-
Notifications
You must be signed in to change notification settings - Fork 21
/
train_refine.py
379 lines (322 loc) · 16.9 KB
/
train_refine.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
# Copyright (c) Microsoft Corporation.
# Copyright (c) University of Florida Research Foundation, Inc.
# Licensed under the MIT License.
#
# Permission is hereby granted, free of charge, to any person obtaining a copy of
# this software and associated documentation files (the "Software"), to deal in
# the Software without restriction, including without limitation the rights to
# use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies
# of the Software, and to permit persons to whom the Software is furnished to do
# so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
# FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
# IN THE SOFTWARE.
#
# train_refine.py
# Training script for RefineNet
# Author: Francesco Pittaluga
import os
import sys
import tensorflow as tf
import numpy as np
import ctrlc
import utils as ut
import load_data_tflo as ld
from models import VisibNet
from models import CoarseNet
from models import RefineNet
from models import Discriminator
from models import VGG16
#########################################################################
parser = ut.MyParser(description='Configure')
parser.add_argument("-log_file", default=False, action='store_true', help="%(type)s: Print stdout and stderr to log and err files")
parser.add_argument("--input_attr", type=str, default='depth_sift_rgb', choices=['depth','depth_sift','depth_rgb','depth_sift_rgb'],
help="%(type)s: Per-point attributes to inlcude in input tensor (default: %(default)s)")
parser.add_argument("--trn_anns", type=str, default='data/anns/demo_5k/train.txt',
help="%(type)s: Path to annotation file for training samples (default: %(default)s)")
parser.add_argument("--val_anns", type=str, default='data/anns/demo_5k/val.txt',
help="%(type)s: Path to annotation file for validation samples (default: %(default)s)")
parser.add_argument("--vnet_model", type=str, default=None, help="%(type)s: Path to pre-trained VisibNet model")
parser.add_argument("--cnet_model", type=str, default=None, help="%(type)s: Path to pre-trained CoarseNet model")
parser.add_argument("--vgg16_model", type=str, default='wts/vgg16.model.npz', help="%(type)s: Path to pre-trained vgg16 model (default: %(default)s)")
parser.add_argument("--batch_size", type=int, default=4, help="%(type)s: Number of images in batch (default: %(default)s)")
parser.add_argument("--crop_size", type=int, default=256, help="%(type)s: Size to crop images to (default: %(default)s)")
parser.add_argument("--scale_size", type=lambda s: [int(i) for i in s.split(',')], default=[296,394,512],
help="int,int,int: Sizes to randomly scale images to before cropping them (default: 296,394,512)")
parser.add_argument("--pct_3D_points", type=lambda s: [float(i) for i in s.split(',')][:2], default=[5.,100.],
help="float,float: Min and max percent of 3D points to keep when performing random subsampling for data augmentation "+\
"(default: 5.,100.)")
