-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
583 lines (502 loc) · 29 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
import os
import time
import glob
import math
import pickle
import random
import argparse
import numpy as np
from numpy.random import randint
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader
from torch.utils.data.sampler import SubsetRandomSampler
from sklearn.metrics import f1_score, accuracy_score
from sklearn.preprocessing import OneHotEncoder
import path
from model_SDRGNN import GraphModel
from dataloader_iemocap import IEMOCAPDataset
from dataloader_cmumosi import CMUMOSIDataset
from loss import MaskedCELoss, MaskedMSELoss, MaskedReconLoss
def get_loaders(audio_root, text_root, video_root, num_folder, dataset, batch_size, num_workers, seed):
###########################################################################
###########################################################################
if dataset in ['CMUMOSI', 'CMUMOSEI']:
dataset = CMUMOSIDataset(label_path=path.PATH_TO_LABEL_Win[dataset],
audio_root=audio_root,
text_root=text_root,
video_root=video_root)
trainNum = len(dataset.trainVids)
valNum = len(dataset.valVids)
testNum = len(dataset.testVids)
train_idxs = list(range(0, trainNum))
val_idxs = list(range(trainNum, trainNum+valNum))
test_idxs = list(range(trainNum+valNum, trainNum+valNum+testNum))
train_loader = DataLoader(dataset,
batch_size=batch_size,
sampler=SubsetRandomSampler(train_idxs),
collate_fn=dataset.collate_fn,
num_workers=num_workers,
pin_memory=False)
val_loader = DataLoader(dataset,
batch_size=batch_size,
sampler=SubsetRandomSampler(val_idxs),
collate_fn=dataset.collate_fn,
num_workers=num_workers,
pin_memory=False)
test_loader = DataLoader(dataset,
batch_size=batch_size,
sampler=SubsetRandomSampler(test_idxs),
collate_fn=dataset.collate_fn,
num_workers=num_workers,
pin_memory=False)
train_loaders = [train_loader]
val_loaders = [val_loader]
test_loaders = [test_loader]
## return loaders
adim, tdim, vdim = dataset.get_featDim()
return train_loaders, val_loaders, test_loaders, adim, tdim, vdim
###########################################################################
###########################################################################
if dataset in ['IEMOCAPFour', 'IEMOCAPSix']: ## five folder cross-validation, each fold contains (train, test)
dataset = IEMOCAPDataset(label_path=path.PATH_TO_LABEL_Win[dataset],
audio_root=audio_root,
text_root=text_root,
video_root=video_root)
## gain index for cross-validation
session_to_idx = {}
for idx, vid in enumerate(dataset.vids):
session = int(vid[4]) - 1
if session not in session_to_idx: session_to_idx[session] = []
session_to_idx[session].append(idx)
assert len(session_to_idx) == num_folder, f'Must split into five folder'
train_test_idxs = []
for ii in range(num_folder): # ii in [0, 4]
test_idxs = session_to_idx[ii]
train_idxs = []
for jj in range(num_folder):
if jj != ii: train_idxs.extend(session_to_idx[jj])
train_test_idxs.append([train_idxs, test_idxs])
## gain train and test loaders
train_loaders = []
test_loaders = []
for ii in range(len(train_test_idxs)):
train_idxs = train_test_idxs[ii][0]
test_idxs = train_test_idxs[ii][1]
train_loader = DataLoader(dataset,
batch_size=batch_size,
sampler=SubsetRandomSampler(train_idxs), # random sampler will shuffle index
collate_fn=dataset.collate_fn,
num_workers=num_workers,
pin_memory=False)
test_loader = DataLoader(dataset,
batch_size=batch_size,
sampler=SubsetRandomSampler(test_idxs),
collate_fn=dataset.collate_fn,
num_workers=num_workers,
pin_memory=False)
train_loaders.append(train_loader)
test_loaders.append(test_loader)
## return loaders
adim, tdim, vdim = dataset.get_featDim()
return train_loaders, test_loaders, test_loaders, adim, tdim, vdim
def build_model(args, adim, tdim, vdim,):
D_e = args.hidden
graph_h = args.hidden // 2
model = GraphModel(args.base_model,
adim, tdim, vdim, D_e,graph_h
, n_speakers=args.n_speakers,
window_past=args.windowp,
window_future=args.windowf,
n_classes=args.n_classes,
dropout=args.dropout,
time_attn=args.time_attn,
no_cuda=args.no_cuda,
)
print("Model have {} paramerters in total".format(sum(x.numel() for x in model.parameters())))
print ('Graph NN with', args.base_model, 'as base model.')
