fd, 0x77ed9ba5, 0xb294b893, 0x3722e9a5, 0x00e698ca, 0x4cf76330), + SECP256K1_SCALAR_CONST(0x7fffffff, 0xffffffff, 0xffffffff, 0xffffffff, 0xd576e735, 0x57a4501d, 0xdfe92f46, 0x681b209f), + SECP256K1_SCALAR_CONST(0x7fffffff, 0xffffffff, 0xffffffff, 0xffffffff, 0xd576e735, 0x57a4501d, 0xdfe92f46, 0x681b20a0), + SECP256K1_SCALAR_CONST(0x7fffffff, 0xffffffff, 0xffffffff, 0xffffffff, 0xd576e735, 0x57a4501d, 0xdfe92f46, 0x681b20a1), + SECP256K1_SCALAR_CONST(0x7fffffff, 0xffffffff, 0xffffffff, 0xffffffff, 0xd576e735, 0x57a4501d, 0xdfe92f46, 0x681b20a2), + SECP256K1_SCALAR_CONST(0xd363ad4c, 0xc05c30e0, 0xa5261c02, 0x88126459, 0xf85915d7, 0x7825b696, 0xbeebc5c2, 0x833ede11), + SECP256K1_SCALAR_CONST(0xd363ad4c, 0xc05c30e0, 0xa5261c02, 0x88126459, 0xf85915d7, 0x7825b696, 0xbeebc5c2, 0x833ede12), + SECP256K1_SCALAR_CONST(0xd363ad4c, 0xc05c30e0, 0xa5261c02, 0x88126459, 0xf85915d7, 0x7825b696, 0xbeebc5c2, 0x833ede13), + SECP256K1_SCALAR_CONST(0xd363ad4c, 0xc05c30e0, 0xa5261c02, 0x88126459, 0xf85915d7, 0x7825b696, 0xbeebc5c2, 0x833ede14), + SECP256K1_SCALAR_CONST(0x26c75a99, 0x80b861c1, 0x4a4c3805, 0x1024c8b4, 0x704d760e, 0xe95e7cd3, 0xde1bfdb1, 0xce2c5a42), + SECP256K1_SCALAR_CONST(0x26c75a99, 0x80b861c1, 0x4a4c3805, 0x1024c8b4, 0x704d760e, 0xe95e7cd3, 0xde1bfdb1, 0xce2c5a43), + SECP256K1_SCALAR_CONST(0x26c75a99, 0x80b861c1, 0x4a4c3805, 0x1024c8b4, 0x704d760e, 0xe95e7cd3, 0xde1bfdb1, 0xce2c5a44), + SECP256K1_SCALAR_CONST(0x26c75a99, 0x80b861c1, 0x4a4c3805, 0x1024c8b4, 0x704d760e, 0xe95e7cd3, 0xde1bfdb1, 0xce2c5a45) +}; + +void test_ecmult_target(const secp256k1_scalar* target, int mode) { + /* Mode: 0=ecmult_gen, 1=ecmult, 2=ecmult_const */ + secp256k1_scalar n1, n2; + secp256k1_ge p; + secp256k1_gej pj, p1j, p2j, ptj; + static const secp256k1_scalar zero = SECP256K1_SCALAR_CONST(0, 0, 0, 0, 0, 0, 0, 0); + + /* Generate random n1,n2 such that n1+n2 = -target. */ + random_scalar_order_test(&n1); + secp256k1_scalar_add(&n2, &n1, target); + secp256k1_scalar_negate(&n2, &n2); + + /* Generate a random input point. */ + if (mode != 0) { + random_group_element_test(&p); + secp256k1_gej_set_ge(&pj, &p); + } + + /* EC multiplications */ + if (mode == 0) { + secp256k1_ecmult_gen(&ctx->ecmult_gen_ctx, &p1j, &n1); + secp256k1_ecmult_gen(&ctx->ecmult_gen_ctx, &p2j, &n2); + secp256k1_ecmult_gen(&ctx->ecmult_gen_ctx, &ptj, target); + } else if (mode == 1) { + secp256k1_ecmult(&ctx->ecmult_ctx, &p1j, &pj, &n1, &zero); + secp256k1_ecmult(&ctx->ecmult_ctx, &p2j, &pj, &n2, &zero); + secp256k1_ecmult(&ctx->ecmult_ctx, &ptj, &pj, target, &zero); + } else { + secp256k1_ecmult_const(&p1j, &p, &n1, 256); + secp256k1_ecmult_const(&p2j, &p, &n2, 256); + secp256k1_ecmult_const(&ptj, &p, target, 256); + } + + /* Add them all up: n1*P + n2*P + target*P = (n1+n2+target)*P = (n1+n1-n1-n2)*P = 0. */ + secp256k1_gej_add_var(&ptj, &ptj, &p1j, NULL); + secp256k1_gej_add_var(&ptj, &ptj, &p2j, NULL); + CHECK(secp256k1_gej_is_infinity(&ptj)); +} + +void run_ecmult_near_split_bound(void) { + int i; + unsigned j; + for (i = 0; i < 4*count; ++i) { + for (j = 0; j < sizeof(scalars_near_split_bounds) / sizeof(scalars_near_split_bounds[0]); ++j) { + test_ecmult_target(&scalars_near_split_bounds[j], 0); + test_ecmult_target(&scalars_near_split_bounds[j], 1); + test_ecmult_target(&scalars_near_split_bounds[j], 2); + } + } +} + void run_point_times_order(void) { int i; secp256k1_fe x = SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 2); @@ -2416,7 +3544,6 @@ void run_point_times_order(void) { secp256k1_gej j; CHECK(secp256k1_ge_is_valid_var(&p)); secp256k1_gej_set_ge(&j, &p); - CHECK(secp256k1_gej_is_valid_var(&j)); test_point_times_order(&j); } secp256k1_fe_sqr(&x, &x); @@ -2556,14 +3683,13 @@ void test_ecmult_multi(secp256k1_scratch *scratch, secp256k1_ecmult_multi_func e secp256k1_gej r; secp256k1_gej r2; ecmult_multi_data data; - secp256k1_scratch *scratch_empty; data.sc = sc; data.pt = pt; secp256k1_scalar_set_int(&szero, 0); /* No points to multiply */ - CHECK(ecmult_multi(&ctx->ecmult_ctx, scratch, &r, NULL, ecmult_multi_callback, &data, 0)); + CHECK(ecmult_multi(&ctx->error_callback, &ctx->ecmult_ctx, scratch, &r, NULL, ecmult_multi_callback, &data, 0)); /* Check 1- and 2-point multiplies against ecmult */ for (ncount = 0; ncount < count; ncount++) { @@ -2579,36 +3705,31 @@ void test_ecmult_multi(secp256k1_scratch *scratch, secp256k1_ecmult_multi_func e /* only G scalar */ secp256k1_ecmult(&ctx->ecmult_ctx, &r2, &ptgj, &szero, &sc[0]); - CHECK(ecmult_multi(&ctx->ecmult_ctx, scratch, &r, &sc[0], ecmult_multi_callback, &data, 0)); + CHECK(ecmult_multi(&ctx->error_callback, &ctx->ecmult_ctx, scratch, &r, &sc[0], ecmult_multi_callback, &data, 0)); secp256k1_gej_neg(&r2, &r2); secp256k1_gej_add_var(&r, &r, &r2, NULL); CHECK(secp256k1_gej_is_infinity(&r)); /* 1-point */ secp256k1_ecmult(&ctx->ecmult_ctx, &r2, &ptgj, &sc[0], &szero); - CHECK(ecmult_multi(&ctx->ecmult_ctx, scratch, &r, &szero, ecmult_multi_callback, &data, 1)); + CHECK(ecmult_multi(&ctx->error_callback, &ctx->ecmult_ctx, scratch, &r, &szero, ecmult_multi_callback, &data, 1)); secp256k1_gej_neg(&r2, &r2); secp256k1_gej_add_var(&r, &r, &r2, NULL); CHECK(secp256k1_gej_is_infinity(&r)); - /* Try to multiply 1 point, but scratch space is empty */ - scratch_empty = secp256k1_scratch_create(&ctx->error_callback, 0); - CHECK(!ecmult_multi(&ctx->ecmult_ctx, scratch_empty, &r, &szero, ecmult_multi_callback, &data, 1)); - secp256k1_scratch_destroy(scratch_empty); - /* Try to multiply 1 point, but callback returns false */ - CHECK(!ecmult_multi(&ctx->ecmult_ctx, scratch, &r, &szero, ecmult_multi_false_callback, &data, 1)); + CHECK(!ecmult_multi(&ctx->error_callback, &ctx->ecmult_ctx, scratch, &r, &szero, ecmult_multi_false_callback, &data, 1)); /* 2-point */ secp256k1_ecmult(&ctx->ecmult_ctx, &r2, &ptgj, &sc[0], &sc[1]); - CHECK(ecmult_multi(&ctx->ecmult_ctx, scratch, &r, &szero, ecmult_multi_callback, &data, 2)); + CHECK(ecmult_multi(&ctx->error_callback, &ctx->ecmult_ctx, scratch, &r, &szero, ecmult_multi_callback, &data, 2)); secp256k1_gej_neg(&r2, &r2); secp256k1_gej_add_var(&r, &r, &r2, NULL); CHECK(secp256k1_gej_is_infinity(&r)); /* 2-point with G scalar */ secp256k1_ecmult(&ctx->ecmult_ctx, &r2, &ptgj, &sc[0], &sc[1]); - CHECK(ecmult_multi(&ctx->ecmult_ctx, scratch, &r, &sc[1], ecmult_multi_callback, &data, 1)); + CHECK(ecmult_multi(&ctx->error_callback, &ctx->ecmult_ctx, scratch, &r, &sc[1], ecmult_multi_callback, &data, 1)); secp256k1_gej_neg(&r2, &r2); secp256k1_gej_add_var(&r, &r, &r2, NULL); CHECK(secp256k1_gej_is_infinity(&r)); @@ -2625,7 +3746,7 @@ void test_ecmult_multi(secp256k1_scratch *scratch, secp256k1_ecmult_multi_func e random_scalar_order(&sc[i]); secp256k1_ge_set_infinity(&pt[i]); } - CHECK(ecmult_multi(&ctx->ecmult_ctx, scratch, &r, &szero, ecmult_multi_callback, &data, sizes[j])); + CHECK(ecmult_multi(&ctx->error_callback, &ctx->ecmult_ctx, scratch, &r, &szero, ecmult_multi_callback, &data, sizes[j])); CHECK(secp256k1_gej_is_infinity(&r)); } @@ -2635,7 +3756,7 @@ void test_ecmult_multi(secp256k1_scratch *scratch, secp256k1_ecmult_multi_func e pt[i] = ptg; secp256k1_scalar_set_int(&sc[i], 0); } - CHECK(ecmult_multi(&ctx->ecmult_ctx, scratch, &r, &szero, ecmult_multi_callback, &data, sizes[j])); + CHECK(ecmult_multi(&ctx->error_callback, &ctx->ecmult_ctx, scratch, &r, &szero, ecmult_multi_callback, &data, sizes[j])); CHECK(secp256k1_gej_is_infinity(&r)); } @@ -2648,7 +3769,7 @@ void test_ecmult_multi(secp256k1_scratch *scratch, secp256k1_ecmult_multi_func e pt[2 * i + 1] = ptg; } - CHECK(ecmult_multi(&ctx->ecmult_ctx, scratch, &r, &szero, ecmult_multi_callback, &data, sizes[j])); + CHECK(ecmult_multi(&ctx->error_callback, &ctx->ecmult_ctx, scratch, &r, &szero, ecmult_multi_callback, &data, sizes[j])); CHECK(secp256k1_gej_is_infinity(&r)); random_scalar_order(&sc[0]); @@ -2661,7 +3782,7 @@ void test_ecmult_multi(secp256k1_scratch *scratch, secp256k1_ecmult_multi_func e secp256k1_ge_neg(&pt[2*i+1], &pt[2*i]); } - CHECK(ecmult_multi(&ctx->ecmult_ctx, scratch, &r, &szero, ecmult_multi_callback, &data, sizes[j])); + CHECK(ecmult_multi(&ctx->error_callback, &ctx->ecmult_ctx, scratch, &r, &szero, ecmult_multi_callback, &data, sizes[j])); CHECK(secp256k1_gej_is_infinity(&r)); } @@ -2676,7 +3797,7 @@ void test_ecmult_multi(secp256k1_scratch *scratch, secp256k1_ecmult_multi_func e secp256k1_scalar_negate(&sc[i], &sc[i]); } - CHECK(ecmult_multi(&ctx->ecmult_ctx, scratch, &r, &szero, ecmult_multi_callback, &data, 32)); + CHECK(ecmult_multi(&ctx->error_callback, &ctx->ecmult_ctx, scratch, &r, &szero, ecmult_multi_callback, &data, 32)); CHECK(secp256k1_gej_is_infinity(&r)); } @@ -2695,7 +3816,7 @@ void test_ecmult_multi(secp256k1_scratch *scratch, secp256k1_ecmult_multi_func e } secp256k1_ecmult(&ctx->ecmult_ctx, &r2, &r, &sc[0], &szero); - CHECK(ecmult_multi(&ctx->ecmult_ctx, scratch, &r, &szero, ecmult_multi_callback, &data, 20)); + CHECK(ecmult_multi(&ctx->error_callback, &ctx->ecmult_ctx, scratch, &r, &szero, ecmult_multi_callback, &data, 20)); secp256k1_gej_neg(&r2, &r2); secp256k1_gej_add_var(&r, &r, &r2, NULL); CHECK(secp256k1_gej_is_infinity(&r)); @@ -2718,7 +3839,7 @@ void test_ecmult_multi(secp256k1_scratch *scratch, secp256k1_ecmult_multi_func e secp256k1_gej_set_ge(&p0j, &pt[0]); secp256k1_ecmult(&ctx->ecmult_ctx, &r2, &p0j, &rs, &szero); - CHECK(ecmult_multi(&ctx->ecmult_ctx, scratch, &r, &szero, ecmult_multi_callback, &data, 20)); + CHECK(ecmult_multi(&ctx->error_callback, &ctx->ecmult_ctx, scratch, &r, &szero, ecmult_multi_callback, &data, 20)); secp256k1_gej_neg(&r2, &r2); secp256k1_gej_add_var(&r, &r, &r2, NULL); CHECK(secp256k1_gej_is_infinity(&r)); @@ -2731,13 +3852,13 @@ void test_ecmult_multi(secp256k1_scratch *scratch, secp256k1_ecmult_multi_func e } secp256k1_scalar_clear(&sc[0]); - CHECK(ecmult_multi(&ctx->ecmult_ctx, scratch, &r, &szero, ecmult_multi_callback, &data, 20)); + CHECK(ecmult_multi(&ctx->error_callback, &ctx->ecmult_ctx, scratch, &r, &szero, ecmult_multi_callback, &data, 20)); secp256k1_scalar_clear(&sc[1]); secp256k1_scalar_clear(&sc[2]); secp256k1_scalar_clear(&sc[3]); secp256k1_scalar_clear(&sc[4]); - CHECK(ecmult_multi(&ctx->ecmult_ctx, scratch, &r, &szero, ecmult_multi_callback, &data, 6)); - CHECK(ecmult_multi(&ctx->ecmult_ctx, scratch, &r, &szero, ecmult_multi_callback, &data, 5)); + CHECK(ecmult_multi(&ctx->error_callback, &ctx->ecmult_ctx, scratch, &r, &szero, ecmult_multi_callback, &data, 6)); + CHECK(ecmult_multi(&ctx->error_callback, &ctx->ecmult_ctx, scratch, &r, &szero, ecmult_multi_callback, &data, 5)); CHECK(secp256k1_gej_is_infinity(&r)); /* Run through s0*(t0*P) + s1*(t1*P) exhaustively for many small values of s0, s1, t0, t1 */ @@ -2782,7 +3903,7 @@ void test_ecmult_multi(secp256k1_scratch *scratch, secp256k1_ecmult_multi_func e secp256k1_scalar_add(&tmp1, &tmp1, &tmp2); secp256k1_ecmult(&ctx->ecmult_ctx, &expected, &ptgj, &tmp1, &szero); - CHECK(ecmult_multi(&ctx->ecmult_ctx, scratch, &actual, &szero, ecmult_multi_callback, &data, 2)); + CHECK(ecmult_multi(&ctx->error_callback, &ctx->ecmult_ctx, scratch, &actual, &szero, ecmult_multi_callback, &data, 2)); secp256k1_gej_neg(&expected, &expected); secp256k1_gej_add_var(&actual, &actual, &expected, NULL); CHECK(secp256k1_gej_is_infinity(&actual)); @@ -2793,17 +3914,35 @@ void test_ecmult_multi(secp256k1_scratch *scratch, secp256k1_ecmult_multi_func e } } +void test_ecmult_multi_batch_single(secp256k1_ecmult_multi_func ecmult_multi) { + secp256k1_scalar szero; + secp256k1_scalar sc; + secp256k1_ge pt; + secp256k1_gej r; + ecmult_multi_data data; + secp256k1_scratch *scratch_empty; + + random_group_element_test(&pt); + random_scalar_order(&sc); + data.sc = ≻ + data.pt = &pt; + secp256k1_scalar_set_int(&szero, 0); + + /* Try to multiply 1 point, but scratch space is empty.*/ + scratch_empty = secp256k1_scratch_create(&ctx->error_callback, 0); + CHECK(!ecmult_multi(&ctx->error_callback, &ctx->ecmult_ctx, scratch_empty, &r, &szero, ecmult_multi_callback, &data, 1)); + secp256k1_scratch_destroy(&ctx->error_callback, scratch_empty); +} + void test_secp256k1_pippenger_bucket_window_inv(void) { int i; CHECK(secp256k1_pippenger_bucket_window_inv(0) == 0); for(i = 1; i <= PIPPENGER_MAX_BUCKET_WINDOW; i++) { -#ifdef USE_ENDOMORPHISM /* Bucket_window of 8 is not used with endo */ if (i == 8) { continue; } -#endif CHECK(secp256k1_pippenger_bucket_window(secp256k1_pippenger_bucket_window_inv(i)) == i); if (i != PIPPENGER_MAX_BUCKET_WINDOW) { CHECK(secp256k1_pippenger_bucket_window(secp256k1_pippenger_bucket_window_inv(i)+1) > i); @@ -2816,28 +3955,82 @@ void test_secp256k1_pippenger_bucket_window_inv(void) { * for a given scratch space. */ void test_ecmult_multi_pippenger_max_points(void) { - size_t scratch_size = secp256k1_rand_int(256); + size_t scratch_size = secp256k1_testrand_int(256); size_t max_size = secp256k1_pippenger_scratch_size(secp256k1_pippenger_bucket_window_inv(PIPPENGER_MAX_BUCKET_WINDOW-1)+512, 12); secp256k1_scratch *scratch; size_t n_points_supported; int bucket_window = 0; for(; scratch_size < max_size; scratch_size+=256) { + size_t i; + size_t total_alloc; + size_t checkpoint; scratch = secp256k1_scratch_create(&ctx->error_callback, scratch_size); CHECK(scratch != NULL); - n_points_supported = secp256k1_pippenger_max_points(scratch); + checkpoint = secp256k1_scratch_checkpoint(&ctx->error_callback, scratch); + n_points_supported = secp256k1_pippenger_max_points(&ctx->error_callback, scratch); if (n_points_supported == 0) { - secp256k1_scratch_destroy(scratch); + secp256k1_scratch_destroy(&ctx->error_callback, scratch); continue; } bucket_window = secp256k1_pippenger_bucket_window(n_points_supported); - CHECK(secp256k1_scratch_allocate_frame(scratch, secp256k1_pippenger_scratch_size(n_points_supported, bucket_window), PIPPENGER_SCRATCH_OBJECTS)); - secp256k1_scratch_deallocate_frame(scratch); - secp256k1_scratch_destroy(scratch); + /* allocate `total_alloc` bytes over `PIPPENGER_SCRATCH_OBJECTS` many allocations */ + total_alloc = secp256k1_pippenger_scratch_size(n_points_supported, bucket_window); + for (i = 0; i < PIPPENGER_SCRATCH_OBJECTS - 1; i++) { + CHECK(secp256k1_scratch_alloc(&ctx->error_callback, scratch, 1)); + total_alloc--; + } + CHECK(secp256k1_scratch_alloc(&ctx->error_callback, scratch, total_alloc)); + secp256k1_scratch_apply_checkpoint(&ctx->error_callback, scratch, checkpoint); + secp256k1_scratch_destroy(&ctx->error_callback, scratch); } CHECK(bucket_window == PIPPENGER_MAX_BUCKET_WINDOW); } +void test_ecmult_multi_batch_size_helper(void) { + size_t n_batches, n_batch_points, max_n_batch_points, n; + + max_n_batch_points = 0; + n = 1; + CHECK(secp256k1_ecmult_multi_batch_size_helper(&n_batches, &n_batch_points, max_n_batch_points, n) == 0); + + max_n_batch_points = 1; + n = 0; + CHECK(secp256k1_ecmult_multi_batch_size_helper(&n_batches, &n_batch_points, max_n_batch_points, n) == 1); + CHECK(n_batches == 0); + CHECK(n_batch_points == 0); + + max_n_batch_points = 2; + n = 5; + CHECK(secp256k1_ecmult_multi_batch_size_helper(&n_batches, &n_batch_points, max_n_batch_points, n) == 1); + CHECK(n_batches == 3); + CHECK(n_batch_points == 2); + + max_n_batch_points = ECMULT_MAX_POINTS_PER_BATCH; + n = ECMULT_MAX_POINTS_PER_BATCH; + CHECK(secp256k1_ecmult_multi_batch_size_helper(&n_batches, &n_batch_points, max_n_batch_points, n) == 1); + CHECK(n_batches == 1); + CHECK(n_batch_points == ECMULT_MAX_POINTS_PER_BATCH); + + max_n_batch_points = ECMULT_MAX_POINTS_PER_BATCH + 1; + n = ECMULT_MAX_POINTS_PER_BATCH + 1; + CHECK(secp256k1_ecmult_multi_batch_size_helper(&n_batches, &n_batch_points, max_n_batch_points, n) == 1); + CHECK(n_batches == 2); + CHECK(n_batch_points == ECMULT_MAX_POINTS_PER_BATCH/2 + 1); + + max_n_batch_points = 1; + n = SIZE_MAX; + CHECK(secp256k1_ecmult_multi_batch_size_helper(&n_batches, &n_batch_points, max_n_batch_points, n) == 1); + CHECK(n_batches == SIZE_MAX); + CHECK(n_batch_points == 1); + + max_n_batch_points = 2; + n = SIZE_MAX; + CHECK(secp256k1_ecmult_multi_batch_size_helper(&n_batches, &n_batch_points, max_n_batch_points, n) == 1); + CHECK(n_batches == SIZE_MAX/2 + 1); + CHECK(n_batch_points == 2); +} + /** * Run secp256k1_ecmult_multi_var with num points and a scratch space restricted to * 1 <= i <= num points. @@ -2872,19 +4065,25 @@ void test_ecmult_multi_batching(void) { } data.sc = sc; data.pt = pt; + secp256k1_gej_neg(&r2, &r2); - /* Test with empty scratch space */ + /* Test with empty scratch space. It should compute the correct result using + * ecmult_mult_simple algorithm which doesn't require a scratch space. */ scratch = secp256k1_scratch_create(&ctx->error_callback, 0); - CHECK(!secp256k1_ecmult_multi_var(&ctx->ecmult_ctx, scratch, &r, &scG, ecmult_multi_callback, &data, 1)); - secp256k1_scratch_destroy(scratch); + CHECK(secp256k1_ecmult_multi_var(&ctx->error_callback, &ctx->ecmult_ctx, scratch, &r, &scG, ecmult_multi_callback, &data, n_points)); + secp256k1_gej_add_var(&r, &r, &r2, NULL); + CHECK(secp256k1_gej_is_infinity(&r)); + secp256k1_scratch_destroy(&ctx->error_callback, scratch); /* Test with space for 1 point in pippenger. That's not enough because - * ecmult_multi selects strauss which requires more memory. */ + * ecmult_multi selects strauss which requires more memory. It should + * therefore select the simple algorithm. */ scratch = secp256k1_scratch_create(&ctx->error_callback, secp256k1_pippenger_scratch_size(1, 1) + PIPPENGER_SCRATCH_OBJECTS*ALIGNMENT); - CHECK(!secp256k1_ecmult_multi_var(&ctx->ecmult_ctx, scratch, &r, &scG, ecmult_multi_callback, &data, 1)); - secp256k1_scratch_destroy(scratch); + CHECK(secp256k1_ecmult_multi_var(&ctx->error_callback, &ctx->ecmult_ctx, scratch, &r, &scG, ecmult_multi_callback, &data, n_points)); + secp256k1_gej_add_var(&r, &r, &r2, NULL); + CHECK(secp256k1_gej_is_infinity(&r)); + secp256k1_scratch_destroy(&ctx->error_callback, scratch); - secp256k1_gej_neg(&r2, &r2); for(i = 1; i <= n_points; i++) { if (i > ECMULT_PIPPENGER_THRESHOLD) { int bucket_window = secp256k1_pippenger_bucket_window(i); @@ -2894,10 +4093,10 @@ void test_ecmult_multi_batching(void) { size_t scratch_size = secp256k1_strauss_scratch_size(i); scratch = secp256k1_scratch_create(&ctx->error_callback, scratch_size + STRAUSS_SCRATCH_OBJECTS*ALIGNMENT); } - CHECK(secp256k1_ecmult_multi_var(&ctx->ecmult_ctx, scratch, &r, &scG, ecmult_multi_callback, &data, n_points)); + CHECK(secp256k1_ecmult_multi_var(&ctx->error_callback, &ctx->ecmult_ctx, scratch, &r, &scG, ecmult_multi_callback, &data, n_points)); secp256k1_gej_add_var(&r, &r, &r2, NULL); CHECK(secp256k1_gej_is_infinity(&r)); - secp256k1_scratch_destroy(scratch); + secp256k1_scratch_destroy(&ctx->error_callback, scratch); } free(sc); free(pt); @@ -2910,15 +4109,19 @@ void run_ecmult_multi_tests(void) { test_ecmult_multi_pippenger_max_points(); scratch = secp256k1_scratch_create(&ctx->error_callback, 819200); test_ecmult_multi(scratch, secp256k1_ecmult_multi_var); + test_ecmult_multi(NULL, secp256k1_ecmult_multi_var); test_ecmult_multi(scratch, secp256k1_ecmult_pippenger_batch_single); + test_ecmult_multi_batch_single(secp256k1_ecmult_pippenger_batch_single); test_ecmult_multi(scratch, secp256k1_ecmult_strauss_batch_single); - secp256k1_scratch_destroy(scratch); + test_ecmult_multi_batch_single(secp256k1_ecmult_strauss_batch_single); + secp256k1_scratch_destroy(&ctx->error_callback, scratch); /* Run test_ecmult_multi with space for exactly one point */ scratch = secp256k1_scratch_create(&ctx->error_callback, secp256k1_strauss_scratch_size(1) + STRAUSS_SCRATCH_OBJECTS*ALIGNMENT); test_ecmult_multi(scratch, secp256k1_ecmult_multi_var); - secp256k1_scratch_destroy(scratch); + secp256k1_scratch_destroy(&ctx->error_callback, scratch); + test_ecmult_multi_batch_size_helper(); test_ecmult_multi_batching(); } @@ -2978,17 +4181,15 @@ void test_constant_wnaf(const secp256k1_scalar *number, int w) { int skew; int bits = 256; secp256k1_scalar num = *number; + secp256k1_scalar scalar_skew; secp256k1_scalar_set_int(&x, 0); secp256k1_scalar_set_int(&shift, 1 << w); - /* With USE_ENDOMORPHISM on we only consider 128-bit numbers */ -#ifdef USE_ENDOMORPHISM for (i = 0; i < 16; ++i) { secp256k1_scalar_shr_int(&num, 8); } bits = 128; -#endif - skew = secp256k1_wnaf_const(wnaf, num, w, bits); + skew = secp256k1_wnaf_const(wnaf, &num, w, bits); for (i = WNAF_SIZE_BITS(bits, w); i >= 0; --i) { secp256k1_scalar t; @@ -3008,7 +4209,8 @@ void test_constant_wnaf(const secp256k1_scalar *number, int w) { secp256k1_scalar_add(&x, &x, &t); } /* Skew num because when encoding numbers as odd we use an offset */ - secp256k1_scalar_cadd_bit(&num, skew == 2, 1); + secp256k1_scalar_set_int(&scalar_skew, 1 << (skew == 2)); + secp256k1_scalar_add(&num, &num, &scalar_skew); CHECK(secp256k1_scalar_eq(&x, &num)); } @@ -3021,12 +4223,9 @@ void test_fixed_wnaf(const secp256k1_scalar *number, int w) { secp256k1_scalar_set_int(&x, 0); secp256k1_scalar_set_int(&shift, 1 << w); - /* With USE_ENDOMORPHISM on we only consider 128-bit numbers */ -#ifdef USE_ENDOMORPHISM for (i = 0; i < 16; ++i) { secp256k1_scalar_shr_int(&num, 8); } -#endif skew = secp256k1_wnaf_fixed(wnaf, &num, w); for (i = WNAF_SIZE(w)-1; i >= 0; --i) { @@ -3120,13 +4319,32 @@ void run_wnaf(void) { int i; secp256k1_scalar n = {{0}}; + test_constant_wnaf(&n, 4); /* Sanity check: 1 and 2 are the smallest odd and even numbers and should * have easier-to-diagnose failure modes */ n.d[0] = 1; test_constant_wnaf(&n, 4); n.d[0] = 2; test_constant_wnaf(&n, 4); - /* Test 0 */ + /* Test -1, because it's a special case in wnaf_const */ + n = secp256k1_scalar_one; + secp256k1_scalar_negate(&n, &n); + test_constant_wnaf(&n, 4); + + /* Test -2, which may not lead to overflows in wnaf_const */ + secp256k1_scalar_add(&n, &secp256k1_scalar_one, &secp256k1_scalar_one); + secp256k1_scalar_negate(&n, &n); + test_constant_wnaf(&n, 4); + + /* Test (1/2) - 1 = 1/-2 and 1/2 = (1/-2) + 1 + as corner cases of negation handling in wnaf_const */ + secp256k1_scalar_inverse(&n, &n); + test_constant_wnaf(&n, 4); + + secp256k1_scalar_add(&n, &n, &secp256k1_scalar_one); + test_constant_wnaf(&n, 4); + + /* Test 0 for fixed wnaf */ test_fixed_wnaf_small(); /* Random tests */ for (i = 0; i < count; i++) { @@ -3191,7 +4409,7 @@ void test_ecmult_gen_blind(void) { secp256k1_ge pge; random_scalar_order_test(&key); secp256k1_ecmult_gen(&ctx->ecmult_gen_ctx, &pgej, &key); - secp256k1_rand256(seed32); + secp256k1_testrand256(seed32); b = ctx->ecmult_gen_ctx.blind; i = ctx->ecmult_gen_ctx.initial; secp256k1_ecmult_gen_blind(&ctx->ecmult_gen_ctx, seed32); @@ -3223,16 +4441,18 @@ void run_ecmult_gen_blind(void) { } } -#ifdef USE_ENDOMORPHISM /***** ENDOMORPHISH TESTS *****/ -void test_scalar_split(void) { - secp256k1_scalar full; - secp256k1_scalar s1, slam; +void test_scalar_split(const secp256k1_scalar* full) { + secp256k1_scalar s, s1, slam; const unsigned char zero[32] = {0}; unsigned char tmp[32]; - random_scalar_order_test(&full); - secp256k1_scalar_split_lambda(&s1, &slam, &full); + secp256k1_scalar_split_lambda(&s1, &slam, full); + + /* check slam*lambda + s1 == full */ + secp256k1_scalar_mul(&s, &secp256k1_const_lambda, &slam); + secp256k1_scalar_add(&s, &s, &s1); + CHECK(secp256k1_scalar_eq(&s, full)); /* check that both are <= 128 bits in size */ if (secp256k1_scalar_is_high(&s1)) { @@ -3243,15 +4463,32 @@ void test_scalar_split(void) { } secp256k1_scalar_get_b32(tmp, &s1); - CHECK(memcmp(zero, tmp, 16) == 0); + CHECK(secp256k1_memcmp_var(zero, tmp, 16) == 0); secp256k1_scalar_get_b32(tmp, &slam); - CHECK(memcmp(zero, tmp, 16) == 0); + CHECK(secp256k1_memcmp_var(zero, tmp, 16) == 0); } + void run_endomorphism_tests(void) { - test_scalar_split(); + unsigned i; + static secp256k1_scalar s; + test_scalar_split(&secp256k1_scalar_zero); + test_scalar_split(&secp256k1_scalar_one); + secp256k1_scalar_negate(&s,&secp256k1_scalar_one); + test_scalar_split(&s); + test_scalar_split(&secp256k1_const_lambda); + secp256k1_scalar_add(&s, &secp256k1_const_lambda, &secp256k1_scalar_one); + test_scalar_split(&s); + + for (i = 0; i < 100U * count; ++i) { + secp256k1_scalar full; + random_scalar_order_test(&full); + test_scalar_split(&full); + } + for (i = 0; i < sizeof(scalars_near_split_bounds) / sizeof(scalars_near_split_bounds[0]); ++i) { + test_scalar_split(&scalars_near_split_bounds[i]); + } } -#endif void ec_pubkey_parse_pointtest(const unsigned char *input, int xvalid, int yvalid) { unsigned char pubkeyc[65]; @@ -3293,7 +4530,7 @@ void ec_pubkey_parse_pointtest(const unsigned char *input, int xvalid, int yvali CHECK(secp256k1_ec_pubkey_serialize(ctx, pubkeyo, &outl, &pubkey, SECP256K1_EC_COMPRESSED) == 1); VG_CHECK(pubkeyo, outl); CHECK(outl == 33); - CHECK(memcmp(&pubkeyo[1], &pubkeyc[1], 32) == 0); + CHECK(secp256k1_memcmp_var(&pubkeyo[1], &pubkeyc[1], 32) == 0); CHECK((pubkeyclen != 33) || (pubkeyo[0] == pubkeyc[0])); if (ypass) { /* This test isn't always done because we decode with alternative signs, so the y won't match. */ @@ -3309,7 +4546,7 @@ void ec_pubkey_parse_pointtest(const unsigned char *input, int xvalid, int yvali VG_CHECK(pubkeyo, outl); CHECK(outl == 65); CHECK(pubkeyo[0] == 4); - CHECK(memcmp(&pubkeyo[1], input, 64) == 0); + CHECK(secp256k1_memcmp_var(&pubkeyo[1], input, 64) == 0); } CHECK(ecount == 0); } else { @@ -3599,6 +4836,7 @@ void run_ec_pubkey_parse_test(void) { ecount = 0; VG_UNDEF(&pubkey, sizeof(pubkey)); CHECK(secp256k1_ec_pubkey_parse(ctx, &pubkey, pubkeyc, 65) == 1); + CHECK(secp256k1_ec_pubkey_parse(secp256k1_context_no_precomp, &pubkey, pubkeyc, 65) == 1); VG_CHECK(&pubkey, sizeof(pubkey)); CHECK(ecount == 0); VG_UNDEF(&ge, sizeof(ge)); @@ -3677,7 +4915,7 @@ void run_eckey_edge_case_test(void) { VG_UNDEF(&pubkey, sizeof(pubkey)); CHECK(secp256k1_ec_pubkey_create(ctx, &pubkey, orderc) == 0); VG_CHECK(&pubkey, sizeof(pubkey)); - CHECK(memcmp(&pubkey, zeros, sizeof(secp256k1_pubkey)) == 0); + CHECK(secp256k1_memcmp_var(&pubkey, zeros, sizeof(secp256k1_pubkey)) == 0); /* Maximum value is too large, reject. */ memset(ctmp, 255, 32); CHECK(secp256k1_ec_seckey_verify(ctx, ctmp) == 0); @@ -3685,7 +4923,7 @@ void run_eckey_edge_case_test(void) { VG_UNDEF(&pubkey, sizeof(pubkey)); CHECK(secp256k1_ec_pubkey_create(ctx, &pubkey, ctmp) == 0); VG_CHECK(&pubkey, sizeof(pubkey)); - CHECK(memcmp(&pubkey, zeros, sizeof(secp256k1_pubkey)) == 0); + CHECK(secp256k1_memcmp_var(&pubkey, zeros, sizeof(secp256k1_pubkey)) == 0); /* Zero is too small, reject. */ memset(ctmp, 0, 32); CHECK(secp256k1_ec_seckey_verify(ctx, ctmp) == 0); @@ -3693,7 +4931,7 @@ void run_eckey_edge_case_test(void) { VG_UNDEF(&pubkey, sizeof(pubkey)); CHECK(secp256k1_ec_pubkey_create(ctx, &pubkey, ctmp) == 0); VG_CHECK(&pubkey, sizeof(pubkey)); - CHECK(memcmp(&pubkey, zeros, sizeof(secp256k1_pubkey)) == 0); + CHECK(secp256k1_memcmp_var(&pubkey, zeros, sizeof(secp256k1_pubkey)) == 0); /* One must be accepted. */ ctmp[31] = 0x01; CHECK(secp256k1_ec_seckey_verify(ctx, ctmp) == 1); @@ -3701,7 +4939,7 @@ void run_eckey_edge_case_test(void) { VG_UNDEF(&pubkey, sizeof(pubkey)); CHECK(secp256k1_ec_pubkey_create(ctx, &pubkey, ctmp) == 1); VG_CHECK(&pubkey, sizeof(pubkey)); - CHECK(memcmp(&pubkey, zeros, sizeof(secp256k1_pubkey)) > 0); + CHECK(secp256k1_memcmp_var(&pubkey, zeros, sizeof(secp256k1_pubkey)) > 0); pubkey_one = pubkey; /* Group order + 1 is too large, reject. */ memcpy(ctmp, orderc, 32); @@ -3711,7 +4949,7 @@ void run_eckey_edge_case_test(void) { VG_UNDEF(&pubkey, sizeof(pubkey)); CHECK(secp256k1_ec_pubkey_create(ctx, &pubkey, ctmp) == 0); VG_CHECK(&pubkey, sizeof(pubkey)); - CHECK(memcmp(&pubkey, zeros, sizeof(secp256k1_pubkey)) == 0); + CHECK(secp256k1_memcmp_var(&pubkey, zeros, sizeof(secp256k1_pubkey)) == 0); /* -1 must be accepted. */ ctmp[31] = 