parser.add_argument("--per_loss_wt", type=float, default=1., help="%(type)s: Perceptual loss weight (default: %(default)s)")
parser.add_argument("--pix_loss_wt", type=float, default=1., help="%(type)s: Pixel loss weight (default: %(default)s)")
parser.add_argument("--adv_loss_wt", type=float, default=1e3, help="%(type)s: Adversarial loss weight (default: %(default)s)")
parser.add_argument("--disc_loss_thresh", type=float, default=.1, help="%(type)s: Only Update discriminator when loss above threshold (default: %(default)s)")
parser.add_argument("--max_iter", type=int, default=1e6, help="%(type)s: Stop training after MAX_ITER iterations (default: %(default)s)")
parser.add_argument("--log_freq", type=int, default=25, help="%(type)s: Log training stats every LOG_FREQ iterations (default: %(default)s)")
parser.add_argument("--chkpt_freq", type=int, default=1e4, help="%(type)s: Save model state every CHKPT_FREQ iterations. Previous model state "+\
"is deleted after each new save (default: %(default)s)")
parser.add_argument("--save_freq", type=int, default=5e4, help="%(type)s: Permanently save model state every SAVE_FREQ iterations "+\
"(default: %(default)s)")
parser.add_argument("--val_freq", type=int, default=5e3, help="%(type)s: Run validation loop every VAL_FREQ iterations (default: %(default)s)")
parser.add_argument("--val_iter", type=int, default=128, help="%(type)s: Number of validation samples per validation loop (default: %(default)s)")
parser.add_argument("--adam_eps", type=float, default=1e-8, help="%(type)s: Epsilon parameter for adam optimizer (default: %(default)s)")
parser.add_argument("--adam_mom", type=float, default=.9, help="%(type)s: Momentum parameter for adam optimizer (default: %(default)s)")
parser.add_argument("--adam_lr", type=float, default=1e-4, help="%(type)s: Learning rate parameter for adam optmizer (default: %(default)s)")
prm = parser.parse_args()
prm_str = 'Arguments:\n'+'\n'.join(['{} {}'.format(k.upper(),v) for k,v in vars(prm).items()])
print(prm_str+'\n')
#########################################################################
# Create exp dir if does not exist
exp_dir = 'wts/{}/refinenet'.format(prm.input_attr)
os.system('mkdir -p {}'.format(exp_dir))
# set path to visibnet wts for demo
if prm.vnet_model == None:
prm.vnet_model = 'wts/pretrained/{}/visibnet.model.npz'.format(prm.input_attr)
if prm.cnet_model == None:
prm.cnet_model = 'wts/pretrained/{}/coarsenet.model.npz'.format(prm.input_attr)
# redirect stdout and stderr to log files
if prm.log_file:
sys.stdout = open(exp_dir+'/train.log', 'a')
sys.stderr = open(exp_dir+'/info.log', 'a')
# Check for saved weights & find iter
rsave = ut.ckpter(exp_dir+'/iter_*.rmodel.npz')
dsave = ut.ckpter(exp_dir+'/iter_*.dmodel.npz')
osave = ut.ckpter(exp_dir+'/iter_*.opt.npz')
rpath = lambda itr: '%s/iter_%07d.rmodel.npz'%(exp_dir,itr)
dpath = lambda itr: '%s/iter_%07d.dmodel.npz'%(exp_dir,itr)
opath = lambda itr: '%s/iter_%07d.opt.npz'%(exp_dir,itr)
niter = rsave.iter
# Load annotations
ut.mprint("Loading annotations")
tbchr = ut.batcher(prm.trn_anns,prm.batch_size,niter)
vbchr = ut.batcher(prm.val_anns,prm.batch_size,niter)
ut.mprint("Done!")
#########################################################################
# Set up data fetch
camera_fps = [tf.placeholder(tf.string) for i in range(prm.batch_size)]
pts_xyz_fps = [tf.placeholder(tf.string) for i in range(prm.batch_size)]
pts_rgb_fps = [tf.placeholder(tf.string) for i in range(prm.batch_size)]
pts_sift_fps = [tf.placeholder(tf.string) for i in range(prm.batch_size)]
gt_rgb_fps = [tf.placeholder(tf.string) for i in range(prm.batch_size)]
getfeed = lambda fps: \
dict([(ph,'data/'+fps[i,3]) for i,ph in enumerate(camera_fps)]+\
[(ph,'data/'+fps[i,0]) for i,ph in enumerate(pts_xyz_fps)]+\
[(ph,'data/'+fps[i,2]) for i,ph in enumerate(pts_sift_fps)]+\
[(ph,'data/'+fps[i,1]) for i,ph in enumerate(pts_rgb_fps)]+\
[(ph,'data/'+fps[i,4]) for i,ph in enumerate(gt_rgb_fps)])
gt_rgb = ld.load_img_bch(gt_rgb_fps,prm.crop_size,prm.scale_size,isval=False,binary=False)
proj_depth,proj_sift,proj_rgb = ld.load_proj_bch(camera_fps,pts_xyz_fps,pts_sift_fps,pts_rgb_fps,
prm.crop_size,prm.scale_size,isval=False)
pd_b=[]; ps_b=[]; pr_b=[]; is_visible=[]; is_valid=[]
keep_prob = tf.random_uniform([prm.batch_size],minval=prm.pct_3D_points[0]/100.,
maxval=prm.pct_3D_points[1]/100.,dtype=tf.float32,seed=niter)
for i in range(prm.batch_size):
# Get valid points
is_val = tf.to_float(tf.greater(proj_depth[i], 0.))
