-
Notifications
You must be signed in to change notification settings - Fork 1
/
SMMain.py
executable file
·626 lines (531 loc) · 21.3 KB
/
SMMain.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
import glob
import os, sys
from pathlib import Path
import matplotlib
import torch
matplotlib.use("Agg")
import params
import numpy as np
import time
from SMController import SMController
from SMEnv import SMEnv
from SMAgent import SMAgent
from box2dsim.envs.Simulator import TestPlotterVisualSalience
from SMGraphs import (
remove_figs,
blank_video,
visual_map,
comp_map,
trajectories_map,
representations_movements,
log,
)
import matplotlib.pyplot as plt
np.set_printoptions(formatter={"float": "{:6.4f}".format})
storage_dir = "storage"
site_dir = "www"
os.makedirs(storage_dir, exist_ok=True)
os.makedirs(site_dir, exist_ok=True)
class TimeLimitsException(Exception):
pass
class SensoryMotorCicle:
def __init__(self, action_steps=5):
self.t = 0
self.action_steps = action_steps
def step(self, env, agent, state):
if self.t % self.action_steps == 0:
self.action = agent.step(state)
state = env.step(self.action)
self.t += 1
return state
def modulate_param(base, limit, prop):
return base + (limit - base) * prop
def softmax(x, t=0.01):
e = np.exp(x / t)
return e / (e.sum() + 1e-100)
class Main:
def __init__(self, seed=None, plots=False):
print("Main", flush=True)
if seed is None:
seed = np.frombuffer(os.urandom(4), dtype=np.uint32)[0]
self.rng = np.random.RandomState(seed)
torch.manual_seed(seed)
self.seed = seed
self.plots = plots
self.start = time.perf_counter()
if self.plots is True:
remove_figs()
self.env = SMEnv(seed, params.action_steps)
self.agent = SMAgent(self.env)
self.controller = SMController(
self.rng,
load=params.load_weights,
shuffle=params.shuffle_weights,
)
self.logs = np.zeros([params.epochs, 3])
self.epoch = 0
def __getstate__(self):
return {
"controller": self.controller.__getstate__(),
"env": self.env.__getstate__(),
"rng": self.rng.__getstate__(),
"seed": self.seed,
"plots": self.plots,
"logs": self.logs,
"epoch": self.epoch,
}
def __setstate__(self, state):
self.plots = state["plots"]
self.logs = state["logs"]
self.epoch = state["epoch"]
self.seed = state["seed"]
torch.manual_seed(self.seed)
self.rng = np.random.RandomState()
self.rng.__setstate__(state["rng"])
nlogs = len(self.logs)
if params.epochs > nlogs:
tmp = np.zeros([params.epochs, 3])
tmp[:nlogs, : ] = self.logs.copy()
self.logs = tmp
self.env = SMEnv(self.seed, params.action_steps)
self.controller = SMController(
self.rng,
load=params.load_weights,
shuffle=params.shuffle_weights,
)
self.controller.__setstate__(state["controller"])
self.env.__setstate__(state["env"])
self.agent = SMAgent(self.env)
self.start = time.perf_counter()
if self.plots is True:
remove_figs(self.epoch)
def is_object_out_of_taskspace(self, state):
obj_xy = state["OBJ_POSITION"][0, 0]
xlim, ylim = params.task_space["xlim"], params.task_space["ylim"]
return (obj_xy[0] < xlim[0] or obj_xy[0] > xlim[1]
or obj_xy[1] < ylim[0] or obj_xy[1] > ylim[1])
def train(self, time_limits):
if self.epoch == 0:
print("Training", flush=True)
else:
if self.epoch >= params.epochs - 1:
raise TimeLimitsException
env = self.env
agent = self.agent
controller = self.controller
logs = self.logs
batch_data_size = params.batch_size * (params.stime)
epoch = self.epoch
epoch_start = time.perf_counter()
contexts = (np.arange(params.batch_size) % 3) + 1
batch_v = np.zeros([params.batch_size, params.stime, params.visual_size])
batch_ss = np.zeros([params.batch_size, params.stime, params.somatosensory_size])
batch_p = np.zeros([params.batch_size, params.stime, params.proprioception_size])
batch_a = np.zeros([params.batch_size, params.stime, params.policy_size])
batch_c = np.ones([params.batch_size, params.stime, 1])
batch_log = np.ones([params.batch_size, params.stime, 1])
batch_g = np.zeros([params.batch_size, params.stime, params.internal_size])
v_r = np.zeros([params.batch_size, params.stime, params.internal_size])
ss_r = np.zeros([params.batch_size, params.stime, params.internal_size])
p_r = np.zeros([params.batch_size, params.stime, params.internal_size])
a_r = np.zeros([params.batch_size, params.stime, params.internal_size])
v_p = np.zeros([params.batch_size, params.stime, 2])
ss_p = np.zeros([params.batch_size, params.stime, 2])
p_p = np.zeros([params.batch_size, params.stime, 2])
a_p = np.zeros([params.batch_size, params.stime, 2])
g_p = np.zeros([params.batch_size, params.stime, 2])
match_value = np.zeros([params.batch_size, params.stime])
match_value_per_mod = np.zeros([params.batch_size, params.stime, 4])
match_increment = np.zeros([params.batch_size, params.stime])
match_increment_per_mod = np.zeros([params.batch_size, params.stime, 4])
while epoch < params.epochs:
total_time_elapsed = time.perf_counter() - self.start
if total_time_elapsed >= time_limits:
if self.epoch > 0:
raise TimeLimitsException
print(f"{epoch:6d}", end=" ", flush=True)
controller.comp_grid = controller.getCompetenceGrid()
comp = controller.comp_grid.mean()
controller.match_sigma = modulate_param(
params.base_match_sigma,
params.match_sigma,
1 - comp,
)
controller.curr_sigma = modulate_param(
params.base_internal_sigma,
params.internal_sigma,
1 - comp,
)
controller.curr_lr = modulate_param(
params.base_lr,
params.stm_lr,
1 - comp,
)
controller.explore_sigma = params.explore_sigma
if epoch > params.pretest_epochs:
controller.updateParams(
controller.curr_sigma, controller.curr_lr
)
st = params.stime
# ----- prepare episodes
envs = []
states = []
for episode in range(params.batch_size):
# Each environment should have a different seed
env = SMEnv(self.seed + episode, params.action_steps)
env.b2d_env.prepare_world(contexts[episode])
state = env.reset(contexts[episode])
batch_v[episode, 0, :] = state["VISUAL_SENSORS"].ravel()
batch_ss[episode, 0, :] = state["TOUCH_SENSORS"]
batch_p[episode, 0, :] = state["JOINT_POSITIONS"][:5]
states.append(state)
envs.append(env)
# get Representations for initial states
Rs, Rp = controller.spread(
[
batch_v[:, 0, :],
batch_ss[:, 0, :],
batch_p[:, 0, :],
batch_a[:, 0, :],
batch_g[:, 0, :],
])
v_r[:, 0, :], ss_r[:, 0, :], p_r[:, 0, :], a_r[:, 0, :], _ = Rs
v_p[:, 0, :], ss_p[:, 0, :], p_p[:, 0, :], a_p[:, 0, :], g_p[:, 0, :] = Rp
# get policy at the first timestep
goals = v_r[:, 0, :]
(policies,
competences,
rcompetences) = controller.getPoliciesFromRepresentationsWithNoise(goals)
# fill all batches with policies, goals, and competences
# (goal is different for each episode, but the same for each
# time step within an episode)
batch_a[::] = policies[:, None, :]
batch_g[::] = goals[:, None, :]
batch_c[::] = competences[:, None, :]
batch_log[::] = rcompetences[:, None, :]
cum_match_increment = np.zeros(params.batch_size)
# Main loop through time steps and episodes
smcycle = SensoryMotorCicle(params.action_steps)
for t in range(1, params.stime+1):
if t < params.stime:
for episode in range(params.batch_size):
# Do not update the episode if it has ended
if states[episode] is None or cum_match_increment[episode] > params.cum_match_incr_th:
continue
# set correct policy
agent.updatePolicy(batch_a[episode, 0, :])
state = smcycle.step(envs[episode], agent, states[episode])
# End the episode if object moves too far away
if self.is_object_out_of_taskspace(state):
states[episode] = None
else:
states[episode] = state
batch_v[episode, t, :] = state["VISUAL_SENSORS"].ravel()
batch_ss[episode, t, :] = state["TOUCH_SENSORS"]
batch_p[episode, t, :] = state["JOINT_POSITIONS"][:5]
if t % params.action_steps == 0 or t == params.stime:
# get Representations for the last N = params.action_steps steps
t0 = t - params.action_steps