0x40; CHECK(secp256k1_ec_seckey_verify(ctx, ctmp) == 1); @@ -3719,60 +4957,80 @@ void run_eckey_edge_case_test(void) { VG_UNDEF(&pubkey, sizeof(pubkey)); CHECK(secp256k1_ec_pubkey_create(ctx, &pubkey, ctmp) == 1); VG_CHECK(&pubkey, sizeof(pubkey)); - CHECK(memcmp(&pubkey, zeros, sizeof(secp256k1_pubkey)) > 0); + CHECK(secp256k1_memcmp_var(&pubkey, zeros, sizeof(secp256k1_pubkey)) > 0); pubkey_negone = pubkey; /* Tweak of zero leaves the value unchanged. */ memset(ctmp2, 0, 32); - CHECK(secp256k1_ec_privkey_tweak_add(ctx, ctmp, ctmp2) == 1); - CHECK(memcmp(orderc, ctmp, 31) == 0 && ctmp[31] == 0x40); + CHECK(secp256k1_ec_seckey_tweak_add(ctx, ctmp, ctmp2) == 1); + CHECK(secp256k1_memcmp_var(orderc, ctmp, 31) == 0 && ctmp[31] == 0x40); memcpy(&pubkey2, &pubkey, sizeof(pubkey)); CHECK(secp256k1_ec_pubkey_tweak_add(ctx, &pubkey, ctmp2) == 1); - CHECK(memcmp(&pubkey, &pubkey2, sizeof(pubkey)) == 0); + CHECK(secp256k1_memcmp_var(&pubkey, &pubkey2, sizeof(pubkey)) == 0); /* Multiply tweak of zero zeroizes the output. */ - CHECK(secp256k1_ec_privkey_tweak_mul(ctx, ctmp, ctmp2) == 0); - CHECK(memcmp(zeros, ctmp, 32) == 0); + CHECK(secp256k1_ec_seckey_tweak_mul(ctx, ctmp, ctmp2) == 0); + CHECK(secp256k1_memcmp_var(zeros, ctmp, 32) == 0); CHECK(secp256k1_ec_pubkey_tweak_mul(ctx, &pubkey, ctmp2) == 0); - CHECK(memcmp(&pubkey, zeros, sizeof(pubkey)) == 0); + CHECK(secp256k1_memcmp_var(&pubkey, zeros, sizeof(pubkey)) == 0); memcpy(&pubkey, &pubkey2, sizeof(pubkey)); - /* Overflowing key tweak zeroizes. */ + /* If seckey_tweak_add or seckey_tweak_mul are called with an overflowing + seckey, the seckey is zeroized. */ + memcpy(ctmp, orderc, 32); + memset(ctmp2, 0, 32); + ctmp2[31] = 0x01; + CHECK(secp256k1_ec_seckey_verify(ctx, ctmp2) == 1); + CHECK(secp256k1_ec_seckey_verify(ctx, ctmp) == 0); + CHECK(secp256k1_ec_seckey_tweak_add(ctx, ctmp, ctmp2) == 0); + CHECK(secp256k1_memcmp_var(zeros, ctmp, 32) == 0); + memcpy(ctmp, orderc, 32); + CHECK(secp256k1_ec_seckey_tweak_mul(ctx, ctmp, ctmp2) == 0); + CHECK(secp256k1_memcmp_var(zeros, ctmp, 32) == 0); + /* If seckey_tweak_add or seckey_tweak_mul are called with an overflowing + tweak, the seckey is zeroized. */ memcpy(ctmp, orderc, 32); ctmp[31] = 0x40; - CHECK(secp256k1_ec_privkey_tweak_add(ctx, ctmp, orderc) == 0); - CHECK(memcmp(zeros, ctmp, 32) == 0); + CHECK(secp256k1_ec_seckey_tweak_add(ctx, ctmp, orderc) == 0); + CHECK(secp256k1_memcmp_var(zeros, ctmp, 32) == 0); memcpy(ctmp, orderc, 32); ctmp[31] = 0x40; - CHECK(secp256k1_ec_privkey_tweak_mul(ctx, ctmp, orderc) == 0); - CHECK(memcmp(zeros, ctmp, 32) == 0); + CHECK(secp256k1_ec_seckey_tweak_mul(ctx, ctmp, orderc) == 0); + CHECK(secp256k1_memcmp_var(zeros, ctmp, 32) == 0); memcpy(ctmp, orderc, 32); ctmp[31] = 0x40; + /* If pubkey_tweak_add or pubkey_tweak_mul are called with an overflowing + tweak, the pubkey is zeroized. */ CHECK(secp256k1_ec_pubkey_tweak_add(ctx, &pubkey, orderc) == 0); - CHECK(memcmp(&pubkey, zeros, sizeof(pubkey)) == 0); + CHECK(secp256k1_memcmp_var(&pubkey, zeros, sizeof(pubkey)) == 0); memcpy(&pubkey, &pubkey2, sizeof(pubkey)); CHECK(secp256k1_ec_pubkey_tweak_mul(ctx, &pubkey, orderc) == 0); - CHECK(memcmp(&pubkey, zeros, sizeof(pubkey)) == 0); + CHECK(secp256k1_memcmp_var(&pubkey, zeros, sizeof(pubkey)) == 0); memcpy(&pubkey, &pubkey2, sizeof(pubkey)); - /* Private key tweaks results in a key of zero. */ + /* If the resulting key in secp256k1_ec_seckey_tweak_add and + * secp256k1_ec_pubkey_tweak_add is 0 the functions fail and in the latter + * case the pubkey is zeroized. */ + memcpy(ctmp, orderc, 32); + ctmp[31] = 0x40; + memset(ctmp2, 0, 32); ctmp2[31] = 1; - CHECK(secp256k1_ec_privkey_tweak_add(ctx, ctmp2, ctmp) == 0); - CHECK(memcmp(zeros, ctmp2, 32) == 0); + CHECK(secp256k1_ec_seckey_tweak_add(ctx, ctmp2, ctmp) == 0); + CHECK(secp256k1_memcmp_var(zeros, ctmp2, 32) == 0); ctmp2[31] = 1; CHECK(secp256k1_ec_pubkey_tweak_add(ctx, &pubkey, ctmp2) == 0); - CHECK(memcmp(&pubkey, zeros, sizeof(pubkey)) == 0); + CHECK(secp256k1_memcmp_var(&pubkey, zeros, sizeof(pubkey)) == 0); memcpy(&pubkey, &pubkey2, sizeof(pubkey)); /* Tweak computation wraps and results in a key of 1. */ ctmp2[31] = 2; - CHECK(secp256k1_ec_privkey_tweak_add(ctx, ctmp2, ctmp) == 1); - CHECK(memcmp(ctmp2, zeros, 31) == 0 && ctmp2[31] == 1); + CHECK(secp256k1_ec_seckey_tweak_add(ctx, ctmp2, ctmp) == 1); + CHECK(secp256k1_memcmp_var(ctmp2, zeros, 31) == 0 && ctmp2[31] == 1); ctmp2[31] = 2; CHECK(secp256k1_ec_pubkey_tweak_add(ctx, &pubkey, ctmp2) == 1); ctmp2[31] = 1; CHECK(secp256k1_ec_pubkey_create(ctx, &pubkey2, ctmp2) == 1); - CHECK(memcmp(&pubkey, &pubkey2, sizeof(pubkey)) == 0); + CHECK(secp256k1_memcmp_var(&pubkey, &pubkey2, sizeof(pubkey)) == 0); /* Tweak mul * 2 = 1+1. */ CHECK(secp256k1_ec_pubkey_tweak_add(ctx, &pubkey, ctmp2) == 1); ctmp2[31] = 2; CHECK(secp256k1_ec_pubkey_tweak_mul(ctx, &pubkey2, ctmp2) == 1); - CHECK(memcmp(&pubkey, &pubkey2, sizeof(pubkey)) == 0); + CHECK(secp256k1_memcmp_var(&pubkey, &pubkey2, sizeof(pubkey)) == 0); /* Test argument errors. */ ecount = 0; secp256k1_context_set_illegal_callback(ctx, counting_illegal_callback_fn, &ecount); @@ -3781,12 +5039,12 @@ void run_eckey_edge_case_test(void) { memset(&pubkey, 0, 32); CHECK(secp256k1_ec_pubkey_tweak_add(ctx, &pubkey, ctmp2) == 0); CHECK(ecount == 1); - CHECK(memcmp(&pubkey, zeros, sizeof(pubkey)) == 0); + CHECK(secp256k1_memcmp_var(&pubkey, zeros, sizeof(pubkey)) == 0); memcpy(&pubkey, &pubkey2, sizeof(pubkey)); memset(&pubkey2, 0, 32); CHECK(secp256k1_ec_pubkey_tweak_mul(ctx, &pubkey2, ctmp2) == 0); CHECK(ecount == 2); - CHECK(memcmp(&pubkey2, zeros, sizeof(pubkey2)) == 0); + CHECK(secp256k1_memcmp_var(&pubkey2, zeros, sizeof(pubkey2)) == 0); /* Plain argument errors. */ ecount = 0; CHECK(secp256k1_ec_seckey_verify(ctx, ctmp) == 1); @@ -3809,16 +5067,16 @@ void run_eckey_edge_case_test(void) { CHECK(ecount == 2); ecount = 0; memset(ctmp2, 0, 32); - CHECK(secp256k1_ec_privkey_tweak_add(ctx, NULL, ctmp2) == 0); + CHECK(secp256k1_ec_seckey_tweak_add(ctx, NULL, ctmp2) == 0); CHECK(ecount == 1); - CHECK(secp256k1_ec_privkey_tweak_add(ctx, ctmp, NULL) == 0); + CHECK(secp256k1_ec_seckey_tweak_add(ctx, ctmp, NULL) == 0); CHECK(ecount == 2); ecount = 0; memset(ctmp2, 0, 32); ctmp2[31] = 1; - CHECK(secp256k1_ec_privkey_tweak_mul(ctx, NULL, ctmp2) == 0); + CHECK(secp256k1_ec_seckey_tweak_mul(ctx, NULL, ctmp2) == 0); CHECK(ecount == 1); - CHECK(secp256k1_ec_privkey_tweak_mul(ctx, ctmp, NULL) == 0); + CHECK(secp256k1_ec_seckey_tweak_mul(ctx, ctmp, NULL) == 0); CHECK(ecount == 2); ecount = 0; CHECK(secp256k1_ec_pubkey_create(ctx, NULL, ctmp) == 0); @@ -3826,7 +5084,7 @@ void run_eckey_edge_case_test(void) { memset(&pubkey, 1, sizeof(pubkey)); CHECK(secp256k1_ec_pubkey_create(ctx, &pubkey, NULL) == 0); CHECK(ecount == 2); - CHECK(memcmp(&pubkey, zeros, sizeof(secp256k1_pubkey)) == 0); + CHECK(secp256k1_memcmp_var(&pubkey, zeros, sizeof(secp256k1_pubkey)) == 0); /* secp256k1_ec_pubkey_combine tests. */ ecount = 0; pubkeys[0] = &pubkey_one; @@ -3837,28 +5095,28 @@ void run_eckey_edge_case_test(void) { VG_UNDEF(&pubkey, sizeof(secp256k1_pubkey)); CHECK(secp256k1_ec_pubkey_combine(ctx, &pubkey, pubkeys, 0) == 0); VG_CHECK(&pubkey, sizeof(secp256k1_pubkey)); - CHECK(memcmp(&pubkey, zeros, sizeof(secp256k1_pubkey)) == 0); + CHECK(secp256k1_memcmp_var(&pubkey, zeros, sizeof(secp256k1_pubkey)) == 0); CHECK(ecount == 1); CHECK(secp256k1_ec_pubkey_combine(ctx, NULL, pubkeys, 1) == 0); - CHECK(memcmp(&pubkey, zeros, sizeof(secp256k1_pubkey)) == 0); + CHECK(secp256k1_memcmp_var(&pubkey, zeros, sizeof(secp256k1_pubkey)) == 0); CHECK(ecount == 2); memset(&pubkey, 255, sizeof(secp256k1_pubkey)); VG_UNDEF(&pubkey, sizeof(secp256k1_pubkey)); CHECK(secp256k1_ec_pubkey_combine(ctx, &pubkey, NULL, 1) == 0); VG_CHECK(&pubkey, sizeof(secp256k1_pubkey)); - CHECK(memcmp(&pubkey, zeros, sizeof(secp256k1_pubkey)) == 0); + CHECK(secp256k1_memcmp_var(&pubkey, zeros, sizeof(secp256k1_pubkey)) == 0); CHECK(ecount == 3); pubkeys[0] = &pubkey_negone; memset(&pubkey, 255, sizeof(secp256k1_pubkey)); VG_UNDEF(&pubkey, sizeof(secp256k1_pubkey)); CHECK(secp256k1_ec_pubkey_combine(ctx, &pubkey, pubkeys, 1) == 1); VG_CHECK(&pubkey, sizeof(secp256k1_pubkey)); - CHECK(memcmp(&pubkey, zeros, sizeof(secp256k1_pubkey)) > 0); + CHECK(secp256k1_memcmp_var(&pubkey, zeros, sizeof(secp256k1_pubkey)) > 0); CHECK(ecount == 3); len = 33; CHECK(secp256k1_ec_pubkey_serialize(ctx, ctmp, &len, &pubkey, SECP256K1_EC_COMPRESSED) == 1); CHECK(secp256k1_ec_pubkey_serialize(ctx, ctmp2, &len, &pubkey_negone, SECP256K1_EC_COMPRESSED) == 1); - CHECK(memcmp(ctmp, ctmp2, 33) == 0); + CHECK(secp256k1_memcmp_var(ctmp, ctmp2, 33) == 0); /* Result is infinity. */ pubkeys[0] = &pubkey_one; pubkeys[1] = &pubkey_negone; @@ -3866,7 +5124,7 @@ void run_eckey_edge_case_test(void) { VG_UNDEF(&pubkey, sizeof(secp256k1_pubkey)); CHECK(secp256k1_ec_pubkey_combine(ctx, &pubkey, pubkeys, 2) == 0); VG_CHECK(&pubkey, sizeof(secp256k1_pubkey)); - CHECK(memcmp(&pubkey, zeros, sizeof(secp256k1_pubkey)) == 0); + CHECK(secp256k1_memcmp_var(&pubkey, zeros, sizeof(secp256k1_pubkey)) == 0); CHECK(ecount == 3); /* Passes through infinity but comes out one. */ pubkeys[2] = &pubkey_one; @@ -3874,23 +5132,58 @@ void run_eckey_edge_case_test(void) { VG_UNDEF(&pubkey, sizeof(secp256k1_pubkey)); CHECK(secp256k1_ec_pubkey_combine(ctx, &pubkey, pubkeys, 3) == 1); VG_CHECK(&pubkey, sizeof(secp256k1_pubkey)); - CHECK(memcmp(&pubkey, zeros, sizeof(secp256k1_pubkey)) > 0); + CHECK(secp256k1_memcmp_var(&pubkey, zeros, sizeof(secp256k1_pubkey)) > 0); CHECK(ecount == 3); len = 33; CHECK(secp256k1_ec_pubkey_serialize(ctx, ctmp, &len, &pubkey, SECP256K1_EC_COMPRESSED) == 1); CHECK(secp256k1_ec_pubkey_serialize(ctx, ctmp2, &len, &pubkey_one, SECP256K1_EC_COMPRESSED) == 1); - CHECK(memcmp(ctmp, ctmp2, 33) == 0); + CHECK(secp256k1_memcmp_var(ctmp, ctmp2, 33) == 0); /* Adds to two. */ pubkeys[1] = &pubkey_one; memset(&pubkey, 255, sizeof(secp256k1_pubkey)); VG_UNDEF(&pubkey, sizeof(secp256k1_pubkey)); CHECK(secp256k1_ec_pubkey_combine(ctx, &pubkey, pubkeys, 2) == 1); VG_CHECK(&pubkey, sizeof(secp256k1_pubkey)); - CHECK(memcmp(&pubkey, zeros, sizeof(secp256k1_pubkey)) > 0); + CHECK(secp256k1_memcmp_var(&pubkey, zeros, sizeof(secp256k1_pubkey)) > 0); CHECK(ecount == 3); secp256k1_context_set_illegal_callback(ctx, NULL, NULL); } +void run_eckey_negate_test(void) { + unsigned char seckey[32]; + unsigned char seckey_tmp[32]; + + random_scalar_order_b32(seckey); + memcpy(seckey_tmp, seckey, 32); + + /* Verify negation changes the key and changes it back */ + CHECK(secp256k1_ec_seckey_negate(ctx, seckey) == 1); + CHECK(secp256k1_memcmp_var(seckey, seckey_tmp, 32) != 0); + CHECK(secp256k1_ec_seckey_negate(ctx, seckey) == 1); + CHECK(secp256k1_memcmp_var(seckey, seckey_tmp, 32) == 0); + + /* Check that privkey alias gives same result */ + CHECK(secp256k1_ec_seckey_negate(ctx, seckey) == 1); + CHECK(secp256k1_ec_privkey_negate(ctx, seckey_tmp) == 1); + CHECK(secp256k1_memcmp_var(seckey, seckey_tmp, 32) == 0); + + /* Negating all 0s fails */ + memset(seckey, 0, 32); + memset(seckey_tmp, 0, 32); + CHECK(secp256k1_ec_seckey_negate(ctx, seckey) == 0); + /* Check that seckey is not modified */ + CHECK(secp256k1_memcmp_var(seckey, seckey_tmp, 32) == 0); + + /* Negating an overflowing seckey fails and the seckey is zeroed. In this + * test, the seckey has 16 random bytes to ensure that ec_seckey_negate + * doesn't just set seckey to a constant value in case of failure. */ + random_scalar_order_b32(seckey); + memset(seckey, 0xFF, 16); + memset(seckey_tmp, 0, 32); + CHECK(secp256k1_ec_seckey_negate(ctx, seckey) == 0); + CHECK(secp256k1_memcmp_var(seckey, seckey_tmp, 32) == 0); +} + void random_sign(secp256k1_scalar *sigr, secp256k1_scalar *sigs, const secp256k1_scalar *key, const secp256k1_scalar *msg, int *recid) { secp256k1_scalar nonce; do { @@ -3904,13 +5197,15 @@ void test_ecdsa_sign_verify(void) { secp256k1_scalar one; secp256k1_scalar msg, key; secp256k1_scalar sigr, sigs; - int recid; int getrec; + /* Initialize recid to suppress a false positive -Wconditional-uninitialized in clang. + VG_UNDEF ensures that valgrind will still treat the variable as uninitialized. */ + int recid = -1; VG_UNDEF(&recid, sizeof(recid)); random_scalar_order_test(&msg); random_scalar_order_test(&key); secp256k1_ecmult_gen(&ctx->ecmult_gen_ctx, &pubj, &key); secp256k1_ge_set_gej(&pub, &pubj); - getrec = secp256k1_rand_bits(1); + getrec = secp256k1_testrand_bits(1); random_sign(&sigr, &sigs, &key, &msg, getrec?