-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathalgorithm_05_mlrMBO.R
98 lines (76 loc) · 2.67 KB
/
algorithm_05_mlrMBO.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
print("libPaths:")
print(.libPaths())
library(mlrMBO)
require(reticulate)
files.sources = dir("helperScriptsFunctions/")
files.sources <- paste0("helperScriptsFunctions/",files.sources[endsWith(files.sources, ".R")])
invisible(sapply(files.sources, source))
args = commandArgs(trailingOnly=TRUE)
print("Args:")
print(args)
retries = 10
while(tryCatch({
use_python("/usr/bin/python2", required = T)
py_config()
return(0)
}, error = function(e) {
return(1)
})){
retries <- retries - 1
if(retries <= 0){
break
}
}
### RUN Parameters #########################################
### Recieve Setup
###
seed <- as.numeric(args[1])
set.seed(seed)
funID <- as.numeric(args[2])
algoID <- as.numeric(args[3])
nDim <- as.numeric(args[4])
budget <- as.numeric(args[5])
batchSize <- as.numeric(args[6])
experimentPath <- args[7]
args <- args[-7]
maxIters <- budget
maxEvals <- maxIters * batchSize
############################
############################
solver <- function(fun,lower,upper,solverParameterList){
configureMlr(show.learner.output = FALSE)
obj.fun <- makeSingleObjectiveFunction(
fn = fun,
par.set = makeNumericParamSet(lower = lower, upper = upper, len = length(lower))
)
ctrl <- makeMBOControl(propose.points = batchSize)
if(batchSize > 1){
ctrl <- setMBOControlMultiPoint(ctrl, method = "moimbo",
moimbo.objective = "mean.se.dist",
moimbo.dist = "nearest.neighbor",
moimbo.selection = "first",
moimbo.maxit = as.integer(log(length(lower)) * 1000))
}else{
ctrl <- setMBOControlInfill(ctrl, crit = makeMBOInfillCritMeanResponse())
}
designSize <- length(lower) * 2 * batchSize
design <- generateDesign(designSize, getParamSet(obj.fun), fun = lhs::maximinLHS)
remainingIters <- maxIters-2*length(lower)
ctrl <- setMBOControlTermination(ctrl, iters = remainingIters)
lrn <- makeMBOLearner(ctrl, obj.fun)
res <- mbo(obj.fun, design = design, learner = lrn,
control = ctrl, show.info = TRUE)
return(res)
}
print("Creating obj fun")
wrapped <- getBBOBWrappedFun(functionID = funID,
algoName = paste("05MOI",paste(args,collapse="_"),sep="_"),
experimentPath = experimentPath,
nDim = nDim,
iid = seed)
start_time<-Sys.time()
print("Running solver")
solver(wrapped$fun, wrapped$lower, wrapped$upper)
end_time<-Sys.time()
print("Time taken: \n")
print(end_time-start_time)