-
Notifications
You must be signed in to change notification settings - Fork 363
/
reference.py
1199 lines (1077 loc) · 44.1 KB
/
reference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
import base64
import collections
import io
import itertools
import logging
import math
import os
from itertools import chain
from functools import lru_cache
from typing import TYPE_CHECKING, Literal
import fsspec.core
try:
import ujson as json
except ImportError:
if not TYPE_CHECKING:
import json
from fsspec.asyn import AsyncFileSystem
from fsspec.callbacks import DEFAULT_CALLBACK
from fsspec.core import filesystem, open, split_protocol
from fsspec.utils import isfilelike, merge_offset_ranges, other_paths
logger = logging.getLogger("fsspec.reference")
class ReferenceNotReachable(RuntimeError):
def __init__(self, reference, target, *args):
super().__init__(*args)
self.reference = reference
self.target = target
def __str__(self):
return f'Reference "{self.reference}" failed to fetch target {self.target}'
def _first(d):
return next(iter(d.values()))
def _prot_in_references(path, references):
ref = references.get(path)
if isinstance(ref, (list, tuple)):
return split_protocol(ref[0])[0] if ref[0] else ref[0]
def _protocol_groups(paths, references):
if isinstance(paths, str):
return {_prot_in_references(paths, references): [paths]}
out = {}
for path in paths:
protocol = _prot_in_references(path, references)
out.setdefault(protocol, []).append(path)
return out
class RefsValuesView(collections.abc.ValuesView):
def __iter__(self):
for val in self._mapping.zmetadata.values():
yield json.dumps(val).encode()
yield from self._mapping._items.values()
for field in self._mapping.listdir():
chunk_sizes = self._mapping._get_chunk_sizes(field)
if len(chunk_sizes) == 0:
yield self._mapping[field + "/0"]
continue
yield from self._mapping._generate_all_records(field)
class RefsItemsView(collections.abc.ItemsView):
def __iter__(self):
return zip(self._mapping.keys(), self._mapping.values())
def ravel_multi_index(idx, sizes):
val = 0
mult = 1
for i, s in zip(idx[::-1], sizes[::-1]):
val += i * mult
mult *= s
return val
class LazyReferenceMapper(collections.abc.MutableMapping):
"""This interface can be used to read/write references from Parquet stores.
It is not intended for other types of references.
It can be used with Kerchunk's MultiZarrToZarr method to combine
references into a parquet store.
Examples of this use-case can be found here:
https://fsspec.github.io/kerchunk/advanced.html?highlight=parquet#parquet-storage"""
# import is class level to prevent numpy dep requirement for fsspec
@property
def np(self):
import numpy as np
return np
@property
def pd(self):
import pandas as pd
return pd
def __init__(
self,
root,
fs=None,
out_root=None,
cache_size=128,
categorical_threshold=10,
engine: Literal["fastparquet", "pyarrow"] = "fastparquet",
):
"""
This instance will be writable, storing changes in memory until full partitions
are accumulated or .flush() is called.
To create an empty lazy store, use .create()
Parameters
----------
root : str
Root of parquet store
fs : fsspec.AbstractFileSystem
fsspec filesystem object, default is local filesystem.
cache_size : int, default=128
Maximum size of LRU cache, where cache_size*record_size denotes
the total number of references that can be loaded in memory at once.
categorical_threshold : int
Encode urls as pandas.Categorical to reduce memory footprint if the ratio
of the number of unique urls to total number of refs for each variable
is greater than or equal to this number. (default 10)
engine: Literal["fastparquet","pyarrow"]
Engine choice for reading parquet files. (default is "fastparquet")
"""
self.root = root
self.chunk_sizes = {}
self.out_root = out_root or self.root
self.cat_thresh = categorical_threshold
self.engine = engine
self.cache_size = cache_size
self.url = self.root + "/{field}/refs.{record}.parq"
# TODO: derive fs from `root`
self.fs = fsspec.filesystem("file") if fs is None else fs
from importlib.util import find_spec
if self.engine == "pyarrow" and find_spec("pyarrow") is None:
raise ImportError("engine choice `pyarrow` is not installed.")