&recid:NULL); if (getrec) { CHECK(recid >= 0 && recid < 4); @@ -3977,7 +5272,7 @@ static int nonce_function_test_retry(unsigned char *nonce32, const unsigned char int is_empty_signature(const secp256k1_ecdsa_signature *sig) { static const unsigned char res[sizeof(secp256k1_ecdsa_signature)] = {0}; - return memcmp(sig, res, sizeof(secp256k1_ecdsa_signature)) == 0; + return secp256k1_memcmp_var(sig, res, sizeof(secp256k1_ecdsa_signature)) == 0; } void test_ecdsa_end_to_end(void) { @@ -4010,54 +5305,68 @@ void test_ecdsa_end_to_end(void) { CHECK(secp256k1_ec_pubkey_create(ctx, &pubkey, privkey) == 1); /* Verify exporting and importing public key. */ - CHECK(secp256k1_ec_pubkey_serialize(ctx, pubkeyc, &pubkeyclen, &pubkey, secp256k1_rand_bits(1) == 1 ? SECP256K1_EC_COMPRESSED : SECP256K1_EC_UNCOMPRESSED)); + CHECK(secp256k1_ec_pubkey_serialize(ctx, pubkeyc, &pubkeyclen, &pubkey, secp256k1_testrand_bits(1) == 1 ? SECP256K1_EC_COMPRESSED : SECP256K1_EC_UNCOMPRESSED)); memset(&pubkey, 0, sizeof(pubkey)); CHECK(secp256k1_ec_pubkey_parse(ctx, &pubkey, pubkeyc, pubkeyclen) == 1); /* Verify negation changes the key and changes it back */ memcpy(&pubkey_tmp, &pubkey, sizeof(pubkey)); CHECK(secp256k1_ec_pubkey_negate(ctx, &pubkey_tmp) == 1); - CHECK(memcmp(&pubkey_tmp, &pubkey, sizeof(pubkey)) != 0); + CHECK(secp256k1_memcmp_var(&pubkey_tmp, &pubkey, sizeof(pubkey)) != 0); CHECK(secp256k1_ec_pubkey_negate(ctx, &pubkey_tmp) == 1); - CHECK(memcmp(&pubkey_tmp, &pubkey, sizeof(pubkey)) == 0); + CHECK(secp256k1_memcmp_var(&pubkey_tmp, &pubkey, sizeof(pubkey)) == 0); /* Verify private key import and export. */ - CHECK(ec_privkey_export_der(ctx, seckey, &seckeylen, privkey, secp256k1_rand_bits(1) == 1)); + CHECK(ec_privkey_export_der(ctx, seckey, &seckeylen, privkey, secp256k1_testrand_bits(1) == 1)); CHECK(ec_privkey_import_der(ctx, privkey2, seckey, seckeylen) == 1); - CHECK(memcmp(privkey, privkey2, 32) == 0); + CHECK(secp256k1_memcmp_var(privkey, privkey2, 32) == 0); /* Optionally tweak the keys using addition. */ - if (secp256k1_rand_int(3) == 0) { + if (secp256k1_testrand_int(3) == 0) { int ret1; int ret2; + int ret3; unsigned char rnd[32]; + unsigned char privkey_tmp[32]; secp256k1_pubkey pubkey2; - secp256k1_rand256_test(rnd); - ret1 = secp256k1_ec_privkey_tweak_add(ctx, privkey, rnd); + secp256k1_testrand256_test(rnd); + memcpy(privkey_tmp, privkey, 32); + ret1 = secp256k1_ec_seckey_tweak_add(ctx, privkey, rnd); ret2 = secp256k1_ec_pubkey_tweak_add(ctx, &pubkey, rnd); + /* Check that privkey alias gives same result */ + ret3 = secp256k1_ec_privkey_tweak_add(ctx, privkey_tmp, rnd); CHECK(ret1 == ret2); + CHECK(ret2 == ret3); if (ret1 == 0) { return; } + CHECK(secp256k1_memcmp_var(privkey, privkey_tmp, 32) == 0); CHECK(secp256k1_ec_pubkey_create(ctx, &pubkey2, privkey) == 1); - CHECK(memcmp(&pubkey, &pubkey2, sizeof(pubkey)) == 0); + CHECK(secp256k1_memcmp_var(&pubkey, &pubkey2, sizeof(pubkey)) == 0); } /* Optionally tweak the keys using multiplication. */ - if (secp256k1_rand_int(3) == 0) { + if (secp256k1_testrand_int(3) == 0) { int ret1; int ret2; + int ret3; unsigned char rnd[32]; + unsigned char privkey_tmp[32]; secp256k1_pubkey pubkey2; - secp256k1_rand256_test(rnd); - ret1 = secp256k1_ec_privkey_tweak_mul(ctx, privkey, rnd); + secp256k1_testrand256_test(rnd); + memcpy(privkey_tmp, privkey, 32); + ret1 = secp256k1_ec_seckey_tweak_mul(ctx, privkey, rnd); ret2 = secp256k1_ec_pubkey_tweak_mul(ctx, &pubkey, rnd); + /* Check that privkey alias gives same result */ + ret3 = secp256k1_ec_privkey_tweak_mul(ctx, privkey_tmp, rnd); CHECK(ret1 == ret2); + CHECK(ret2 == ret3); if (ret1 == 0) { return; } + CHECK(secp256k1_memcmp_var(privkey, privkey_tmp, 32) == 0); CHECK(secp256k1_ec_pubkey_create(ctx, &pubkey2, privkey) == 1); - CHECK(memcmp(&pubkey, &pubkey2, sizeof(pubkey)) == 0); + CHECK(secp256k1_memcmp_var(&pubkey, &pubkey2, sizeof(pubkey)) == 0); } /* Sign. */ @@ -4069,13 +5378,13 @@ void test_ecdsa_end_to_end(void) { extra[31] = 0; extra[0] = 1; CHECK(secp256k1_ecdsa_sign(ctx, &signature[3], message, privkey, NULL, extra) == 1); - CHECK(memcmp(&signature[0], &signature[4], sizeof(signature[0])) == 0); - CHECK(memcmp(&signature[0], &signature[1], sizeof(signature[0])) != 0); - CHECK(memcmp(&signature[0], &signature[2], sizeof(signature[0])) != 0); - CHECK(memcmp(&signature[0], &signature[3], sizeof(signature[0])) != 0); - CHECK(memcmp(&signature[1], &signature[2], sizeof(signature[0])) != 0); - CHECK(memcmp(&signature[1], &signature[3], sizeof(signature[0])) != 0); - CHECK(memcmp(&signature[2], &signature[3], sizeof(signature[0])) != 0); + CHECK(secp256k1_memcmp_var(&signature[0], &signature[4], sizeof(signature[0])) == 0); + CHECK(secp256k1_memcmp_var(&signature[0], &signature[1], sizeof(signature[0])) != 0); + CHECK(secp256k1_memcmp_var(&signature[0], &signature[2], sizeof(signature[0])) != 0); + CHECK(secp256k1_memcmp_var(&signature[0], &signature[3], sizeof(signature[0])) != 0); + CHECK(secp256k1_memcmp_var(&signature[1], &signature[2], sizeof(signature[0])) != 0); + CHECK(secp256k1_memcmp_var(&signature[1], &signature[3], sizeof(signature[0])) != 0); + CHECK(secp256k1_memcmp_var(&signature[2], &signature[3], sizeof(signature[0])) != 0); /* Verify. */ CHECK(secp256k1_ecdsa_verify(ctx, &signature[0], message, &pubkey) == 1); CHECK(secp256k1_ecdsa_verify(ctx, &signature[1], message, &pubkey) == 1); @@ -4096,7 +5405,7 @@ void test_ecdsa_end_to_end(void) { secp256k1_ecdsa_signature_save(&signature[5], &r, &s); CHECK(!secp256k1_ecdsa_signature_normalize(ctx, NULL, &signature[5])); CHECK(secp256k1_ecdsa_verify(ctx, &signature[5], message, &pubkey) == 1); - CHECK(memcmp(&signature[5], &signature[0], 64) == 0); + CHECK(secp256k1_memcmp_var(&signature[5], &signature[0], 64) == 0); /* Serialize/parse DER and verify again */ CHECK(secp256k1_ecdsa_signature_serialize_der(ctx, sig, &siglen, &signature[0]) == 1); @@ -4106,7 +5415,7 @@ void test_ecdsa_end_to_end(void) { /* Serialize/destroy/parse DER and verify again. */ siglen = 74; CHECK(secp256k1_ecdsa_signature_serialize_der(ctx, sig, &siglen, &signature[0]) == 1); - sig[secp256k1_rand_int(siglen)] += 1 + secp256k1_rand_int(255); + sig[secp256k1_testrand_int(siglen)] += 1 + secp256k1_testrand_int(255); CHECK(secp256k1_ecdsa_signature_parse_der(ctx, &signature[0], sig, siglen) == 0 || secp256k1_ecdsa_verify(ctx, &signature[0], message, &pubkey) == 0); } @@ -4116,23 +5425,23 @@ void test_random_pubkeys(void) { secp256k1_ge elem2; unsigned char in[65]; /* Generate some randomly sized pubkeys. */ - size_t len = secp256k1_rand_bits(2) == 0 ? 65 : 33; - if (secp256k1_rand_bits(2) == 0) { - len = secp256k1_rand_bits(6); + size_t len = secp256k1_testrand_bits(2) == 0 ? 65 : 33; + if (secp256k1_testrand_bits(2) == 0) { + len = secp256k1_testrand_bits(6); } if (len == 65) { - in[0] = secp256k1_rand_bits(1) ? 4 : (secp256k1_rand_bits(1) ? 6 : 7); + in[0] = secp256k1_testrand_bits(1) ? 4 : (secp256k1_testrand_bits(1) ? 6 : 7); } else { - in[0] = secp256k1_rand_bits(1) ? 2 : 3; + in[0] = secp256k1_testrand_bits(1) ? 2 : 3; } - if (secp256k1_rand_bits(3) == 0) { - in[0] = secp256k1_rand_bits(8); + if (secp256k1_testrand_bits(3) == 0) { + in[0] = secp256k1_testrand_bits(8); } if (len > 1) { - secp256k1_rand256(&in[1]); + secp256k1_testrand256(&in[1]); } if (len > 33) { - secp256k1_rand256(&in[33]); + secp256k1_testrand256(&in[33]); } if (secp256k1_eckey_pubkey_parse(&elem, in, len)) { unsigned char out[65]; @@ -4143,7 +5452,7 @@ void test_random_pubkeys(void) { /* If the pubkey can be parsed, it should round-trip... */ CHECK(secp256k1_eckey_pubkey_serialize(&elem, out, &size, len == 33)); CHECK(size == len); - CHECK(memcmp(&in[1], &out[1], len-1) == 0); + CHECK(secp256k1_memcmp_var(&in[1], &out[1], len-1) == 0); /* ... except for the type of hybrid inputs. */ if ((in[0] != 6) && (in[0] != 7)) { CHECK(in[0] == out[0]); @@ -4154,7 +5463,7 @@ void test_random_pubkeys(void) { CHECK(secp256k1_eckey_pubkey_parse(&elem2, in, size)); ge_equals_ge(&elem,&elem2); /* Check that the X9.62 hybrid type is checked. */ - in[0] = secp256k1_rand_bits(1) ? 6 : 7; + in[0] = secp256k1_testrand_bits(1) ? 6 : 7; res = secp256k1_eckey_pubkey_parse(&elem2, in, size); if (firstb == 2 || firstb == 3) { if (in[0] == firstb + 4) { @@ -4166,11 +5475,60 @@ void test_random_pubkeys(void) { if (res) { ge_equals_ge(&elem,&elem2); CHECK(secp256k1_eckey_pubkey_serialize(&elem, out, &size, 0)); - CHECK(memcmp(&in[1], &out[1], 64) == 0); + CHECK(secp256k1_memcmp_var(&in[1], &out[1], 64) == 0); } } } +void run_pubkey_comparison(void) { + unsigned char pk1_ser[33] = { + 0x02, + 0x58, 0x84, 0xb3, 0xa2, 0x4b, 0x97, 0x37, 0x88, 0x92, 0x38, 0xa6, 0x26, 0x62, 0x52, 0x35, 0x11, + 0xd0, 0x9a, 0xa1, 0x1b, 0x80, 0x0b, 0x5e, 0x93, 0x80, 0x26, 0x11, 0xef, 0x67, 0x4b, 0xd9, 0x23 + }; + const unsigned char pk2_ser[33] = { + 0x02, + 0xde, 0x36, 0x0e, 0x87, 0x59, 0x8f, 0x3c, 0x01, 0x36, 0x2a, 0x2a, 0xb8, 0xc6, 0xf4, 0x5e, 0x4d, + 0xb2, 0xc2, 0xd5, 0x03, 0xa7, 0xf9, 0xf1, 0x4f, 0xa8, 0xfa, 0x95, 0xa8, 0xe9, 0x69, 0x76, 0x1c + }; + secp256k1_pubkey pk1; + secp256k1_pubkey pk2; + int32_t ecount = 0; + + CHECK(secp256k1_ec_pubkey_parse(ctx, &pk1, pk1_ser, sizeof(pk1_ser)) == 1); + CHECK(secp256k1_ec_pubkey_parse(ctx, &pk2, pk2_ser, sizeof(pk2_ser)) == 1); + + secp256k1_context_set_illegal_callback(ctx, counting_illegal_callback_fn, &ecount); + CHECK(secp256k1_ec_pubkey_cmp(ctx, NULL, &pk2) < 0); + CHECK(ecount == 1); + CHECK(secp256k1_ec_pubkey_cmp(ctx, &pk1, NULL) > 0); + CHECK(ecount == 2); + CHECK(secp256k1_ec_pubkey_cmp(ctx, &pk1, &pk2) < 0); + CHECK(secp256k1_ec_pubkey_cmp(ctx, &pk2, &pk1) > 0); + CHECK(secp256k1_ec_pubkey_cmp(ctx, &pk1, &pk1) == 0); + CHECK(secp256k1_ec_pubkey_cmp(ctx, &pk2, &pk2) == 0); + CHECK(ecount == 2); + { + secp256k1_pubkey pk_tmp; + memset(&pk_tmp, 0, sizeof(pk_tmp)); /* illegal pubkey */ + CHECK(secp256k1_ec_pubkey_cmp(ctx, &pk_tmp, &pk2) < 0); + CHECK(ecount == 3); + CHECK(secp256k1_ec_pubkey_cmp(ctx, &pk_tmp, &pk_tmp) == 0); + CHECK(ecount == 5); + CHECK(secp256k1_ec_pubkey_cmp(ctx, &pk2, &pk_tmp) > 0); + CHECK(ecount == 6); + } + + secp256k1_context_set_illegal_callback(ctx, NULL, NULL); + + /* Make pk2 the same as pk1 but with 3 rather than 2. Note that in + * an uncompressed encoding, these would have the opposite ordering */ + pk1_ser[0] = 3; + CHECK(secp256k1_ec_pubkey_parse(ctx, &pk2, pk1_ser, sizeof(pk1_ser)) == 1); + CHECK(secp256k1_ec_pubkey_cmp(ctx, &pk1, &pk2) < 0); + CHECK(secp256k1_ec_pubkey_cmp(ctx, &pk2, &pk1) > 0); +} + void run_random_pubkeys(void) { int i; for (i = 0; i < 10*count; i++) { @@ -4222,21 +5580,21 @@ int test_ecdsa_der_parse(const unsigned char *sig, size_t siglen, int certainly_ parsed_der = secp256k1_ecdsa_signature_parse_der(ctx, &sig_der, sig, siglen); if (parsed_der) { ret |= (!secp256k1_ecdsa_signature_serialize_compact(ctx, compact_der, &sig_der)) << 0; - valid_der = (memcmp(compact_der, zeroes, 32) != 0) && (memcmp(compact_der + 32, zeroes, 32) != 0); + valid_der = (secp256k1_memcmp_var(compact_der, zeroes, 32) != 0) && (secp256k1_memcmp_var(compact_der + 32, zeroes, 32) != 0); } if (valid_der) { ret |= (!secp256k1_ecdsa_signature_serialize_der(ctx, roundtrip_der, &len_der, &sig_der)) << 1; - roundtrips_der = (len_der == siglen) && memcmp(roundtrip_der, sig, siglen) == 0; + roundtrips_der = (len_der == siglen) && secp256k1_memcmp_var(roundtrip_der, sig, siglen) == 0; } parsed_der_lax = ecdsa_signature_parse_der_lax(ctx, &sig_der_lax, sig, siglen); if (parsed_der_lax) { ret |= (!secp256k1_ecdsa_signature_serialize_compact(ctx, compact_der_lax, &sig_der_lax)) << 10; - valid_der_lax = (memcmp(compact_der_lax, zeroes, 32) != 0) && (memcmp(compact_der_lax + 32, zeroes, 32) != 0); + valid_der_lax = (secp256k1_memcmp_var(compact_der_lax, zeroes, 32) != 0) && (secp256k1_memcmp_var(compact_der_lax + 32, zeroes, 32) != 0); } if (valid_der_lax) { ret |= (!secp256k1_ecdsa_signature_serialize_der(ctx, roundtrip_der_lax, &len_der_lax, &sig_der_lax)) << 11; - roundtrips_der_lax = (len_der_lax == siglen) && memcmp(roundtrip_der_lax, sig, siglen) == 0; + roundtrips_der_lax = (len_der_lax == siglen) && secp256k1_memcmp_var(roundtrip_der_lax, sig, siglen) == 0; } if (certainly_der) { @@ -4252,7 +5610,7 @@ int test_ecdsa_der_parse(const unsigned char *sig, size_t siglen, int certainly_ if (valid_der) { ret |= (!roundtrips_der_lax) << 12; ret |= (len_der != len_der_lax) << 13; - ret |= (memcmp(roundtrip_der_lax, roundtrip_der, len_der) != 0) << 14; + ret |= ((len_der != len_der_lax) || (secp256k1_memcmp_var(roundtrip_der_lax, roundtrip_der, len_der) != 0)) << 14; } ret |= (roundtrips_der != roundtrips_der_lax) << 15; if (parsed_der) { @@ -4269,19 +5627,19 @@ int test_ecdsa_der_parse(const unsigned char *sig, size_t siglen, int certainly_ if (valid_openssl) { unsigned char tmp[32] = {0}; BN_bn2bin(r, tmp + 32 - BN_num_bytes(r)); - valid_openssl = memcmp(tmp, max_scalar, 32) < 0; + valid_openssl = secp256k1_memcmp_var(tmp, max_scalar, 32) < 0; } if (valid_openssl) { unsigned char tmp[32] = {0}; BN_bn2bin(s, tmp + 32 - BN_num_bytes(s)); - valid_openssl = memcmp(tmp, max_scalar, 32) < 0; + valid_openssl = secp256k1_memcmp_var(tmp, max_scalar, 32) < 0; } } len_openssl = i2d_ECDSA_SIG(sig_openssl, NULL); if (len_openssl <= 2048) { unsigned char *ptr = roundtrip_openssl; CHECK(i2d_ECDSA_SIG(sig_openssl, &ptr) == len_openssl); - roundtrips_openssl = valid_openssl && ((size_t)len_openssl == siglen) && (memcmp(roundtrip_openssl, sig, siglen) == 0); + roundtrips_openssl = valid_openssl && ((size_t)len_openssl == siglen) && (secp256k1_memcmp_var(roundtrip_openssl, sig, siglen) == 0); } else { len_openssl = 0; } @@ -4293,7 +5651,7 @@ int test_ecdsa_der_parse(const unsigned char *sig, size_t siglen, int certainly_ ret |= (roundtrips_der != roundtrips_openssl) << 7; if (roundtrips_openssl) { ret |= (len_der != (size_t)len_openssl) << 8; - ret |= (memcmp(roundtrip_der, roundtrip_openssl, len_der) != 0) << 9; + ret |= ((len_der != (size_t)len_openssl) || (secp256k1_memcmp_var(roundtrip_der, roundtrip_openssl, len_der) != 0)) << 9; } #endif return ret; @@ -4313,27 +5671,27 @@ static void assign_big_endian(unsigned char *ptr, size_t ptrlen, uint32_t val) { static void damage_array(unsigned char *sig, size_t *len) { int pos; - int action = secp256k1_rand_bits(3); + int action = secp256k1_testrand_bits(3); if (action < 1 && *len > 3) { /* Delete a byte. */ - pos = secp256k1_rand_int(*len); + pos = secp256k1_testrand_int(*len); memmove(sig + pos, sig + pos + 1, *len - pos - 1); (*len)--; return; } else if (action < 2 && *len < 2048) { /* Insert a byte. */ - pos = secp256k1_rand_int(1 + *len); + pos = secp256k1_testrand_int(1 + *len); memmove(sig + pos + 1, sig + pos, *len - pos); - sig[pos] = secp256k1_rand_bits(8); + sig[pos] = secp256k1_testrand_bits(8); (*len)++; return; } else if (action < 4) { /* Modify a byte. */ - sig[secp256k1_rand_int(*len)] += 1 + secp256k1_rand_int(255); + sig[secp256k1_testrand_int(*len)] += 1 + secp256k1_testrand_int(255); return; } else { /* action < 8 */ /* Modify a bit. */ - sig[secp256k1_rand_int(*len)] ^= 1 << secp256k1_rand_bits(3); + sig[secp256k1_testrand_int(*len)] ^= 1 << secp256k1_testrand_bits(3); return; } } @@ -4346,23 +5704,23 @@ static void random_ber_signature(unsigned char *sig, size_t *len, int* certainly int n; *len = 0; - der = secp256k1_rand_bits(2) == 0; + der = secp256k1_testrand_bits(2) == 0; *certainly_der = der; *certainly_not_der = 0; - indet = der ? 