pd = proj_depth[i]*is_val
ps = proj_sift[i]*is_val
pr = proj_rgb[i]*is_val
# dropout (1-keep)% of projected pts
pd = tf.nn.dropout(pd,keep_prob[i],noise_shape=[prm.crop_size,prm.crop_size,1],seed=niter)*keep_prob[i]
ps = tf.nn.dropout(ps,keep_prob[i],noise_shape=[prm.crop_size,prm.crop_size,1],seed=niter)*keep_prob[i]
pr = tf.nn.dropout(pr,keep_prob[i],noise_shape=[prm.crop_size,prm.crop_size,1],seed=niter)*keep_prob[i]
pd_b.append(tf.reshape(pd,[1,prm.crop_size,prm.crop_size,1]))
ps_b.append(tf.reshape(ps,[1,prm.crop_size,prm.crop_size,128]))
pr_b.append(tf.reshape(pr,[1,prm.crop_size,prm.crop_size,3]))
proj_depth = tf.concat(pd_b,axis=0)
proj_sift = tf.concat(ps_b,axis=0) / 127.5 - 1.
proj_rgb = tf.concat(pr_b,axis=0) / 127.5 - 1.
#########################################################################
# Init visibnet
if prm.input_attr=='depth':
vinp = proj_depth
elif prm.input_attr=='depth_sift':
vinp = tf.concat((proj_depth,proj_sift/127.5-1.),axis=3)
elif prm.input_attr=='depth_rgb':
vinp = tf.concat((proj_depth,proj_rgb/127.5-1.),axis=3)
elif prm.input_attr=='depth_sift_rgb':
vinp = tf.concat((proj_depth,proj_rgb/127.5-1.,proj_sift/127.5-1.),axis=3)
V = VisibNet(vinp,bn='test',outp_act=True)
vpred = tf.cast(tf.greater(V.pred,0.5),tf.float32)
# Init CoarseNet
if prm.input_attr=='depth':
cinp = proj_depth*vpred
rinp_sz = [prm.batch_size,prm.crop_size,prm.crop_size,4]
elif prm.input_attr=='depth_sift':
cinp = tf.concat((proj_depth*vpred, proj_sift*vpred/127.5-1.),axis=3)
rinp_sz = [prm.batch_size,prm.crop_size,prm.crop_size,132]
elif prm.input_attr=='depth_rgb':
cinp = tf.concat((proj_depth*vpred, proj_rgb*vpred/127.5-1.),axis=3)
rinp_sz = [prm.batch_size,prm.crop_size,prm.crop_size,7]
elif prm.input_attr=='depth_sift_rgb':
cinp = tf.concat((proj_depth*vpred, proj_sift*vpred/127.5-1., proj_rgb*vpred/127.5-1.),axis=3)
rinp_sz = [prm.batch_size,prm.crop_size,prm.crop_size,135]
C = CoarseNet(cinp,bn='test',outp_act=True)
cpred = (C.pred+1.)*127.5
# Set up pre-fetching for RefineNet
rinp = tf.concat((cpred,cinp),axis=3)
rinp_b0 = tf.Variable(tf.zeros(rinp_sz,dtype=tf.float32))
rinp_b1 = tf.Variable(tf.zeros(rinp_sz,dtype=tf.float32))
rgt = gt_rgb
rgt_sz = [prm.batch_size,prm.crop_size,prm.crop_size,3]
rgt_b0 = tf.Variable(tf.zeros(rgt_sz,dtype=tf.float32))
rgt_b1 = tf.Variable(tf.zeros(rgt_sz,dtype=tf.float32))
tldr_fetchOp = [rinp_b0.assign(rinp).op, rgt_b0.assign(rgt).op]
vldr_fetchOp = [rinp_b1.assign(rinp).op, rgt_b1.assign(rgt).op]
tldr_swapOp = [rinp_b1.assign(rinp_b0).op, rgt_b1.assign(rgt_b0).op]
# Init RefineNet
R = RefineNet(rinp_b1,bn='train',outp_act=False)