def __getattr__(self, item):
if item in ("_items", "record_size", "zmetadata"):
self.setup()
# avoid possible recursion if setup fails somehow
return self.__dict__[item]
raise AttributeError(item)
def setup(self):
self._items = {}
self._items[".zmetadata"] = self.fs.cat_file(
"/".join([self.root, ".zmetadata"])
)
met = json.loads(self._items[".zmetadata"])
self.record_size = met["record_size"]
self.zmetadata = met["metadata"]
# Define function to open and decompress refs
@lru_cache(maxsize=self.cache_size)
def open_refs(field, record):
"""cached parquet file loader"""
path = self.url.format(field=field, record=record)
data = io.BytesIO(self.fs.cat_file(path))
df = self.pd.read_parquet(data, engine=self.engine)
refs = {c: df[c].to_numpy() for c in df.columns}
return refs
self.open_refs = open_refs
@staticmethod
def create(root, storage_options=None, fs=None, record_size=10000, **kwargs):
"""Make empty parquet reference set
First deletes the contents of the given directory, if it exists.
Parameters
----------
root: str
Directory to contain the output; will be created
storage_options: dict | None
For making the filesystem to use for writing is fs is None
fs: FileSystem | None
Filesystem for writing
record_size: int
Number of references per parquet file
kwargs: passed to __init__
Returns
-------
LazyReferenceMapper instance
"""
met = {"metadata": {}, "record_size": record_size}
if fs is None:
fs, root = fsspec.core.url_to_fs(root, **(storage_options or {}))
if fs.exists(root):
fs.rm(root, recursive=True)
fs.makedirs(root, exist_ok=True)
fs.pipe("/".join([root, ".zmetadata"]), json.dumps(met).encode())
return LazyReferenceMapper(root, fs, **kwargs)
@lru_cache()
def listdir(self):
"""List top-level directories"""
dirs = (p.rsplit("/", 1)[0] for p in self.zmetadata if not p.startswith(".z"))
return set(dirs)
def ls(self, path="", detail=True):
"""Shortcut file listings"""
path = path.rstrip("/")
pathdash = path + "/" if path else ""
dirnames = self.listdir()
dirs = [
d
for d in dirnames
if d.startswith(pathdash) and "/" not in d.lstrip(pathdash)
]
if dirs:
others = {
f
for f in chain(
[".zmetadata"],
(name for name in self.zmetadata),
(name for name in self._items),
)
if f.startswith(pathdash) and "/" not in f.lstrip(pathdash)
}
if detail is False:
others.update(dirs)
return sorted(others)
dirinfo = [{"name": name, "type": "directory", "size": 0} for name in dirs]
fileinfo = [
{
"name": name,
"type": "file",
"size": len(
json.dumps(self.zmetadata[name])
if name in self.zmetadata
else self._items[name]
),
}
for name in others
]
return sorted(dirinfo + fileinfo, key=lambda s: s["name"])
field = path
others = set(
[name for name in self.zmetadata if name.startswith(f"{path}/")]
+ [name for name in self._items if name.startswith(f"{path}/")]
)
fileinfo = [
{
"name": name,
"type": "file",
"size": len(
json.dumps(self.zmetadata[name])
if name in self.zmetadata
else self._items[name]
),
}
for name in others
]
keys = self._keys_in_field(field)
if detail is False:
return list(others) + list(keys)
recs = self._generate_all_records(field)
recinfo = [
{"name": name, "type": "file", "size": rec[-1]}
for name, rec in zip(keys, recs)
if rec[0] # filters out path==None, deleted/missing
]
return fileinfo + recinfo
def _load_one_key(self, key):
"""Get the reference for one key
Returns bytes, one-element list or three-element list.