0 : secp256k1_rand_int(10) == 0; + indet = der ? 0 : secp256k1_testrand_int(10) == 0; for (n = 0; n < 2; n++) { /* We generate two classes of numbers: nlow==1 "low" ones (up to 32 bytes), nlow==0 "high" ones (32 bytes with 129 top bits set, or larger than 32 bytes) */ - nlow[n] = der ? 1 : (secp256k1_rand_bits(3) != 0); + nlow[n] = der ? 1 : (secp256k1_testrand_bits(3) != 0); /* The length of the number in bytes (the first byte of which will always be nonzero) */ - nlen[n] = nlow[n] ? secp256k1_rand_int(33) : 32 + secp256k1_rand_int(200) * secp256k1_rand_int(8) / 8; + nlen[n] = nlow[n] ? secp256k1_testrand_int(33) : 32 + secp256k1_testrand_int(200) * secp256k1_testrand_int(8) / 8; CHECK(nlen[n] <= 232); /* The top bit of the number. */ - nhbit[n] = (nlow[n] == 0 && nlen[n] == 32) ? 1 : (nlen[n] == 0 ? 0 : secp256k1_rand_bits(1)); + nhbit[n] = (nlow[n] == 0 && nlen[n] == 32) ? 1 : (nlen[n] == 0 ? 0 : secp256k1_testrand_bits(1)); /* The top byte of the number (after the potential hardcoded 16 0xFF characters for "high" 32 bytes numbers) */ - nhbyte[n] = nlen[n] == 0 ? 0 : (nhbit[n] ? 128 + secp256k1_rand_bits(7) : 1 + secp256k1_rand_int(127)); + nhbyte[n] = nlen[n] == 0 ? 0 : (nhbit[n] ? 128 + secp256k1_testrand_bits(7) : 1 + secp256k1_testrand_int(127)); /* The number of zero bytes in front of the number (which is 0 or 1 in case of DER, otherwise we extend up to 300 bytes) */ - nzlen[n] = der ? ((nlen[n] == 0 || nhbit[n]) ? 1 : 0) : (nlow[n] ? secp256k1_rand_int(3) : secp256k1_rand_int(300 - nlen[n]) * secp256k1_rand_int(8) / 8); + nzlen[n] = der ? ((nlen[n] == 0 || nhbit[n]) ? 1 : 0) : (nlow[n] ? secp256k1_testrand_int(3) : secp256k1_testrand_int(300 - nlen[n]) * secp256k1_testrand_int(8) / 8); if (nzlen[n] > ((nlen[n] == 0 || nhbit[n]) ? 1 : 0)) { *certainly_not_der = 1; } @@ -4371,7 +5729,7 @@ static void random_ber_signature(unsigned char *sig, size_t *len, int* certainly nlenlen[n] = nlen[n] + nzlen[n] < 128 ? 0 : (nlen[n] + nzlen[n] < 256 ? 1 : 2); if (!der) { /* nlenlen[n] max 127 bytes */ - int add = secp256k1_rand_int(127 - nlenlen[n]) * secp256k1_rand_int(16) * secp256k1_rand_int(16) / 256; + int add = secp256k1_testrand_int(127 - nlenlen[n]) * secp256k1_testrand_int(16) * secp256k1_testrand_int(16) / 256; nlenlen[n] += add; if (add != 0) { *certainly_not_der = 1; @@ -4385,7 +5743,7 @@ static void random_ber_signature(unsigned char *sig, size_t *len, int* certainly CHECK(tlen <= 856); /* The length of the garbage inside the tuple. */ - elen = (der || indet) ? 0 : secp256k1_rand_int(980 - tlen) * secp256k1_rand_int(8) / 8; + elen = (der || indet) ? 0 : secp256k1_testrand_int(980 - tlen) * secp256k1_testrand_int(8) / 8; if (elen != 0) { *certainly_not_der = 1; } @@ -4393,7 +5751,7 @@ static void random_ber_signature(unsigned char *sig, size_t *len, int* certainly CHECK(tlen <= 980); /* The length of the garbage after the end of the tuple. */ - glen = der ? 0 : secp256k1_rand_int(990 - tlen) * secp256k1_rand_int(8) / 8; + glen = der ? 0 : secp256k1_testrand_int(990 - tlen) * secp256k1_testrand_int(8) / 8; if (glen != 0) { *certainly_not_der = 1; } @@ -4408,7 +5766,7 @@ static void random_ber_signature(unsigned char *sig, size_t *len, int* certainly } else { int tlenlen = tlen < 128 ? 0 : (tlen < 256 ? 1 : 2); if (!der) { - int add = secp256k1_rand_int(127 - tlenlen) * secp256k1_rand_int(16) * secp256k1_rand_int(16) / 256; + int add = secp256k1_testrand_int(127 - tlenlen) * secp256k1_testrand_int(16) * secp256k1_testrand_int(16) / 256; tlenlen += add; if (add != 0) { *certainly_not_der = 1; @@ -4459,13 +5817,13 @@ static void random_ber_signature(unsigned char *sig, size_t *len, int* certainly nlen[n]--; } /* Generate remaining random bytes of number */ - secp256k1_rand_bytes_test(sig + *len, nlen[n]); + secp256k1_testrand_bytes_test(sig + *len, nlen[n]); *len += nlen[n]; nlen[n] = 0; } /* Generate random garbage inside tuple. */ - secp256k1_rand_bytes_test(sig + *len, elen); + secp256k1_testrand_bytes_test(sig + *len, elen); *len += elen; /* Generate end-of-contents bytes. */ @@ -4477,7 +5835,7 @@ static void random_ber_signature(unsigned char *sig, size_t *len, int* certainly CHECK(tlen + glen <= 1121); /* Generate random garbage outside tuple. */ - secp256k1_rand_bytes_test(sig + *len, glen); + secp256k1_testrand_bytes_test(sig + *len, glen); *len += glen; tlen += glen; CHECK(tlen <= 1121); @@ -4809,11 +6167,11 @@ void test_ecdsa_edge_cases(void) { CHECK(!is_empty_signature(&sig)); CHECK(secp256k1_ecdsa_sign(ctx, &sig2, msg, key, nonce_function_rfc6979, extra) == 1); CHECK(!is_empty_signature(&sig2)); - CHECK(memcmp(&sig, &sig2, sizeof(sig)) == 0); + CHECK(secp256k1_memcmp_var(&sig, &sig2, sizeof(sig)) == 0); /* The default nonce function is deterministic. */ CHECK(secp256k1_ecdsa_sign(ctx, &sig2, msg, key, NULL, extra) == 1); CHECK(!is_empty_signature(&sig2)); - CHECK(memcmp(&sig, &sig2, sizeof(sig)) == 0); + CHECK(secp256k1_memcmp_var(&sig, &sig2, sizeof(sig)) == 0); /* The default nonce function changes output with different messages. */ for(i = 0; i < 256; i++) { int j; @@ -4860,12 +6218,12 @@ void test_ecdsa_edge_cases(void) { VG_CHECK(nonce3,32); CHECK(nonce_function_rfc6979(nonce4, zeros, zeros, zeros, (void *)zeros, 0) == 1); VG_CHECK(nonce4,32); - CHECK(memcmp(nonce, nonce2, 32) != 0); - CHECK(memcmp(nonce, nonce3, 32) != 0); - CHECK(memcmp(nonce, nonce4, 32) != 0); - CHECK(memcmp(nonce2, nonce3, 32) != 0); - CHECK(memcmp(nonce2, nonce4, 32) != 0); - CHECK(memcmp(nonce3, nonce4, 32) != 0); + CHECK(secp256k1_memcmp_var(nonce, nonce2, 32) != 0); + CHECK(secp256k1_memcmp_var(nonce, nonce3, 32) != 0); + CHECK(secp256k1_memcmp_var(nonce, nonce4, 32) != 0); + CHECK(secp256k1_memcmp_var(nonce2, nonce3, 32) != 0); + CHECK(secp256k1_memcmp_var(nonce2, nonce4, 32) != 0); + CHECK(secp256k1_memcmp_var(nonce3, nonce4, 32) != 0); } @@ -4894,7 +6252,7 @@ EC_KEY *get_openssl_key(const unsigned char *key32) { unsigned char privkey[300]; size_t privkeylen; const unsigned char* pbegin = privkey; - int compr = secp256k1_rand_bits(1); + int compr = secp256k1_testrand_bits(1); EC_KEY *ec_key = EC_KEY_new_by_curve_name(NID_secp256k1); CHECK(ec_privkey_export_der(ctx, privkey, &privkeylen, key32, compr)); CHECK(d2i_ECPrivateKey(&ec_key, &pbegin, privkeylen)); @@ -4915,7 +6273,7 @@ void test_ecdsa_openssl(void) { unsigned char message[32]; unsigned char signature[80]; unsigned char key32[32]; - secp256k1_rand256_test(message); + secp256k1_testrand256_test(message); secp256k1_scalar_set_b32(&msg, message, NULL); random_scalar_order_test(&key); secp256k1_scalar_get_b32(key32, &key); @@ -4953,78 +6311,238 @@ void run_ecdsa_openssl(void) { # include "modules/recovery/tests_impl.h" #endif +#ifdef ENABLE_MODULE_EXTRAKEYS +# include "modules/extrakeys/tests_impl.h" +#endif + +#ifdef ENABLE_MODULE_SCHNORRSIG +# include "modules/schnorrsig/tests_impl.h" +#endif + +void run_secp256k1_memczero_test(void) { + unsigned char buf1[6] = {1, 2, 3, 4, 5, 6}; + unsigned char buf2[sizeof(buf1)]; + + /* secp256k1_memczero(..., ..., 0) is a noop. */ + memcpy(buf2, buf1, sizeof(buf1)); + secp256k1_memczero(buf1, sizeof(buf1), 0); + CHECK(secp256k1_memcmp_var(buf1, buf2, sizeof(buf1)) == 0); + + /* secp256k1_memczero(..., ..., 1) zeros the buffer. */ + memset(buf2, 0, sizeof(buf2)); + secp256k1_memczero(buf1, sizeof(buf1) , 1); + CHECK(secp256k1_memcmp_var(buf1, buf2, sizeof(buf1)) == 0); +} + +void int_cmov_test(void) { + int r = INT_MAX; + int a = 0; + + secp256k1_int_cmov(&r, &a, 0); + CHECK(r == INT_MAX); + + r = 0; a = INT_MAX; + secp256k1_int_cmov(&r, &a, 1); + CHECK(r == INT_MAX); + + a = 0; + secp256k1_int_cmov(&r, &a, 1); + CHECK(r == 0); + + a = 1; + secp256k1_int_cmov(&r, &a, 1); + CHECK(r == 1); + + r = 1; a = 0; + secp256k1_int_cmov(&r, &a, 0); + CHECK(r == 1); + +} + +void fe_cmov_test(void) { + static const secp256k1_fe zero = SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0); + static const secp256k1_fe one = SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 1); + static const secp256k1_fe max = SECP256K1_FE_CONST( + 0xFFFFFFFFUL, 0xFFFFFFFFUL, 0xFFFFFFFFUL, 0xFFFFFFFFUL, + 0xFFFFFFFFUL, 0xFFFFFFFFUL, 0xFFFFFFFFUL, 0xFFFFFFFFUL + ); + secp256k1_fe r = max; + secp256k1_fe a = zero; + + secp256k1_fe_cmov(&r, &a, 0); + CHECK(secp256k1_memcmp_var(&r, &max, sizeof(r)) == 0); + + r = zero; a = max; + secp256k1_fe_cmov(&r, &a, 1); + CHECK(secp256k1_memcmp_var(&r, &max, sizeof(r)) == 0); + + a = zero; + secp256k1_fe_cmov(&r, &a, 1); + CHECK(secp256k1_memcmp_var(&r, &zero, sizeof(r)) == 0); + + a = one; + secp256k1_fe_cmov(&r, &a, 1); + CHECK(secp256k1_memcmp_var(&r, &one, sizeof(r)) == 0); + + r = one; a = zero; + secp256k1_fe_cmov(&r, &a, 0); + CHECK(secp256k1_memcmp_var(&r, &one, sizeof(r)) == 0); +} + +void fe_storage_cmov_test(void) { + static const secp256k1_fe_storage zero = SECP256K1_FE_STORAGE_CONST(0, 0, 0, 0, 0, 0, 0, 0); + static const secp256k1_fe_storage one = SECP256K1_FE_STORAGE_CONST(0, 0, 0, 0, 0, 0, 0, 1); + static const secp256k1_fe_storage max = SECP256K1_FE_STORAGE_CONST( + 0xFFFFFFFFUL, 0xFFFFFFFFUL, 0xFFFFFFFFUL, 0xFFFFFFFFUL, + 0xFFFFFFFFUL, 0xFFFFFFFFUL, 0xFFFFFFFFUL, 0xFFFFFFFFUL + ); + secp256k1_fe_storage r = max; + secp256k1_fe_storage a = zero; + + secp256k1_fe_storage_cmov(&r, &a, 0); + CHECK(secp256k1_memcmp_var(&r, &max, sizeof(r)) == 0); + + r = zero; a = max; + secp256k1_fe_storage_cmov(&r, &a, 1); + CHECK(secp256k1_memcmp_var(&r, &max, sizeof(r)) == 0); + + a = zero; + secp256k1_fe_storage_cmov(&r, &a, 1); + CHECK(secp256k1_memcmp_var(&r, &zero, sizeof(r)) == 0); + + a = one; + secp256k1_fe_storage_cmov(&r, &a, 1); + CHECK(secp256k1_memcmp_var(&r, &one, sizeof(r)) == 0); + + r = one; a = zero; + secp256k1_fe_storage_cmov(&r, &a, 0); + CHECK(secp256k1_memcmp_var(&r, &one, sizeof(r)) == 0); +} + +void scalar_cmov_test(void) { + static const secp256k1_scalar zero = SECP256K1_SCALAR_CONST(0, 0, 0, 0, 0, 0, 0, 0); + static const secp256k1_scalar one = SECP256K1_SCALAR_CONST(0, 0, 0, 0, 0, 0, 0, 1); + static const secp256k1_scalar max = SECP256K1_SCALAR_CONST( + 0xFFFFFFFFUL, 0xFFFFFFFFUL, 0xFFFFFFFFUL, 0xFFFFFFFFUL, + 0xFFFFFFFFUL, 0xFFFFFFFFUL, 0xFFFFFFFFUL, 0xFFFFFFFFUL + ); + secp256k1_scalar r = max; + secp256k1_scalar a = zero; + + secp256k1_scalar_cmov(&r, &a, 0); + CHECK(secp256k1_memcmp_var(&r, &max, sizeof(r)) == 0); + + r = zero; a = max; + secp256k1_scalar_cmov(&r, &a, 1); + CHECK(secp256k1_memcmp_var(&r, &max, sizeof(r)) == 0); + + a = zero; + secp256k1_scalar_cmov(&r, &a, 1); + CHECK(secp256k1_memcmp_var(&r, &zero, sizeof(r)) == 0); + + a = one; + secp256k1_scalar_cmov(&r, &a, 1); + CHECK(secp256k1_memcmp_var(&r, &one, sizeof(r)) == 0); + + r = one; a = zero; + secp256k1_scalar_cmov(&r, &a, 0); + CHECK(secp256k1_memcmp_var(&r, &one, sizeof(r)) == 0); +} + +void ge_storage_cmov_test(void) { + static const secp256k1_ge_storage zero = SECP256K1_GE_STORAGE_CONST(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0); + static const secp256k1_ge_storage one = SECP256K1_GE_STORAGE_CONST(0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1); + static const secp256k1_ge_storage max = SECP256K1_GE_STORAGE_CONST( + 0xFFFFFFFFUL, 0xFFFFFFFFUL, 0xFFFFFFFFUL, 0xFFFFFFFFUL, + 0xFFFFFFFFUL, 0xFFFFFFFFUL, 0xFFFFFFFFUL, 0xFFFFFFFFUL, + 0xFFFFFFFFUL, 0xFFFFFFFFUL, 0xFFFFFFFFUL, 0xFFFFFFFFUL, + 0xFFFFFFFFUL, 0xFFFFFFFFUL, 0xFFFFFFFFUL, 0xFFFFFFFFUL + ); + secp256k1_ge_storage r = max; + secp256k1_ge_storage a = zero; + + secp256k1_ge_storage_cmov(&r, &a, 0); + CHECK(secp256k1_memcmp_var(&r, &max, sizeof(r)) == 0); + + r = zero; a = max; + secp256k1_ge_storage_cmov(&r, &a, 1); + CHECK(secp256k1_memcmp_var(&r, &max, sizeof(r)) == 0); + + a = zero; + secp256k1_ge_storage_cmov(&r, &a, 1); + CHECK(secp256k1_memcmp_var(&r, &zero, sizeof(r)) == 0); + + a = one; + secp256k1_ge_storage_cmov(&r, &a, 1); + CHECK(secp256k1_memcmp_var(&r, &one, sizeof(r)) == 0); + + r = one; a = zero; + secp256k1_ge_storage_cmov(&r, &a, 0); + CHECK(secp256k1_memcmp_var(&r, &one, sizeof(r)) == 0); +} + +void run_cmov_tests(void) { + int_cmov_test(); + fe_cmov_test(); + fe_storage_cmov_test(); + scalar_cmov_test(); + ge_storage_cmov_test(); +} + int main(int argc, char **argv) { - unsigned char seed16[16] = {0}; - unsigned char run32[32] = {0}; + /* Disable buffering for stdout to improve reliability of getting + * diagnostic information. Happens right at the start of main because + * setbuf must be used before any other operation on the stream. */ + setbuf(stdout, NULL); + /* Also disable buffering for stderr because it's not guaranteed that it's + * unbuffered on all systems. */ + setbuf(stderr, NULL); + /* find iteration count */ if (argc > 1) { count = strtol(argv[1], NULL, 0); - } - - /* find random seed */ - if (argc > 2) { - int pos = 0; - const char* ch = argv[2]; - while (pos < 16 && ch[0] != 0 && ch[1] != 0) { - unsigned short sh; - if (sscanf(ch, "%2hx", &sh)) { - seed16[pos] = sh; - } else { - break; - } - ch += 2; - pos++; - } } else { - FILE *frand = fopen("/dev/urandom", "r"); - if ((frand == NULL) || fread(&seed16, sizeof(seed16), 1, frand) != sizeof(seed16)) { - uint64_t t = time(NULL) * (uint64_t)1337; - seed16[0] ^= t; - seed16[1] ^= t >> 8; - seed16[2] ^= t >> 16; - seed16[3] ^= t >> 24; - seed16[4] ^= t >> 32; - seed16[5] ^= t >> 40; - seed16[6] ^= t >> 48; - seed16[7] ^= t >> 56; - } - if (frand) { - fclose(frand); + const char* env = getenv("SECP256K1_TEST_ITERS"); + if (env && strlen(env) > 0) { + count = strtol(env, NULL, 0); } } - secp256k1_rand_seed(seed16); - + if (count <= 0) { + fputs("An iteration count of 0 or less is not allowed.