bsize = params.batch_size * params.action_steps
sa = np.s_[:, t0:t, :]
Rs, Rp = controller.spread(
[
batch_v[sa].reshape((bsize, -1)),
batch_ss[sa].reshape((bsize, -1)),
batch_p[sa].reshape((bsize, -1)),
batch_a[sa].reshape((bsize, -1)),
batch_g[sa].reshape((bsize, -1)),
])
v_r[sa].flat = Rs[0].flat
ss_r[sa].flat = Rs[1].flat
p_r[sa].flat = Rs[2].flat
a_r[sa].flat = Rs[3].flat
v_p[sa].flat = Rp[0].flat
ss_p[sa].flat = Rp[1].flat
p_p[sa].flat = Rp[2].flat
a_p[sa].flat = Rp[3].flat
g_p[sa].flat = Rp[4].flat
match_value[:, t0:t], match_value_per_mod[sa] =\
controller.computeMatchSimple(v_p[sa], ss_p[sa], p_p[sa], a_p[sa], g_p[sa])
if t > params.action_steps:
match_increment_per_mod[sa] = np.maximum(0, match_value_per_mod[sa] - match_value_per_mod[:, (t0-1):(t-1), :])
match_increment[:, t0:t] = np.mean(match_increment_per_mod[sa], axis=-1)
cum_match_increment += match_increment[:, t0:t].sum(axis=-1)
# ---- end of an epoch: match_value and update
bsize = params.batch_size * params.stime
pretest = epoch <= params.pretest_epochs
(update_items, update_episodes,) = controller.update(
batch_v.reshape((bsize, -1)),
batch_ss.reshape((bsize, -1)),
batch_p.reshape((bsize, -1)),
batch_a.reshape((bsize, -1)),
batch_g.reshape((bsize, -1)),
match_value.reshape(-1, 1),
match_increment.reshape(-1, 1),
competences=batch_c.reshape((bsize, -1)),
pretest=pretest,
)
# ---- print
c = np.outer(contexts, np.ones(params.stime)).ravel()
items = [np.sum(update_episodes[c == k]) for k in range(1, 4)]
items = "".join(
list(
map(
lambda x: "{: 6d} {}".format(*x),
zip(items, ["f", "m", "c"]),
)
)
)
print(f"{update_items:#7d} {items}", end=" ", flush=True)
print(f"{batch_ss.sum():#10.2f}", end=" ", flush=True)
logs[epoch] = [
batch_log.min(),
batch_log.mean(),
batch_log.max(),
]
print(
("%8.7f " * 3)
% (
batch_log.min(),
batch_log.mean(),
batch_log.max(),
),
end="",
)
print(f" pretest={pretest}", flush=True)
self.match_value = match_value
self.match_increment = match_increment
self.match_value_per_mod = match_value_per_mod
self.match_increment_per_mod = match_increment_per_mod
self.v_r = v_r
self.ss_r = ss_r
self.p_r = p_r
self.a_r = a_r
self.batch_v = batch_v
self.batch_ss = batch_ss
self.batch_p = batch_p
self.batch_a = batch_a
# diagnose
if (epoch > 0 and epoch % params.epochs_to_test == 0) or epoch == (
params.epochs - 1
):
epoch_dir = f"storage/{epoch:06d}"
os.makedirs(epoch_dir, exist_ok=True)
np.save(f"{epoch_dir}/main.dump", [self], allow_pickle=True)
self.diagnose()
time_elapsed = time.perf_counter() - epoch_start
print("---- TIME: %10.4f" % time_elapsed, flush=True)
epoch_start = time.perf_counter()
match_value[::] = 0
match_increment[::] = 0
match_value_per_mod[::] = 0
match_increment_per_mod[::] = 0
batch_v[::] = 0
batch_ss[::] = 0
batch_p[::] = 0
batch_a[::] = 0
v_r[::] = 0
ss_r[::] = 0
p_r[::] = 0
a_r[::] = 0
v_p[::] = 0
ss_p[::] = 0
p_p[::] = 0
a_p[::] = 0
epoch += 1
self.epoch = epoch
sys.stdout.flush()
def diagnose(self):
np.save("main.dump", [self], allow_pickle=True)
env = self.env
agent = self.agent
controller = self.controller
logs = self.logs
epoch = self.epoch
data = {}
data["match_value"] = self.match_value
data["match_increment"] = self.match_increment
data["match_value_per_mod"] = self.match_value_per_mod
data["match_increment_per_mod"] = self.match_increment_per_mod
data["v_r"] = self.v_r
data["ss_r"] = self.ss_r
data["p_r"] = self.p_r
data["a_r"] = self.a_r
data["v"] = self.batch_v
data["ss"] = self.batch_ss
data["p"] = self.batch_p
data["a"] = self.batch_a
epoch_dir = f"storage/{epoch:06d}"
os.makedirs(epoch_dir, exist_ok=True)
controller.save(epoch)
np.save(f"{epoch_dir}/data", [data])
np.save(f"{site_dir}/log", logs[: epoch + 1])
np.save(f"{epoch_dir}/log", logs[: epoch + 1])
if self.plots is False:
return
print("----> Graphs ...", flush=True)