"""
if key in self._items:
return self._items[key]
elif key in self.zmetadata:
return json.dumps(self.zmetadata[key]).encode()
elif "/" not in key or self._is_meta(key):
raise KeyError(key)
field, _ = key.rsplit("/", 1)
record, ri, chunk_size = self._key_to_record(key)
maybe = self._items.get((field, record), {}).get(ri, False)
if maybe is None:
# explicitly deleted
raise KeyError
elif maybe:
return maybe
elif chunk_size == 0:
return b""
# Chunk keys can be loaded from row group and cached in LRU cache
try:
refs = self.open_refs(field, record)
except (ValueError, TypeError, FileNotFoundError) as exc:
raise KeyError(key) from exc
columns = ["path", "offset", "size", "raw"]
selection = [refs[c][ri] if c in refs else None for c in columns]
raw = selection[-1]
if raw is not None:
return raw
if selection[0] is None:
raise KeyError("This reference does not exist or has been deleted")
if selection[1:3] == [0, 0]:
# URL only
return selection[:1]
# URL, offset, size
return selection[:3]
@lru_cache(4096)
def _key_to_record(self, key):
"""Details needed to construct a reference for one key"""
field, chunk = key.rsplit("/", 1)
chunk_sizes = self._get_chunk_sizes(field)
if len(chunk_sizes) == 0:
return 0, 0, 0
chunk_idx = [int(c) for c in chunk.split(".")]
chunk_number = ravel_multi_index(chunk_idx, chunk_sizes)
record = chunk_number // self.record_size
ri = chunk_number % self.record_size
return record, ri, len(chunk_sizes)
def _get_chunk_sizes(self, field):
"""The number of chunks along each axis for a given field"""
if field not in self.chunk_sizes:
zarray = self.zmetadata[f"{field}/.zarray"]
size_ratio = [
math.ceil(s / c) for s, c in zip(zarray["shape"], zarray["chunks"])
]
self.chunk_sizes[field] = size_ratio or [1]
return self.chunk_sizes[field]
def _generate_record(self, field, record):
"""The references for a given parquet file of a given field"""
refs = self.open_refs(field, record)
it = iter(zip(*refs.values()))
if len(refs) == 3:
# All urls
return (list(t) for t in it)
elif len(refs) == 1:
# All raws
return refs["raw"]
else:
# Mix of urls and raws
return (list(t[:3]) if not t[3] else t[3] for t in it)
def _generate_all_records(self, field):
"""Load all the references within a field by iterating over the parquet files"""
nrec = 1
for ch in self._get_chunk_sizes(field):
nrec *= ch
nrec = math.ceil(nrec / self.record_size)
for record in range(nrec):
yield from self._generate_record(field, record)
def values(self):
return RefsValuesView(self)
def items(self):
return RefsItemsView(self)
def __hash__(self):
return id(self)
def __getitem__(self, key):
return self._load_one_key(key)
def __setitem__(self, key, value):
if "/" in key and not self._is_meta(key):
field, chunk = key.rsplit("/", 1)
record, i, _ = self._key_to_record(key)
subdict = self._items.setdefault((field, record), {})
subdict[i] = value
if len(subdict) == self.record_size:
self.write(field, record)
else:
# metadata or top-level
self._items[key] = value
new_value = json.loads(
value.decode() if isinstance(value, bytes) else value
)
self.zmetadata[key] = {**self.zmetadata.get(key, {}), **new_value}
@staticmethod
def _is_meta(key):
return key.startswith(".z") or "/.z" in key
def __delitem__(self, key):
if key in self._items:
del self._items[key]
elif key in self.zmetadata:
del self.zmetadata[key]
else:
if "/" in key and not self._is_meta(key):
field, _ = key.rsplit("/", 1)
record, i, _ = self._key_to_record(key)
subdict = self._items.setdefault((field, record), {})
subdict[i] = None
if len(subdict) == self.record_size:
self.write(field, record)
else:
# metadata or top-level
self._items[key] = None
def write(self, field, record, base_url=None, storage_options=None):
# extra requirements if writing
import kerchunk.df
import numpy as np
import pandas as pd
partition = self._items[(field, record)]
original = False
if len(partition) < self.record_size:
try:
original = self.open_refs(field, record)
except IOError:
pass
if original:
paths = original["path"]
offsets = original["offset"]
sizes = original["size"]
raws = original["raw"]
else:
paths = np.full(self.record_size, np.nan, dtype="O")
offsets = np.zeros(self.record_size, dtype="int64")
sizes = np.zeros(self.record_size, dtype="int64")
raws = np.full(self.record_size, np.nan, dtype="O")
for j, data in partition.items():
if isinstance(data, list):
if (
str(paths.dtype) == "category"
and data[0] not in paths.dtype.categories
):
paths = paths.add_categories(data[0])
paths[j] = data[0]
if len(data) > 1:
offsets[j] = data[1]
sizes[j] = data[2]
elif data is None:
# delete
paths[j] = None
offsets[j] = 0
sizes[j] = 0
raws[j] = None
else:
# this is the only call into kerchunk, could remove
raws[j] = kerchunk.df._proc_raw(data)
# TODO: only save needed columns
df = pd.DataFrame(
{
"path": paths,
"offset": offsets,
"size": sizes,
"raw": raws,
},
copy=False,
)
if df.path.count() / (df.path.nunique() or 1) > self.cat_thresh:
df["path"] = df["path"].astype("category")
object_encoding = {"raw": "bytes", "path": "utf8"}
has_nulls = ["path", "raw"]
fn = f"{base_url or self.out_root}/{field}/refs.{record}.parq"
self.fs.mkdirs(f"{base_url or self.out_root}/{field}", exist_ok=True)
if self.engine == "pyarrow":
df_backend_kwargs = {"write_statistics": False}
elif self.engine == "fastparquet":
df_backend_kwargs = {
"stats": False,
"object_encoding": object_encoding,
"has_nulls": has_nulls,
}
else:
raise NotImplementedError(f"{self.engine} not supported")
df.to_parquet(
fn,
engine=self.engine,
storage_options=storage_options
or getattr(self.fs, "storage_options", None),
compression="zstd",
index=False,
**df_backend_kwargs,
)
partition.clear()
self._items.pop((field, record))
def flush(self, base_url=None, storage_options=None):
"""Output any modified or deleted keys
Parameters
----------
base_url: str
Location of the output
"""
# write what we have so far and clear sub chunks
for thing in list(self._items):
if isinstance(thing, tuple):
field, record = thing
self.write(
field,
record,
base_url=base_url,
storage_options=storage_options,
)
# gather .zmetadata from self._items and write that too
for k in list(self._items):
if k != ".zmetadata" and ".z" in k:
self.zmetadata[k] = json.loads(self._items.pop(k))
met = {"metadata": self.zmetadata, "record_size": self.record_size}
self._items.clear()
self._items[".zmetadata"] = json.dumps(met).encode()
self.fs.pipe(
"/".join([base_url or self.out_root, ".zmetadata"]),
self._items[".zmetadata"],
)
# TODO: only clear those that we wrote to?
self.open_refs.cache_clear()
def __len__(self):
# Caveat: This counts expected references, not actual - but is fast
count = 0
for field in self.listdir():
if field.startswith("."):
count += 1
else:
count += math.prod(self._get_chunk_sizes(field))
count += len(self.zmetadata) # all metadata keys
# any other files not in reference partitions
count += sum(1 for _ in self._items if not isinstance(_, tuple))
return count
def __iter__(self):
# Caveat: returns only existing keys, so the number of these does not
# match len(self)
metas = set(self.zmetadata)
metas.update(self._items)
for bit in metas:
if isinstance(bit, str):
yield bit
for field in self.listdir():
for k in self._keys_in_field(field):
if k in self:
yield k
def __contains__(self, item):
try:
self._load_one_key(item)
return True
except KeyError:
return False
def _keys_in_field(self, field):
"""List key names in given field
Produces strings like "field/x.y" appropriate from the chunking of the array
"""
chunk_sizes = self._get_chunk_sizes(field)
if len(chunk_sizes) == 0:
yield field + "/0"
return
inds = itertools.product(*(range(i) for i in chunk_sizes))
for ind in inds:
yield field + "/" + ".".join([str(c) for c in ind])
class ReferenceFileSystem(AsyncFileSystem):
"""View byte ranges of some other file as a file system
Initial version: single file system target, which must support
async, and must allow start and end args in _cat_file. Later versions
may allow multiple arbitrary URLs for the targets.
This FileSystem is read-only. It is designed to be used with async
targets (for now). This FileSystem only allows whole-file access, no
``open``. We do not get original file details from the target FS.