return model
## gain input features: ?*[seqlen, batch, dim]
def generate_inputs(audio_host, text_host, visual_host, audio_guest, text_guest, visual_guest, qmask):
input_features = []
feat1 = torch.cat([audio_host, text_host, visual_host], dim=2) # [seqlen, batch, featdim=adim+tdim+vdim]
feat2 = torch.cat([audio_guest, text_guest, visual_guest], dim=2)
featdim = feat1.size(-1)
tmask = qmask.transpose(0, 1) # [batch, seqlen] -> [seqlen, batch]
tmask = tmask.unsqueeze(2).repeat(1,1,featdim) # -> [seqlen, batch, featdim]
select_feat = torch.where(tmask==0, feat1, feat2) # -> [seqlen, batch, featdim]
input_features.append(select_feat) # 1 * [seqlen, batch, dim]
return input_features
## follow cpm-net's masking manner
def random_mask(view_num, input_len, missing_rate):
"""Randomly generate incomplete data information, simulate partial view data with complete view data
"""
assert missing_rate is not None
one_rate = 1 - missing_rate # missing_rate: 0.8; one_rate: 0.2
if one_rate <= (1 / view_num): #
enc = OneHotEncoder(categories=[np.arange(view_num)])
view_preserve = enc.fit_transform(randint(0, view_num, size=(input_len, 1))).toarray() # only select one view [avoid all zero input]
return view_preserve # [samplenum, viewnum] => one value set=1, others=0
if one_rate == 1:
matrix = randint(1, 2, size=(input_len, view_num)) # [samplenum, viewnum] => all ones
return matrix
## for one_rate between [1 / view_num, 1] => can have multi view input
## ensure at least one of them is avaliable
## since some sample is overlapped, which increase difficulties
if input_len < 32:
alldata_len = 32
else:
alldata_len = input_len
error = 1
while error >= 0.005:
## gain initial view_preserve
enc = OneHotEncoder(categories=[np.arange(view_num)])
view_preserve = enc.fit_transform(randint(0, view_num, size=(alldata_len, 1))).toarray() # [samplenum, viewnum=2] => one value set=1, others=0
## further generate one_num samples
one_num = view_num * alldata_len * one_rate - alldata_len # left one_num after previous step
ratio = one_num / (view_num * alldata_len) # now processed ratio
matrix_iter = (randint(0, 100, size=(alldata_len, view_num)) < int(ratio * 100)).astype(int) # based on ratio => matrix_iter
a = np.sum(((matrix_iter + view_preserve) > 1).astype(int)) # a: overlap number
one_num_iter = one_num / (1 - a / one_num)
ratio = one_num_iter / (view_num * alldata_len)
matrix_iter = (randint(0, 100, size=(alldata_len, view_num)) < int(ratio * 100)).astype(int)
matrix = ((matrix_iter + view_preserve) > 0).astype(int)
ratio = np.sum(matrix) / (view_num * alldata_len)
error = abs(one_rate - ratio)
matrix = matrix[:input_len, :]
return matrix
def train_or_eval_model(args, model, reg_loss, cls_loss, rec_loss, dataloader,
mask_rate=None, optimizer=None, train=False):
preds, masks, labels, vidnames = [], [], [], []
savepreds, savelabels, savespeakers, savehiddens, savefmask = [], [], [], [], []
losses, losses1, losses2 = [], [], []
dataset = args.dataset
reccls_flag = args.reccls_flag
lower_bound = args.lower_bound
cuda = torch.cuda.is_available() and not args.no_cuda
assert not train or optimizer!=None
if train:
model.train()
else:
model.eval()
for data in dataloader:
if train: optimizer.zero_grad()
## read dataloader
"""
audio_host, text_host, visual_host: [seqlen, batch, dim]
