-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathutils.py
146 lines (117 loc) · 6.32 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
import tensorflow as tf
import scipy.io
import numpy as np
import argparse
import time
import settings
class dense_layers():
def __init__(self,A,a):
self.weights = tf.constant(A)
self.bias = tf.constant(a)
class conv_layers():
def __init__(self,A,a,stride):
self.weights = tf.constant(A)
if np.shape(a) != ():
self.bias = tf.constant(a)
else:
self.bias = tf.zeros([self.weights.shape[-1]])
self.stride = stride
def forward_pass(x,bs,hps):
conv_l, dense_l = settings.layers[0], settings.layers[1]
if hps.dataset == 'cifar10':
if hps.model == 'l2-at':
y = x - tf.ones([bs,32,32,3],dtype=tf.float32)*0.5
else:
y = x - 0.0
y = tf.nn.relu(tf.nn.conv2d(y, conv_l[0].weights, strides=[1, conv_l[0].stride, conv_l[0].stride, 1], padding="SAME") - conv_l[0].bias)
for counter in range(1,len(conv_l)):
y = tf.nn.relu(tf.nn.conv2d(y, conv_l[counter].weights, strides=[1, conv_l[counter].stride, conv_l[counter].stride, 1], padding="SAME") - conv_l[counter].bias)
y = tf.squeeze(y)
y = tf.reshape(y,[bs,-1])
for counter in range(0,len(dense_l)-1):
y = tf.nn.relu(tf.matmul(y,dense_l[counter].weights) - dense_l[counter].bias)
return tf.matmul(y,dense_l[-1].weights) - dense_l[-1].bias
elif hps.dataset == 'mnist':
maxp_size = [2, 2]
maxp_stride = [2, 2]
y = tf.nn.relu(tf.nn.conv2d(x, conv_l[0].weights, strides=[1, conv_l[0].stride, conv_l[0].stride, 1], padding="SAME") - conv_l[0].bias)
y = tf.nn.max_pool(y,[1,maxp_size[0],maxp_size[0],1],[1,maxp_stride[0],maxp_stride[0],1],padding="VALID")
for counter in range(1,len(conv_l)):
y = tf.nn.relu(tf.nn.conv2d(y, conv_l[counter].weights, strides=[1, conv_l[counter].stride, conv_l[counter].stride, 1], padding="SAME") - conv_l[counter].bias)
y = tf.nn.max_pool(y,[1,maxp_size[1],maxp_size[1],1],[1,maxp_stride[1],maxp_stride[1],1],padding="VALID")
y = tf.squeeze(y)
y = tf.reshape(y,[bs,-1])
for counter in range(0,len(dense_l)-1):
y = tf.nn.relu(tf.matmul(y,dense_l[counter].weights) - dense_l[counter].bias)
return tf.matmul(y,dense_l[-1].weights) - dense_l[-1].bias
def get_weights_conv(model, hps):
if hps.dataset == 'cifar10':
stride = [1,1,2,1,1,2,1,2]
if hps.model == 'plain':
conv_l = [conv_layers(model['A0'],model['bA0'],stride[0]), conv_layers(model['A1'],model['bA1'],stride[1]), conv_layers(model['A2'],model['bA2'],stride[2]), conv_layers(model['A3'],model['bA3'],stride[3]), conv_layers(model['A4'],model['bA4'],stride[4]), conv_layers(model['A5'],model['bA5'],stride[5]), conv_layers(model['A6'],model['bA6'],stride[6]), conv_layers(model['A7'],model['bA7'],stride[7])]
dense_l = [dense_layers(model['A8'],model['bA8']), dense_layers(model['A9'],model['bA9'])]
elif hps.model == 'linf-at' or hps.model == 'l2-at':
conv_l = [conv_layers(model['A0'],0,stride[0]), conv_layers(model['A1'],0,stride[1]), conv_layers(model['A2'],0,stride[2]), conv_layers(model['A3'],0,stride[3]), conv_layers(model['A4'],0,stride[4]), conv_layers(model['A5'],0,stride[5]), conv_layers(model['A6'],0,stride[6]), conv_layers(model['A7'],0,stride[7])]
dense_l = [dense_layers(model['A8'],-model['A9']), dense_layers(model['A10'],-model['A11'])]
else:
raise ValueError('unknown model')
elif hps.dataset == 'mnist':
conv_l = [conv_layers(model['A0'],-model['A1'],1), conv_layers(model['A2'],-model['A3'],1)]
dense_l = [dense_layers(model['A4'],-model['A5']), dense_layers(model['A6'],-model['A7'])]
return conv_l,dense_l
class Model():
def __init__(self, hps):
self._build_model(hps)
def _build_model(self, hps):
if hps.dataset in ['cifar10']:
self.x_input = tf.placeholder(
tf.float32,
shape=[None, 32, 32, 3])
elif hps.dataset == 'mnist':
self.x_input = tf.placeholder(
tf.float32,
shape=[None, 28, 28, 1])
self.hps = hps
self.y_input = tf.placeholder(tf.int64, shape=None)
self.bs = tf.placeholder(tf.int32, shape=None)
self.y = forward_pass(self.x_input, self.bs, self.hps)
self.predictions = tf.argmax(self.y, 1)
self.correct_prediction = tf.equal(self.predictions, tf.squeeze(self.y_input))
self.corr_pred = self.correct_prediction
self.num_correct = tf.reduce_sum(tf.cast(self.correct_prediction, tf.float32))
self.accuracy = tf.reduce_mean(tf.cast(self.correct_prediction, tf.float32))
self.y_xent = tf.nn.sparse_softmax_cross_entropy_with_logits(logits=self.y, labels=self.y_input)
self.xent = tf.reduce_sum(self.y_xent, name='y_xent')
self.grad = tf.gradients(self.xent, self.x_input)[0]
print('model built')
def load_dataset(hps):
if hps.dataset == 'cifar10':
cifar10_data = scipy.io.loadmat("datasets/cifar10/cifar10_test.mat")
x_test = cifar10_data['Xtest']
y_test = cifar10_data['Ytest']
x_test.astype(np.float32)
y_test_0 = y_test
y_test = np.eye(10)[y_test]
y_test=np.squeeze(y_test)
stride = [1,1,2,1,1,2,1,2]
if hps.model == 'plain': model = scipy.io.loadmat("models/cifar10_weights_plain.mat")
elif hps.model == 'linf-at': model = scipy.io.loadmat("models/cifar10_weights_linf.mat")
elif hps.model == 'l2-at': model = scipy.io.loadmat("models/cifar10_weights_l2.mat")
else: raise ValueError('unknown model')
elif hps.dataset == 'mnist':
mnist_data = scipy.io.loadmat("datasets/mnist/mnist_test.mat")
x_test = mnist_data['X_test']
x_test.astype(np.float32)
x_test = np.expand_dims(x_test,3)
y_test = mnist_data['label_test']
x_test.astype(np.float32)
y_test_0 = y_test
y_test = np.eye(10)[y_test]
y_test=np.squeeze(y_test)
maxp_size = [2,2]
maxp_stride = [2,2]
if hps.model == 'plain': model = scipy.io.loadmat("models/mnist_weights_plain.mat")
elif hps.model == 'linf-at': model = scipy.io.loadmat("models/mnist_weights_linf.mat")
elif hps.model == 'l2-at': model = scipy.io.loadmat("models/mnist_weights_l2.mat")
else: raise ValueError('unknown model')
return model, x_test, y_test, y_test_0