remove_figs(epoch)
visual_map()
log()
comp_map()
if os.path.isfile("PLOT_SIMS"):
print("----> Test Sims ...", end=" ", flush=True)
for k in range(params.tests):
context = (k // (params.tests//3)) + 1
state = env.reset(
context,
plot=f"{site_dir}/episode%d" % k,
render="offline",
)
agent.reset()
v = state["VISUAL_SENSORS"].ravel()
ss = state["TOUCH_SENSORS"]
p = state["JOINT_POSITIONS"][:5]
a = np.zeros(agent.params_size)
(
internal_representations,
internal_points,
) = controller.spread([np.array([v]), np.array([ss]), np.array([p]), np.array([a])])
# take only vision
internal_mean = internal_representations[0]
policy, *_ = controller.getPoliciesFromRepresentationsWithNoise(
internal_mean
)
agent.updatePolicy(policy)
batch_v = np.zeros([params.stime, params.visual_size])
batch_ss = np.zeros(
[
params.stime,
params.somatosensory_size,
]
)
batch_p = np.zeros(
[
params.stime,
params.proprioception_size,
]
)
batch_a = np.zeros([params.stime, params.policy_size])
batch_g = np.zeros([params.stime, params.internal_size])
batch_v[0] = v
batch_ss[0] = ss
batch_p[0] = p
batch_a[0] = policy.reshape(-1)
batch_g[0] = internal_mean.reshape(-1)
smcycle = SensoryMotorCicle()
for t in range(params.stime):
state = smcycle.step(env, agent, state)
v = state["VISUAL_SENSORS"].ravel()
ss = state["TOUCH_SENSORS"]
p = state["JOINT_POSITIONS"][:5]
batch_v[t] = v
batch_ss[t] = ss
batch_p[t] = p
batch_a[t] = policy.reshape(-1)
batch_g[t] = internal_mean.reshape(-1)
(
internal_representations,
internal_points,
) = controller.spread(
[batch_v, batch_ss, batch_p, batch_a, batch_g]
)
(match_value, match_increment, _, _) = controller.computeMatch(
np.stack(internal_points[:4]),
internal_points[4],
)
env.render_info(
match_value,
(
(match_increment > params.match_incr_th)
& (match_value > params.match_th)
),
)
env.close()
if k % 2 == 0 or k == params.tests - 1:
print(
"{:d}% ".format(int(100 * (k / (params.tests - 1)))),
end=" ",
flush=True,
)
print(flush=True)
if os.path.isfile("COMPUTE_TRAJECTORIES"):
print(
"----> Compute Trajectories ...",
end=" ",
flush=True,
)
context = 4 # no object
trj = np.zeros([params.internal_size, params.stime, 2])
state = env.reset(context)
agent.reset()
for i, goal_r in enumerate(controller.goal_grid):
policy = controller.getPoliciesFromRepresentations(np.array([goal_r]))
agent.updatePolicy(policy)
smcycle = SensoryMotorCicle()
for t in range(params.stime):
state = smcycle.step(env, agent, state)
trj[i, t] = state["JOINT_POSITIONS"][-2:]
if i % 10 == 0 or i == params.internal_size - 1:
print(
"{:d}% ".format(int(100 * (i / params.internal_size))),
end=" ",
flush=True,
)
print(flush=True)
np.save(f"{site_dir}/trajectories", trj)
np.save(f"{epoch_dir}/trajectories", trj)
trajectories_map()
def collect_sensory_states():
pass
def demo_episode(idx):
pass
def demo_episodes():
pass
def get_context_from_visual():
pass
if __name__ == "__main__":
import argparse
parser = argparse.ArgumentParser()
parser.add_argument(
"-t",
"--time",
help="The maximum time for the simulation (seconds)",
action="store",
default=1e99,
)
parser.add_argument("-g", "--gpu", help="Use gpu", action="store_true")
parser.add_argument(
"-s",
"--seed",
help="Simulation seed",
action="store",
default=1,
)
parser.add_argument(
"-x",
"--plots",
help="Plot graphs",
action="store_true",
)
args = parser.parse_args()
timing = float(args.time)
gpu = bool(args.gpu)
seed = int(args.seed)
plots = bool(args.plots)
if gpu:
torch.set_default_device('cuda')
if os.path.isfile("main.dump.npy"):
main = np.load("main.dump.npy", allow_pickle="True")[0]
main.plots = plots
else:
main = Main(seed, plots)
print(main.epoch)
try:
main.train(timing)
print("Done!!", flush=True)
except TimeLimitsException:
print(f"Epoch {main.epoch}. end", flush=True)
try:
main.diagnose()
except AttributeError:
pass