audio_guest, text_guest, visual_guest: [seqlen, batch, dim]
qmask: speakers, [batch, seqlen]
umask: has utt, [batch, seqlen]
label: [batch, seqlen]
"""
audio_host, text_host, visual_host = data[0], data[1], data[2]
audio_guest, text_guest, visual_guest = data[3], data[4], data[5]
qmask, umask, label = data[6], data[7], data[8]
vidnames += data[-1]
adim = audio_host.size(2)
tdim = text_host.size(2)
vdim = visual_host.size(2)
## using cmp-net masking manner [at least one view exists]
"""
?_?_mask: [seqlen, batch, dim] => gain mask
masked_?_?: [seqlen, batch, dim] => masked features
# if audio_feature is None: audio_feature = text_feature
# if text_feature is None: text_feature = audio_feature
# if video_feature is None: video_feature = text_feature
# mask sure, same mask for same features [include padded features]
"""
seqlen = audio_host.size(0)
batch = audio_host.size(1)
## host mask [!!use original audio_feature!!]
view_num = 3
matrix = random_mask(view_num, seqlen*batch, mask_rate) # [seqlen*batch, view_num]
audio_host_mask = np.reshape(matrix[:, 0], (seqlen, batch, 1))
text_host_mask = np.reshape(matrix[:, 1], (seqlen, batch, 1))
visual_host_mask = np.reshape(matrix[:, 2], (seqlen, batch, 1))
audio_host_mask = torch.LongTensor(audio_host_mask)
text_host_mask = torch.LongTensor(text_host_mask)
visual_host_mask = torch.LongTensor(visual_host_mask)
# guest mask
view_num = 3
matrix = random_mask(view_num, seqlen*batch, mask_rate) # [seqlen*batch, view_num]
audio_guest_mask = np.reshape(matrix[:, 0], (seqlen, batch, 1))
text_guest_mask = np.reshape(matrix[:, 1], (seqlen, batch, 1))
visual_guest_mask = np.reshape(matrix[:, 2], (seqlen, batch, 1))
audio_guest_mask = torch.LongTensor(audio_guest_mask)
text_guest_mask = torch.LongTensor(text_guest_mask)
visual_guest_mask = torch.LongTensor(visual_guest_mask)
if view_num == 2: assert mask_rate <= 0.500001, f'Warning: at least one view exists'
if view_num == 3: assert mask_rate <= 0.700001, f'Warning: at least one view exists'
if not lower_bound:
masked_audio_host = audio_host * audio_host_mask
masked_audio_guest = audio_guest * audio_guest_mask
masked_text_host = text_host * text_host_mask
masked_text_guest = text_guest * text_guest_mask
masked_visual_host = visual_host * visual_host_mask
masked_visual_guest = visual_guest * visual_guest_mask
else:
host_mask = torch.logical_and(torch.logical_and(audio_host_mask, text_host_mask), visual_host_mask).int() # [seqlen, bacth, 1]
masked_audio_host = audio_host * host_mask
masked_text_host = text_host * host_mask
masked_visual_host = visual_host * host_mask
audio_host_mask = host_mask
text_host_mask = host_mask
visual_host_mask = host_mask
guest_mask = torch.logical_and(torch.logical_and(audio_guest_mask, text_guest_mask), visual_guest_mask).int() # [seqlen, bacth, 1]
masked_audio_guest = audio_guest * guest_mask
masked_text_guest = text_guest * guest_mask
masked_visual_guest = visual_guest * guest_mask
audio_guest_mask = guest_mask
text_guest_mask = guest_mask
visual_guest_mask = guest_mask
## add cuda for tensor
if cuda:
audio_host = audio_host.cuda()
text_host = text_host.cuda()
visual_host = visual_host.cuda()
audio_guest = audio_guest.cuda()
text_guest = text_guest.cuda()
visual_guest = visual_guest.cuda()
masked_audio_host, audio_host_mask = masked_audio_host.cuda(), audio_host_mask.cuda()
