-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmnist_fully-connected.py
37 lines (28 loc) · 1.35 KB
/
mnist_fully-connected.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
import tensorflow as tf
# get input data
from tensorflow.examples.tutorials.mnist import input_data
mnist = input_data.read_data_sets("/tmp/mnist_data/", one_hot=True)
# setup the variables for the input
x = tf.placeholder(tf.float32, [None, 784])
# placeholder for "true" values
y_ = tf.placeholder(tf.float32, [None, 10])
# setup the layers of the fully connected neural net
hidden1 = tf.layers.dense(x, 300, name="hidden1", activation=tf.nn.relu)
hidden2 = tf.layers.dense(hidden1, 100, name="hidden2", activation=tf.nn.relu)
y = tf.layers.dense(hidden2, 10, name="outputs")
# calculate the cross-entropy loss
cross_entropy = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels=y_, logits=y))
# setup the training step
train_step = tf.train.GradientDescentOptimizer(0.05).minimize(cross_entropy)
# some tensorflow boilerplate to initialize everything
sess = tf.InteractiveSession()
tf.global_variables_initializer().run()
# train the model for 1000 steps
for _ in range(2000):
batch_xs, batch_ys = mnist.train.next_batch(100)
sess.run(train_step, feed_dict={x: batch_xs, y_: batch_ys})
# test the model
correct_prediction = tf.equal(tf.argmax(y, 1), tf.argmax(y_, 1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
print(sess.run(accuracy, feed_dict={x: mnist.test.images,
y_: mnist.test.labels}))