\documentclass[12pt,reqno]{amsart} \usepackage{amssymb,amsfonts,amsmath,amsthm} \newtheorem{thm}{Theorem} \newtheorem{defn}{Definition} \newtheorem{lem}{Lemma} \newtheorem{cor}{Corollary} \newtheorem{prop}{Proposition} \newtheorem{rem}{Remark} \newcommand{\setB}{{\mathord{\mathbb B}}} \newcommand{\setC}{{\mathord{\mathbb C}}} \newcommand{\setN}{{\mathord{\mathbb N}}} \newcommand{\setQ}{{\mathord{\mathbb Q}}} \newcommand{\setR}{{\mathord{\mathbb R}}} \newcommand{\setT}{{\mathord{\mathbb T}}} \newcommand{\setZ}{{\mathord{\mathbb Z}}} \usepackage{paralist} \def\Id{\mathop{\rm Id}} % I could add that our page size is 6.38in by 9.82in % (with an offset of -1.15in by -0.67in) \usepackage{geometry} \geometry{totalwidth=5.6in,totalheight=7.48in, layoutvoffset=1.15in%,layouthoffset=0.67in } %% \textheight=9.82in %% \textwidth=6.38in %% \voffset=-1.15in %% \hoffset=-0.67in \usepackage{setspace} %\onehalfspacing % or \doublespacing \setstretch{1.05} \usepackage{txfonts} \numberwithin{equation}{section} % get eq numbered within sections \begin{document} \begin{align} \label{eq:sec3-applications:1} A^0(U;t)\partial_t U + \sum_{k=1}^3 A^k(U;t) \partial_k U + B(U;t) U&= G(U;t) \\ \label{eq:sec3-applications:3} \Delta\Phi &= 4\pi R^2 \sigma, \end{align} \begin{equation*} \label{eq:sec3-applications:15} \tag{QSA0} \begin{cases} A^0(U;t)\partial_t U+ \sum_{a=1}^3 A^{a}(U;t)\partial_a U =\widehat G(U;t),\\ U(0,x)=u_0(x), \end{cases} \end{equation*} The main idea of the proof is to show convergence in the $H^{m-1}(\setT^3)$ norm for the derivatives of the solution. So we start by differentiating equation \eqref{eq:sec3-applications:15} with respect to the spatial variables $D_x$ and obtain \end{document} %%% Local Variables: %%% mode: LaTeX %%% sentence-end-double-space: nil %%% TeX-master: t %%% End: