-
Notifications
You must be signed in to change notification settings - Fork 21
/
utils.py
180 lines (154 loc) · 6.06 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
# Copyright (c) Microsoft Corporation.
# Copyright (c) University of Florida Research Foundation, Inc.
# Licensed under the MIT License.
#
# Permission is hereby granted, free of charge, to any person obtaining a copy of
# this software and associated documentation files (the "Software"), to deal in
# the Software without restriction, including without limitation the rights to
# use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies
# of the Software, and to permit persons to whom the Software is furnished to do
# so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
# FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
# IN THE SOFTWARE.
#
# utils.py
# Random utilty functions
# Author: Francesco Pittaluga
import sys
import os
import time
import re
from glob import glob
import numpy as np
import tensorflow as tf
import argparse
# Parser that prints help upon error
class MyParser(argparse.ArgumentParser):
def error(self, message):
sys.stderr.write('error: %s\n\n' % message)
self.print_help()
sys.exit(2)
# Print to stdout with date/time
def mprint(s):
sys.stdout.write(time.strftime("%Y-%m-%d %H:%M:%S ") + str(s) + "\n")
sys.stdout.flush()
# Print to stderr with date/time
def eprint(s):
sys.stderr.write(time.strftime("%Y-%m-%d %H:%M:%S ") + str(s) + "\n")
sys.stderr.flush()
# Load annotations file
def load_annotations(fname):
with open(fname,'r') as f:
data = [line.strip().split(' ') for line in f]
return np.array(data)
# Reading in batches (with repeatable random shuffling)
class batcher:
def __init__(self,fname,bsz,niter=0):
# Load from file
self.data = load_annotations(fname)
# Setup batching
nsamp = len(self.data)
self.bsz = bsz
self.rand = np.random.RandomState(0)
idx = self.rand.permutation(nsamp)
for i in range(niter*bsz // len(idx)):
idx = self.rand.permutation(len(idx))
self.idx = np.int32(idx)
self.pos = niter*bsz % len(self.idx)
def get_batch(self):
if self.pos+self.bsz >= len(self.idx):
bidx = self.idx[self.pos:]
idx = self.rand.permutation(len(self.idx))
self.idx = np.int32(idx)
self.pos = 0
if len(bidx) < self.bsz:
self.pos = self.bsz-len(bidx)
bidx2 = self.idx[0:self.pos]
bidx = np.concatenate((bidx,bidx2))
else:
bidx = self.idx[self.pos:self.pos+self.bsz]
self.pos = self.pos+self.bsz
return self.data[bidx]
# Manage checkpoint files, read off iteration number from filename
# Use clean() to keep latest, and modulo n iters, delete rest
class ckpter:
def __init__(self,wcard):
self.wcard = wcard
self.load()
def load(self):
lst = glob(self.wcard)
if len(lst) > 0:
lst=[(l,int(re.match('.*/.*_(\d+)',l).group(1)))
for l in lst]
self.lst=sorted(lst,key=lambda x: x[1])
self.iter = self.lst[-1][1]
self.latest = self.lst[-1][0]
else:
self.lst=[]
self.iter=0
self.latest=None
def clean(self,every=0,last=1):
self.load()
old = self.lst[:-last]
for j in old:
if every == 0 or j[1] % every != 0:
os.remove(j[0])
# Save Optimizer state (Assume Adam)
def saveopts(fn,opts,others,sess):
weights = {}
for i in range(len(opts)):
opt = opts[i][0]
vdict = opts[i][1]
if type(opt) == tf.train.AdamOptimizer:
b1p, b2p = opt._get_beta_accumulators()
weights['%d:b1p'%i] = b1p.eval(sess)
weights['%d:b2p'%i] = b2p.eval(sess)
for v in vdict.keys():
nm = vdict[v]
weights['%d:m_%s' % (i,nm)] = opt.get_slot(v,'m').eval(sess)
weights['%d:v_%s' % (i,nm)] = opt.get_slot(v,'v').eval(sess)
else:
slots = opt.get_slot_names()
for v in vdict.keys():
nm = vdict[v]
for s in slots:
weights['%d:%s%s' % (i,s,nm)] = opt.get_slot(v, s).eval(sess)
weights.update(others)
np.savez(fn,**weights)
# Load Optimizer state (Assume Adam)
def loadopts(fn,opts,others,sess):
if not os.path.isfile(fn):
return None
weights = np.load(fn)
ph = tf.placeholder(tf.float32)
for i in range(len(opts)):
opt = opts[i][0]
vdict = opts[i][1]
if type(opt) == tf.train.AdamOptimizer:
b1p, b2p = opt._get_beta_accumulators()
sess.run(b1p.assign(ph),feed_dict={ph: weights['%d:b1p'%i]})
sess.run(b2p.assign(ph),feed_dict={ph: weights['%d:b2p'%i]})
for v in vdict.keys():
nm = vdict[v]
sess.run(opt.get_slot(v,'m').assign(ph),
feed_dict={ph: weights['%d:m_%s' % (i,nm)]})
sess.run(opt.get_slot(v,'v').assign(ph),
feed_dict={ph: weights['%d:v_%s' % (i,nm)]})
else:
slots = opt.get_slot_names()
for v in vdict.keys():
nm = vdict[v]
for s in slots:
sess.run(opt.get_slot(v, s).assign(ph),
feed_dict={ph: weights['%d:%s%s' % (i,s,nm)]})
oval = [weights[k] for k in others]
return oval