masked_text_host, text_host_mask = masked_text_host.cuda(), text_host_mask.cuda()
masked_visual_host, visual_host_mask = masked_visual_host.cuda(), visual_host_mask.cuda()
masked_audio_guest, audio_guest_mask = masked_audio_guest.cuda(), audio_guest_mask.cuda()
masked_text_guest, text_guest_mask = masked_text_guest.cuda(), text_guest_mask.cuda()
masked_visual_guest, visual_guest_mask = masked_visual_guest.cuda(), visual_guest_mask.cuda()
qmask = qmask.cuda()
umask = umask.cuda()
label = label.cuda()
## [conversation_len1, conversation_len2, ..., conversation_lenN]
lengths = []
for j in range(len(umask)):
length = (umask[j] == 1).nonzero().tolist()[-1][0] + 1
lengths.append(length)
## generate input_features: ? * [seqlen, batch, dim]
input_features = generate_inputs(audio_host, text_host, visual_host, \
audio_guest, text_guest, visual_guest, qmask)
masked_input_features = generate_inputs(masked_audio_host, masked_text_host, masked_visual_host, \
masked_audio_guest, masked_text_guest, masked_visual_guest, qmask)
input_features_mask = generate_inputs(audio_host_mask, text_host_mask, visual_host_mask, \
audio_guest_mask, text_guest_mask, visual_guest_mask, qmask)
'''
# input_features, masked_input_features, input_features_mask: ?*[seqlen, batch, dim]
# qmask: speakers, [batch, seqlen]
# umask: has utt, [batch, seqlen]
# label: [batch, seqlen]
# log_prob: [seqlen, batch, num_classes]
# input_features_recon # padded, ?*[seqlen, batch, dim]
'''
if reccls_flag: # whether use reconstruction features for classification
_, recon_input_features, _ = model(masked_input_features, qmask, umask, lengths)
log_prob, _, hidden = model(recon_input_features, qmask, umask, lengths)
else:
log_prob, recon_input_features, hidden, = model(masked_input_features, qmask, umask, lengths)
## gain saved results [utterance-level]
tempseqlen = np.sum(umask.cpu().data.numpy(), 1) # [batch]
temphidden = hidden.transpose(0,1).cpu().data.numpy() # [batch, seqlen, featdim]
temppred = log_prob.transpose(0,1).cpu().data.numpy() # [batch, seqlen, num_classes]
templabel = label.cpu().data.numpy() # [batch, seqlen]
tempqmask = qmask.cpu().data.numpy() # [batch, seqlen]
tempfmask = input_features_mask[0].transpose(0,1).cpu().data.numpy() # [seqlen, batch, 3] -> [batch, seqlen, 3]
for ii in range(len(tempseqlen)): # utt_number for each conversation
itemhidden = temphidden[ii][:int(tempseqlen[ii]), :] # [seqlen, featdim]
itempred = temppred[ii][:int(tempseqlen[ii]), :] # [seqlen, num_classes]
itemfmask = tempfmask[ii][:int(tempseqlen[ii]), :] # [seqlen, 3]
itemlabel = templabel[ii][:int(tempseqlen[ii])] # [len, ]
itemspks = tempqmask[ii][:int(tempseqlen[ii])] # [len, ]
savehiddens.append(itemhidden)
savepreds.append(itempred)
savefmask.append(itemfmask)
savelabels.append(itemlabel)
savespeakers.append(itemspks)
## calculate loss
lp_ = log_prob.transpose(0,1).contiguous().view(-1, log_prob.size(2)) # [batch*seq_len, n_classes]
labels_ = label.view(-1) # [batch*seq_len]
if dataset in ['IEMOCAPFour', 'IEMOCAPSix']: loss1 = cls_loss(lp_, labels_, umask)
if dataset in ['CMUMOSI', 'CMUMOSEI'] : loss1 = reg_loss(lp_, labels_, umask)
loss2 = rec_loss(recon_input_features, input_features, input_features_mask, umask, adim, tdim, vdim)