\n", stderr); + return EXIT_FAILURE; + } printf("test count = %i\n", count); - printf("random seed = %02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x\n", seed16[0], seed16[1], seed16[2], seed16[3], seed16[4], seed16[5], seed16[6], seed16[7], seed16[8], seed16[9], seed16[10], seed16[11], seed16[12], seed16[13], seed16[14], seed16[15]); + + /* find random seed */ + secp256k1_testrand_init(argc > 2 ? argv[2] : NULL); /* initialize */ - run_context_tests(); + run_context_tests(0); + run_context_tests(1); run_scratch_tests(); ctx = secp256k1_context_create(SECP256K1_CONTEXT_SIGN | SECP256K1_CONTEXT_VERIFY); - if (secp256k1_rand_bits(1)) { - secp256k1_rand256(run32); - CHECK(secp256k1_context_randomize(ctx, secp256k1_rand_bits(1) ? run32 : NULL)); + if (secp256k1_testrand_bits(1)) { + unsigned char rand32[32]; + secp256k1_testrand256(rand32); + CHECK(secp256k1_context_randomize(ctx, secp256k1_testrand_bits(1) ? rand32 : NULL)); } run_rand_bits(); run_rand_int(); + run_ctz_tests(); + run_modinv_tests(); + run_inverse_tests(); + run_sha256_tests(); run_hmac_sha256_tests(); run_rfc6979_hmac_sha256_tests(); - -#ifndef USE_NUM_NONE - /* num tests */ - run_num_smalltests(); -#endif + run_tagged_sha256_tests(); /* scalar tests */ run_scalar_tests(); /* field tests */ - run_field_inv(); - run_field_inv_var(); - run_field_inv_all_var(); run_field_misc(); run_field_convert(); run_sqr(); @@ -5037,6 +6555,7 @@ int main(int argc, char **argv) { /* ecmult tests */ run_wnaf(); run_point_times_order(); + run_ecmult_near_split_bound(); run_ecmult_chain(); run_ecmult_constants(); run_ecmult_gen_blind(); @@ -5045,9 +6564,7 @@ int main(int argc, char **argv) { run_ec_combine(); /* endomorphism tests */ -#ifdef USE_ENDOMORPHISM run_endomorphism_tests(); -#endif /* EC point parser test */ run_ec_pubkey_parse_test(); @@ -5055,12 +6572,16 @@ int main(int argc, char **argv) { /* EC key edge cases */ run_eckey_edge_case_test(); + /* EC key arithmetic test */ + run_eckey_negate_test(); + #ifdef ENABLE_MODULE_ECDH /* ecdh tests */ run_ecdh_tests(); #endif /* ecdsa tests */ + run_pubkey_comparison(); run_random_pubkeys(); run_ecdsa_der_parse(); run_ecdsa_sign_verify(); @@ -5075,8 +6596,20 @@ int main(int argc, char **argv) { run_recovery_tests(); #endif - secp256k1_rand256(run32); - printf("random run = %02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x\n", run32[0], run32[1], run32[2], run32[3], run32[4], run32[5], run32[6], run32[7], run32[8], run32[9], run32[10], run32[11], run32[12], run32[13], run32[14], run32[15]); +#ifdef ENABLE_MODULE_EXTRAKEYS + run_extrakeys_tests(); +#endif + +#ifdef ENABLE_MODULE_SCHNORRSIG + run_schnorrsig_tests(); +#endif + + /* util tests */ + run_secp256k1_memczero_test(); + + run_cmov_tests(); + + secp256k1_testrand_finish(); /* shutdown */ secp256k1_context_destroy(ctx); diff --git a/src/tests_exhaustive.c b/src/tests_exhaustive.c index ab9779b02fc54..b7c7828995f2e 100644 --- a/src/tests_exhaustive.c +++ b/src/tests_exhaustive.c @@ -1,8 +1,8 @@ /*********************************************************************** - * Copyright (c) 2016 Andrew Poelstra * - * Distributed under the MIT software license, see the accompanying * - * file COPYING or http://www.opensource.org/licenses/mit-license.php.* - **********************************************************************/ + * Copyright (c) 2016 Andrew Poelstra * + * Distributed under the MIT software license, see the accompanying * + * file COPYING or https://www.opensource.org/licenses/mit-license.php.* + ***********************************************************************/ #if defined HAVE_CONFIG_H #include "libsecp256k1-config.h" @@ -10,7 +10,6 @@ #include #include - #include #undef USE_ECMULT_STATIC_PRECOMPUTATION @@ -18,18 +17,15 @@ #ifndef EXHAUSTIVE_TEST_ORDER /* see group_impl.h for allowable values */ #define EXHAUSTIVE_TEST_ORDER 13 -#define EXHAUSTIVE_TEST_LAMBDA 9 /* cube root of 1 mod 13 */ #endif -#include "include/secp256k1.h" -#include "group.h" #include "secp256k1.c" +#include "../include/secp256k1.h" +#include "assumptions.h" +#include "group.h" #include "testrand_impl.h" -#ifdef ENABLE_MODULE_RECOVERY -#include "src/modules/recovery/main_impl.h" -#include "include/secp256k1_recovery.h" -#endif +static int count = 2; /** stolen from tests.c */ void ge_equals_ge(const secp256k1_ge *a, const secp256k1_ge *b) { @@ -61,7 +57,7 @@ void ge_equals_gej(const secp256k1_ge *a, const secp256k1_gej *b) { void random_fe(secp256k1_fe *x) { unsigned char bin[32]; do { - secp256k1_rand256(bin); + secp256k1_testrand256(bin); if (secp256k1_fe_set_b32(x, bin)) { return; } @@ -69,6 +65,15 @@ void random_fe(secp256k1_fe *x) { } /** END stolen from tests.c */ +static uint32_t num_cores = 1; +static uint32_t this_core = 0; + +SECP256K1_INLINE static int skip_section(uint64_t* iter) { + if (num_cores == 1) return 0; + *iter += 0xe7037ed1a0b428dbULL; + return ((((uint32_t)*iter ^ (*iter >> 32)) * num_cores) >> 32) != this_core; +} + int secp256k1_nonce_function_smallint(unsigned char *nonce32, const unsigned char *msg32, const unsigned char *key32, const unsigned char *algo16, void *data, unsigned int attempt) { @@ -89,93 +94,93 @@ int secp256k1_nonce_function_smallint(unsigned char *nonce32, const unsigned cha return 1; } -#ifdef USE_ENDOMORPHISM -void test_exhaustive_endomorphism(const secp256k1_ge *group, int order) { +void test_exhaustive_endomorphism(const secp256k1_ge *group) { int i; - for (i = 0; i < order; i++) { + for (i = 0; i < EXHAUSTIVE_TEST_ORDER; i++) { secp256k1_ge res; secp256k1_ge_mul_lambda(&res, &group[i]); ge_equals_ge(&group[i * EXHAUSTIVE_TEST_LAMBDA % EXHAUSTIVE_TEST_ORDER], &res); } } -#endif -void test_exhaustive_addition(const secp256k1_ge *group, const secp256k1_gej *groupj, int order) { +void test_exhaustive_addition(const secp256k1_ge *group, const secp256k1_gej *groupj) { int i, j; + uint64_t iter = 0; /* Sanity-check (and check infinity functions) */ CHECK(secp256k1_ge_is_infinity(&group[0])); CHECK(secp256k1_gej_is_infinity(&groupj[0])); - for (i = 1; i < order; i++) { + for (i = 1; i < EXHAUSTIVE_TEST_ORDER; i++) { CHECK(!secp256k1_ge_is_infinity(&group[i])); CHECK(!secp256k1_gej_is_infinity(&groupj[i])); } /* Check all addition formulae */ - for (j = 0; j < order; j++) { + for (j = 0; j < EXHAUSTIVE_TEST_ORDER; j++) { secp256k1_fe fe_inv; + if (skip_section(&iter)) continue; secp256k1_fe_inv(&fe_inv, &groupj[j].z); - for (i = 0; i < order; i++) { + for (i = 0; i < EXHAUSTIVE_TEST_ORDER; i++) { secp256k1_ge zless_gej; secp256k1_gej tmp; /* add_var */ secp256k1_gej_add_var(&tmp, &groupj[i], &groupj[j], NULL); - ge_equals_gej(&group[(i + j) % order], &tmp); + ge_equals_gej(&group[(i + j) % EXHAUSTIVE_TEST_ORDER], &tmp); /* add_ge */ if (j > 0) { secp256k1_gej_add_ge(&tmp, &groupj[i], &group[j]); - ge_equals_gej(&group[(i + j) % order], &tmp); + ge_equals_gej(&group[(i + j) % EXHAUSTIVE_TEST_ORDER], &tmp); } /* add_ge_var */ secp256k1_gej_add_ge_var(&tmp, &groupj[i], &group[j], NULL); - ge_equals_gej(&group[(i + j) % order], &tmp); + ge_equals_gej(&group[(i + j) % EXHAUSTIVE_TEST_ORDER], &tmp); /* add_zinv_var */ zless_gej.infinity = groupj[j].infinity; zless_gej.x = groupj[j].x; zless_gej.y = groupj[j].y; secp256k1_gej_add_zinv_var(&tmp, &groupj[i], &zless_gej, &fe_inv); - ge_equals_gej(&group[(i + j) % order], &tmp); + ge_equals_gej(&group[(i + j) % EXHAUSTIVE_TEST_ORDER], &tmp); } } /* Check doubling */ - for (i = 0; i < order; i++) { + for (i = 0; i < EXHAUSTIVE_TEST_ORDER; i++) { secp256k1_gej tmp; - if (i > 0) { - secp256k1_gej_double_nonzero(&tmp, &groupj[i], NULL); - ge_equals_gej(&group[(2 * i) % order], &tmp); - } + secp256k1_gej_double(&tmp, &groupj[i]); + ge_equals_gej(&group[(2 * i) % EXHAUSTIVE_TEST_ORDER], &tmp); secp256k1_gej_double_var(&tmp, &groupj[i], NULL); - ge_equals_gej(&group[(2 * i) % order], &tmp); + ge_equals_gej(&group[(2 * i) % EXHAUSTIVE_TEST_ORDER], &tmp); } /* Check negation */ - for (i = 1; i < order; i++) { + for (i = 1; i < EXHAUSTIVE_TEST_ORDER; i++) { secp256k1_ge tmp; secp256k1_gej tmpj; secp256k1_ge_neg(&tmp, &group[i]); - ge_equals_ge(&group[order - i], &tmp); + ge_equals_ge(&group[EXHAUSTIVE_TEST_ORDER - i], &tmp); secp256k1_gej_neg(&tmpj, &groupj[i]); - ge_equals_gej(&group[order - i], &tmpj); + ge_equals_gej(&group[EXHAUSTIVE_TEST_ORDER - i], &tmpj); } } -void test_exhaustive_ecmult(const secp256k1_context *ctx, const secp256k1_ge *group, const secp256k1_gej *groupj, int order) { +void test_exhaustive_ecmult(const secp256k1_context *ctx, const secp256k1_ge *group, const secp256k1_gej *groupj) { int i, j, r_log; - for (r_log = 1; r_log < order; r_log++) { - for (j = 0; j < order; j++) { - for (i = 0; i < order; i++) { + uint64_t iter = 0; + for (r_log = 1; r_log < EXHAUSTIVE_TEST_ORDER; r_log++) { + for (j = 0; j < EXHAUSTIVE_TEST_ORDER; j++) { + if (skip_section(&iter)) continue; + for (i = 0; i < EXHAUSTIVE_TEST_ORDER; i++) { secp256k1_gej tmp; secp256k1_scalar na, ng; secp256k1_scalar_set_int(&na, i); secp256k1_scalar_set_int(&ng, j); secp256k1_ecmult(&ctx->ecmult_ctx, &tmp, &groupj[r_log], &na, &ng); - ge_equals_gej(&group[(i * r_log + j) % order], &tmp); + ge_equals_gej(&group[(i * r_log + j) % EXHAUSTIVE_TEST_ORDER], &tmp); if (i > 0) { secp256k1_ecmult_const(&tmp, &group[i], &ng, 256); - ge_equals_gej(&group[(i * j) % order], &tmp); + ge_equals_gej(&group[(i * j) % EXHAUSTIVE_TEST_ORDER], &tmp); } } } @@ -194,14 +199,16 @@ static int ecmult_multi_callback(secp256k1_scalar *sc, secp256k1_ge *pt, size_t return 1; } -void test_exhaustive_ecmult_multi(const secp256k1_context *ctx, const secp256k1_ge *group, int order) { +void test_exhaustive_ecmult_multi(const secp256k1_context *ctx, const secp256k1_ge *group) { int i, j, k, x, y; + uint64_t iter = 0; secp256k1_scratch *scratch = secp256k1_scratch_create(&ctx->error_callback, 4096); - for (i = 0; i < order; i++) { - for (j = 0; j < order; j++) { - for (k = 0; k < order; k++) { - for (x = 0; x < order; x++) { - for (y = 0; y < order; y++) { + for (i = 0; i < EXHAUSTIVE_TEST_ORDER; i++) { + for (j = 0; j < EXHAUSTIVE_TEST_ORDER; j++) { + for (k = 0; k < EXHAUSTIVE_TEST_ORDER; k++) { + for (x = 0; x < EXHAUSTIVE_TEST_ORDER; x++) { + if (skip_section(&iter)) continue; + for (y = 0; y < EXHAUSTIVE_TEST_ORDER; y++) { secp256k1_gej tmp; secp256k1_scalar g_sc; ecmult_multi_data data; @@ -212,32 +219,33 @@ void test_exhaustive_ecmult_multi(const secp256k1_context *ctx, const secp256k1_ data.pt[0] = group[x]; data.pt[1] = group[y]; - secp256k1_ecmult_multi_var(&ctx->ecmult_ctx, scratch, &tmp, &g_sc, ecmult_multi_callback, &data, 2); - ge_equals_gej(&group[(i * x + j * y + k) % order], &tmp); + secp256k1_ecmult_multi_var(&ctx->error_callback, &ctx->ecmult_ctx, scratch, &tmp, &g_sc, ecmult_multi_callback, &data, 2); + ge_equals_gej(&group[(i * x + j * y + k) % EXHAUSTIVE_TEST_ORDER], &tmp); } } } } } - secp256k1_scratch_destroy(scratch); + secp256k1_scratch_destroy(&ctx->error_callback, scratch); } -void r_from_k(secp256k1_scalar *r, const secp256k1_ge *group, int k) { +void r_from_k(secp256k1_scalar *r, const secp256k1_ge *group, int k, int* overflow) { secp256k1_fe x; unsigned char x_bin[32]; k %= EXHAUSTIVE_TEST_ORDER; x = group[k].x; secp256k1_fe_normalize(&x); secp256k1_fe_get_b32(x_bin, &x); - secp256k1_scalar_set_b32(r, x_bin, NULL); + secp256k1_scalar_set_b32(r, x_bin, overflow); } -void test_exhaustive_verify(const secp256k1_context *ctx, const secp256k1_ge *group, int order) { +void test_exhaustive_verify(const secp256k1_context *ctx, const secp256k1_ge *group) { int s, r, msg, key; - for (s = 1; s < order; s++) { - for (r = 1; r < order; r++) { - for (msg = 1; msg < order; msg++) { - for (key = 1; key < order; key++) { + uint64_t iter = 0; + for (s = 1; s < EXHAUSTIVE_TEST_ORDER; s++) { + for (r = 1; r < EXHAUSTIVE_TEST_ORDER; r++) { + for (msg = 1; msg < EXHAUSTIVE_TEST_ORDER; msg++) { + for (key = 1; key < EXHAUSTIVE_TEST_ORDER; key++) { secp256k1_ge nonconst_ge; secp256k1_ecdsa_signature sig; secp256k1_pubkey pk; @@ -246,6 +254,8 @@ void test_exhaustive_verify(const secp256k1_context *ctx, const secp256k1_ge *gr int k, should_verify; unsigned char msg32[32]; + if (skip_section(&iter)) continue; + secp256k1_scalar_set_int(&s_s, s); secp256k1_scalar_set_int(&r_s, r); secp256k1_scalar_set_int(&msg_s, msg); @@ -255,9 +265,9 @@ void test_exhaustive_verify(const secp256k1_context *ctx, const secp256k1_ge *gr /* Run through every k value that gives us this r and check that *one* works. * Note there could be none, there could be multiple, ECDSA is weird. */ should_verify = 0; - for (k = 0; k < order; k++) { + for (k = 0; k < EXHAUSTIVE_TEST_ORDER; k++) { secp256k1_scalar check_x_s; - r_from_k(&check_x_s, group, k); + r_from_k(&check_x_s, group, k, NULL); if (r_s == check_x_s) { secp256k1_scalar_set_int(&s_times_k_s, k); secp256k1_scalar_mul(&s_times_k_s, &s_times_k_s, &s_s); @@ -282,13 +292,15 @@ void test_exhaustive_verify(const secp256k1_context *ctx, const secp256k1_ge *gr } } -void test_exhaustive_sign(const secp256k1_context *ctx, const secp256k1_ge *group, int order) { +void test_exhaustive_sign(const secp256k1_context *ctx, const secp256k1_ge *group) { int i, j, k; + uint64_t iter = 0; /* Loop */ - for (i = 1; i < order; i++) { /* message */ - for (j = 1; j < order; j++) { /* key */ - for (k = 1; k < order; k++) { /* nonce */ + for (i = 1; i < EXHAUSTIVE_TEST_ORDER; i++) { /* message */ + for (j = 1; j < EXHAUSTIVE_TEST_ORDER; j++) { /* key */ + if (skip_section(&iter)) continue; + for (k = 1; k < EXHAUSTIVE_TEST_ORDER; k++) { /* nonce */ const int starting_k = k; secp256k1_ecdsa_signature sig; secp256k1_scalar sk, msg, r, s, expected_r; @@ -304,10 +316,10 @@ void test_exhaustive_sign(const secp256k1_context *ctx, const secp256k1_ge *grou /* Note that we compute expected_r *after* signing -- this is important * because our nonce-computing function function might change k during * signing. */ - r_from_k(&expected_r, group, k); + r_from_k(&expected_r, group, k, NULL); CHECK(r == expected_r); - CHECK((k * s) % order == (i + r * j) % order || - (k * (EXHAUSTIVE_TEST_ORDER - s)) % order == (i + r * j) % order); + CHECK((k * s) % EXHAUSTIVE_TEST_ORDER == (i + r * j) % EXHAUSTIVE_TEST_ORDER || + (k * (EXHAUSTIVE_TEST_ORDER - s)) % EXHAUSTIVE_TEST_ORDER == (i + r * j) % EXHAUSTIVE_TEST_ORDER); /* Overflow means we've tried every possible nonce */ if (k < starting_k) { @@ -328,184 +340,114 @@ void test_exhaustive_sign(const secp256k1_context *ctx, const secp256k1_ge *grou } #ifdef ENABLE_MODULE_RECOVERY -void test_exhaustive_recovery_sign(const secp256k1_context *ctx, const secp256k1_ge *group, int order) { - int i, j, k; - - /* Loop */ - for (i = 1; i < order; i++) { /* message */ - for (j = 1; j < order; j++) { /* key */ - for (k = 1; k < order; k++) { /* nonce */ - const int starting_k = k; - secp256k1_fe r_dot_y_normalized; - secp256k1_ecdsa_recoverable_signature rsig; - secp256k1_ecdsa_signature sig; - secp256k1_scalar sk, msg, r, s, expected_r; - unsigned char sk32[32], msg32[32]; - int expected_recid; - int recid; - secp256k1_scalar_set_int(&msg, i); - secp256k1_scalar_set_int(&sk, j); - secp256k1_scalar_get_b32(sk32, &sk); - secp256k1_scalar_get_b32(msg32, &msg); - - secp256k1_ecdsa_sign_recoverable(ctx, &rsig, msg32, sk32, secp256k1_nonce_function_smallint, &k); +#include "src/modules/recovery/tests_exhaustive_impl.h" +#endif - /* Check directly */ - secp256k1_ecdsa_recoverable_signature_load(ctx, &r, &s, &recid, &rsig); - r_from_k(&expected_r, group, k); - CHECK(r == expected_r); - CHECK((k * s) % order == (i + r * j) % order || - (k * (EXHAUSTIVE_TEST_ORDER - s)) % order == (i + r * j) % order); - /* In computing the recid, there is an overflow condition that is disabled in - * scalar_low_impl.h `secp256k1_scalar_set_b32` because almost every r.y value - * will exceed the group order, and our signing code always holds out for r - * values that don't overflow, so with a proper overflow check the tests would - * loop indefinitely. */ - r_dot_y_normalized = group[k].y; - secp256k1_fe_normalize(&r_dot_y_normalized); - /* Also the recovery id is flipped depending if we hit the low-s branch */ - if ((k * s) % order == (i + r * j) % order) { - expected_recid = secp256k1_fe_is_odd(&r_dot_y_normalized) ? 1 : 0; - } else { - expected_recid = secp256k1_fe_is_odd(&r_dot_y_normalized) ? 0 : 1; - } - CHECK(recid == expected_recid); +#ifdef ENABLE_MODULE_EXTRAKEYS +#include "src/modules/extrakeys/tests_exhaustive_impl.h" +#endif - /* Convert to a standard sig then check */ - secp256k1_ecdsa_recoverable_signature_convert(ctx, &sig, &rsig); - secp256k1_ecdsa_signature_load(ctx, &r, &s, &sig); - /* Note that we compute expected_r *after* signing -- this is important - * because our nonce-computing function function might change k during - * signing. */ - r_from_k(&expected_r, group, k); - CHECK(r == expected_r); - CHECK((k * s) % order == (i + r * j) % order || - (k * (EXHAUSTIVE_TEST_ORDER - s)) % order == (i + r * j) % order); +#ifdef ENABLE_MODULE_SCHNORRSIG +#include "src/modules/schnorrsig/tests_exhaustive_impl.h" +#endif - /* Overflow means we've tried every possible nonce */ - if (k < starting_k) { - break; - } - } +int main(int argc, char** argv) { + int i; + secp256k1_gej groupj[EXHAUSTIVE_TEST_ORDER]; + secp256k1_ge group[EXHAUSTIVE_TEST_ORDER]; + unsigned char rand32[32]; + secp256k1_context *ctx; + + /* Disable buffering for stdout to improve reliability of getting + * diagnostic information. Happens right at the start of main because + * setbuf must be used before any other operation on the stream. */ + setbuf(stdout, NULL); + /* Also disable buffering for stderr because it's not guaranteed that it's + * unbuffered on all systems. */ + setbuf(stderr, NULL); + + printf("Exhaustive tests for order %lu\n", (unsigned long)EXHAUSTIVE_TEST_ORDER); + + /* find iteration count */ + if (argc > 1) { + count = strtol(argv[1], NULL, 0); + } + printf("test count = %i\n", count); + + /* find random seed */ + secp256k1_testrand_init(argc > 2 ? argv[2] : NULL); + + /* set up split processing */ + if (argc > 4) { + num_cores = strtol(argv[3], NULL, 0); + this_core = strtol(argv[4], NULL, 0); + if (num_cores < 1 || this_core >= num_cores) { + fprintf(stderr, "Usage: %s [count] [seed] [numcores] [thiscore]\n", argv[0]); + return 1; } + printf("running tests for core %lu (out of [0..%lu])\n", (unsigned long)this_core, (unsigned long)num_cores - 1); } -} - -void test_exhaustive_recovery_verify(const secp256k1_context *ctx, const secp256k1_ge *group, int order) { - /* This is essentially a copy of test_exhaustive_verify, with recovery added */ - int s, r, msg, key; - for (s = 1; s < order; s++) { - for (r = 1; r < order; r++) { - for (msg = 1; msg < order; msg++) { - for (key = 1; key < order; key++) { - secp256k1_ge nonconst_ge; - secp256k1_ecdsa_recoverable_signature rsig; - secp256k1_ecdsa_signature sig; - secp256k1_pubkey pk; - secp256k1_scalar sk_s, msg_s, r_s, s_s; - secp256k1_scalar s_times_k_s, msg_plus_r_times_sk_s; - int recid = 0; - int k, should_verify; - unsigned char msg32[32]; - secp256k1_scalar_set_int(&s_s, s); - secp256k1_scalar_set_int(&r_s, r); - secp256k1_scalar_set_int(&msg_s, msg); - secp256k1_scalar_set_int(&sk_s, key); - secp256k1_scalar_get_b32(msg32, &msg_s); + while (count--) { + /* Build context */ + ctx = secp256k1_context_create(SECP256K1_CONTEXT_SIGN | SECP256K1_CONTEXT_VERIFY); + secp256k1_testrand256(rand32); + CHECK(secp256k1_context_randomize(ctx, rand32)); + + /* Generate the entire group */ + secp256k1_gej_set_infinity(&groupj[0]); + secp256k1_ge_set_gej(&group[0], &groupj[0]); + for (i = 1; i < EXHAUSTIVE_TEST_ORDER; i++) { + secp256k1_gej_add_ge(&groupj[i], &groupj[i - 1], &secp256k1_ge_const_g); + secp256k1_ge_set_gej(&group[i], &groupj[i]); + if (count != 0) { + /* Set a different random z-value for each Jacobian point, except z=1 + is used in the last iteration. */ + secp256k1_fe z; + random_fe(&z); + secp256k1_gej_rescale(&groupj[i], &z); + } - /* Verify by hand */ - /* Run through every k value that gives us this r and check that *one* works. - * Note there could be none, there could be multiple, ECDSA is weird. */ - should_verify = 0; - for (k = 0; k < order; k++) { - secp256k1_scalar check_x_s; - r_from_k(&check_x_s, group, k); - if (r_s == check_x_s) { - secp256k1_scalar_set_int(&s_times_k_s, k); - secp256k1_scalar_mul(&s_times_k_s, &s_times_k_s, &s_s); - secp256k1_scalar_mul(&msg_plus_r_times_sk_s, &r_s, &sk_s); - secp256k1_scalar_add(&msg_plus_r_times_sk_s, &msg_plus_r_times_sk_s, &msg_s); - should_verify |= secp256k1_scalar_eq(&s_times_k_s, &msg_plus_r_times_sk_s); - } - } - /* nb we have a "high s" rule */ - should_verify &= !secp256k1_scalar_is_high(&s_s); + /* Verify against ecmult_gen */ + { + secp256k1_scalar scalar_i; + secp256k1_gej generatedj; + secp256k1_ge generated; - /* We would like to try recovering the pubkey and checking that it matches, - * but pubkey recovery is impossible in the exhaustive tests (the reason - * being that there are 12 nonzero r values, 12 nonzero points, and no - * overlap between the sets, so there are no valid signatures). */ + secp256k1_scalar_set_int(&scalar_i, i); + secp256k1_ecmult_gen(&ctx->ecmult_gen_ctx, &generatedj, &scalar_i); + secp256k1_ge_set_gej(&generated, &generatedj); - /* Verify by converting to a standard signature and calling verify */ - secp256k1_ecdsa_recoverable_signature_save(&rsig, &r_s, &s_s, recid); - secp256k1_ecdsa_recoverable_signature_convert(ctx, &sig, &rsig); - memcpy(&nonconst_ge, &group[sk_s], sizeof(nonconst_ge)); - secp256k1_pubkey_save(&pk, &nonconst_ge); - CHECK(should_verify == - secp256k1_ecdsa_verify(ctx, &sig, msg32, &pk)); - } + CHECK(group[i].infinity == 0); + CHECK(generated.infinity == 0); + CHECK(secp256k1_fe_equal_var(&generated.x, &group[i].x)); + CHECK(secp256k1_fe_equal_var(&generated.y, &group[i].y)); } } - } -} -#endif - -int main(void) { - int i; - secp256k1_gej groupj[EXHAUSTIVE_TEST_ORDER]; - secp256k1_ge group[EXHAUSTIVE_TEST_ORDER]; - /* Build context */ - secp256k1_context *ctx = secp256k1_context_create(SECP256K1_CONTEXT_SIGN | SECP256K1_CONTEXT_VERIFY); + /* Run the tests */ + test_exhaustive_endomorphism(group); + test_exhaustive_addition(group, groupj); + test_exhaustive_ecmult(ctx, group, groupj); + test_exhaustive_ecmult_multi(ctx, group); + test_exhaustive_sign(ctx, group); + test_exhaustive_verify(ctx, group); - /* TODO set z = 1, then do num_tests runs with random z values */ +#ifdef ENABLE_MODULE_RECOVERY + test_exhaustive_recovery(ctx, group); +#endif +#ifdef ENABLE_MODULE_EXTRAKEYS + test_exhaustive_extrakeys(ctx, group); +#endif +#ifdef ENABLE_MODULE_SCHNORRSIG + test_exhaustive_schnorrsig(ctx); +#endif - /* Generate the entire group */ - secp256k1_gej_set_infinity(&groupj[0]); - secp256k1_ge_set_gej(&group[0], &groupj[0]); - for (i = 1; i < EXHAUSTIVE_TEST_ORDER; i++) { - /* Set a different random z-value for each Jacobian point */ - secp256k1_fe z; - random_fe(&z); - - secp256k1_gej_add_ge(&groupj[i], &groupj[i - 1], &secp256k1_ge_const_g); - secp256k1_ge_set_gej(&group[i], &groupj[i]); - secp256k1_gej_rescale(&groupj[i], &z); - - /* Verify against ecmult_gen */ - { - secp256k1_scalar scalar_i; - secp256k1_gej generatedj; - secp256k1_ge generated; - - secp256k1_scalar_set_int(&scalar_i, i); - secp256k1_ecmult_gen(&ctx->ecmult_gen_ctx, &generatedj, &scalar_i); - secp256k1_ge_set_gej(&generated, &generatedj); - - CHECK(group[i].infinity == 0); - CHECK(generated.infinity == 0); - CHECK(secp256k1_fe_equal_var(&generated.x, &group[i].x)); - CHECK(secp256k1_fe_equal_var(&generated.y, &group[i].y)); - } + secp256k1_context_destroy(ctx); } - /* Run the tests */ -#ifdef USE_ENDOMORPHISM - test_exhaustive_endomorphism(group, EXHAUSTIVE_TEST_ORDER); -#endif - test_exhaustive_addition(group, groupj, EXHAUSTIVE_TEST_ORDER); - test_exhaustive_ecmult(ctx, group, groupj, EXHAUSTIVE_TEST_ORDER); - test_exhaustive_ecmult_multi(ctx, group, EXHAUSTIVE_TEST_ORDER); - test_exhaustive_sign(ctx, group, EXHAUSTIVE_TEST_ORDER); - test_exhaustive_verify(ctx, group, EXHAUSTIVE_TEST_ORDER); - -#ifdef ENABLE_MODULE_RECOVERY - test_exhaustive_recovery_sign(ctx, group, EXHAUSTIVE_TEST_ORDER); - test_exhaustive_recovery_verify(ctx, group, EXHAUSTIVE_TEST_ORDER); -#endif + secp256k1_testrand_finish(); - secp256k1_context_destroy(ctx); + printf("no problems found\n"); return 0; } - diff --git a/src/util.h b/src/util.h index e0147500f9944..f78846836cf25 100644 --- a/src/util.h +++ b/src/util.h @@ -1,8 +1,8 @@ -/********************************************************************** - * Copyright (c) 2013, 2014 Pieter Wuille * - * Distributed under the MIT software license, see the accompanying * - * file COPYING or http://www.opensource.org/licenses/mit-license.php.* - **********************************************************************/ +/*********************************************************************** + * Copyright (c) 2013, 2014 Pieter Wuille * + * Distributed under the MIT software license, see the accompanying * + * file COPYING or https://www.opensource.org/licenses/mit-license.php.* + ***********************************************************************/ #ifndef SECP256K1_UTIL_H #define SECP256K1_UTIL_H @@ -14,6 +14,7 @@ #include #include #include +#include typedef struct { void (*fn)(const char *text, void* data); @@ -36,7 +37,7 @@ static SECP256K1_INLINE void secp256k1_callback_call(const secp256k1_callback * } while(0) #endif -#ifdef HAVE_BUILTIN_EXPECT +#if SECP256K1_GNUC_PREREQ(3, 0) #define EXPECT(x,c) __builtin_expect((x),(c)) #else #define EXPECT(x,c) (x) @@ -68,6 +69,25 @@ static SECP256K1_INLINE void secp256k1_callback_call(const secp256k1_callback * #define VERIFY_SETUP(stmt) #endif +/* Define `VG_UNDEF` and `VG_CHECK` when VALGRIND is defined */ +#if !defined(VG_CHECK) +# if defined(VALGRIND) +# include +# define VG_UNDEF(x,y) VALGRIND_MAKE_MEM_UNDEFINED((x),(y)) +# define VG_CHECK(x,y) VALGRIND_CHECK_MEM_IS_DEFINED((x),(y)) +# else +# define VG_UNDEF(x,y) +# define VG_CHECK(x,y) +# endif +#endif + +/* Like `VG_CHECK` but on VERIFY only */ +#if defined(VERIFY) +#define VG_CHECK_VERIFY(x,y) VG_CHECK((x), (y)) +#else +#define VG_CHECK_VERIFY(x,y) +#endif + static SECP256K1_INLINE void *checked_malloc(const secp256k1_callback* cb, size_t size) { void *ret = malloc(size); if (ret == NULL) { @@ -84,6 +104,47 @@ static SECP256K1_INLINE void *checked_realloc(const secp256k1_callback* cb, void return ret; } +#if defined(__BIGGEST_ALIGNMENT__) +#define ALIGNMENT __BIGGEST_ALIGNMENT__ +#else +/* Using 16 bytes alignment because common architectures never have alignment + * requirements above 8 for any of the types we care about. In addition we + * leave some room because currently we don't care about a few bytes. */ +#define ALIGNMENT 16 +#endif + +#define ROUND_TO_ALIGN(size) ((((size) + ALIGNMENT - 1) / ALIGNMENT) * ALIGNMENT) + +/* Assume there is a contiguous memory object with bounds [base, base + max_size) + * of which the memory range [base, *prealloc_ptr) is already allocated for usage, + * where *prealloc_ptr is an aligned pointer. In that setting, this functions + * reserves the subobject [*prealloc_ptr, *prealloc_ptr + alloc_size) of + * alloc_size bytes by increasing *prealloc_ptr accordingly, taking into account + * alignment requirements. + * + * The function returns an aligned pointer to the newly allocated subobject. + * + * This is useful for manual memory management: if we're simply given a block + * [base, base + max_size), the caller can use this function to allocate memory + * in this block and keep track of the current allocation state with *prealloc_ptr. + * + * It is VERIFY_CHECKed that there is enough space left in the memory object and + * *prealloc_ptr is aligned relative