Configuration is by passing a dict of references at init, or a URL to
a JSON file containing the same; this dict
can also contain concrete data for some set of paths.
Reference dict format:
{path0: bytes_data, path1: (target_url, offset, size)}
https://github.com/fsspec/kerchunk/blob/main/README.md
"""
protocol = "reference"
def __init__(
self,
fo,
target=None,
ref_storage_args=None,
target_protocol=None,
target_options=None,
remote_protocol=None,
remote_options=None,
fs=None,
template_overrides=None,
simple_templates=True,
max_gap=64_000,
max_block=256_000_000,
cache_size=128,
**kwargs,
):
"""
Parameters
----------
fo : dict or str
The set of references to use for this instance, with a structure as above.
If str referencing a JSON file, will use fsspec.open, in conjunction
with target_options and target_protocol to open and parse JSON at this
location. If a directory, then assume references are a set of parquet
files to be loaded lazily.
target : str
For any references having target_url as None, this is the default file
target to use
ref_storage_args : dict
If references is a str, use these kwargs for loading the JSON file.
Deprecated: use target_options instead.
target_protocol : str
Used for loading the reference file, if it is a path. If None, protocol
will be derived from the given path
target_options : dict
Extra FS options for loading the reference file ``fo``, if given as a path
remote_protocol : str
The protocol of the filesystem on which the references will be evaluated
(unless fs is provided). If not given, will be derived from the first
URL that has a protocol in the templates or in the references, in that
order.
remote_options : dict
kwargs to go with remote_protocol
fs : AbstractFileSystem | dict(str, (AbstractFileSystem | dict))
Directly provide a file system(s):
- a single filesystem instance
- a dict of protocol:filesystem, where each value is either a filesystem
instance, or a dict of kwargs that can be used to create in
instance for the given protocol
If this is given, remote_options and remote_protocol are ignored.
template_overrides : dict
Swap out any templates in the references file with these - useful for
testing.
simple_templates: bool
Whether templates can be processed with simple replace (True) or if
jinja is needed (False, much slower). All reference sets produced by
``kerchunk`` are simple in this sense, but the spec allows for complex.
max_gap, max_block: int
For merging multiple concurrent requests to the same remote file.
Neighboring byte ranges will only be merged when their
inter-range gap is <= ``max_gap``. Default is 64KB. Set to 0
to only merge when it requires no extra bytes. Pass a negative
number to disable merging, appropriate for local target files.
Neighboring byte ranges will only be merged when the size of
the aggregated range is <= ``max_block``. Default is 256MB.
cache_size : int
Maximum size of LRU cache, where cache_size*record_size denotes
the total number of references that can be loaded in memory at once.
Only used for lazily loaded references.
kwargs : passed to parent class
"""
super().__init__(**kwargs)
self.target = target
self.template_overrides = template_overrides
self.simple_templates = simple_templates
self.templates = {}
self.fss = {}
self._dircache = {}
self.max_gap = max_gap
self.max_block = max_block
if isinstance(fo, str):
dic = dict(
**(ref_storage_args or target_options or {}), protocol=target_protocol
)
ref_fs, fo2 = fsspec.core.url_to_fs(fo, **dic)
if ref_fs.isfile(fo2):
# text JSON
with fsspec.open(fo, "rb", **dic) as f:
logger.info("Read reference from URL %s", fo)
text = json.load(f)
self._process_references(text, template_overrides)
else:
# Lazy parquet refs
logger.info("Open lazy reference dict from URL %s", fo)
self.references = LazyReferenceMapper(
fo2,
fs=ref_fs,
cache_size=cache_size,
)
else:
# dictionaries
self._process_references(fo, template_overrides)
if isinstance(fs, dict):
self.fss = {
k: (
fsspec.filesystem(k.split(":", 1)[0], **opts)
if isinstance(opts, dict)
else opts
)
for k, opts in fs.items()
}
if None not in self.fss:
self.fss[None] = filesystem("file")
return
if fs is not None:
# single remote FS
remote_protocol = (
fs.protocol[0] if isinstance(fs.protocol, tuple) else fs.protocol
)
self.fss[remote_protocol] = fs
if remote_protocol is None:
# get single protocol from any templates
for ref in self.templates.values():
if callable(ref):
ref = ref()
protocol, _ = fsspec.core.split_protocol(ref)
if protocol and protocol not in self.fss:
fs = filesystem(protocol, **(remote_options or {}))
self.fss[protocol] = fs
if remote_protocol is None:
# get single protocol from references
# TODO: warning here, since this can be very expensive?
for ref in self.references.values():
if callable(ref):
ref = ref()
if isinstance(ref, list) and ref[0]:
protocol, _ = fsspec.core.split_protocol(ref[0])
if protocol not in self.fss:
fs = filesystem(protocol, **(remote_options or {}))
self.fss[protocol] = fs
# only use first remote URL
break
if remote_protocol and remote_protocol not in self.fss:
fs = filesystem(remote_protocol, **(remote_options or {}))
self.fss[remote_protocol] = fs
self.fss[None] = fs or filesystem("file") # default one
def _cat_common(self, path, start=None, end=None):
path = self._strip_protocol(path)
logger.debug(f"cat: {path}")
try:
part = self.references[path]
except KeyError as exc:
raise FileNotFoundError(path) from exc
if isinstance(part, str):
part = part.encode()
if isinstance(part, bytes):
logger.debug(f"Reference: {path}, type bytes")
if part.startswith(b"base64:"):
part = base64.b64decode(part[7:])
return part, None, None
if len(part) == 1:
logger.debug(f"Reference: {path}, whole file => {part}")
url = part[0]
start1, end1 = start, end
else:
url, start0, size = part
logger.debug(f"Reference: {path} => {url}, offset {start0}, size {size}")
end0 = start0 + size
if start is not None:
if start >= 0:
start1 = start0 + start
else:
start1 = end0 + start
else:
start1 = start0
if end is not None:
if end >= 0:
end1 = start0 + end
else:
end1 = end0 + end
else:
end1 = end0
if url is None:
url = self.target
return url, start1, end1
async def _cat_file(self, path, start=None, end=None, **kwargs):
part_or_url, start0, end0 = self._cat_common(path, start=start, end=end)
if isinstance(part_or_url, bytes):
return part_or_url[start:end]
protocol, _ = split_protocol(part_or_url)
try:
await self.fss[protocol]._cat_file(part_or_url, start=start, end=end)
except Exception as e:
raise ReferenceNotReachable(path, part_or_url) from e
def cat_file(self, path, start=None, end=None, **kwargs):
part_or_url, start0, end0 = self._cat_common(path, start=start, end=end)
if isinstance(part_or_url, bytes):
return part_or_url[start:end]
protocol, _ = split_protocol(part_or_url)
try:
return self.fss[protocol].cat_file(part_or_url, start=start0, end=end0)
except Exception as e:
raise ReferenceNotReachable(path, part_or_url) from e
def pipe_file(self, path, value, **_):
"""Temporarily add binary data or reference as a file"""
self.references[path] = value
async def _get_file(self, rpath, lpath, **kwargs):
if self.isdir(rpath):
return os.makedirs(lpath, exist_ok=True)
data = await self._cat_file(rpath)
with open(lpath, "wb") as f:
f.write(data)
def get_file(self, rpath, lpath, callback=DEFAULT_CALLBACK, **kwargs):
if self.isdir(rpath):
return os.makedirs(lpath, exist_ok=True)
data = self.cat_file(rpath, **kwargs)
callback.set_size(len(data))
if isfilelike(lpath):
lpath.write(data)
else:
with open(lpath, "wb") as f:
f.write(data)
callback.absolute_update(len(data))
def get(self, rpath, lpath, recursive=False, **kwargs):
if recursive:
# trigger directory build
self.ls("")
rpath = self.expand_path(rpath, recursive=recursive)
fs = fsspec.filesystem("file", auto_mkdir=True)
targets = other_paths(rpath, lpath)
if recursive:
data = self.cat([r for r in rpath if not self.isdir(r)])
else:
data = self.cat(rpath)
for remote, local in zip(rpath, targets):
if remote in data:
fs.pipe_file(local, data[remote])
def cat(self, path, recursive=False, on_error="raise", **kwargs):
if isinstance(path, str) and recursive:
raise NotImplementedError
if isinstance(path, list) and (recursive or any("*" in p for p in path)):
raise NotImplementedError
# TODO: if references is lazy, pre-fetch all paths in batch before access
proto_dict = _protocol_groups(path, self.references)