## recon_loss_weight e in the final loss function
if args.loss_recon: loss = (1 - args.recon_loss_weight)*loss1 + args.recon_loss_weight * loss2
if not args.loss_recon: loss = loss1
## save batch results
# pred_ = torch.argmax(lp_,1) # [batch*seq_len]
preds.append(lp_.data.cpu().numpy())
labels.append(labels_.data.cpu().numpy())
masks.append(umask.view(-1).cpu().numpy())
losses.append(loss.item()*masks[-1].sum())
losses1.append(loss1.item()*masks[-1].sum())
losses2.append(loss2.item()*masks[-1].sum())
if train:
loss.backward()
optimizer.step()
assert preds!=[], f'Error: no dataset in dataloader'
preds = np.concatenate(preds)
labels = np.concatenate(labels)
masks = np.concatenate(masks)
if dataset in ['IEMOCAPFour', 'IEMOCAPSix']:
preds = np.argmax(preds, 1)
avg_loss = round(np.sum(losses)/np.sum(masks), 4)
avg_loss1 = round(np.sum(losses1)/np.sum(masks), 4)
avg_loss2 = round(np.sum(losses2)/np.sum(masks), 4)
avg_accuracy = accuracy_score(labels, preds, sample_weight=masks)
avg_fscore = f1_score(labels, preds, sample_weight=masks, average='weighted')
elif dataset in ['CMUMOSI', 'CMUMOSEI']:
non_zeros = np.array([i for i, e in enumerate(labels) if e != 0]) # remove 0, and remove mask
avg_loss = round(np.sum(losses)/np.sum(masks), 4)
avg_loss1 = round(np.sum(losses1)/np.sum(masks), 4)
avg_loss2 = round(np.sum(losses2)/np.sum(masks), 4)
avg_accuracy = accuracy_score((labels[non_zeros] > 0), (preds[non_zeros] > 0))
avg_fscore = f1_score((labels[non_zeros] > 0), (preds[non_zeros] > 0), average='weighted')
print (f'sample number: {np.sum(masks)}')
return avg_accuracy, avg_fscore, vidnames, [avg_loss, avg_loss1, avg_loss2], [savepreds, savelabels, savespeakers, savehiddens, savefmask]
if __name__ == '__main__':
parser = argparse.ArgumentParser()
## Params for input
parser.add_argument('--audio-feature', type=str, default=None, help='audio feature name')
parser.add_argument('--text-feature', type=str, default=None, help='text feature name')
parser.add_argument('--video-feature', type=str, default=None, help='video feature name')
parser.add_argument('--dataset', type=str, default='IEMOCAPFour', help='dataset type')
## Params for model
parser.add_argument('--base-model', type=str, choices=['LSTM', 'GRU'], help='base recurrent model, must be one of LSTM/GRU')
parser.add_argument('--time-attn', action='store_true', default=False, help='whether to use nodal attention in graph model: Equation 4,5,6 in Paper')
parser.add_argument('--windowp', type=int, default=6, help='context window size for constructing edges in graph model for past utterances, -1: fully connect')
parser.add_argument('--windowf', type=int, default=6, help='context window size for constructing edges in graph model for future utterances, -1: fully connect')
parser.add_argument('--hidden', type=int, default=100, help='hidden size in model training')
parser.add_argument('--n_classes', type=int, default=2, help='number of classes [defined by args.dataset]')
parser.add_argument('--n_speakers', type=int, default=2, help='number of speakers [defined by args.dataset]')
## Params for training
parser.add_argument('--no-cuda', action='store_true', default=False, help='does not use GPU')
parser.add_argument('--lr', type=float, default=0.001, metavar='LR', help='learning rate')
parser.add_argument('--l2', type=float, default=0.00001, metavar='L2', help='L2 regularization weight')