rpred = (R.pred+1.)*127.5
# Init perceptual network
pinp = tf.concat((rgt_b1,rpred),axis=0)
P = VGG16(pinp,stop_layer='conv3_3')
ppred = P.pred
# Init discriminator network
dgt0 = tf.constant(0,shape=[prm.batch_size],dtype=tf.int64)
dgt1 = tf.constant(1,shape=[prm.batch_size],dtype=tf.int64)
dgt = tf.concat((dgt0,dgt1),axis=0)
layers = ['conv1_1','conv2_2','conv3_3']
dinp_fake = [ppred[layer][prm.batch_size:] for layer in layers]
dinp_real = [ppred[layer][:prm.batch_size] for layer in layers]
dinp_fake[0] = tf.concat((rinp_b1,rpred,dinp_fake[0]),axis=3)
dinp_real[0] = tf.concat((rinp_b1,rgt_b1,dinp_real[0]),axis=3)
D = Discriminator()
dpred_fake = D.pred(dinp_fake)
dpred_real = D.pred(dinp_real)
dpred = tf.concat((dpred_fake,dpred_real),axis=0)
#########################################################################
# Set optimizer
rvars = R.trainable_variables()
dvars = D.trainable_variables()
optR = tf.train.AdamOptimizer(prm.adam_lr,prm.adam_mom,epsilon=prm.adam_eps)
optD = tf.train.AdamOptimizer(prm.adam_lr,prm.adam_mom,epsilon=prm.adam_eps)
# Set discriminator loss
dloss = tf.reduce_mean(tf.nn.sparse_softmax_cross_entropy_with_logits(logits=dpred,labels=dgt))
dacc = tf.reduce_mean(tf.cast(tf.equal(tf.argmax(dpred,1),dgt),tf.float32))
dStep = optD.minimize(dloss,var_list=list(dvars.keys()))
# Set RefineNet loss
radvloss = tf.reduce_mean(tf.nn.sparse_softmax_cross_entropy_with_logits(logits=dpred_fake,labels=dgt1))
rpixloss = tf.reduce_mean(tf.abs(rgt_b1-rpred))
rperloss = (tf.reduce_mean(tf.squared_difference(ppred['conv1_1'][:prm.batch_size],ppred['conv1_1'][prm.batch_size:])) + \
tf.reduce_mean(tf.squared_difference(ppred['conv2_2'][:prm.batch_size],ppred['conv2_2'][prm.batch_size:])) + \
tf.reduce_mean(tf.squared_difference(ppred['conv3_3'][:prm.batch_size],ppred['conv3_3'][prm.batch_size:]))) / 3
rloss = prm.pix_loss_wt*rpixloss + prm.per_loss_wt*rperloss + prm.adv_loss_wt*radvloss
rStep = optR.minimize(rloss,var_list=list(rvars.keys()))
#########################################################################
# Start TF session (respecting OMP_NUM_THREADS)
try: init_all_vars = tf.global_variables_initializer()
except: init_all_vars = tf.initialize_all_variables()
nthr = os.getenv('OMP_NUM_THREADS')
if nthr is None: sess=tf.Session()
else: sess=tf.Session(config=tf.ConfigProto(intra_op_parallelism_threads=int(nthr)))
sess.run(init_all_vars)
#########################################################################
# Load saved models & optimizers
# Load VGG wts
ut.mprint("Restoring VGG16 from " + prm.vgg16_model)
P.load(sess,prm.vgg16_model)
ut.mprint("Done!")