to base. + */ +static SECP256K1_INLINE void *manual_alloc(void** prealloc_ptr, size_t alloc_size, void* base, size_t max_size) { + size_t aligned_alloc_size = ROUND_TO_ALIGN(alloc_size); + void* ret; + VERIFY_CHECK(prealloc_ptr != NULL); + VERIFY_CHECK(*prealloc_ptr != NULL); + VERIFY_CHECK(base != NULL); + VERIFY_CHECK((unsigned char*)*prealloc_ptr >= (unsigned char*)base); + VERIFY_CHECK(((unsigned char*)*prealloc_ptr - (unsigned char*)base) % ALIGNMENT == 0); + VERIFY_CHECK((unsigned char*)*prealloc_ptr - (unsigned char*)base + aligned_alloc_size <= max_size); + ret = *prealloc_ptr; + *prealloc_ptr = (unsigned char*)*prealloc_ptr + aligned_alloc_size; + return ret; +} + /* Macro for restrict, when available and not in a VERIFY build. */ #if defined(SECP256K1_BUILD) && defined(VERIFY) # define SECP256K1_RESTRICT @@ -109,13 +170,175 @@ static SECP256K1_INLINE void *checked_realloc(const secp256k1_callback* cb, void # define I64uFORMAT "llu" #endif -#if defined(HAVE___INT128) -# if defined(__GNUC__) -# define SECP256K1_GNUC_EXT __extension__ -# else -# define SECP256K1_GNUC_EXT +#if defined(__GNUC__) +# define SECP256K1_GNUC_EXT __extension__ +#else +# define SECP256K1_GNUC_EXT +#endif + +/* If SECP256K1_{LITTLE,BIG}_ENDIAN is not explicitly provided, infer from various other system macros. */ +#if !defined(SECP256K1_LITTLE_ENDIAN) && !defined(SECP256K1_BIG_ENDIAN) +/* Inspired by https://github.com/rofl0r/endianness.h/blob/9853923246b065a3b52d2c43835f3819a62c7199/endianness.h#L52L73 */ +# if (defined(__BYTE_ORDER__) && defined(__ORDER_LITTLE_ENDIAN__) && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__) || \ + defined(_X86_) || defined(__x86_64__) || defined(__i386__) || \ + defined(__i486__) || defined(__i586__) || defined(__i686__) || \ + defined(__MIPSEL) || defined(_MIPSEL) || defined(MIPSEL) || \ + defined(__ARMEL__) || defined(__AARCH64EL__) || \ + (defined(__LITTLE_ENDIAN__) && __LITTLE_ENDIAN__ == 1) || \ + (defined(_LITTLE_ENDIAN) && _LITTLE_ENDIAN == 1) || \ + defined(_M_IX86) || defined(_M_AMD64) || defined(_M_ARM) /* MSVC */ +# define SECP256K1_LITTLE_ENDIAN # endif +# if (defined(__BYTE_ORDER__) && defined(__ORDER_BIG_ENDIAN__) && __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__) || \ + defined(__MIPSEB) || defined(_MIPSEB) || defined(MIPSEB) || \ + defined(__MICROBLAZEEB__) || defined(__ARMEB__) || defined(__AARCH64EB__) || \ + (defined(__BIG_ENDIAN__) && __BIG_ENDIAN__ == 1) || \ + (defined(_BIG_ENDIAN) && _BIG_ENDIAN == 1) +# define SECP256K1_BIG_ENDIAN +# endif +#endif +#if defined(SECP256K1_LITTLE_ENDIAN) == defined(SECP256K1_BIG_ENDIAN) +# error Please make sure that either SECP256K1_LITTLE_ENDIAN or SECP256K1_BIG_ENDIAN is set, see src/util.h. +#endif + +/* Zero memory if flag == 1. Flag must be 0 or 1. Constant time. */ +static SECP256K1_INLINE void secp256k1_memczero(void *s, size_t len, int flag) { + unsigned char *p = (unsigned char *)s; + /* Access flag with a volatile-qualified lvalue. + This prevents clang from figuring out (after inlining) that flag can + take only be 0 or 1, which leads to variable time code. */ + volatile int vflag = flag; + unsigned char mask = -(unsigned char) vflag; + while (len) { + *p &= ~mask; + p++; + len--; + } +} + +/** Semantics like memcmp. Variable-time. + * + * We use this to avoid possible compiler bugs with memcmp, e.g. + * https://gcc.gnu.org/bugzilla/show_bug.cgi?id=95189 + */ +static SECP256K1_INLINE int secp256k1_memcmp_var(const void *s1, const void *s2, size_t n) { + const unsigned char *p1 = s1, *p2 = s2; + size_t i; + + for (i = 0; i < n; i++) { + int diff = p1[i] - p2[i]; + if (diff != 0) { + return diff; + } + } + return 0; +} + +/** If flag is true, set *r equal to *a; otherwise leave it. Constant-time. Both *r and *a must be initialized and non-negative.*/ +static SECP256K1_INLINE void secp256k1_int_cmov(int *r, const int *a, int flag) { + unsigned int mask0, mask1, r_masked, a_masked; + /* Access flag with a volatile-qualified lvalue. + This prevents clang from figuring out (after inlining) that flag can + take only be 0 or 1, which leads to variable time code. */ + volatile int vflag = flag; + + /* Casting a negative int to unsigned and back to int is implementation defined behavior */ + VERIFY_CHECK(*r >= 0 && *a >= 0); + + mask0 = (unsigned int)vflag + ~0u; + mask1 = ~mask0; + r_masked = ((unsigned int)*r & mask0); + a_masked = ((unsigned int)*a & mask1); + + *r = (int)(r_masked | a_masked); +} + +/* If USE_FORCE_WIDEMUL_{INT128,INT64} is set, use that wide multiplication implementation. + * Otherwise use the presence of __SIZEOF_INT128__ to decide. + */ +#if defined(USE_FORCE_WIDEMUL_INT128) +# define SECP256K1_WIDEMUL_INT128 1 +#elif defined(USE_FORCE_WIDEMUL_INT64) +# define SECP256K1_WIDEMUL_INT64 1 +#elif defined(UINT128_MAX) || defined(__SIZEOF_INT128__) +# define SECP256K1_WIDEMUL_INT128 1 +#else +# define SECP256K1_WIDEMUL_INT64 1 +#endif +#if defined(SECP256K1_WIDEMUL_INT128) +# if !defined(UINT128_MAX) && defined(__SIZEOF_INT128__) SECP256K1_GNUC_EXT typedef unsigned __int128 uint128_t; +SECP256K1_GNUC_EXT typedef __int128 int128_t; +#define UINT128_MAX ((uint128_t)(-1)) +#define INT128_MAX ((int128_t)(UINT128_MAX >> 1)) +#define INT128_MIN (-INT128_MAX - 1) +/* No (U)INT128_C macros because compilers providing __int128 do not support 128-bit literals. */ +# endif +#endif + +#ifndef __has_builtin +#define __has_builtin(x) 0 #endif +/* Determine the number of trailing zero bits in a (non-zero) 32-bit x. + * This function is only intended to be used as fallback for + * secp256k1_ctz32_var, but permits it to be tested separately. */ +static SECP256K1_INLINE int secp256k1_ctz32_var_debruijn(uint32_t x) { + static const uint8_t debruijn[32] = { + 0x00, 0x01, 0x02, 0x18, 0x03, 0x13, 0x06, 0x19, 0x16, 0x04, 0x14, 0x0A, + 0x10, 0x07, 0x0C, 0x1A, 0x1F, 0x17, 0x12, 0x05, 0x15, 0x09, 0x0F, 0x0B, + 0x1E, 0x11, 0x08, 0x0E, 0x1D, 0x0D, 0x1C, 0x1B + }; + return debruijn[((x & -x) * 0x04D7651F) >> 27]; +} + +/* Determine the number of trailing zero bits in a (non-zero) 64-bit x. + * This function is only intended to be used as fallback for + * secp256k1_ctz64_var, but permits it to be tested separately. */ +static SECP256K1_INLINE int secp256k1_ctz64_var_debruijn(uint64_t x) { + static const uint8_t debruijn[64] = { + 0, 1, 2, 53, 3, 7, 54, 27, 4, 38, 41, 8, 34, 55, 48, 28, + 62, 5, 39, 46, 44, 42, 22, 9, 24, 35, 59, 56, 49, 18, 29, 11, + 63, 52, 6, 26, 37, 40, 33, 47, 61, 45, 43, 21, 23, 58, 17, 10, + 51, 25, 36, 32, 60, 20, 57, 16, 50, 31, 19, 15, 30, 14, 13, 12 + }; + return debruijn[((x & -x) * 0x022FDD63CC95386D) >> 58]; +} + +/* Determine the number of trailing zero bits in a (non-zero) 32-bit x. */ +static SECP256K1_INLINE int secp256k1_ctz32_var(uint32_t x) { + VERIFY_CHECK(x != 0); +#if (__has_builtin(__builtin_ctz) || SECP256K1_GNUC_PREREQ(3,4)) + /* If the unsigned type is sufficient to represent the largest uint32_t, consider __builtin_ctz. */ + if (((unsigned)UINT32_MAX) == UINT32_MAX) { + return __builtin_ctz(x); + } +#endif +#if (__has_builtin(__builtin_ctzl) || SECP256K1_GNUC_PREREQ(3,4)) + /* Otherwise consider __builtin_ctzl (the unsigned long type is always at least 32 bits). */ + return __builtin_ctzl(x); +#else + /* If no suitable CTZ builtin is available, use a (variable time) software emulation. */ + return secp256k1_ctz32_var_debruijn(x); +#endif +} + +/* Determine the number of trailing zero bits in a (non-zero) 64-bit x. */ +static SECP256K1_INLINE int secp256k1_ctz64_var(uint64_t x) { + VERIFY_CHECK(x != 0); +#if (__has_builtin(__builtin_ctzl) || SECP256K1_GNUC_PREREQ(3,4)) + /* If the unsigned long type is sufficient to represent the largest uint64_t, consider __builtin_ctzl. */ + if (((unsigned long)UINT64_MAX) == UINT64_MAX) { + return __builtin_ctzl(x); + } +#endif +#if (__has_builtin(__builtin_ctzll) || SECP256K1_GNUC_PREREQ(3,4)) + /* Otherwise consider __builtin_ctzll (the unsigned long long type is always at least 64 bits). */ + return __builtin_ctzll(x); +#else + /* If no suitable CTZ builtin is available, use a (variable time) software emulation. */ + return secp256k1_ctz64_var_debruijn(x); +#endif +} + #endif /* SECP256K1_UTIL_H */ diff --git a/src/valgrind_ctime_test.c b/src/valgrind_ctime_test.c new file mode 100644 index 0000000000000..ea6d4b3deb3bc --- /dev/null +++ b/src/valgrind_ctime_test.c @@ -0,0 +1,173 @@ +/*********************************************************************** + * Copyright (c) 2020 Gregory Maxwell * + * Distributed under the MIT software license, see the accompanying * + * file COPYING or https://www.opensource.org/licenses/mit-license.php.* + ***********************************************************************/ + +#include +#include + +#include "../include/secp256k1.h" +#include "assumptions.h" +#include "util.h" + +#ifdef ENABLE_MODULE_ECDH +# include "../include/secp256k1_ecdh.h" +#endif + +#ifdef ENABLE_MODULE_RECOVERY +# include "../include/secp256k1_recovery.h" +#endif + +#ifdef ENABLE_MODULE_EXTRAKEYS +# include "../include/secp256k1_extrakeys.h" +#endif + +#ifdef ENABLE_MODULE_SCHNORRSIG +#include "../include/secp256k1_schnorrsig.h" +#endif + +void run_tests(secp256k1_context *ctx, unsigned char *key); + +int main(void) { + secp256k1_context* ctx; + unsigned char key[32]; + int ret, i; + + if (!RUNNING_ON_VALGRIND) { + fprintf(stderr, "This test can only usefully be run inside valgrind.\n"); + fprintf(stderr, "Usage: libtool --mode=execute valgrind ./valgrind_ctime_test\n"); + return 1; + } + ctx = secp256k1_context_create(SECP256K1_CONTEXT_SIGN + | SECP256K1_CONTEXT_VERIFY + | SECP256K1_CONTEXT_DECLASSIFY); + /** In theory, testing with a single secret input should be sufficient: + * If control flow depended on secrets the tool would generate an error. + */ + for (i = 0; i < 32; i++) { + key[i] = i + 65; + } + + run_tests(ctx, key); + + /* Test context randomisation. Do this last because it leaves the context + * tainted. */ + VALGRIND_MAKE_MEM_UNDEFINED(key, 32); + ret = secp256k1_context_randomize(ctx, key); + VALGRIND_MAKE_MEM_DEFINED(&ret, sizeof(ret)); + CHECK(ret); + + secp256k1_context_destroy(ctx); + return 0; +} + +void run_tests(secp256k1_context *ctx, unsigned char *key) { + secp256k1_ecdsa_signature signature; + secp256k1_pubkey pubkey; + size_t siglen = 74; + size_t outputlen = 33; + int i; + int ret; + unsigned char msg[32]; + unsigned char sig[74]; + unsigned char spubkey[33]; +#ifdef ENABLE_MODULE_RECOVERY + secp256k1_ecdsa_recoverable_signature recoverable_signature; + int recid; +#endif +#ifdef ENABLE_MODULE_EXTRAKEYS + secp256k1_keypair keypair; +#endif + + for (i = 0; i < 32; i++) { + msg[i] = i + 1; + } + + /* Test keygen. */ + VALGRIND_MAKE_MEM_UNDEFINED(key, 32); + ret = secp256k1_ec_pubkey_create(ctx, &pubkey, key); + VALGRIND_MAKE_MEM_DEFINED(&pubkey, sizeof(secp256k1_pubkey)); + VALGRIND_MAKE_MEM_DEFINED(&ret, sizeof(ret)); + CHECK(ret); + CHECK(secp256k1_ec_pubkey_serialize(ctx, spubkey, &outputlen, &pubkey, SECP256K1_EC_COMPRESSED) == 1); + + /* Test signing. */ + VALGRIND_MAKE_MEM_UNDEFINED(key, 32); + ret = secp256k1_ecdsa_sign(ctx, &signature, msg, key, NULL, NULL); + VALGRIND_MAKE_MEM_DEFINED(&signature, sizeof(secp256k1_ecdsa_signature)); + VALGRIND_MAKE_MEM_DEFINED(&ret, sizeof(ret)); + CHECK(ret); + CHECK(secp256k1_ecdsa_signature_serialize_der(ctx, sig, &siglen, &signature)); + +#ifdef ENABLE_MODULE_ECDH + /* Test ECDH. */ + VALGRIND_MAKE_MEM_UNDEFINED(key, 32); + ret = secp256k1_ecdh(ctx, msg, &pubkey, key, NULL, NULL); + VALGRIND_MAKE_MEM_DEFINED(&ret, sizeof(ret)); + CHECK(ret == 1); +#endif + +#ifdef ENABLE_MODULE_RECOVERY + /* Test signing a recoverable signature. */ + VALGRIND_MAKE_MEM_UNDEFINED(key, 32); + ret = secp256k1_ecdsa_sign_recoverable(ctx, &recoverable_signature, msg, key, NULL, NULL); + VALGRIND_MAKE_MEM_DEFINED(&recoverable_signature, sizeof(recoverable_signature)); + VALGRIND_MAKE_MEM_DEFINED(&ret, sizeof(ret)); + CHECK(ret); + CHECK(secp256k1_ecdsa_recoverable_signature_serialize_compact(ctx, sig, &recid, &recoverable_signature)); + CHECK(recid >= 0 && recid <= 3); +#endif + + VALGRIND_MAKE_MEM_UNDEFINED(key, 32); + ret = secp256k1_ec_seckey_verify(ctx, key); + VALGRIND_MAKE_MEM_DEFINED(&ret, sizeof(ret)); + CHECK(ret == 1); + + VALGRIND_MAKE_MEM_UNDEFINED(key, 32); + ret = secp256k1_ec_seckey_negate(ctx, key); + VALGRIND_MAKE_MEM_DEFINED(&ret, sizeof(ret)); + CHECK(ret == 1); + + VALGRIND_MAKE_MEM_UNDEFINED(key, 32); + VALGRIND_MAKE_MEM_UNDEFINED(msg, 32); + ret = secp256k1_ec_seckey_tweak_add(ctx, key, msg); + VALGRIND_MAKE_MEM_DEFINED(&ret, sizeof(ret)); + CHECK(ret == 1); + + VALGRIND_MAKE_MEM_UNDEFINED(key, 32); + VALGRIND_MAKE_MEM_UNDEFINED(msg, 32); + ret = secp256k1_ec_seckey_tweak_mul(ctx, key, msg); + VALGRIND_MAKE_MEM_DEFINED(&ret, sizeof(ret)); + CHECK(ret == 1); + + /* Test keypair_create and keypair_xonly_tweak_add. */ +#ifdef ENABLE_MODULE_EXTRAKEYS + VALGRIND_MAKE_MEM_UNDEFINED(key, 32); + ret = secp256k1_keypair_create(ctx, &keypair, key); + VALGRIND_MAKE_MEM_DEFINED(&ret, sizeof(ret)); + CHECK(ret == 1); + + /* The tweak is not treated as a secret in keypair_tweak_add */ + VALGRIND_MAKE_MEM_DEFINED(msg, 32); + ret = secp256k1_keypair_xonly_tweak_add(ctx, &keypair, msg); + VALGRIND_MAKE_MEM_DEFINED(&ret, sizeof(ret)); + CHECK(ret == 1); + + VALGRIND_MAKE_MEM_UNDEFINED(key, 32); + VALGRIND_MAKE_MEM_UNDEFINED(&keypair, sizeof(keypair)); + ret = secp256k1_keypair_sec(ctx, key, &keypair); + VALGRIND_MAKE_MEM_DEFINED(&ret, sizeof(ret)); + CHECK(ret == 1); +#endif + +#ifdef ENABLE_MODULE_SCHNORRSIG + VALGRIND_MAKE_MEM_UNDEFINED(key, 32); + ret = secp256k1_keypair_create(ctx, &keypair, key); + VALGRIND_MAKE_MEM_DEFINED(&ret, sizeof(ret)); + CHECK(ret == 1); + ret = secp256k1_schnorrsig_sign(ctx, sig, msg, &keypair, NULL); + VALGRIND_MAKE_MEM_DEFINED(&ret, sizeof(ret)); + CHECK(ret == 1); +#endif +}