parser.add_argument('--dropout', type=float, default=0.5, metavar='dropout', help='dropout rate')
parser.add_argument('--batch-size', type=int, default=32, metavar='BS', help='batch size')
parser.add_argument('--epochs', type=int, default=100, metavar='E', help='number of epochs')
parser.add_argument('--num-folder', type=int, default=5, help='folders for cross-validation [defined by args.dataset]')
parser.add_argument('--seed', type=int, default=100, help='make split manner is same with same seed')
parser.add_argument('--mask-type', type=str, default='constant-0.1', help='mask rate [0~1] for input argumentation: constant-float; linear; convex; concave')
parser.add_argument('--loss-recon', action='store_true', default=False, help='whether to use reconstruction loss')
parser.add_argument('--recon-loss-weight', type=float, default=0.5, help='set reconstruction loss weight')
parser.add_argument('--reccls-flag', action='store_true', default=False, help='whether to use reconstruction features for classification')
parser.add_argument('--lower-bound', action='store_true', default=False, help='whether remove missing modality in the training process')
args = parser.parse_args()
if args.dataset in ['CMUMOSI', 'CMUMOSEI']:
args.num_folder = 1
args.n_classes = 1
args.n_speakers = 1
elif args.dataset == 'IEMOCAPFour':
args.num_folder = 5
args.n_classes = 4
args.n_speakers = 2
elif args.dataset == 'IEMOCAPSix':
args.num_folder = 5
args.n_classes = 6
args.n_speakers = 2
cuda = torch.cuda.is_available() and not args.no_cuda
print(args)
print("Dataset:", args.dataset)
print (f'\n========== Reading Data ==========\n')
audio_feature = args.audio_feature
text_feature = args.text_feature
video_feature = args.video_feature
print(f"PATH_TO_FEATURES_Win[args.dataset]: {path.PATH_TO_FEATURES_Win[args.dataset]}")
print(f"audio_feature: {audio_feature}")
audio_root = os.path.join(path.PATH_TO_FEATURES_Win[args.dataset], audio_feature)
text_root = os.path.join(path.PATH_TO_FEATURES_Win[args.dataset], text_feature)
video_root = os.path.join(path.PATH_TO_FEATURES_Win[args.dataset], video_feature)
assert os.path.exists(audio_root) and os.path.exists(text_root) and os.path.exists(video_root), f'features not exist!'
train_loaders, val_loaders, test_loaders, adim, tdim, vdim = get_loaders( audio_root = audio_root,
text_root = text_root,
video_root = video_root,
num_folder = args.num_folder,
batch_size = args.batch_size,
dataset = args.dataset,
num_workers = 0,
seed = args.seed)
assert len(train_loaders) == args.num_folder, f'Error: folder number'
print (f'\n========== Training and Evaluation ==========\n')
folder_acc = [] # save best epoch
folder_f1 = [] # save best epoch
folder_recon = [] # save best epoch
folder_save = [] # save best epoch
folder_losswhole = [] # save whole epoch
folder_savewhole = [] # save whole epoch
for ii in range(args.num_folder):
print (f'>>>>> Cross-validation: training on the {ii+1} folder >>>>>')
train_loader = train_loaders[ii]
val_loader = val_loaders[ii]
test_loader = test_loaders[ii]
start_time = time.time()
print (f'Step1: build model (each folder has its own model)')
model = build_model(args, adim, tdim, vdim)
reg_loss = MaskedMSELoss()
cls_loss = MaskedCELoss()
rec_loss = MaskedReconLoss()
if cuda:
model.cuda()
cls_loss.cuda()
rec_loss.cuda()
