diff --git a/blueprint/src/chapter/main.tex b/blueprint/src/chapter/main.tex index 02ca5721..e90b46b9 100644 --- a/blueprint/src/chapter/main.tex +++ b/blueprint/src/chapter/main.tex @@ -969,12 +969,7 @@ \chapter{Proof of Metric Space Carleson} \left| {T}_{2,\sigma_1,\sigma_2, \tQ}f(x) \right|\, d\mu(x) \le \frac{2^{445a^3}}{(q-1)^6} \mu(G)^{1-\frac{1}{q}} \mu(F)^{\frac{1}{q}}. \end{equation} -As the integrand is bounded by -\begin{equation}\mathbf{1}_{G\setminus G_{n}}(x) -\sum_{-S s(J) +10a^2 + 2$. Since $J \in \mathcal{J}'$, we have $J \subsetneq \scI(\fu_1)$. Thus there exists $J' \in \mathcal{D}$ with $J \subset J'$ and $s(J') = s(J) + 1$, by \eqref{coverdyadic} and \eqref{dyadicproperty}. By definition of $\mathcal{J}'$, there exists some $\fp' \in \mathfrak{S}$ such that $\scI(\fp') \subset B(c(J'), 100 D^{s(J) + 2})$. On the other hand, since $B(\scI(\fp)) \cap B^\circ(J) \ne \emptyset$, by the triangle inequality it holds that + For the second estimate, assume that $\ps(\fp) > s(J) + 3$. Since $J \in \mathcal{J}'$, we have $J \subsetneq \scI(\fu_1)$. Thus there exists $J' \in \mathcal{D}$ with $J \subset J'$ and $s(J') = s(J) + 1$, by \eqref{coverdyadic} and \eqref{dyadicproperty}. By definition of $\mathcal{J}'$, there exists some $\fp' \in \mathfrak{S}$ such that $\scI(\fp') \subset B(c(J'), 100 D^{s(J) + 2})$. On the other hand, since $B(\scI(\fp)) \cap B^\circ(J) \ne \emptyset$, by the triangle inequality it holds that $$ - B(c(J'), 100 D^{s(J) + 10a^2 + 2}) \subset B(\pc(\fp), 10 D^{\ps(\fp)})\,. + B(c(J'), 100 D^{s(J) + 3}) \subset B(\pc(\fp), 10 D^{\ps(\fp)})\,. $$ Using the definition of $\mathfrak{S}$, we have $$ @@ -5155,14 +5151,14 @@ \subsection{H\"older estimates for adjoint tree operators} $$ By \eqref{seconddb}, this is $$ - \le 2^{-10a} d_{B(c(J'), 100 D^{s(J) + 10a^2 + 2})}(\fcc(\fu_1), \fcc(\fu_2)) + \le 2^{-100a} d_{B(c(J'), 100 D^{s(J) + 3})}(\fcc(\fu_1), \fcc(\fu_2)) $$ $$ - \le 2^{-10a} d_{B(\pc(\fp), 10 D^{\ps(\fp)})}(\fcc(\fu_1), \fcc(\fu_2))\,, + \le 2^{-100a} d_{B(\pc(\fp), 10 D^{\ps(\fp)})}(\fcc(\fu_1), \fcc(\fu_2))\,, $$ and by \eqref{firstdb} and the definition of $\mathfrak{S}$ $$ - \le 2^{-4a} d_{\fp}(\fcc(\fu_1), \fcc(\fu_2)) \le 2^{-4a} 2^{Zn/2}\,. + \le 2^{-94a} d_{\fp}(\fcc(\fu_1), \fcc(\fu_2)) \le 2^{-94a} 2^{Zn/2}\,. $$ This is a contradiction, the second estimate follows. \end{proof} @@ -5186,7 +5182,7 @@ \subsection{H\"older estimates for adjoint tree operators} By \Cref{limited-scale-impact}, this is at most \begin{equation} \label{eq-sep-tree-aux-3} - \sum_{s = s(J)}^{s(J) + 10a^2 + 2} \sum_{\substack{\fp \in \fP, \ps(\fp) = s\\ B(\scI(\fp)) \cap B^\circ(J) \ne \emptyset}} \sup_{B^\circ{}(J)} |T_{\fp}^* g|\,. + \sum_{s = s(J)}^{s(J) + 3} \sum_{\substack{\fp \in \fP, \ps(\fp) = s\\ B(\scI(\fp)) \cap B^\circ(J) \ne \emptyset}} \sup_{B^\circ{}(J)} |T_{\fp}^* g|\,. \end{equation} If $x \in E(\fp)$ and $B(\scI(\fp)) \cap B^\circ(J) \ne \emptyset$, then $$ @@ -5198,16 +5194,16 @@ \subsection{H\"older estimates for adjoint tree operators} $$ Using \eqref{definetp*}, \eqref{eq-Ks-size} and that $a \ge 4$, we bound \eqref{eq-sep-tree-aux-3} by $$ - 2^{103a^3}\sum_{s = s(J)}^{s(J) + 10a^2 + 2} \sum_{\substack{\fp \in \fP, \ps(\fp) = s\\B(\scI(\fp)) \cap B^\circ(J) \ne \emptyset}} \frac{1}{\mu(B(c(J), 16 D^s)} \int_{E(\fp)} |g| \, \mathrm{d}\mu\,. + 2^{103a^3}\sum_{s = s(J)}^{s(J) + 3} \sum_{\substack{\fp \in \fP, \ps(\fp) = s\\B(\scI(\fp)) \cap B^\circ(J) \ne \emptyset}} \frac{1}{\mu(B(c(J), 16 D^s)} \int_{E(\fp)} |g| \, \mathrm{d}\mu\,. $$ For each $I \in \mathcal{D}$, the sets $E(\fp)$ for $\fp \in \fP$ with $\scI(\fp) = I$ are pairwise disjoint by \eqref{defineep} and \eqref{eq-dis-freq-cover}. Further, if $B(\scI(\fp)) \cap B^\circ(J) \ne \emptyset$ and $\ps(\fp) \ge s(J)$, then $E(\fp) \subset B(c(J), 32 D^{\ps(\fp)})$. Thus the last display is bounded by $$ - 2^{103a^3}\sum_{s = s(J)}^{s(J) + 10a^2 + 2} \frac{1}{\mu(B(c(J), 32 D^s))} \int_{B(c(J), 16 D^s)} |g| \, \mathrm{d}\mu\,. + 2^{103a^3}\sum_{s = s(J)}^{s(J) + 3} \frac{1}{\mu(B(c(J), 32 D^s))} \int_{B(c(J), 16 D^s)} |g| \, \mathrm{d}\mu\,. $$ $$ - \le \inf_{x' \in J} 2^{103a^3}(10a^2 + 3) M_{\mathcal{B}, 1} |g|\,. + \le \inf_{x' \in J} 2^{103a^3 +2} M_{\mathcal{B}, 1} |g|\,. $$ - The lemma follows since for $a \ge 4$ it holds that $10a^2 + 3 \le 2^{a^3}$. + The lemma follows since $a \ge 4$. \end{proof} \begin{lemma}[scales impacting interval]