# Load VisibNet wts
ut.mprint("Restoring VisibNet from " + prm.vnet_model)
V.load(sess,prm.vnet_model)
ut.mprint("Done!")
sess.run(V.unset_ifdo)
# Load CoarseNet wts
ut.mprint("Restoring CoarseNet from " + prm.cnet_model)
C.load(sess,prm.cnet_model)
ut.mprint("Done!")
sess.run(C.unset_ifdo)
# Load RefineNet wts
if rsave.latest != None:
ut.mprint("Restoring RefineNet from " + rsave.latest)
R.load(sess,rsave.latest)
ut.mprint("Done!")
# Load optimizers
optlist = [[optR,rvars],[optD,dvars]]
if osave.latest is not None:
ut.mprint("Restoring optimizers from " + osave.latest)
ut.loadopts(osave.latest,optlist,[],sess)
ut.mprint("Done!")
#########################################################################
# Main Training loop
sess.run(R.set_ifdo)
sess.run(D.set_ifdo)
saviter = niter
dloss_prev=1e6
tLossAcc=[]
vlog=''
fd=getfeed(tbchr.get_batch())
sess.run(tldr_fetchOp,feed_dict=fd)
ut.mprint("Starting from Iteration %d" % niter)
while not ctrlc.stop and niter < prm.max_iter:
# Val loop
if niter % prm.val_freq == 0:
ut.mprint("Validating networks")
sess.run([R.unset_ifdo,D.unset_ifdo])
vLossAcc=[];
for i in range(0,prm.val_iter):
try: # prevent occasional failure when no pts in projection
fps=vbchr.get_batch()
fd=getfeed(fps)
sess.run(vldr_fetchOp,feed_dict=fd)
vLossAcc.append(sess.run([rloss,dloss,dacc]))
except:
pass
sess.run([R.set_ifdo,D.set_ifdo])
args = list(np.mean(vLossAcc,axis=0))
vlog=' R.val.loss {:.6f} D.val.loss {:.6f} D.val.acc {:.6f}'.format(*args)
# Swap data buffers
sess.run(tldr_swapOp)
# Set up nxt data fetch op
fps=tbchr.get_batch()
fd=getfeed(fps)
try: # prevent occasional failure when no pts in projection
if niter%2==0 and dloss_prev>prm.disc_loss_thresh:
tLossAcc.append(sess.run([rloss,dloss,dacc,dStep]+tldr_fetchOp,feed_dict=fd)[:3])
else:
tLossAcc.append(sess.run([rloss,dloss,dacc,rStep]+tldr_fetchOp,feed_dict=fd)[:3])
dloss_prev = tLossAcc[-1][1]
except:
pass
# Print training loss & accuracy
niter+=1
if niter % prm.log_freq == 0 and len(tLossAcc) > 2:
args = [niter]+list(np.mean(tLossAcc,axis=0))
tlog = '[{:09d}] . R.trn.loss {:.6f} D.trn.loss {:.6f} D.trn.acc {:.6f}'.format(*args)
ut.mprint(tlog+vlog)
tLossAcc=[]; vlog='';
# Save models
if niter % prm.chkpt_freq == 0:
# Save RefineNet
R.save(sess,rpath(niter))
rsave.clean(every=prm.save_freq,last=1)
ut.mprint("Saved weights to "+rpath(niter))
# Save Discriminator
D.save(sess,dpath(niter))
dsave.clean(every=prm.save_freq,last=1)
ut.mprint("Saved weights to "+dpath(niter))
# Save Optimizers
ut.saveopts(opath(niter),optlist,{},sess)
osave.clean(last=1)
ut.mprint("Saved optimizers to "+opath(niter))
# Save models & optimizers
if niter > rsave.iter:
# Save RefineNet
R.save(sess,rpath(niter))
rsave.clean(every=prm.save_freq,last=1)
ut.mprint("Saved weights to "+rpath(niter))
# Save Discriminator
D.save(sess,dpath(niter))
dsave.clean(every=prm.save_freq,last=1)
ut.mprint("Saved weights to "+dpath(niter))
# Save Optimizers
ut.saveopts(opath(niter),optlist,{},sess)
osave.clean(last=1)
ut.mprint("Saved optimizers to "+opath(niter))