optimizer = optim.Adam(model.parameters(), lr=args.lr, weight_decay=args.l2)
print (f'Step2: training (multiple epoches)')
all_losses = []
all_labels = []
val_fscores = []
test_fscores, test_accs, test_recon = [], [], []
for epoch in range(args.epochs):
assert args.mask_type.startswith('constant'), f'mask_type should be constant-x.x'
mask_rate = float(args.mask_type.split('-')[-1])
## training, validation and testing
train_acc, train_fscore, train_names, train_loss, trainsave = train_or_eval_model(args, model, reg_loss, cls_loss, rec_loss, train_loader, \
mask_rate=mask_rate, optimizer=optimizer, train=True)
val_acc, val_fscore, val_names, val_loss, valsave = train_or_eval_model(args, model, reg_loss, cls_loss, rec_loss, val_loader, \
mask_rate=mask_rate, optimizer=None, train=False)
test_acc, test_fscore, test_names, test_loss, testsave = train_or_eval_model(args, model, reg_loss, cls_loss, rec_loss, test_loader, \
mask_rate=mask_rate, optimizer=None, train=False)
## save
val_fscores.append(val_fscore)
test_accs.append(test_acc)
test_fscores.append(test_fscore)
test_recon.append(test_loss[2])
all_losses.append({'train_loss':train_loss, 'val_loss':val_loss, 'test_loss':test_loss})
all_labels.append({'test_labels':testsave[1], 'test_preds':testsave[0], 'test_hiddens':testsave[3], 'test_names':test_names, 'test_fmask':testsave[4]})
print(f'epoch:{epoch+1}; train_fscore:{train_fscore:2.2%}; train_loss:{train_loss[0]}; train_loss1:{train_loss[1]}; train_loss2:{train_loss[2]}')
print (f'Step3: saving and testing on the {ii+1} folder')
best_index = np.argmax(np.array(val_fscores))
bestf1 = test_fscores[best_index]
bestacc = test_accs[best_index]
bestrecon = test_recon[best_index]
bestsave = all_labels[best_index]
folder_f1.append(bestf1)
folder_acc.append(bestacc)
folder_recon.append(bestrecon)
folder_save.append(bestsave)
folder_losswhole.append(all_losses)
assert args.epochs >= 60, f'epoch number should large then 60'
folder_savewhole.append([best_index, all_labels[10], all_labels[20], all_labels[50],all_labels[80],all_labels[best_index]])
end_time = time.time()
print (f'>>>>> Finish: training on the {ii+1} folder, duration: {end_time - start_time:.2f} >>>>>')
print (f'\n=============== Saving Result ================\n')
save_root = path.PATH_TO_SAVE_ROOT
## gain suffix_name
mask_rate = args.mask_type.split('-')[-1]
suffix_name = f'{args.dataset.lower()}_Graph{args.base_model}_mask:{mask_rate}'
## gain feature_name and cls_name
feature_name = f'{audio_feature}_{text_feature}_{video_feature}'
cls_name = f'lossrecon:{args.loss_recon}+lower:{args.lower_bound}+reccls:{args.reccls_flag}'
## gain res_name
mean_f1 = np.mean(np.array(folder_f1))
mean_acc = np.mean(np.array(folder_acc))
mean_recon = np.mean(np.array(folder_recon))
res_name = f'f1:{mean_f1:2.2%}_acc:{mean_acc:2.2%}_reconloss:{mean_recon:.4f}'
res_name = res_name.replace(":", "_")
save_path = os.path.join(
save_root,
f'{suffix_name.replace(":", "_")}_{res_name.replace("%", "_")}.npz'
)
print(f'{save_root}/{suffix_name}_features:{feature_name}_classifier:{cls_name}_{res_name}_{time.time()}')
print (f'save results in {save_path}')
np.savez_compressed(save_path,
args=np.array(args, dtype=object),
folder_losswhole=np.array(folder_losswhole, dtype=object),
folder_savewhole=np.array(folder_savewhole, dtype=object)
)