-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy path04_solve.py
59 lines (52 loc) · 2.27 KB
/
04_solve.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
"""Solve run script
Loads the configuration and solves the ILP.
Expects data specified as [validate_data] and [test_data]
Automatically selects data; if db name not set, set automatically
based on data.
If weights/parameters search is specified, automatically creates
parameter sets.
"""
from __future__ import absolute_import
import argparse
import logging
import sys
import time
from linajea.config import load_config
from linajea.process_blockwise import solve_blockwise
from linajea.utils import (print_time,
getNextInferenceData)
logger = logging.getLogger(__name__)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument('--config', type=str,
help='path to config file')
parser.add_argument('--checkpoint', type=int, default=-1,
help='checkpoint to process')
parser.add_argument('--validation', action="store_true",
help='use validation data?')
parser.add_argument('--validate_on_train', action="store_true",
help='validate on train data?')
parser.add_argument('--val_param_id', type=int, default=None,
help=('get test parameters from validation '
'parameters_id'))
parser.add_argument('--param_id', type=int, default=None,
help=('process parameters with parameters_id '
'(e.g. resolve set of parameters)'))
parser.add_argument('--param_ids', default=None, nargs="+",
help='start/end range or list of eval parameters_ids')
parser.add_argument('--param_list_idx', type=str, default=None,
help='only solve idx parameter set in config')
args = parser.parse_args()
config = load_config(args.config)
logging.basicConfig(
level=config['general']['logging'],
handlers=[
logging.FileHandler('run.log', mode='a'),
logging.StreamHandler(sys.stdout),
],
format='%(asctime)s %(name)s %(levelname)-8s %(message)s')
start_time = time.time()
for inf_config in getNextInferenceData(args, is_solve=True):
solve_blockwise(inf_config)
end_time = time.time()
print_time(end_time - start_time)