out = {}
for proto, paths in proto_dict.items():
fs = self.fss[proto]
urls, starts, ends, valid_paths = [], [], [], []
for p in paths:
# find references or label not-found. Early exit if any not
# found and on_error is "raise"
try:
u, s, e = self._cat_common(p)
except FileNotFoundError as err:
if on_error == "raise":
raise
if on_error != "omit":
out[p] = err
else:
urls.append(u)
starts.append(s)
ends.append(e)
valid_paths.append(p)
# process references into form for merging
urls2 = []
starts2 = []
ends2 = []
paths2 = []
whole_files = set()
for u, s, e, p in zip(urls, starts, ends, valid_paths):
if isinstance(u, bytes):
# data
out[p] = u
elif s is None:
# whole file - limits are None, None, but no further
# entries take for this file
whole_files.add(u)
urls2.append(u)
starts2.append(s)
ends2.append(e)
paths2.append(p)
for u, s, e, p in zip(urls, starts, ends, valid_paths):
# second run to account for files that are to be loaded whole
if s is not None and u not in whole_files:
urls2.append(u)
starts2.append(s)
ends2.append(e)
paths2.append(p)
# merge and fetch consolidated ranges
new_paths, new_starts, new_ends = merge_offset_ranges(
list(urls2),
list(starts2),
list(ends2),
sort=True,
max_gap=self.max_gap,
max_block=self.max_block,
)
bytes_out = fs.cat_ranges(new_paths, new_starts, new_ends)
# unbundle from merged bytes - simple approach
for u, s, e, p in zip(urls, starts, ends, valid_paths):
if p in out:
continue # was bytes, already handled
for np, ns, ne, b in zip(new_paths, new_starts, new_ends, bytes_out):
if np == u and (ns is None or ne is None):
if isinstance(b, Exception):
out[p] = b
else:
out[p] = b[s:e]
elif np == u and s >= ns and e <= ne:
if isinstance(b, Exception):
out[p] = b
else:
out[p] = b[s - ns : (e - ne) or None]
for k, v in out.copy().items():
# these were valid references, but fetch failed, so transform exc
if isinstance(v, Exception) and k in self.references:
ex = out[k]
new_ex = ReferenceNotReachable(k, self.references[k])
new_ex.__cause__ = ex
if on_error == "raise":
raise new_ex
elif on_error != "omit":
out[k] = new_ex
if len(out) == 1 and isinstance(path, str) and "*" not in path:
return _first(out)
return out
def _process_references(self, references, template_overrides=None):
vers = references.get("version", None)
if vers is None:
self._process_references0(references)
elif vers == 1:
self._process_references1(references, template_overrides=template_overrides)
else:
raise ValueError(f"Unknown reference spec version: {vers}")
# TODO: we make dircache by iterating over all entries, but for Spec >= 1,
# can replace with programmatic. Is it even needed for mapper interface?
def _process_references0(self, references):
"""Make reference dict for Spec Version 0"""
if isinstance(references, dict):
# do not do this for lazy/parquet backend, which will not make dicts,
# but must remain writable in the original object
references = {
key: json.dumps(val) if isinstance(val, dict) else val
for key, val in references.items()
}
self.references = references
def _process_references1(self, references, template_overrides=None):
if not self.simple_templates or self.templates:
import jinja2
self.references = {}
self._process_templates(references.get("templates", {}))
@lru_cache(1000)
def _render_jinja(u):
return jinja2.Template(u).render(**self.templates)
for k, v in references.get("refs", {}).items():
if isinstance(v, str):
if v.startswith("base64:"):
self.references[k] = base64.b64decode(v[7:])
self.references[k] = v
elif isinstance(v, dict):
self.references[k] = json.dumps(v)
elif self.templates:
u = v[0]
if "{{" in u:
if self.simple_templates:
u = (
u.replace("{{", "{")
.replace("}}", "}")
.format(**self.templates)
)